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Abstract

In this paper, we present a vision system for robotic object manipulation tasks in natural, domestic environments. Given

complex fetch-and-carry robot tasks, the issues related to the wletdet-approach-grasfwop are considered. Our vision

system integrates a number of algorithms using monocular and binocular cues to achieve robustness in realistic settings. The
cues are considered and used in connection to both foveal and peripheral vision to provide depth information, segmentation of the
object(s) of interest, object recognition, tracking and pose estimation. One important property of the system is that the step from
object recognition to pose estimation is completely automatic combining both appearance and geometric models. Experimental
evaluation is performed in a realistic indoor environment with occlusions, clutter, changing lighting and background conditions.

© 2005 Elsevier B.V. All rights reserved.

Keywords:Cognitive systems; Object recognition; Service robots; Object manipulation

1. Introduction stream: how we plan and execute actions depends an
what we already know about the environment we opees

One of the key components of a robotic system ate in, what we are about to do, and what we think ous
that operates in a dynamic, unstructured environment actions will result in. Complex coordination betweens
is robust perception. Our current research considers thethe eye and the hand is used during execution of ev:
problem of mobile manipulation in domestic settings eryday activities such as pointing, grasping, reaching
where, in order for the robot to be able to detect and or catching. Each of these activities or actions requires
manipulate objects in the environment, robust visual attention to different attributes in the environment—ss
feedback is of key importance. Humans use visual feed- while pointing requires only an approximate locatiorss
back extensively tplanandexecutections. However, of the object in the visual field, a reaching or grasping-
planning and execution is not a well-defined one-way movement requires more exact information about the
object’s pose. 39

"= Coresponding author. Tel.: +46 87906729; fax: +46 87230302, " fODOMICS, the use of visual feedback for motion
E-mail addressesdanik@nada.kth.se (D. Kragic): coordlna}tlon of a rpbotlc arm or platform motion isa
celle@nada.kth.se (M. Bjkman); hic@nada.kth.se termedvisual servoingHutchinson et al[1]. In gen- 4
(H.l. Christensen); joe@nada.kth.se (J.-O. Eklundh). eral, visual information is important at different lev-
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els of complexity: from scene segmentation to object’s presented in Sectioi and final conclusion given in o

pose estimation. Hence, given a complex fetch-and- Section9. %

carry type of task, issues related to the whaégect-

approach-graspoop have to be considered. Most vi-

sual servoing systems, however, deal only withape 2. Problem definition o

proachstep and disregard issues suchdatectingthe

object of interest in the scene or retrieving its three In general, vision based techniques employed in vig

dimensional (3D) structure in order to perform grasp- sual servoing and object manipulation depend on:

ing. A so calledteach-by-showingpproach is typi- e Camera placement: Most visual servoing systems

cally used where the desired camera placement with  today useye-in-handameras and deal mainly with ¢

respect to the object is well defined and known before  theapproachobject step in éeach-by-showingan- o

hand. ner, Malis et al[5]. In our approach, we consider auwo
Our goal is the development of an architecture that  combination of a stand-alone stereo and an eye-ifr

integrates different modules where each module en-  hand camera systems, Kragic and Christeri§en 102

capsulates a number of visual algorithms responsi- ¢ Number of cameras: In order to extract metrigs

ble for a particular task such as recognition or track-  information, e.g. sizes and distances, about objects
ing. Our system is heavily based on thetive vi- observed by the robot, we will show how we canos
sionparadigm, Ballard2] where, instead of passively benefit from binocular information. The reason foros

