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Preface

I admit that each and every thing remains in its state until there is

reason for change. (Leibniz)

The Need of Reform of Mathematics Education

Mathematics education needs to be reformed as we now pass into the new
millennium. We share this conviction with a rapidly increasing number of
researchers and teachers of both mathematics and topics of science and
engineering based on mathematical modeling. The reason is of course the
computer revolution, which has fundamentally changed the possibilities of
using mathematical and computational techniques for modeling, simula-
tion and control of real phenomena. New products and systems may be
developed and tested through computer simulation on time scales and at
costs which are orders of magnitude smaller than those using traditional
techniques based on extensive laboratory testing, hand calculations and
trial and error.

At the heart of the new simulation techniques lie the new fields of
Computational Mathematical Modeling (CMM), including Computational
Mechanics, Physics, Fluid Dynamics, Electromagnetics and Chemistry, all
based on solving systems of differential equations using computers, com-
bined with geometric modeling/Computer Aided Design (CAD). Compu-
tational modeling is also finding revolutionary new applications in biology,
medicine, environmental sciences, economy and financial markets.
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Education in mathematics forms the basis of science and engineering
education from undergraduate to graduate level, because engineering and
science are largely based on mathematical modeling. The level and the
quality of mathematics education sets the level of the education as a whole.
The new technology of CMM/CAD crosses borders between traditional
engineering disciplines and schools, and drives strong forces to modernize
engineering education in both content and form from basic to graduate
level.

Our Reform Program

Our own reform work started some 20 years ago in courses in CMM at
advanced undergraduate level, and has through the years successively pen-
etrated through the system to the basic education in calculus and linear
algebra. Our aim has become to develop a complete program for mathe-
matics education in science and engineering from basic undergraduate to
graduate education. As of now our program contains the series of books:

1. Computational Differential Equations, (CDE)

2. Applied Mathematics: Body & Soul I–III, (AM I–III)

3. Applied Mathematics: Body & Soul VI–, (AM IV–).

AM I–III is the present book in three volumes I–III covering the basics
of calculus and linear algebra. AM IV– offers a continuation with a series
of volumes dedicated to specific areas of applications such as Dynamical
Systems (IV), Fluid Mechanics (V), Solid Mechanics (VI) and Electromag-
netics (VII), which will start appearing in 2003. CDE published in 1996
may be be viewed as a first version of the whole Applied Mathematics: Body
& Soul project.

Our program also contains a variety of software (collected in the Math-
ematics Laboratory), and complementary material with step-by step in-
structions for self-study, problems with solutions, and projects, all freely
available on-line from the web site of the book. Our ambition is to offer
a “box” containing a set of books, software and additional instructional ma-
terial, which can serve as a basis for a full applied mathematics program
in science and engineering from basic to graduate level. Of course, we hope
this to be an on-going project with new material being added gradually.

We have been running an applied mathematics program based on AM
I–III from first year for the students of chemical engineering at Chalmers
since the Fall 99, and we have used parts of the material from AM IV– in
advanced undergraduate/beginning graduate courses.
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Main Features of the Program:

� The program is based on a synthesis of mathematics, computation
and application.

� The program is based on new literature, giving a new unified presen-
tation from the start based on constructive mathematical methods
including a computational methodology for differential equations.

� The program contains, as an integrated part, software at different
levels of complexity.

� The student acquires solid skills of implementing computational meth-
ods and developing applications and software using Matlab.

� The synthesis of mathematics and computation opens mathematics
education to applications, and gives a basis for the effective use of
modern mathematical methods in mechanics, physics, chemistry and
applied subjects.

� The synthesis building on constructive mathematics gives a synergetic
effect allowing the study of complex systems already in the basic ed-
ucation, including the basic models of mechanical systems, heat con-
duction, wave propagation, elasticity, fluid flow, electro-magnetism,
reaction-diffusion, molecular dynamics, as well as corresponding multi-
physics problems.

� The program increases the motivation of the student by applying
mathematical methods to interesting and important concrete prob-
lems already from the start.

� Emphasis may be put on problem solving, project work and presen-
tation.

� The program gives theoretical and computational tools and builds
confidence.

� The program contains most of the traditional material from basic
courses in analysis and linear algebra

� The program includes much material often left out in traditional pro-
grams such as constructive proofs of all the basic theorems in analysis
and linear algebra and advanced topics such as nonlinear systems of
algebraic/differential equations.

� Emphasis is put on giving the student a solid understanding of basic
mathematical concepts such as real numbers, Cauchy sequences, Lips-
chitz continuity, and constructive tools for solving algebraic/differen-
tial equations, together with an ability to utilize these tools in ad-
vanced applications such as molecular dynamics.
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� The program may be run at different levels of ambition concerning
both mathematical analysis and computation, while keeping a com-
mon basic core.

