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6

Abstract7

In this paper, we present a vision system for robotic object manipulation tasks in natural, domestic environments. Given
complex fetch-and-carry robot tasks, the issues related to the wholedetect-approach-grasploop are considered. Our vision
system integrates a number of algorithms using monocular and binocular cues to achieve robustness in realistic settings. The
cues are considered and used in connection to both foveal and peripheral vision to provide depth information, segmentation of the
object(s) of interest, object recognition, tracking and pose estimation. One important property of the system is that the step from
object recognition to pose estimation is completely automatic combining both appearance and geometric models. Experimental
evaluation is performed in a realistic indoor environment with occlusions, clutter, changing lighting and background conditions.
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. Introduction

One of the key components of a robotic system
hat operates in a dynamic, unstructured environment
s robust perception. Our current research considers the
roblem of mobile manipulation in domestic settings
here, in order for the robot to be able to detect and
anipulate objects in the environment, robust visual

eedback is of key importance. Humans use visual feed-
ack extensively toplanandexecuteactions. However,
lanning and execution is not a well-defined one-way

∗ Corresponding author. Tel.: +46 87906729; fax: +46 87230302.
E-mail addresses:danik@nada.kth.se (D. Kragic);

elle@nada.kth.se (M. Björkman); hic@nada.kth.se
H.I. Christensen); joe@nada.kth.se (J.-O. Eklundh).

stream: how we plan and execute actions depend
what we already know about the environment we o
ate in, what we are about to do, and what we think
actions will result in. Complex coordination betwe
the eye and the hand is used during execution o
eryday activities such as pointing, grasping, reac
or catching. Each of these activities or actions requ
attention to different attributes in the environmen
while pointing requires only an approximate locat
of the object in the visual field, a reaching or grasp
movement requires more exact information abou
object’s pose.

In robotics, the use of visual feedback for mot
coordination of a robotic arm or platform motion
termedvisual servoing, Hutchinson et al.[1]. In gen-
eral, visual information is important at different le

921-8890/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
oi:10.1016/j.robot.2005.03.011
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els of complexity: from scene segmentation to object’s44

pose estimation. Hence, given a complex fetch-and-45

carry type of task, issues related to the wholedetect-46

approach-grasploop have to be considered. Most vi-47

sual servoing systems, however, deal only with theap-48

proachstep and disregard issues such asdetectingthe49

object of interest in the scene or retrieving its three50

dimensional (3D) structure in order to perform grasp-51

ing. A so calledteach-by-showingapproach is typi-52

cally used where the desired camera placement with53

respect to the object is well defined and known before54

hand.55

Our goal is the development of an architecture that56

integrates different modules where each module en-57

capsulates a number of visual algorithms responsi-58

ble for a particular task such as recognition or track-59

ing. Our system is heavily based on theactive vi-60

sionparadigm, Ballard[2] where, instead of passively61

observing the world, viewing conditions are actively62

changed so that the best results are obtained given a63

task at hand.64

In our previous work, Bj̈orkman and Kragic[3] we65

have presented a system that consists of two pairs of66

stereo cameras: a peripheral camera set and a foveal67

one. Recognition and pose estimation are performed68

using either one of these, depending on the size and69

distance to the object of interest. From segmentation70

based on binocular disparities, objects of interest are71

found using the peripheral camera set, which then trig-72

gers the system to perform a saccade, moving the ob-73
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presented in Section8 and final conclusion given in 92

Section9. 93

2. Problem definition 94

In general, vision based techniques employed in vi-95

sual servoing and object manipulation depend on:
96

• Camera placement: Most visual servoing systems97

today useeye-in-handcameras and deal mainly with 98

theapproachobject step in ateach-by-showingman- 99

ner, Malis et al.[5]. In our approach, we consider a100

combination of a stand-alone stereo and an eye-in-101

hand camera systems, Kragic and Christensen[6]. 102

• Number of cameras: In order to extract metric103

information, e.g. sizes and distances, about objects104

observed by the robot, we will show how we can105

benefit from binocular information. The reason for106

using multiple cameras in our system is the fact that107

it simplifies the problem of segmenting the image108

data into different regions representing objects in a109

3D scene. This is often referred to asfigure-ground 110

segmentation. In cluttered environments and com-111

plex backgrounds, figure-ground segmentation is112

particularly important and difficult to perform and113

commonly the reason for experiments being per-114

formed in rather sparse, simplified environments.115

In our work, multiple cameras are used for scene116

segmentation while a single camera is used for117

visual servoing, object tracking and recognition. 118

• sing119

pe-120
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ect into the center of foveal cameras achieving th
ombination of a large field of view and high image r
lution. Compared to one of the recent systems, Ki
l. [4], our system uses both hard (detailed models)
oft modeling (approximate shape) for object segm
ation. In addition, choice of binocular or monocu
ues is used depending on the task. In this pape
ormalize the use of the existing system with resp
o Fig. 1—how to utilize the system with respect
ifferent types of robotic manipulation tasks.