observing the world, viewing conditions are actively using multiple cameras in our system is the fact that
changed so that the best results are obtained given a it simplifies the problem of segmenting the images
task at hand. data into different regions representing objects ina
In our previous work, Birkman and Kragi¢3] we 3D scene. This is often referred tofigure-ground 110
have presented a system that consists of two pairs of segmentationin cluttered environments and com-u
stereo cameras: a peripheral camera set and a foveal plex backgrounds, figure-ground segmentation is
one. Recognition and pose estimation are performed particularly important and difficult to perform anduss
using either one of these, depending on the size and commonly the reason for experiments being per=
distance to the object of interest. From segmentation  formed in rather sparse, simplified environments:s
based on binocular disparities, objects of interest are  In our work, multiple cameras are used for scene
found using the peripheral camera set, which then trig-  segmentation while a single camera is used for
gers the system to perform a saccade, moving the ob-  visual servoing, object tracking and recognition. s
ject into the center of foveal cameras achieving thus a ¢ Camera type: Here we consider systems using
combination of a large field of view and high image res- zooming cameras or combinations of foveal and pe»
olution. Compared to one of the recent systems, Kimet  ripheral ones. With respect to these, very little work:
al.[4], our system uses both hard (detailed models) and has been reported in visual servoing communitys
soft modeling (approximate shape) for object segmen-  Benhimane and Malif’]. In this paper, we demon- 12
tation. In addition, choice of binocular or monocular strate how a combination of foveal and peripherai.
cues is used depending on the task. In this paper, we cameras can be used for scene segmentation, objgct
formalize the use of the existing system with respect  recognition and pose estimation.
to Fig. 2—how to utilize the system with respect to In our current system, the robot may be given tasks
different types of robotic manipulation tasks. such as “Robot, bring me the raisins” or “Robot, pickes
This paper is organized as follows. In Sectidn upthis”. Depending onthe priorinformation, i.e. task ot
a problem definition is given. In Sectia® a short context information, different solution strategies mayo
overview of the current system is given and in Sec- be chosen. The first task of the above is well defined
tion 4 hypotheses generation is presented. In Seé&ion since it assumes that the robot already has the intermal
we deal with the problem of manipulating known ob- representation of the object, e.g. ilentityof the ob- 12
jects and in Sectiowith the problem of manipulating  ject is known. An example of such a task is shown in.
unknown objects. Some issues related to object grasp-Fig. 2 after being given a spoken command, the robas
ing are given in Sectioid. Experimental evaluation is  locates the object, approaches it, estimates its pose aad
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WHERE (location) ing IV|suaI strategies is required for each of thgse Scer
"Pick Up ..." narios. We have considered these two scenarios singe
known unknown they are the most representative examples for robotie
£ 5| known "This Cup" fetch-and-carry tasks. 149
T 2 - _
= 2 | unknown "Something" 2.1. Experimental platform 150

The experimental platform is a Nomadic Technolors:

Fig. 1. Robotic manipulation scenarios. gies XR4000, equipped with a Puma 560 arm for mas.

nipulation (sed=ig. 3). The robot has sonar sensors, as

7 finally performs grasping. More details related to this SICK laser scanner, a wrist mounted force/torque sef-
1s  approach are given in SectiénFor the second task, the  sor (JR3), and a color CCD camera mounted on the
19 spoken command is commonly followed by a pointing Barrett Hand gripper. The palm of the Barrett hand iss
o gesture—here, the robot does not know ithentity of covered by a VersaPad touch sensor and, on each fin-
1 the object, but it knows its approximalecation The ger, there are three Android sensors. On the robots
12 approach considered in this work is presented in Sec- shoulder, there is a binocular stereo-head. This sys-
1z tion 6. Fig. 1shows different scenarios with respectto tem, known as Yorick, has four mechanical degrees af
14 prior knowledge of objecidentity andlocation, with freedom; neck pan and tilt, and pan for each cameraiin
us the above examples shaded. A different set of underly- relation to the neck. The head is equipped with a pair of

1

w

X}

1.

I

Fig. 2. Detect-approach-grasp example.

YORICK
stereo head

JR3 force sensor

Barrett hand
Eye—in—hand camera
Android sensors
VersaPad

Stereo camera pair

PERIPHERAL

CAMERAS
FOVEAL
CAMERAS

SICK laser sensor

Sonar rings

Fig. 3. (Left) Experimental platform Nomadic Technologies XR4000, and (Right) Yorick stereo-head.
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Sony XC999 cameras, with focal length of 6 mm. Ad- ground segmentation and other higher level proces
ditional pair of Sony XC999 cameras with focal length sses. 19
of 12 mm is placed directly on the robot base. e Hypotheses Generation produces a number of hy:
For some of the experimental results that will be pre- potheses about the objects in the scene that may:be
sented further on, a stand-alone binocular stereo-head relevant to the task at hand. The computations aie
system shown irFig. 3 was used. Here, the head is moved from being distributed across the whole ims.
equipped with two pairs of Sony XC999 cameras, with age to particular regions of activation. 105
focal lengths 28 and 6 mm, respectively. The motiva- e Recognition is performed on selected regions, using
tion for this combination of cameras will be explained either corner features or color histograms, to detes-
related to the examples. mine the relevancy of observed objects. 198
e Action Generation triggers actions, such as visuab
tracking and pose estimation, depending on the outs
come of the recognition and current task specificax
tion. 202

3. The system

Fig. 4 shows a schematic overview of the basic
building blocks of the system. These blocksdonotnec-  Due to the complexity of the software system, iios
essarily correspond to the actual software components,was partitioned into a number of smaller modules.
but are shown in order to illustrate the flow of informa- that communicate through a framework built on as
tion through the system. For example, the visual front interprocess communication standard called CORBA
end consists of several components, some of which are(Common Object Request Broker Architecture)s:
running in parallel and others hierarchically. For ex- Vinoski[8]. The current version of the system consistss
ample, color and stereo information are extracted in of about ten such modules, each running at a differesnt
parallel, while epipolar geometry has to be computed frame rate. The lowest level frame grabbing module
prior to disparities. On the other hand, action genera- works at a frequency of 25 Hz, while the recognition.
tion, such as initiating 2D or 3D tracking, is distributed module is activated only upon request. In order ta.