AM I–III in Brief

Roughly speaking, AM I–III contains a synthesis of calculus and linear
algebra including computational methods and a variety of applications.
Emphasis is put on constructive/computational methods with the double
aim of making the mathematics both understandable and useful. Our am-
bition is to introduce the student early (from the perspective of traditional
education) to both advanced mathematical concepts (such as Lipschitz
continuity, Cauchy sequence, contraction mapping, initial-value problem
for systems of differential equations) and advanced applications such as
Lagrangian mechanics, n-body systems, population models, elasticity and
electrical circuits, with an approach based on constructive/computational
methods.

Thus the idea is that making the student comfortable with both ad-
vanced mathematical concepts and modern computational techniques, will
open a wealth of possibilities of applying mathematics to problems of real
interest. This is in contrast to traditional education where the emphasis is
usually put on a set of analytical techniques within a conceptual framework
of more limited scope. For example: we already lead the student in the sec-
ond quarter to write (in Matlab) his/her own solver for general systems of
ordinary differential equations based on mathematically sound principles
(high conceptual and computational level), while traditional education at
the same time often focuses on training the student to master a bag of
tricks for symbolic integration. We also teach the student some tricks to
that purpose, but our overall goal is different.

Constructive Mathematics: Body & Soul

In our work we have been led to the conviction that the constructive as-
pects of calculus and linear algebra need to be strengthened. Of course,
constructive and computational mathematics are closely related and the
development of the computer has boosted computational mathematics in
recent years. Mathematical modeling has two basic dual aspects: one sym-
bolic and the other constructive-numerical, which reflect the duality be-
tween the infinite and the finite, or the continuous and the discrete. The
two aspects have been closely intertwined throughout the development of
modern science from the development of calculus in the work of Euler, La-
grange, Laplace and Gauss into the work of von Neumann in our time. For
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example, Laplace’s monumental Mécanique Céleste in five volumes presents
a symbolic calculus for a mathematical model of gravitation taking the form
of Laplace’s equation, together with massive numerical computations giv-
ing concrete information concerning the motion of the planets in our solar
system.

However, beginning with the search for rigor in the foundations of cal-
culus in the 19th century, a split between the symbolic and construc-
tive aspects gradually developed. The split accelerated with the inven-
tion of the electronic computer in the 1940s, after which the construc-
tive aspects were pursued in the new fields of numerical analysis and
computing sciences, primarily developed outside departments of mathe-
matics. The unfortunate result today is that symbolic mathematics and
constructive-numerical mathematics by and large are separate disciplines
and are rarely taught together. Typically, a student first meets calcu-
lus restricted to its symbolic form and then much later, in a different
context, is confronted with the computational side. This state of affairs
lacks a sound scientific motivation and causes severe difficulties in courses
in physics, mechanics and applied sciences which build on mathematical
modeling.

New possibilies are opened by creating from the start a synthesis of
constructive and symbolic mathematics representing a synthesis of Body
& Soul: with computational techniques available the students may become
familiar with nonlinear systems of differential equations already in early
calculus, with a wealth of applications. Another consequence is that the
basics of calculus, including concepts like real number, Cauchy sequence,
convergence, fixed point iteration, contraction mapping, is lifted out of
the wardrobe of mathematical obscurities into the real world with direct
practical importance. In one shot one can make mathematics education
both deeper and broader and lift it to a higher level. This idea underlies the
present book, which thus in the setting of a standard engineering program,
contains all the basic theorems of calculus including the proofs normally
taught only in special honors courses, together with advanced applications
such as systems of nonlinear differential equations. We have found that this
seemingly impossible program indeed works surprisingly well. Admittedly,
this is hard to believe without making real life experiments. We hope the
reader will feel encouraged to do so.

Lipschitz Continuity and Cauchy Sequences

The usual definition of the basic concepts of continuity and derivative,
which is presented in most Calculus text books today, build on the concept
of limit: a real valued function f(x) of a real variable x is said to be con-
tinuous at x̄ if limx→x̄ f(x) = f(x̄), and f(x) is said to be differentiable at
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x̄ with derivative f ′(x̄) if

lim
x→x̄

f(x) − f(x̄)
x− x̄

exists and equals f ′(x̄). We use different definitions, where the concept of
limit does not intervene: we say that a real-valued function f(x) is Lipschitz
continuous with Lipschitz constant Lf on an interval [a, b] if for all x, x̄ ∈
[a, b], we have

|f(x) − f(x̄)| ≤ Lf |x− x̄|.