This paper is organized as follows. In Section2,
problem definition is given. In Section3, a shor

verview of the current system is given and in S
ion 4 hypotheses generation is presented. In Sect5
e deal with the problem of manipulating known o

ects and in Section6with the problem of manipulatin
nknown objects. Some issues related to object g

ng are given in Section7. Experimental evaluation
E
D

ROBOT 1235 1–1

Camera type: Here we consider systems u
zooming cameras or combinations of foveal and
ripheral ones. With respect to these, very little w
has been reported in visual servoing commu
Benhimane and Malis[7]. In this paper, we demo
strate how a combination of foveal and periph
cameras can be used for scene segmentation, o
recognition and pose estimation.

n our current system, the robot may be given ta
uch as “Robot, bring me the raisins” or “Robot, p
p this”. Depending on the prior information, i.e. tas
ontext information, different solution strategies m
e chosen. The first task of the above is well defi
ince it assumes that the robot already has the int
epresentation of the object, e.g. theidentityof the ob-
ect is known. An example of such a task is show
ig. 2: after being given a spoken command, the ro

ocates the object, approaches it, estimates its pos
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Fig. 1. Robotic manipulation scenarios.

finally performs grasping. More details related to this137

approach are given in Section5. For the second task, the138

spoken command is commonly followed by a pointing139

gesture—here, the robot does not know theidentityof140

the object, but it knows its approximatelocation. The141

approach considered in this work is presented in Sec-142

tion 6. Fig. 1shows different scenarios with respect to143

prior knowledge of objectidentityand location, with144

the above examples shaded. A different set of underly-145

Fig. 2. Detect-approach-grasp example.

c Tech

ing visual strategies is required for each of these sce-146

narios. We have considered these two scenarios since147

they are the most representative examples for robotic148

fetch-and-carry tasks. 149

2.1. Experimental platform 150

The experimental platform is a Nomadic Technolo-151

gies XR4000, equipped with a Puma 560 arm for ma-152

nipulation (seeFig. 3). The robot has sonar sensors, a153

SICK laser scanner, a wrist mounted force/torque sen-154

sor (JR3), and a color CCD camera mounted on the155

Barrett Hand gripper. The palm of the Barrett hand is156

covered by a VersaPad touch sensor and, on each fin-157

ger, there are three Android sensors. On the robot’s158

shoulder, there is a binocular stereo-head. This sys-159

tem, known as Yorick, has four mechanical degrees of160

freedom; neck pan and tilt, and pan for each camera in161

relation to the neck. The head is equipped with a pair of
O
R

R
E

Fig. 3. (Left) Experimental platform Nomadi
U
N

C

E
D

nologies XR4000, and (Right) Yorick stereo-head.
ROBOT 1235 1–16
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Sony XC999 cameras, with focal length of 6 mm. Ad-162

ditional pair of Sony XC999 cameras with focal length163

of 12 mm is placed directly on the robot base.164

For some of the experimental results that will be pre-165

sented further on, a stand-alone binocular stereo-head166

system shown inFig. 3 was used. Here, the head is167

equipped with two pairs of Sony XC999 cameras, with168

focal lengths 28 and 6 mm, respectively. The motiva-169

tion for this combination of cameras will be explained170

related to the examples.171

3. The system172

Fig. 4 shows a schematic overview of the basic173

building blocks of the system. These blocks do not nec-174

essarily correspond to the actual software components,175

but are shown in order to illustrate the flow of informa-176

tion through the system. For example, the visual front177

end consists of several components, some of which are178

running in parallel and others hierarchically. For ex-179

ample, color and stereo information are extracted in180

parallel, while epipolar geometry has to be computed181

prior to disparities. On the other hand, action genera-182

tion, such as initiating 2D or 3D tracking, is distributed183

and performed across multiple components.184

The most important building blocks can be summa-185

rized as follows:
186

• The Visual Front-End is responsible for the ex-187

traction of visual information needed for figure-188

ground segmentation and other higher level proce-189

sses. 190

• Hypotheses Generation produces a number of hy-191

potheses about the objects in the scene that may be192

relevant to the task at hand. The computations are193

moved from being distributed across the whole im-194

age to particular regions of activation. 195

• Recognition is performed on selected regions, using196

either corner features or color histograms, to deter-197

mine the relevancy of observed objects. 198

• Action Generation triggers actions, such as visual199

tracking and pose estimation, depending on the out-200

come of the recognition and current task specifica-201

tion. 202

Due to the complexity of the software system, it203

was partitioned into a number of smaller modules204

that communicate through a framework built on a205

interprocess communication standard called CORBA206

(Common Object Request Broker Architecture),207

Vinoski [8]. The current version of the system consists208

of about ten such modules, each running at a different209

frame rate. The lowest level frame grabbing module210

works at a frequency of 25 Hz, while the recognition211

module is activated only upon request. In order to212

consume processing power, modules are shut down213

temporarily when not been accessed by any other214

module within a time frame of 10 s. 215

With limited resources in terms of memory storage216

and computational power, biological and robotic sys-217

ding bl
U
N

C
O

R
R

E
C

Fig. 4. Basic buil
E
D

ROBOT 1235 1–1

ocks of the system.
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tems need to find an acceptable balance between the218

