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Abstract

We consider a model for atmospheric circulation based on theEuler equations
for a compressible gas. We consider two hydrostatic base solutions depending on
height, one with constant temperature and one isentropic with constant temperature
gradient or lapse rate. We argue that these solutions represent solutions with maxi-
mal and minimal turbulent dissipation with the observed real lapse rate soemwhere
in between. We find that the atmosphere acts in a cyclic thermodynmaic process of
rising-expanding-cooling and descending-compressing-warming which is similar
to that of an air conditioner or refrigerator. We seek solutions as perturbations of
the hydrostatic base solutions with the perturbations satisfying a modified form of
the incompressible Euler equations.

1 Compressible/Incompressible Euler as Climate Model

As a model of the atmosphere we consider the Euler equations for a compressible
prefect gas occupying the cubeQ = (0, 1)3: Find (ρ, u, e) with ρ density,u velocity
ande internal energy depending onx andt > 0, such that forx ∈ Q andt > 0:

Duρ + ρ∇ · u = 0

Dum + m∇ · u + ∇p + gρe3 = 0

Due + e∇ · u + p∇ · u = 0

(1)

wherem = ρu is momentum,p = γρT is pressure withT temperature and0 < γ < 1
a constant,e = cvρT with cv the specific heat under constant volume, andDuv =
v̇ + u · ∇v is the material time derivative with respect to the velocityu, together with
initial and boundary values, ande3 = (0, 0, 1) is the upward direction.

2 Basic Thermodynamics of Atmospheric Circulation

We identify the following hydrostatic base solutions:

ū = 0, T̄ ∼ 1, ρ̄ = exp(−x3), p̄ ∼ exp(−x3),

ū = 0, T̄ ∼ 1 − x3, ρ̄ ∼ (1 − x3)
1

γ , p̄ ∼ (1 − x3)
1+ 1

γ ,
(2)
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with ∼ indicating proportionality. The first solution has constant temperature and ex-
ponential drop of density and pressure. The second solutionis isentropic defined by
equality in the 2nd Law of Thermodynamics as presented in [4]:

cv dT + p dV ≥ 0, (3)

which combined with hydrostatic balance∂p
∂x3

= −gρ and the differentiated form
pdV + V dp = γdT of the gas law in the formpV = γT , gives

(cv + γ)
∂T

∂x3

= −g. (4)

For aircv + γ ≈ 1 and the isentropic lapse rate is thus−10 Celsius (per kilometer). In
reality, turbulent dissipation gives strict inequality inthe 2nd Law (3). The observed
lapse rate of−6 can thus partly be seen as an effect of turbulent dissipation, with
another major effect coming from evaporation and condensation.

The isentropic lapse rate can be seen as being established bya cyclic thermody-
namic process with hot light air rising under expansion/cooling and cool air descend-
ing under compression/warming, combined with evaporation/condensation. The atmo-
sphere thus acts like an air conditioner or refrigerator transporting heat from the Earth
surface (received by insolation) to the top of the atmosphere from where it is radiated
to into space, by a cyclic thermodynamic process of expansion/cooling and compres-
sion/warming with efficiency boosted by evaporation/condensation. The thermody-
namics of a refrigerator is driven by a compressor, which in the case on an atmosphere
is taken over by gravitation causing compression of descending air.

3 Joule’s Experiment

The basic thermodynamic process of cooling under expansionwas experimentally stud-
ied by Joule letting a high pressure-density-temperature gas expand from equilibrium
in one chamber into another chamber and measuring the temperature difference/gap in
the chambers at the new equilibrium. In this process the gas gains kinetic energy by
cooling and then comes to rest by turbulent dissipation causing warming. The result-
ing temperature gap depends on the dynamics of the expansionprocess, which with
maximal turbulent dissipation (or maximal entropy increase) results in zero gap, while
isentropic expansion without turbulent dissipation givesmaximal gap. In a real process
the gap is somewhere in between these extremes as shown in computational simulation
in Chapter 166 of [5].