and performed across multiple components. consume processing power, modules are shut down

The most important building blocks can be summa- temporarily when not been accessed by any other
rized as follows: module within a time frame of 10s. 215
e The Visual Front-End is responsible for the ex- With limited resources in terms of memory storages

traction of visual information needed for figure- and computational power, biological and robotic sys:

VISUAL ggﬂfrry Image Disparity
FRONT END estimation rectification| map
Y
DESCRIPTION HYPOTHESES Distributed Focused
GENERATION attention attention
Y

Y
FOVEATED o
OBIECT |— g | Initialisation | g

RECOGNITION

Y Y
ACTION .
Servoing
GENERATION QID

Fig. 4. Basic building blocks of the system.

TASK
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tems need to find an acceptable balance between thdation to the base. Hypotheses are found by the seaseh
width of the visual field and its resolution. Otherwise, pair, the 3D positions are derived using triangulatiosr
the amount of visual data will be too large for the sys- and finally projected onto the image planes of the mas
tem to efficiently handle. Unfortunately, this balance nipulation pair. For the 3D position to be accuratelys
depends on the tasks the systems have to perform. Anestimated, the search pair is calibrated on-line, simio
animal that has to stay alert in order to detect an ap- larly to the original version of the system,@kman 2n
proaching predator, would prefer a wide field of view. and Eklundh[9]. The precision in depth ranges from
The opposite is true if the same animal acts as a preda-about a decimeter to half a meter depending on the
tor itself. Similarly, a robotic system benefits from a observed distance. 274
wide field of view, in order not to collide with obsta-
cles while navigating through a cluttered environment. 3.1. Stereo system mode|ing_epipo|ar geometry s
A manipulation task on the other hand, requires a high
resolution in order grasp and manipulate objects. That  with a binocular set of cameras, differences it
iS, to find objects in the scene a wide field of view is position between projections of 3D points onto the-
preferable, but recognizing and manipulating the same |eft and right image planes (disparities) can be used
objects require a high resolution. to perform figure-ground segmentation and retrieve
On a binocular head, Bikman and Kragi¢3] we the information about three-dimensional structurs
overcame this problem by using a combination of two of the scene. If the relative orientation and positios:
pairs of cameras, a peripheral set for attention and apetween cameras is known, it is possible to relate
foveated one for recognition and pose estimation. In these disparities to actual metric distances. One of the
order to facilitate transfers of object hypotheses from Common]y used Settings is where the cameras are reg-
one pair to the other, and replicate the nature of the hu- tified and their optical axes mutually parallel, Kragicss
man visual system, the pairs were placed next to eachand Christenseii6]. However, one of the problems:ss
others. The camera system on the robot is different in arising is that the part of the scene contained in the

that the two pairs are widely separated and placed onfield of view of both cameras simultaneously is quites
an autonomously moving platform, sewg. 3. a stereo limited. 289
head on a shoulder and another pair on the base. The Another approach is to estimate the epipo|ar geomno
search pair is located on-top of the robot overlooking etry continuously from image data alone 6B§man zu
the scene and the manipulation pair is at waist height, [10]. Additional reason for this may be that small disturzs:
such that the gripper will not occlude an object while it pances such as vibrations and delays introduce signifi-
is being manipulated. In the original version, hypoth- cant noise to the estimation of the 3D structure. In fact
esis transfers were based on matched corner featuresan error of just one pixel leads to depth error of severas
and affine geometry. Hence, with the cameras related centimeters on a typical manipulation distance. Thergs
pairwise, the position of hypotheses seen by the periph- fore, for some of the manipulation tasks, the epipae
eral cameras could be transferred to the images of the|ar geometry is estimated robustly using Harris’ corness
foveated stereo set. features, Harris and Stephdf4]. Such corner features »
This way of transferring positions is no longer feasi- - are extracted and matched between the camera images
ble in the robot camera Configuration. With the cameras using normalized cross-correlation. The vergence afr
separated by as much as a meter, the intersections begleq, gaze direction, relative tiltr, and rotation around s
tween visual fields tend to be small and the number of the 0ptica| axes,, are iterative|y Sought using 303
features possible to matchislow. Furthermore, afeature
seen from two completely different orientations is very [ dx 1+ xDa — yr. 1(1—xt
difficult to match, even using affine invariant matching.  \ gy = + Z\ -y ) 1) oo
Instead we exploit the fact that we can actively move
the platform such that an object of interest, found by whereZis the unknown depth of a point at image posisos
the search pair, will become visible by the manipulation tion (x, y). The optimization is performed using a comsos
pair. For this to be possible we have to approximately bination of RANSAC[12] for parameter initialization, s
know the orientation and position of the cameras in re- and M-estimator§l 3] for improvements. 308