width of the visual field and its resolution. Otherwise,219

the amount of visual data will be too large for the sys-220

tem to efficiently handle. Unfortunately, this balance221

depends on the tasks the systems have to perform. An222

animal that has to stay alert in order to detect an ap-223

proaching predator, would prefer a wide field of view.224

The opposite is true if the same animal acts as a preda-225

tor itself. Similarly, a robotic system benefits from a226

wide field of view, in order not to collide with obsta-227

cles while navigating through a cluttered environment.228

A manipulation task on the other hand, requires a high229

resolution in order grasp and manipulate objects. That230

is, to find objects in the scene a wide field of view is231

preferable, but recognizing and manipulating the same232

objects require a high resolution.233

On a binocular head, Björkman and Kragic[3] we234

overcame this problem by using a combination of two235

pairs of cameras, a peripheral set for attention and a236

foveated one for recognition and pose estimation. In237

order to facilitate transfers of object hypotheses from238

one pair to the other, and replicate the nature of the hu-239

man visual system, the pairs were placed next to each240

others. The camera system on the robot is different in241

that the two pairs are widely separated and placed on242

an autonomously moving platform, seeFig. 3: a stereo243

head on a shoulder and another pair on the base. The244

search pair is located on-top of the robot overlooking245

the scene and the manipulation pair is at waist height,246

such that the gripper will not occlude an object while it247

i th-248

e tures249

a lated250

p riph-251

e f the252

f253

si-254

b eras255

s s be-256

t r of257

f ture258

s ery259

d ng.260

I ove261

t by262

t tion263

p tely264

k re-265

lation to the base. Hypotheses are found by the search266

pair, the 3D positions are derived using triangulation267

and finally projected onto the image planes of the ma-268

nipulation pair. For the 3D position to be accurately269

estimated, the search pair is calibrated on-line, simi-270

larly to the original version of the system, Björkman 271

and Eklundh[9]. The precision in depth ranges from272

about a decimeter to half a meter depending on the273

observed distance. 274

3.1. Stereo system modeling—epipolar geometry 275

With a binocular set of cameras, differences in276

position between projections of 3D points onto the277

left and right image planes (disparities) can be used278

to perform figure-ground segmentation and retrieve279

the information about three-dimensional structure280

of the scene. If the relative orientation and position281

between cameras is known, it is possible to relate282

these disparities to actual metric distances. One of the283

commonly used settings is where the cameras are rec-284

tified and their optical axes mutually parallel, Kragic285

and Christensen[6]. However, one of the problems286

arising is that the part of the scene contained in the287

field of view of both cameras simultaneously is quite288

limited. 289

Another approach is to estimate the epipolar geom-290

etry continuously from image data alone, Björkman 291

[10]. Additional reason for this may be that small distur-292

b gnifi-293

c fact,294

a eral295

c ere-296

f ipo-297

l rner298

f s 299

a ages300

u an-301

g d 302

t 303(
304

w si-305

t m-306

b , 307

a 308
U
N

C
O

R
R

E

s being manipulated. In the original version, hypo
sis transfers were based on matched corner fea
nd affine geometry. Hence, with the cameras re
airwise, the position of hypotheses seen by the pe
ral cameras could be transferred to the images o

oveated stereo set.
This way of transferring positions is no longer fea

le in the robot camera configuration. With the cam
eparated by as much as a meter, the intersection
ween visual fields tend to be small and the numbe
eatures possible to match is low. Furthermore, a fea
een from two completely different orientations is v
ifficult to match, even using affine invariant matchi

nstead we exploit the fact that we can actively m
he platform such that an object of interest, found
he search pair, will become visible by the manipula
air. For this to be possible we have to approxima
now the orientation and position of the cameras in
E
D

ROBOT 1235 1–1

ances such as vibrations and delays introduce si
ant noise to the estimation of the 3D structure. In
n error of just one pixel leads to depth error of sev
entimeters on a typical manipulation distance. Th
ore, for some of the manipulation tasks, the ep
ar geometry is estimated robustly using Harris’ co
eatures, Harris and Stephens[11]. Such corner feature
re extracted and matched between the camera im
sing normalized cross-correlation. The vergence
leα, gaze directiont, relative tiltrx and rotation aroun

he optical axesrz, are iteratively sought using

dx

dy

)
=
(

(1 + x2)α − yrz

xyα + ry + xrz

)
+ 1

Z

(
1 − xt

−yt

)
, (1)

hereZ is the unknown depth of a point at image po
ion (x, y). The optimization is performed using a co
ination of RANSAC[12] for parameter initialization
nd M-estimators[13] for improvements.
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This optical flow model[14] is often applied to mo-309