The experience from the Joule experiment suggests to view the real lapse as de-
termined by the amount of turbulent dissipation between thelimits of isentropic zero
dissipation with maximal lapse rate and maximal dissipation with zero lapse rate (com-
bined with the effect of evaporation/dissipation decreasing the lapse rate).

4 Perturbations of Base Solutions

We seek a solution to (1) on the form(ρ̄ + ρ, ū + u, ē + e), where(ρ̄, ū, ē) is a basic
solution, here a static solution with̄u = 0 and∇p̄ = −gρ̄ expressing hydrostatic
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balance. We assume that the velocity perturbationu satisfies∇ · u = 0 motivated by
the fact that the Mach number of atmospheric air flow is small.Inserting this Ansatz
into (1), we obtain the following modified form the incompressible Euler equations:
Find (ρ, u, p, e) such that

Duρ + u · ∇ρ̄ = 0

Du((ρ̄ + ρ)u) + ∇p − g
e

T
= 0,

∇ · u = 0,

Due + u · ∇ē = q,

(5)

whereq is a heat source modelling evaporation/condensation and wehave replacedρ
in the momentum equation by− e

T
= − eρ̄

ē
, whereρ̄T = ē, assuming thate ≈ ρ̄T

(change of internal energye primarily by temperature changeT ) andρT + ρ̄T ≈ 0
(total pressure approximately constant).

5 Stability of Base Solutions

We investigate the stability of hydrostatic base solutions(ρ̄, 0, ē) by linearizing the
compressible Euler equations at a base solution, to obtain the following system in a
perturbation(ρ, u, e)

ρ̇ + u · ∇ρ̄ + ρ̄∇ · u = 0

ρ̄u̇ + γ∇e + gρe3 = 0

ė + u · ∇ē + (1 + γ)ē∇ · u = 0

(6)

Assuming∇·u = 0 and for simplicityρ̄ = (1−x3) (with γ = 1), the system simplifies
to (with g = 1)

ρ̇ − u3 = 0

(1 − x3)u̇ + ∇p + ρe3 = 0

ė + u · ∇ē = 0

(7)

wherep is a pressure perturbation compatible with∇ · u = 0. Multiplying here the
first equation byρ and the second byu, addding and integrating in space we obtain

d

dt

1

2

∫
Q

((ρ2 + (1 − x3)|u|
2) dx = 0, (8)

showing stability.

6 A Simple Radiation Model

LetE(x3) be the radiation from an atmospheric layer at heightx3. Subdivide the atmo-
sphere into horisontal layers of widthh identified byh(j − 1) < x3 < hj. Balance of
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incoming and outgoing radiation can, assuming full absorption/emission, be expressed
as

E(x3 − h) − 2E(x3) + E(x3 + h) = 0 (9)

Assuming thatE = cT 4 according to Stefan-Boltzmann’s Radiation Law, this leadsto
the following differential equation

−TT ′′ = 3(T ′)2 (10)

with T ′ = dT
dx3

. This equation effectively priviliges a linear temperature profile with
T ′′ ≈ 0, while the slope or lapse rateT ′ still is to be determined. The basic problem at
hand can be seen as heat conduction modeled by

−ǫT ′′(x3) = 0 for 0 < x3 < 1, T (1) = 0, −ǫT ′(0) = Q (11)

with ǫ a coefficient of heat conduction and a Neumann condition atx3 = 0, effectively
definingT ′(x3) = T ′(0) = −Q

ǫ
. In this model the lapse rate of the atmosphere is

determined principally by the heat exchange ocean-atmosphere at the ocean surface.

7 G2 Computational Results

We solve the system (5) using the G2 finite element method [1] starting from the above
adiabatic base solution with forcing from heating atx3 = 0 and cooling atx3 = 1, with
the objective of determining the temperature drop fromx3 = 0 to x3 = 1. We find
buoyancy driven turbulent solutions, which will be presented shortly. Related results
for thermohaline ocean circulation are presented in [2] and[3].
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