xya + ry + xr;
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This optical flow mode[14] is often applied to mo-  is set so as to maximize the response of image bloks
tion analysis, but has rarely been used for stereo. Therepresenting objects of the requested size and distanse.
reason for this is because the model is approximate The depth range is continuously updated so that hy:
and only works for relatively small displacements. In potheses are obtained for objects at different depths.
our previous work we have, however, experimentally In our system, the depths typically vary between 1 and

shown that this model is more robust than the essential 3m. as7
matrix in the case of binocular stereo headgyrBjnan
and Eklundh[9], even if the essential matrix leads 4.2. Focused attention 358

to a more exact description of the epipolar geometry,
Longuet-Higging15]. From the generated hypotheses, a target region:4s
selected so that the gaze can be redirected and receg-
nition performed using the foveal cameras. This sex
lection is done automatically from the hypothesis of.

largest strength. However, before the strongest hys

The purpose of this component is to derive quali- Pothesis is selected, a small amount of noise equiva-
fied guesses oftherethe object of interest is located lent to about 20% of the largest possible strength is
in the current scene. As mentioned earlier, this step @dded. This is done in order to prevent the system
is performed using the periphera| cameras while the from getting stuck at a local maximum. Due to occlussr
recognition module uses the foveal ones. This requires Sions, the requested object might otherwise never he
a transfer from peripheral to foveal vision, or from dis-  Visited. 369

tributed to focused attention Paln{as]. Since hypotheses are described in the periphesal
cameras frame and recognition is performed using the

foveal ones, the relative transformations have to be
known. These are found applying a similarity modets
to a set of Harris’ corner features similar to those used
for epipolar geometry estimation in Secti@il On s

4. Hypotheses generation

4.1. Distributed attention

Unlike focused attention, distributed attention
works on the whole image instead of being con-

centrated to a particular image region. Using the
available visual cues a target region, that might
represent an object of interest, is identified. Even if the

the stereo head system shownFiy. 3, the relative s
rotations, translations and scales are continuously
updated at a rate of about 2 Hz. For the manipulates

current system is limited to binocular disparities, itis System, the robot first has to rotate its base while
straightforward to add additional cues, such as in the tracking the hypotheses until visual fields overlaps
model of Itti et al.[17]. Here, we have concentrated Knowing the transformations, it is possible to translate:
on disparities because they contain valuable informa- the hypotheses positions into the foveal camesa
tion about object size and shape. This is especially frames. 383
important in a manipulation task, where the color ~ Before a saccade is finally executed, fixating the.
of an object might be irrelevant, whereas the size is foveal cameras onto the selected hypothesis regioa,
not. the target position is refined in 3D. During a couples
The only top-down information needed for hypothe- 0f image frames, a high-resolution disparity map is
ses generation is the expected size of an object of inter-calculated locally around the target area. A mean shit
est and the approximate distance from the camera set.algorithm, Comaniciu et a[19], is run iteratively up- s
More information about the attention system can be dating the position from the cluster of 3D points aroungo
found in Bjorkman and EklundfL8]. A binary mapis  the target position, represented by the disparity mag.
created containing those points that are located within a The maximum size of this cluster is specified using the:
Speciﬁed depth range. The third Co|umrFq'g_ 9shows tOp-dOWI’] information mentioned above. The first twes
two such maps overlaid on-top of the corresponding left images ofFig. 5 show these clusters highlighted inss
peripheral images. Initial hypotheses positions are then the left peripheral images before and after a saccade.
generated from the results of a difference of Gaussian The foveal images after the saccade can be seen tohe
filter applied to the binary map. The scale of this filter right. 307
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Fig. 5. The first two images show a target region before and after a saccade (the rectangles show the foveal regions within the left peripheral

camera image) and the foveal camera images after executing a saccade are shown in the last two images.