tion analysis, but has rarely been used for stereo. The310

reason for this is because the model is approximate311

and only works for relatively small displacements. In312

our previous work we have, however, experimentally313

shown that this model is more robust than the essential314

matrix in the case of binocular stereo heads, Björkman315

and Eklundh[9], even if the essential matrix leads316

to a more exact description of the epipolar geometry,317

Longuet-Higgins[15].318

4. Hypotheses generation319

The purpose of this component is to derive quali-320

fied guesses ofwherethe object of interest is located321

in the current scene. As mentioned earlier, this step322

is performed using the peripheral cameras while the323

recognition module uses the foveal ones. This requires324

a transfer from peripheral to foveal vision, or from dis-325

tributed to focused attention Palmer[16].326

4.1. Distributed attention327

Unlike focused attention, distributed attention328

works on the whole image instead of being con-329

centrated to a particular image region. Using the330

available visual cues a target region, that might331

represent an object of interest, is identified. Even if the332

current system is limited to binocular disparities, it is333

s the334

m ed335

o ma-336

t ially337

i lor338

o e is339

n340

he-341

s inter-342

e a set.343

M be344

f345

c hin a346

s347

t left348

p then349

g sian350

fi lter351

is set so as to maximize the response of image blobs352

representing objects of the requested size and distance.353

The depth range is continuously updated so that hy-354

potheses are obtained for objects at different depths.355

In our system, the depths typically vary between 1 and356

3 m. 357

4.2. Focused attention 358

From the generated hypotheses, a target region is359

selected so that the gaze can be redirected and recog-360

nition performed using the foveal cameras. This se-361

lection is done automatically from the hypothesis of362

largest strength. However, before the strongest hy-363

pothesis is selected, a small amount of noise equiva-364

lent to about 20% of the largest possible strength is365

added. This is done in order to prevent the system366

from getting stuck at a local maximum. Due to occlu-367

sions, the requested object might otherwise never be368

visited. 369

Since hypotheses are described in the peripheral370

cameras frame and recognition is performed using the371

foveal ones, the relative transformations have to be372

known. These are found applying a similarity model373

to a set of Harris’ corner features similar to those used374

for epipolar geometry estimation in Section3.1. On 375

the stereo head system shown inFig. 3, the relative 376

rotations, translations and scales are continuously377

updated at a rate of about 2 Hz. For the manipulator378

system, the robot first has to rotate its base while379

t lap.380

K late381

t era382

f 383

the384

f gion,385

t ple386

o is387

c shift388

a - 389

d und390

t ap.391

T the392

t two393

i in394

t ade.395

T to the396

r 397
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traightforward to add additional cues, such as in
odel of Itti et al.[17]. Here, we have concentrat
n disparities because they contain valuable infor

ion about object size and shape. This is espec
mportant in a manipulation task, where the co
f an object might be irrelevant, whereas the siz
ot.

The only top-down information needed for hypot
es generation is the expected size of an object of
st and the approximate distance from the camer
ore information about the attention system can

ound in Björkman and Eklundh[18]. A binary map is
reated containing those points that are located wit
pecified depth range. The third column ofFig. 9shows
wo such maps overlaid on-top of the corresponding
eripheral images. Initial hypotheses positions are
enerated from the results of a difference of Gaus
lter applied to the binary map. The scale of this fi
E
D
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racking the hypotheses until visual fields over
nowing the transformations, it is possible to trans

he hypotheses positions into the foveal cam
rames.

Before a saccade is finally executed, fixating
oveal cameras onto the selected hypothesis re
he target position is refined in 3D. During a cou
f image frames, a high-resolution disparity map
alculated locally around the target area. A mean
lgorithm, Comaniciu et al.[19], is run iteratively up
ating the position from the cluster of 3D points aro

he target position, represented by the disparity m
he maximum size of this cluster is specified using

op-down information mentioned above. The first
mages ofFig. 5 show these clusters highlighted
he left peripheral images before and after a sacc
he foveal images after the saccade can be seen
ight.
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Fig. 5. The first two images show a target region before and after a saccade (the rectangles show the foveal regions within the left peripheral
camera image) and the foveal camera images after executing a saccade are shown in the last two images.

4.3. Active search398

For mobile manipulation tasks, it is important that399

the visual system is able to actively search for the ob-400

ject of interest. The search system includes two neces-401

sary components, an attentional system that provides402

hypotheses to where an object of interest might be lo-403

cated, and a recognition system that verifies whether a404

requested object has indeed been found, as presented405

above. Even if the attentional system works on a rela-406

tively wide field of view, 60◦ is still limited if alocation407

is completely unknown to the robot. In our system, we408

have extended this range by applying an active search409

strategy, that scans the environment and records the410

most probable locations. Five images from such a scan411

can be seen on the last row ofFig. 6. The crosses412

indicate hypothesis positions when the robot actively413

searches for and locates an orange package that is in fact414

located on the table seen on the first and fourth image.