Further, we say that f(x) is differentiable at x̄ with derivative f ′(x̄) if there
is a constant Kf (x̄) such that for all x close to x̄

|f(x) − f(x̄) − f ′(x̄)(x− x̄)| ≤ Kf(x̄)|x− x̄|2.

This means that we put somewhat more stringent requirements on the
concepts of continuity and differentiability than is done in the usual def-
initions; more precisely, we impose quantitative measures in the form of
the constants Lf and Kf (x̄), whereas the usual definitions using limits are
purely qualitative.

Using these more stringent definitions we avoid pathological situations,
which can only be confusing to the student (in particular in the beginning)
and, as indicated, we avoid using the (difficult) concept of limit in a setting
where in fact no limit processes are really taking place. Thus, we do not lead
the student to definitions of continuity and differentiability suggesting that
all the time the variable x is tending to some value x̄, that is, all the time
some kind of (strange?) limit process is taking place. In fact, continuity
expresses that the difference f(x) − f(x̄) is small if x − x̄ is small, and
differentiability expresses that f(x) locally is close to a linear function, and
to express these facts we do not have to invoke any limit processes.

These are examples of our leading philosophy of giving Calculus a quan-
titative form, instead of the usual purely qualitative form, which we believe
helps both understanding and precision. We believe the price to pay for
these advantages is usually well worth paying, and the loss in generality
are only some pathological cases of little interest. We can in a natural way
relax our definitions, for example to Hölder continuity, while still keeping
the quantitative aspect, and thereby increase the pathology of the excep-
tional cases.

The usual definitions of continuity and differentiability strive for maximal
generality, typically considered to be a virtue by a pure mathematician,
which however has pathological side effects. With a constructive point of
view the interesting world is the constructible world and maximality is not
an important issue in itself.

Of course, we do not stay away from limit processes, but we concen-
trate on issues where the concept of limit really is central, most notably in
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defining the concept of a real number as the limit of a Cauchy sequence of
rational numbers, and a solution of an algebraic or differential equation as
the limit of a Cauchy sequence of approximate solutions. Thus, we give the
concept of Cauchy sequence a central role, while maintaining a constructive
approach seeking constructive processes for generating Cauchy sequences.

In standard Calculus texts, the concepts of Cauchy sequence and Lip-
schitz continuity are not used, believing them to be too difficult to be
presented to freshmen, while the concept of real number is left undefined
(seemingly believing that a freshman is so familiar with this concept from
early life that no further discussion is needed). In contrast, in our construc-
tive approach these concepts play a central role already from start, and in
particular we give a good deal of attention to the fundamental aspect of the
constructibility of real numbers (viewed as possibly never-ending decimal
expansions).

We emphasize that taking a constructive approach does not make math-
ematical life more difficult in any important way, as is often claimed by the
ruling mathematical school of formalists/logicists: All theorems of interest
in Calculus and Linear Algebra survive, with possibly some small unessen-
tial modifications to keep the quantitative aspect and make the proofs more
precise. As a result we are able to present basic theorems such as Con-
traction Mapping Principle, Implicit Function theorem, Inverse Function
theorem, Convergence of Newton’s Method, in a setting of several variables
with complete proofs as a part of our basic Calculus, while these results
in the standard curriculum are considered to be much too difficult for this
level.

Proofs and Theorems

Most mathematics books including Calculus texts follow a theorem-proof
style, where first a theorem is presented and then a corresponding proof
is given. This is seldom appreciated very much by the students, who often
have difficulties with the role and nature of the proof concept.

We usually turn this around and first present a line of thought leading to
some result, and then we state a corresponding theorem as a summary of
the hypothesis and the main result obtained. We thus rather use a proof-
theorem format. We believe this is in fact often more natural than the
theorem-proof style, since by first presenting the line of thought the differ-
ent ingredients, like hypotheses, may be introduced in a logical order. The
proof will then be just like any other line of thought, where one successively
derives consequences from some starting point using different hypothesis
as one goes along. We hope this will help to eliminate the often perceived
mystery of proofs, simply because the student will not be aware of the fact
that a proof is being presented; it will just be a logical line of thought, like
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any logical line of thought in everyday life. Only when the line of thought
is finished, one may go back and call it a proof, and in a theorem collect
the main result arrived at, including the required hypotheses. As a conse-
quence, in the Latex version of the book we do use a theorem-environment,
but not any proof-environment; the proof is just a logical line of thought
preceding a theorem collecting the hypothesis and the main result.