4.3. Active search 5. Manipulating known objects 415

For mobile manipulation tasks, it is important that If arobotis to manipulate a known object, some types
the visual system is able to actively search for the ob- of representation is typically known in advance. Such.a
ject of interest. The search system includes two neces-representation may include object textural and/or geas
sary components, an attentional system that providesmetrical properties which are sufficient for theobject tas
hypotheses to where an object of interest might be lo- be located and manipulation task to be performed. Fas
cated, and a recognition system that verifies whether arealistic settings, a crude information about objects la»
requested object has indeed been found, as presentedation can sometimes be provided from the task level:
above. Even if the attentional system works on a rela- e.g. “Bring me red cup from the dinner table”. How-z2s
tively wide field of view, 60 is still limited if alocation ever, if the location of the object is not provided, it is upzs
is completely unknown to the robot. In our system, we to the robot to search the scene. The following sections
have extended this range by applying an active searchgive examples of how these problems are approached

strategy, that scans the environment and records thein the current system. 427
most probable locations. Five images from such a scan
can be seen on the last row Bfg. 6. The crosses  5.1. Detect 428

indicate hypothesis positions when the robot actively
searches for and locates an orange packagethatisinfact If we canassume thatthe objectisin the field of views
located on the table seen on the first and fourth image. from the beginning of the task, a monocular recognition

Fig. 6. First row: hue-saliency map with orange package as requested object, second row: peripheral disparity map, and third row: strongest

hypotheses marked with crosses.

ROBOT 1235 1-16



431

432

433

434

435

436

437

439

440

441

442

444

445

446

447

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

472

473

474

475

476

477

478

DTD 5

8 D. Kragic et al. / Robotics and Autonomous Systems xxx (2005) XXX—XXX

system can be used to locate the object in the image,the computational cost of these methods makes them
Zillich et al. [20]. infeasible for our particular application which meanso

However, when a crude information about object’s that correlation based methods are typically used ia
current position is not available, detecting a known ob- practice. Currently, we use two kinds of visual cues:
ject is not an easy task since a large number of false for this purpose, 3D size and hue histograms using
positives can be expected. Candidate locations have tothe procedure described in Sectidril. These cues s
be analyzed in sequence which may be computationally were chosen since they are highly object dependent
too expensive, unless the robot has an attentional sys-and relatively insensitive to changing lighting condizss
tem that delivers the most likely candidate locations tions, object pose and viewing direction. The images
first, using as much information about the requested in Fig. 6 show examples where the orange package
object as possible. is requested. The upper images illustrate the saliensy

A natural approach here is to employ a binoc- maps generated using the hue histograms of this ok-
ular system that provides metric information as an ject. From the disparity maps (second row) a numbes
additional cue. Since the field of view of a typical of candidate locations are found, as shown in the last
camera is quite limited, binocular information can row. 493
only be extracted from those parts of the 3D scene  We further use recognition to verify that a requestea:
that are covered by both cameras’ peripheral field of objecthasindeed been found. With attention and recog-
view. In order to make sure that an object of inter- nition applied in a loop, the system is able to automaiss
est is situated in the center of each camera’s field of ically search the scene for a particular object, until i
view, the head is able to actively change gaze direc- has been found by the recognition system. Two recogs
tion and vergence angle, i.e. the difference in orienta- nition modules are available for this purpose: (i) a feass
tion between the two cameras. In our system, stereoture based module based on Scale Invariant Feateie
based figure-ground segmentation is intended for mo- Transform (SIFT) features Lowj@4], and (ii) an ap- sa
bile robot navigation and robot arm transportation to pearance based module using color histograms, Ekvadl
the vicinity of the object. More detailed information et al.[25]. 503
about an object’s pose is provided using a monocu-  Most recognition algorithms expect the considereg.
lar model based pose estimation and tracking, Kragic object to subtend a relatively large proportion of thes
[21]. images. If the object is small, it has to be approached

The visual front-end is responsible for delivering 3D  before is can be detected. Possible solution would
data about the observed scene. Such information is ex-be using a eye-in-hand camera and only approagh
tracted using a three-step process, which includes thethe object through the manipulator, keeping the plads
above mentioned epipolar geometry estimation, image form itself static. A more efficient solution is a systemuo
rectification and calculation of dense disparity maps. equipped with wide field as well as foveal camerasy
The generation of this data is done continuously at a like the stereo-head system used for the example pte-
rate of 8 Hz, independently of the task at hand and sented here. Hypotheses are found using the wide field
used by more high-level processes for further inter- cameras, while recognition is done using the foveak

pretation. Further information on this part of the sys- ones. 515
tem can be found in Brkman[10]. Since most meth-
ods for dense disparity estimation assume the image5.2. Approach 516