5. Manipulating known objects 415

If a robot is to manipulate a known object, some type416

of representation is typically known in advance. Such a417

representation may include object textural and/or geo-418

metrical properties which are sufficient for theobject to419

be located and manipulation task to be performed. For420

realistic settings, a crude information about objects lo-421

cation can sometimes be provided from the task level.422

e.g. “Bring me red cup from the dinner table”. How-423

ever, if the location of the object is not provided, it is up424

to the robot to search the scene. The following sections425

give examples of how these problems are approached426

in the current system. 427

5.1. Detect 428

If we can assume that the object is in the field of view429

from the beginning of the task, a monocular recognition430

F equest : strongest
h

U
N

C
O

R
R

ig. 6. First row: hue-saliency map with orange package as r
ypotheses marked with crosses.
ROBOT 1235 1–1

ed object, second row: peripheral disparity map, and third row
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system can be used to locate the object in the image,431

Zillich et al. [20].432

However, when a crude information about object’s433

current position is not available, detecting a known ob-434

ject is not an easy task since a large number of false435

positives can be expected. Candidate locations have to436

be analyzed in sequence which may be computationally437

too expensive, unless the robot has an attentional sys-438

tem that delivers the most likely candidate locations439

first, using as much information about the requested440

object as possible.441

A natural approach here is to employ a binoc-442

ular system that provides metric information as an443

additional cue. Since the field of view of a typical444

camera is quite limited, binocular information can445

only be extracted from those parts of the 3D scene446

that are covered by both cameras’ peripheral field of447

view. In order to make sure that an object of inter-448

est is situated in the center of each camera’s field of449

view, the head is able to actively change gaze direc-450

tion and vergence angle, i.e. the difference in orienta-451

tion between the two cameras. In our system, stereo452

based figure-ground segmentation is intended for mo-453

bile robot navigation and robot arm transportation to454

the vicinity of the object. More detailed information455

about an object’s pose is provided using a monocu-456

lar model based pose estimation and tracking, Kragic457

[21].458

The visual front-end is responsible for delivering 3D459

data about the observed scene. Such information is ex-460

t s the461

a age462

r ps.463

T at a464

r and465

u ter-466

p ys-467

t -468

o age469

p per-470

f fore471

d in-472

c im-473

p d474

g475

b d, is476

t ac-477

c ant,478

the computational cost of these methods makes them479

infeasible for our particular application which means480

that correlation based methods are typically used in481

practice. Currently, we use two kinds of visual cues482

for this purpose, 3D size and hue histograms using483

the procedure described in Section4.1. These cues 484

were chosen since they are highly object dependent485

and relatively insensitive to changing lighting condi-486

tions, object pose and viewing direction. The images487

in Fig. 6 show examples where the orange package488

is requested. The upper images illustrate the saliency489

maps generated using the hue histograms of this ob-490

ject. From the disparity maps (second row) a number491

of candidate locations are found, as shown in the last492

row. 493

We further use recognition to verify that a requested494

object has indeed been found. With attention and recog-495

nition applied in a loop, the system is able to automat-496

ically search the scene for a particular object, until it497

has been found by the recognition system. Two recog-498

nition modules are available for this purpose: (i) a fea-499

ture based module based on Scale Invariant Feature500

Transform (SIFT) features Lowe[24], and (ii) an ap- 501

pearance based module using color histograms, Ekvall502

et al.[25]. 503

Most recognition algorithms expect the considered504

object to subtend a relatively large proportion of the505

images. If the object is small, it has to be approached506

before is can be detected. Possible solution would507

be using a eye-in-hand camera and only approach508

t lat-509

f em510

e ras,511

l pre-512

s field513

c veal514

o 515

5 516

ct,517

c reg-518

i een519
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racted using a three-step process, which include
bove mentioned epipolar geometry estimation, im
ectification and calculation of dense disparity ma
he generation of this data is done continuously
ate of 8 Hz, independently of the task at hand
sed by more high-level processes for further in
retation. Further information on this part of the s

em can be found in Björkman[10]. Since most meth
ds for dense disparity estimation assume the im
lanes to be parallel, image rectification has to be

ormed using the estimated epipolar geometry be
isparities can be estimated. The current system
ludes seven different disparity algorithms, from s
le area correlation, Konolige[22] to more complicate
raph-cut methods, Kolmogorov and Zabih[23]. The
enefit of using a more advanced global metho

he fact that they often lead to denser and more
urate results. However, even if density is import
E
D
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he object through the manipulator, keeping the p
orm itself static. A more efficient solution is a syst
quipped with wide field as well as foveal came

ike the stereo-head system used for the example
ented here. Hypotheses are found using the wide
ameras, while recognition is done using the fo
nes.

