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Abstract

We consider a model for atmospheric circulation based oether equations
for a compressible gas. We consider two hydrostatic basgi@as depending on
height, one with constant temperature and one isentropicagnstant temperature
gradient or lapse rate. We argue that these solutions esgreslutions with maxi-
mal and minimal turbulent dissipation with the observed legzse rate soemwhere
in between. We find that the atmosphere acts in a cyclic théymmoaic process of
rising-expanding-cooling and descending-compressiagning which is similar
to that of an air conditioner or refrigerator. We seek solsi as perturbations of
the hydrostatic base solutions with the perturbationsfsétig a modified form of
the incompressible Euler equations.

1 Compressible/lncompressible Euler asClimate M odel

As a model of the atmosphere we consider the Euler equat@mma €ompressible
prefect gas occupying the cuie= (0, 1)3: Find (p, u, e) with p density,u velocity
ande internal energy depending anand¢ > 0, such that forr € @ and¢ > 0:

Dyp+pV-u=0
Dym+mV -u+Vp+ gpes =0 (1)
Dye+eV-u+pV-u=0
wherem = pu is momentump = ~pT' is pressure witll” temperature and < v < 1
a constante = ¢,pT" with ¢, the specific heat under constant volume, dng =

0 + u - Vv is the material time derivative with respect to the velocityogether with
initial and boundary values, argd = (0,0, 1) is the upward direction.

2 Basic Thermodynamics of Atmospheric Circulation

We identify the following hydrostatic base solutions:

U= 07 T ~ 1) I6 = exp(—xg), D~ eXp(_x3)a (2)
a=0,T~1-a5 g~ (1—23)7, pr (1 25)F7

)
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with ~ indicating proportionality. The first solution has condtemperature and ex-
ponential drop of density and pressure. The second soligimentropic defined by
equality in the 2nd Law of Thermodynamics as presented in [4]

¢ dl+pdV >0, 3)
which combined with hydrostatic balan#f— —gp and the differentiated form
pdV + Vdp = ~vdT of the gas law in the forrpV ~T, gives

oT
v —dg. 4
(co +7) 75— o~ Y (4)

For airc, + v = 1 and the isentropic lapse rate is thu$0 Celsius (per kilometer). In
reality, turbulent dissipation gives strict inequalitythie 2nd Law (3). The observed
lapse rate of-6 can thus partly be seen as an effect of turbulent dissipatidth
another major effect coming from evaporation and condé@nsat

The isentropic lapse rate can be seen as being establishedymtic thermody-
namic process with hot light air rising under expansionliogoand cool air descend-
ing under compression/warming, combined with evaporatmmdensation. The atmo-
sphere thus acts like an air conditioner or refrigeratardpmrting heat from the Earth
surface (received by insolation) to the top of the atmospfrem where it is radiated
to into space, by a cyclic thermodynamic process of exparhsioling and compres-
sion/warming with efficiency boosted by evaporation/carg#ion. The thermody-
namics of a refrigerator is driven by a compressor, whiclhédase on an atmosphere
is taken over by gravitation causing compression of desogradr.

3 Joul€e's Experiment

The basic thermodynamic process of cooling under expam&agrexperimentally stud-
ied by Joule letting a high pressure-density-temperatasesypand from equilibrium
in one chamber into another chamber and measuring the tampedifference/gap in
the chambers at the new equilibrium. In this process the gass dinetic energy by
cooling and then comes to rest by turbulent dissipationingusarming. The result-
ing temperature gap depends on the dynamics of the expapsicass, which with
maximal turbulent dissipation (or maximal entropy incedagsults in zero gap, while
isentropic expansion without turbulent dissipation giesximal gap. In a real process
the gap is somewhere in between these extremes as shown frutadional simulation
in Chapter 166 of [5].

The experience from the Joule experiment suggests to viewedhl lapse as de-
termined by the amount of turbulent dissipation betweerithiés of isentropic zero
dissipation with maximal lapse rate and maximal dissipatith zero lapse rate (com-
bined with the effect of evaporation/dissipation decnegie lapse rate).

4 Perturbations of Base Solutions

We seek a solution to (1) on the fortp + p, @ + u, € + ¢), where(p, @, €) is a basic
solution, here a static solution with = 0 and Vp = —gp expressing hydrostatic



balance. We assume that the velocity perturbati@atisfiesV - ©« = 0 motivated by
the fact that the Mach number of atmospheric air flow is smaBerting this Ansatz
into (1), we obtain the following modified form the incompsdse Euler equations:
Find (p, u, p, e) such that

Dyp+u-Vp=0

(&
Du 7+ u +V - ::0,
((p+p)u) + Vp 9% )
V-u=0,

Dye+u-Ve=q,
whereq is a heat source modelling evaporation/condensation antewe replaceg
in the momentum equation by% = —2, wherepl' = ¢, assuming that ~ pT

(change of internal energyprimarily by temperature chand® andpT + pT ~ 0
(total pressure approximately constant).

5 Stability of Base Solutions

We investigate the stability of hydrostatic base solutigh9, ¢) by linearizing the
compressible Euler equations at a base solution, to oltteificllowing system in a
perturbationp, u, )

p+u-Vp+pV-u=0
pu+vVe+ gpes =0 (6)
ée+u-Ve+(14+v)evV-u=0

AssumingV -u = 0 and for simplicityp = (1—x3) (with v = 1), the system simplifies
to (withg = 1)

,O—u;;:O
(1 —23)u+ Vp+pez =0 (7)
ée4+u-Ve=0

wherep is a pressure perturbation compatible with « = 0. Multiplying here the
first equation by and the second by, addding and integrating in space we obtain

d1

dt 2 /Q((pz + (1 = x3)|uf*) dz =0, ®

showing stability.

6 A Simple Radiation M odel

Let E(x3) be the radiation from an atmospheric layer at heightSubdivide the atmo-
sphere into horisontal layers of widthidentified byh(j — 1) < x5 < hj. Balance of



incoming and outgoing radiation can, assuming full absong¢mission, be expressed
as
E(xg —h)—?E(.Tg)-l-E(:L‘g-i-h) =0 9)

Assuming thaiZ = ¢T'* according to Stefan-Boltzmann’s Radiation Law, this letads
the following differential equation

—TT" = 3(T")* (10)

with 77 = j—rTs This equation effectively priviliges a linear temperatyrofile with
T" = 0, while the slope or lapse raf still is to be determined. The basic problem at
hand can be seen as heat conduction modeled by

—eT"(z3) =0 for0<az<1, T(1)=0, —€I'(0)=Q (11)

with e a coefficient of heat conduction and a Neumann condition at 0, effectively
definingT’(x3) = T'(0) = —%. In this model the lapse rate of the atmosphere is
determined principally by the heat exchange ocean-atnessyati the ocean surface.

7 G2 Computational Results

We solve the system (5) using the G2 finite element methoddtfiisg from the above
adiabatic base solution with forcing from heating:at= 0 and cooling at:3 = 1, with
the objective of determining the temperature drop from= 0 to x3 = 1. We find
buoyancy driven turbulent solutions, which will be presehshortly. Related results
for thermohaline ocean circulation are presented in [2][8hd
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