planes to be parallel, image rectification has to be per-

formed using the estimated epipolar geometry before  Transporting the arm to the vicinity of the objects
disparities can be estimated. The current system in- considering a closed-loop control system, requires regs
cludes seven different disparity algorithms, from sim- istration or computation of spatial relationship betweesns
ple area correlation, Konolig22] to more complicated  two or more images. Although this problem has bees
graph-cut methods, Kolmogorov and Zalj8]. The studied extensively in the computer vision society, i:
benefit of using a more advanced global method, is has rarely been fully integrated in robotic systems faf.
the fact that they often lead to denser and more ac- unknown objects. One reason for this is that high reaks
curate results. However, even if density is important, time demand makes the problem of tracking more diz
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ficult then when processing image sequences off-line. 6.1. Detect 569
For cases where the object is initially far away from
the robot, a simple tracking techniques can be used to  Numerous methods exist for segmentation of obr
keep the object in the field of view while approaching jects in cluttered scenes. However, from monoculat
it. For this purpose we have developed and evaluated cues only this is very difficult, unless the object has:
methods based on correlation and optical flow, Kragic a color or texture distinct from its surrounding. Unfors:s
et al.[26] as well as those based on integration of cues tunately, these cues are sensitive to lighting as well as
such as texture, color and motion, Kragic and Chris- pose variations. Thus, for the system to be robust, ose
tensen27]. The latter approach is currently used for has to rely on information such as binocular disparities
tracking. or optical flow. A binocular setting is recommendeds»
Performing final approach toward a known object since the motion that needsto be induced should prefes-
depends also on the number of cameras and their place-ably be parallel to the image plane, complicating thes
ment. For eye-in-hand configuration we have adopted process of approaching the object. 580
a teach-by-showin@pproach, where a stored image In our current system, binocular disparities are used
taken from the reference position is used to move the for segmentation with the foveal camera set. We use
manipulator so that the current camera view is gradu- this set since the focal lengths have to be relatively
ally changed to match the stored reference view. Ac- large in order to get the accuracy required for grasps
complishing this for general scenes is difficult, but a ing. When the resolution in depth increases, so dogs
robust system can be made under the assumption thathe range of possible disparities. If only a fraction ofs
the objects are piecewise planar. In our system, a wide these disparities are tested, e.g. the range in which the
baseline matching algorithm is employed to establish object is located, a large number of outliers can be exs
point correspondences between the current and the ref-pected, such as in the lower-left imageFi§. 7. We s
erence image, Kragic and Christen$2i]. The point apply a Mean-Shift algorithm, Comaniciu et@l9] to s«
correspondences enable the computation of a homog-prune the data, using the fact that the points represesnt-
raphy relating the two views, which is then used for 2 ingthe object are located in arelatively small part of 3R
1/2D visual servoing. space and the center of these points is approximately
In cases where the CAD model of the object is known. After applying a sequence of morphologicab.
available, a full 6D pose estimate is obtained. After operation a mask is found as shown in the lower-righs

the object has been localized in the image, its pose image. 596
is automatically initiated using SIFT features from
the foveal camera image, fitting a plane to the data. 6.2. Approach 507

Thus, it is assumed that there is a dominating plane
that can be mapped to the model. The process is fur-  Approaching an unknown object can be done eithes
ther improved searching for straight edges around this using the stereo-head or with an eye-in-hand camesa.
plane. The complete flow from hypotheses genera- Without knowing the identity of the object the latteroo
tion to pose estimation and tracking is performed fully case is hardly feasible. It would be possible to takesa
automatic. sequence of images, while approaching the object, and
from these estimate a disparity map, but this map would
hardly be as accurate as using the disparities availabkle
6. Manipulating unknown objects from the foveal camera set. 605
If the stereo-head is used instead, it is essential that
For general setting, manipulation of unknown ob- the robot gripper itself can be located in disparity space:
jects has rarely been pursued. The primary reason isUsing the mask derived in Secti@nl, the elongation s
likely to be that the shape of an object has to be de- and orientation of the object can be determine and the
termined in order to successfully grasp it. Another rea- fingers of the gripper be placed on either side of the
son is that, even if the location is given by a pointing object. In general we will not be able, from one sterea:
gesture, the size also has to be known and the objectview only, to retrieve the full 3D shape of the object. In::
segmented from its background. particular, if the extension in depth is significant, it willss
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Fig. 7. Leftperipheral (upper left) and foveal (upper right) cameraimages and disparities (lower left) and segmentation (lower right) alytomatical
obtained from the peripheral stereo pair.

be difficult to guarantee that the full closing grasp can cution. We have shown that in this way, even if thes
be performed. This problem can be solved by moving robot moves the object, grasping can successfully be
the stereo-head to another location. This is a topic we performed without the need to reinitiate the whole prass
intend to investigate further in the future. cess. This can be done even for unknown objects whese
the Mean-Shift strategy suggested in Secidhis ap- e
plied on consecutive images. 638
7. Grasping