.2. Approach

Transporting the arm to the vicinity of the obje
onsidering a closed-loop control system, requires
stration or computation of spatial relationship betw
wo or more images. Although this problem has b
tudied extensively in the computer vision societ
as rarely been fully integrated in robotic systems
nknown objects. One reason for this is that high r

ime demand makes the problem of tracking more
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ficult then when processing image sequences off-line.525

For cases where the object is initially far away from526

the robot, a simple tracking techniques can be used to527

keep the object in the field of view while approaching528

it. For this purpose we have developed and evaluated529

methods based on correlation and optical flow, Kragic530

et al.[26] as well as those based on integration of cues531

such as texture, color and motion, Kragic and Chris-532

tensen[27]. The latter approach is currently used for533

tracking.534

Performing final approach toward a known object535

depends also on the number of cameras and their place-536

ment. For eye-in-hand configuration we have adopted537

a teach-by-showingapproach, where a stored image538

taken from the reference position is used to move the539

manipulator so that the current camera view is gradu-540

ally changed to match the stored reference view. Ac-541

complishing this for general scenes is difficult, but a542

robust system can be made under the assumption that543

the objects are piecewise planar. In our system, a wide544

baseline matching algorithm is employed to establish545

point correspondences between the current and the ref-546

erence image, Kragic and Christensen[27]. The point547

correspondences enable the computation of a homog-548

raphy relating the two views, which is then used for 2549

1/2D visual servoing.550

In cases where the CAD model of the object is551

available, a full 6D pose estimate is obtained. After552

the object has been localized in the image, its pose553

is automatically initiated using SIFT features from554

t ata.555

T lane556

t fur-557

t this558

p era-559

t ully560

a561

6562

ob-563

j on is564

l de-565

t rea-566

s ing567

g bject568

s

6.1. Detect 569

Numerous methods exist for segmentation of ob-570

jects in cluttered scenes. However, from monocular571

cues only this is very difficult, unless the object has572

a color or texture distinct from its surrounding. Unfor-573

tunately, these cues are sensitive to lighting as well as574

pose variations. Thus, for the system to be robust, one575

has to rely on information such as binocular disparities576

or optical flow. A binocular setting is recommended,577

since the motion that needs to be induced should prefer-578

ably be parallel to the image plane, complicating the579

process of approaching the object. 580

In our current system, binocular disparities are used581

for segmentation with the foveal camera set. We use582

this set since the focal lengths have to be relatively583

large in order to get the accuracy required for grasp-584

ing. When the resolution in depth increases, so does585

the range of possible disparities. If only a fraction of586

these disparities are tested, e.g. the range in which the587

object is located, a large number of outliers can be ex-588

pected, such as in the lower-left image ofFig. 7. We 589

apply a Mean-Shift algorithm, Comaniciu et al.[19] to 590

prune the data, using the fact that the points represent-591

ing the object are located in a relatively small part of 3D592

space and the center of these points is approximately593

known. After applying a sequence of morphological594

operation a mask is found as shown in the lower-right595

image. 596

6 597
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he foveal camera image, fitting a plane to the d
hus, it is assumed that there is a dominating p

hat can be mapped to the model. The process is
her improved searching for straight edges around
lane. The complete flow from hypotheses gen

ion to pose estimation and tracking is performed f
utomatic.

. Manipulating unknown objects

For general setting, manipulation of unknown
ects has rarely been pursued. The primary reas
ikely to be that the shape of an object has to be
ermined in order to successfully grasp it. Another
on is that, even if the location is given by a point
esture, the size also has to be known and the o
egmented from its background.
E
D
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.2. Approach

Approaching an unknown object can be done e
sing the stereo-head or with an eye-in-hand cam
ithout knowing the identity of the object the lat

ase is hardly feasible. It would be possible to ta
equence of images, while approaching the object
rom these estimate a disparity map, but this map w
ardly be as accurate as using the disparities ava

rom the foveal camera set.
If the stereo-head is used instead, it is essentia

he robot gripper itself can be located in disparity sp
sing the mask derived in Section6.1, the elongatio
nd orientation of the object can be determine and
ngers of the gripper be placed on either side of
bject. In general we will not be able, from one ste
iew only, to retrieve the full 3D shape of the object
articular, if the extension in depth is significant, it w
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Fig. 7. Left peripheral (upper left) and foveal (upper right) camera images and disparities (lower left) and segmentation (lower right) automatically
obtained from the peripheral stereo pair.