For active grasping, visual sensing will in general 8. Experimental evaluation 639
not suffice. One of the problems closely related to eye-
in-hand configurations is the fact that when tog As mentioned in Sectiof3, our system is built on e
proachstep is finished, the object is very close to the a number of independently running and communicat:
camera, commonly covering the whole field of view. ing modules. Since most methods used within these
To retrieve features necessary for grasp planning is im- modules have been analyzed elsewhere, we will coas
possible. One solution to this problem is to use a wide centrate onthe integrated system as awhole, rather than
field eye-in-hand camera, together with a stand-alone analyzing each individual method inisolation. The sysss
mono- or stereo vision system. Our previous work has tem should be considered as an integrated unit anddts
integrated visual information with tactile and force- performance measured based on the behavior of the
torque sensing for object grasping, Kragic and Chris- complete system. The failure of one particular modulg
tenser28]. We have, however, realized that there is a does not necessarily mean that the whole system fais.
need for a system that is able to monitor the grasping For example, figure-ground segmentation might weko
process and track the pose of the object during exe- fail to separate two nearby objects located on a similat
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distance, but the system might still be able to initiate features are due to specularities. However, the distinet
pose estimation after recognition. color makes it particularly suitable for CCHs, which orss

The following properties of the system have been the other hand have a tendency of mixing up the tiges
evaluated, as will be described in more detail in the and the giraffe, unlike the recognition module based an
sections below: SIFT features. 687

¢ combined figure-ground segmentation based on bin- 8.1. Binocular segmentation and pose estimation ez

ocular disparities and monocular pose estimation, i _ . _ .
o combined monocular Cooccurence Color Histog- The first experiments illustrate the typical behavioss

rams (CCH) Chang and Krumfa9] based object  ©f the system with binocular disparity based figureso
recognition and monocular pose estimation, ground segmentation and SIFT based recogp|t|on. Re-
e robustness of figure-ground segmentation, sults .from these experiments can be seerh'-lgp' 9 e
e robustness toward occlusions using SIFT features, The first column shows the left foveal camera images

« robustness of pose initialization toward rotations, ~ Prior to the experiments. Itis clear that a requested ob-
ject would be hard to find, without peripheral visionss

For recognition, a set of 28 objects was used. controlling a change in gaze direction. However, froms
Fig. 8 shows a few of them. A database was created the disparity maps in the second column the systemsis
consisting of object models based on SIFT features able to locate a number of object hypotheses, whieh
and CCHs. Eight views per object were used for the can be shown as white blobs overlaid on-top of thes
SIFT models as well as in the case of CCHs. Pose esti- left peripheral camera image in the third column of theo
mation was only considered for the first three box-like figure. 701
objects, automatically starting as one of these objects The matching scores of the recognition module.
are recognized. For this purpose, the width, height and for these two examples were 66% and 70%, respee-
thickness of these objects were measured and recordedively, measured as the fraction of SIFT features being
in the database. matched to one particular model. Once an object has

Since the observed matching scores did not signif- beenrecognized, pose estimation is automatically initbs
icantly differ from those already published in Lowe ated. Thisis done using SIFT features from the left ane
[24] and Mikolajczyk and SchmifB0] we have cho- right foveal camera images, fitting a plane to the datas
sen notto include any additional quantitative results. A Thus, itis assumed that there is a dominating plane that
few observations have lead us to believe that recogni- can be mapped to the model. The process is further ir-
tion would benefit from CCHs and SIFT features being proved searching for straight edges around this plane.
used in conjunction. For example, the blue car is rarely The last two columns show an example of this being
recognized properly using SIFT, since the most salient done in practice. 13

Brun
g Farin |

Fig. 8. Some of the objects used for experimental evaluation.
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Fig. 9. An example of binocular figure-ground segmentation and pose estimation. The first column shows the foveal images before a saccade
has been issued. Disparity maps can be seen in the second column and object hypotheses in third. The last column shows the estimated pose

8.2. Monocular CCH recognition and pose ond example where the angle around camefeexis s
estimation is more than 20, 732

Fig. 10 shows two examples of recognition and 8.3. Robustness of disparity based figure-ground 7z
pose estimation based on monocular CCH. Here, objectsegmentation 734
recognition and rotation estimation serve as the initial
values for the model based pose estimation and track- ~ As mentioned in Sectiof, object location hypothe- s
ing modules. With the incomplete pose calculated in ses are found slicing up the disparities into a binary magp
the recognition (first image from the left) and orienta- of pixels located within a given depth range. There are
tion estimation step, the initial full pose is estimated some evident disadvantages associated with such a peo-
(second image from the left). After that, a local fitting cedure. First of all, an object might be tilted and exteneb
method matches lines in the image with edges of the beyond this range. This can be seen in the upper left
projected object model. The images obtained after con- image inFig. 11—but it does not occur in the second..
vergence of the tracking scheme is shown on the right. image on the same row. However, since a more accut
It is important to note, that even under the incorrect rate localization is found through the focused attention
initialization of the two other rotation angles as zero, process, a saccade is issued to the approximately same
our approach is able to cope with significant deviations location. This is shown in the last two images on thes
from this assumption. This is strongly visible inthe sec-  upper row.