be difficult to guarantee that the full closing grasp can614

be performed. This problem can be solved by moving615

the stereo-head to another location. This is a topic we616

intend to investigate further in the future.617

7. Grasping618

For active grasping, visual sensing will in general619

not suffice. One of the problems closely related to eye-620

in-hand configurations is the fact that when theap-621

proachstep is finished, the object is very close to the622

camera, commonly covering the whole field of view.623

To retrieve features necessary for grasp planning is im-624

possible. One solution to this problem is to use a wide625

field eye-in-hand camera, together with a stand-alone626

mono- or stereo vision system. Our previous work has627

integrated visual information with tactile and force-628

torque sensing for object grasping, Kragic and Chris-629

tensen[28]. We have, however, realized that there is a630

need for a system that is able to monitor the grasping631

process and track the pose of the object during exe-632

cution. We have shown that in this way, even if the633

robot moves the object, grasping can successfully be634

performed without the need to reinitiate the whole pro-635

cess. This can be done even for unknown objects where636

the Mean-Shift strategy suggested in Section6.1is ap- 637

plied on consecutive images. 638

8. Experimental evaluation 639

As mentioned in Section3, our system is built on 640

a number of independently running and communicat-641

ing modules. Since most methods used within these642

modules have been analyzed elsewhere, we will con-643

centrate on the integrated system as a whole, rather than644

analyzing each individual method in isolation. The sys-645

tem should be considered as an integrated unit and its646

performance measured based on the behavior of the647

complete system. The failure of one particular module648

does not necessarily mean that the whole system fails.649

For example, figure-ground segmentation might well650

fail to separate two nearby objects located on a similar651
U
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distance, but the system might still be able to initiate652

pose estimation after recognition.653

The following properties of the system have been654

evaluated, as will be described in more detail in the655

sections below:656

• combined figure-ground segmentation based on bin-657

ocular disparities and monocular pose estimation,658

• combined monocular Cooccurence Color Histog-659

rams (CCH) Chang and Krumm[29] based object660

recognition and monocular pose estimation,661

• robustness of figure-ground segmentation,662

• robustness toward occlusions using SIFT features,663

• robustness of pose initialization toward rotations.664

For recognition, a set of 28 objects was used.665

Fig. 8 shows a few of them. A database was created666

consisting of object models based on SIFT features667

and CCHs. Eight views per object were used for the668

SIFT models as well as in the case of CCHs. Pose esti-669

mation was only considered for the first three box-like670

objects, automatically starting as one of these objects671

are recognized. For this purpose, the width, height and672

thickness of these objects were measured and recorded673

in the database.674

Since the observed matching scores did not signif-675

icantly differ from those already published in Lowe676

[24] and Mikolajczyk and Schmid[30] we have cho-677

sen not to include any additional quantitative results. A678

few observations have lead us to believe that recogni-679

t ing680

u rely681

r lient682

features are due to specularities. However, the distinct683

color makes it particularly suitable for CCHs, which on684

the other hand have a tendency of mixing up the tiger685

and the giraffe, unlike the recognition module based on686

SIFT features. 687

8.1. Binocular segmentation and pose estimation 688

The first experiments illustrate the typical behavior689

of the system with binocular disparity based figure-690

ground segmentation and SIFT based recognition. Re-691

sults from these experiments can be seen inFig. 9. 692

The first column shows the left foveal camera images693

prior to the experiments. It is clear that a requested ob-694

ject would be hard to find, without peripheral vision695

controlling a change in gaze direction. However, from696

the disparity maps in the second column the system is697

able to locate a number of object hypotheses, which698

can be shown as white blobs overlaid on-top of the699

left peripheral camera image in the third column of the700

figure. 701

The matching scores of the recognition module702

for these two examples were 66% and 70%, respec-703

tively, measured as the fraction of SIFT features being704

matched to one particular model. Once an object has705

been recognized, pose estimation is automatically initi-706

ated. This is done using SIFT features from the left and707

right foveal camera images, fitting a plane to the data.708

Thus, it is assumed that there is a dominating plane that709

can be mapped to the model. The process is further im-710

p lane.711

T ing712

d 713

ts use
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ion would benefit from CCHs and SIFT features be
sed in conjunction. For example, the blue car is ra
ecognized properly using SIFT, since the most sa

Fig. 8. Some of the objec
E
D
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roved searching for straight edges around this p
he last two columns show an example of this be
one in practice.

d for experimental evaluation.
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Fig. 9. An example of binocular figure-ground segmentation and pose estimation. The first column shows the foveal images before a saccade
has been issued. Disparity maps can be seen in the second column and object hypotheses in third. The last column shows the estimated pose.

8.2. Monocular CCH recognition and pose714

estimation715

Fig. 10 shows two examples of recognition and716

pose estimation based on monocular CCH. Here, object717

recognition and rotation estimation serve as the initial718

values for the model based pose estimation and track-719

ing modules. With the incomplete pose calculated in720

the recognition (first image from the left) and orienta-721

tion estimation step, the initial full pose is estimated722

(second image from the left). After that, a local fitting723

method matches lines in the image with edges of the724

projected object model. The images obtained after con-725

vergence of the tracking scheme is shown on the right.726

It is important to note, that even under the incorrect727

initialization of the two other rotation angles as zero,728

our approach is able to cope with significant deviations729

from this assumption. This is strongly visible in the sec-730

ond example where the angle around camera’sZ-axis 731

is more than 20◦. 732

8.3. Robustness of disparity based figure-ground 733

segmentation 734

As mentioned in Section4, object location hypothe- 735

ses are found slicing up the disparities into a binary map736

of pixels located within a given depth range. There are737

some evident disadvantages associated with such a pro-738

cedure. First of all, an object might be tilted and extend739

beyond this range. This can be seen in the upper left740

image inFig. 11—but it does not occur in the second741

image on the same row. However, since a more accu-742

rate localization is found through the focused attention743

process, a saccade is issued to the approximately same744

location. This is shown in the last two images on the745

upper row.