Fig. 10. From object recognition to pose estimation, (from left): (i) the output of the recognition, (i) initial pose estimation, (iii) after three
fitting iterations, (iv) the estimated pose of the object.
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Fig. 11. The imperfect segmentation does not effect the final pose estimate of the object. The examples show when: (upper) Only a fraction of

the object was segmented, and (lower) Two hypotheses are overlapping.

Another challenge occurs if two nearby objects are hypotheses are merged. Depending on the density-af
placed at almost the same distance, especially if the foveal features, one of the two objects is automatically:
background lacks sufficient texture. Then the objects selected. 763
might merge into a single hypothesis, which is shown
on the second row ofig. 11 In our experiments  8.4. Robustness of SIFT based recognition toward 7es
this seemed more common when a global disparity occlusions 765
method Kolmogorov and Zabif23] was used and is
the reason why we normally use simple area correla-  In a cluttered environment, a larger fraction of obrss
tion. The global optimization methods tend to fill in  jects are likely to be occluded. These occlusions affeet
the space between the two objects, falsely assumingmost involved processes, in particular those of recogs
that rapid changes in disparities are unlikely and thus nition and pose estimation. The first two imageBig. 7
should be suppressed. In practice, it is preferable if 12show a scene in which the sugar box is partially oer
the textureless area between the objects are left unas-cluded behind a bottle. In the first case, the recognition
signed. The right two images on the last row show fails because not enough foveal features are availabie,
that pose estimation is still be possible, even when while successful recognition and pose estimation is

Fig. 12. The system is able to cope with situations where the object of interest is significantly occluded. Too much occlusion can however result

in incorrect pose estimation (lower center).
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Fig. 13. From object hypotheses (upper left) the orientation of an object is estimated (upper middle/upper right). Pose estimates after three

iterations for orientations 2040° and 60 (lower).

possible in the second case as shown in the thirdimage. As can be seen in the last two images on the ups
However, even if recognition is successful, the pose ini- per row ofFig. 13 larger rotations tend to be underso
tialization might still fail when not enough edges are estimated when the pose is initialized. However, thesge
clearly visible. This can be seen in the last two images errors are still below what is required for the pose esws
of Fig. 12 As it is apparent from the fourth image that timation to finally converge. The lower row shows thes.
a failure does not necessarily mean that the results areestimated pose after a few initial iterations. Even at an
useless, since the location of the object in 3D space is angle of 60 the process will converge, but at a somess
still available. what slower rate. For 40and below convergence iSso

reached within three frames. 808

8.5. Robustness of pose initialization toward
rotations

9. Conclusions 809

Since, in SIFT based recognition, only one view was

available for each object, the sensitivity of the systemto  In this paper, different visual strategies necessasy
rotations was expected to be high. It is already known for robotic hand-eye coordination and object grasping
that for efficient recognition using these features, the tasks, have been presented. The importance of cam-
relative orientation between query image and object era placement and their number have been discussed
model ought to be less than abouf 3Dikely because and their effect on the design and choice of visual ai
our model set only consisted of eight objects, our study gorithms. For realistic, domestic settings we are intess
indicated that slightly larger angles were in fact possi- ested in designing robots that are able to manipulaie
ble. Inthe three columns &ig. 13an objectwasrotated  both known and unknown objects and it is therefore:
about 20, 40° and 60, respectively. The rise package important to develop methods for both cases. We haue
was correctly recognized at a score higher than 70%. shown strategies that support both cases. 819
However, the break-point turned out to be highly ob- Reflecting back té-ig. 1, different scenarios can besz
jectdependent. For example, for an object like the tiger, arranged in a hierarchy depending on prior informaz
the breakpoint was as low as 20%. For a more thorough tion. Even if a particular task is given, it is possible--
analysis on the SIFT recognition performance we refer to shift between different scenarios and therefore, the
to Lowe[24]. underlying strategies used. For example, if the cong
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mand “Pick Up This Cup” is given, but the system fails
to verify the existence of the cup, the execution may
still continue as if “Pick up The Cup” was given. A

vice-versa example is if the command “Pick Up This

Object” was given and the system realizes that the ob-

ject is, in fact, a known box of raisins. Then, the sys-
tem automatically changes the task to “Pick Up The
Raisins”. In the future, we want to develop a more
formal description for the above, in order to design
a visual system framework for robotic manipulation in
general.
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