F t): (i) th er three
fi
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ig. 10. From object recognition to pose estimation, (from lef
tting iterations, (iv) the estimated pose of the object.
ROBOT 1235 1–1
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Fig. 11. The imperfect segmentation does not effect the final pose estimate of the object. The examples show when: (upper) Only a fraction of
the object was segmented, and (lower) Two hypotheses are overlapping.

Another challenge occurs if two nearby objects are746

placed at almost the same distance, especially if the747

background lacks sufficient texture. Then the objects748

might merge into a single hypothesis, which is shown749

on the second row ofFig. 11. In our experiments750

this seemed more common when a global disparity751

method Kolmogorov and Zabih[23] was used and is752

the reason why we normally use simple area correla-753

tion. The global optimization methods tend to fill in754

the space between the two objects, falsely assuming755

that rapid changes in disparities are unlikely and thus756

should be suppressed. In practice, it is preferable if757

the textureless area between the objects are left unas-758

signed. The right two images on the last row show759

that pose estimation is still be possible, even when760

hypotheses are merged. Depending on the density of761

foveal features, one of the two objects is automatically762

selected. 763

8.4. Robustness of SIFT based recognition toward 764

occlusions 765

In a cluttered environment, a larger fraction of ob-766

jects are likely to be occluded. These occlusions affect767

most involved processes, in particular those of recog-768

nition and pose estimation. The first two images inFig. 769

12show a scene in which the sugar box is partially oc-770

cluded behind a bottle. In the first case, the recognition771

fails because not enough foveal features are available,772

while successful recognition and pose estimation is773

F bject of ever result
i

U
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C
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ig. 12. The system is able to cope with situations where the o
n incorrect pose estimation (lower center).
ROBOT 1235 1–1
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Fig. 13. From object hypotheses (upper left) the orientation of an object is estimated (upper middle/upper right). Pose estimates after three
iterations for orientations 20◦, 40◦ and 60◦ (lower).

possible in the second case as shown in the third image.774

However, even if recognition is successful, the pose ini-775

tialization might still fail when not enough edges are776

clearly visible. This can be seen in the last two images777

of Fig. 12. As it is apparent from the fourth image that778

a failure does not necessarily mean that the results are779

useless, since the location of the object in 3D space is780

still available.781

8.5. Robustness of pose initialization toward782

rotations783

Since, in SIFT based recognition, only one view was784

available for each object, the sensitivity of the system to785

rotations was expected to be high. It is already known786

that for efficient recognition using these features, the787

relative orientation between query image and object788

model ought to be less than about 30◦. Likely because789

our model set only consisted of eight objects, our study790

indicated that slightly larger angles were in fact possi-791

ble. In the three columns ofFig. 13an object was rotated792

about 20◦, 40◦ and 60◦, respectively. The rise package793

was correctly recognized at a score higher than 70%.794

However, the break-point turned out to be highly ob-795

ject dependent. For example, for an object like the tiger,796

the breakpoint was as low as 20%. For a more thorough797

analysis on the SIFT recognition performance we refer798

to Lowe[24].799

As can be seen in the last two images on the up-800

per row ofFig. 13, larger rotations tend to be under-801

estimated when the pose is initialized. However, these802

errors are still below what is required for the pose es-803

timation to finally converge. The lower row shows the804

estimated pose after a few initial iterations. Even at an805

angle of 60◦ the process will converge, but at a some-806

what slower rate. For 40◦ and below convergence is807

reached within three frames. 808

9. Conclusions 809

In this paper, different visual strategies necessary810

for robotic hand-eye coordination and object grasping811

tasks, have been presented. The importance of cam-812

era placement and their number have been discussed813

and their effect on the design and choice of visual al-814

gorithms. For realistic, domestic settings we are inter-815

ested in designing robots that are able to manipulate816

both known and unknown objects and it is therefore817

important to develop methods for both cases. We have818

shown strategies that support both cases. 819

Reflecting back toFig. 1, different scenarios can be820

arranged in a hierarchy depending on prior informa-821

tion. Even if a particular task is given, it is possible822

to shift between different scenarios and therefore, the823

underlying strategies used. For example, if the com-824
U
N

C
 ROBOT 1235 1–1
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mand “Pick Up This Cup” is given, but the system fails825

to verify the existence of the cup, the execution may826

still continue as if “Pick up The Cup” was given. A827

vice-versa example is if the command “Pick Up This828

Object” was given and the system realizes that the ob-829

ject is, in fact, a known box of raisins. Then, the sys-830

tem automatically changes the task to “Pick Up The831

Raisins”. In the future, we want to develop a more832

formal description for the above, in order to design833

a visual system framework for robotic manipulation in834

general.835
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