The Mathematics Laboratory

We have developed various pieces of software to support our program into
what we refer to as the Mathematics Laboratory. Some of the software
serves the purpose of illustrating mathematical concepts such as roots of
equations, Lipschitz continuity, fixed point iteration, differentiability, the
definition of the integral and basic calculus for functions of several vari-
ables; other pieces are supposed to be used as models for the students own
computer realizations; finally some pieces are aimed at applications such as
solvers for differential equations. New pieces are being added continuously.
Our ambition is to also add different multi-media realizations of various
parts of the material.

In our program the students get a training from start in using Matlab
as a tool for computation. The development of the constructive mathe-
matical aspects of the basic topics of real numbers, functions, equations,
derivatives and integrals, goes hand in hand with experience of solving
equations with fixed point iteration or Newton’s method, quadrature, and
numerical methods or differential equations. The students see from their
own experience that abstract symbolic concepts have roots deep down into
constructive computation, which also gives a direct coupling to applications
and physical reality.

Go to http://www.phi.chalmers.se/bodysoul/

The Applied Mathematics: Body & Soul project has a web site contain-
ing additional instructional material and the Mathematics Laboratory. We
hope that the web site for the student will be a good friend helping to
(independently) digest and progress through the material, and that for the
teacher it may offer inspiration. We also hope the web site may serve as
a forum for exchange of ideas and experience related the project, and we
therefore invite both students and teachers to submit material.
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82.18 Möbius Transformations . . . . . . . . . . . . . . . . . 1116
82.19 w = z1/2, w = ez, w = log(z) and w = sin(z) . . . . . . 1117
82.20 Complex Integrals: First Shot . . . . . . . . . . . . . . 1119



XLII Contents Volume 3

82.21 Complex Integrals: General Case . . . . . . . . . . . . 1120
82.22 Basic Properties of the Complex Integral . . . . . . . . 1121
82.23 Taylor’s Formula: First Shot . . . . . . . . . . . . . . . 1121
82.24 Cauchy’s Theorem . . . . . . . . . . . . . . . . . . . . 1122
82.25 Cauchy’s Representation Formula . . . . . . . . . . . . 1123
82.26 Taylor’s Formula: Second Shot . . . . . . . . . . . . . 1125
82.27 Power Series Representation of Analytic Functions . . 1126
82.28 Laurent Series . . . . . . . . . . . . . . . . . . . . . . . 1128
82.29 Residue Calculus: Simple Poles . . . . . . . . . . . . . 1129
82.30 Residue Calculus: Poles of Any Order . . . . . . . . . 1131
82.31 The Residue Theorem . . . . . . . . . . . . . . . . . . 1131
82.32 Computation of

∫ 2π

0 R(sin(t), cos(t)) dt . . . . . . . . . 1132
82.33 Computation of

∫∞
−∞

p(x)
q(x) dx . . . . . . . . . . . . . . . 1133

82.34 Applications to Potential Theory in R
2 . . . . . . . . . 1134

83 Fourier Series 1141
83.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 1141
83.2 Warm Up I: Orthonormal Basis in C

n . . . . . . . . . 1144
83.3 Warm Up II: Series . . . . . . . . . . . . . . . . . . . . 1144
83.4 Complex Fourier Series . . . . . . . . . . . . . . . . . . 1145
83.5 Fourier Series as an Orthonormal Basis Expansion . . 1146
83.6 Truncated Fourier Series and Best L2-Approximation . 1147
83.7 Real Fourier Series . . . . . . . . . . . . . . . . . . . . 1147
83.8 Basic Properties of Fourier Coefficients . . . . . . . . . 1150
83.9 The Inversion Formula . . . . . . . . . . . . . . . . . . 1155
83.10 Parseval’s and Plancherel’s Formulas . . . . . . . . . . 1157
83.11 Space Versus Frequency Analysis . . . . . . . . . . . . 1158
83.12 Different Periods . . . . . . . . . . . . . . . . . . . . . 1159
83.13 Weierstrass Functions . . . . . . . . . . . . . . . . . . 1159
83.14 Solving the Heat Equation Using Fourier Series . . . . 1160
83.15 Computing Fourier Coefficients with Quadrature . . . 1162
83.16 The Discrete Fourier Transform . . . . . . . . . . . . . 1162

84 Fourier Transforms 1165
84.1 Basic Properties of the Fourier Transform . . . . . . . 1167
84.2 The Fourier Transform f̂(ξ) Tends to 0 as |ξ| → ∞ . . 1169
84.3 Convolution . . . . . . . . . . . . . . . . . . . . . . . . 1169
84.4 The Inversion Formula . . . . . . . . . . . . . . . . . . 1169
84.5 Parseval’s Formula . . . . . . . . . . . . . . . . . . . . 1171
84.6 Solving the Heat Equation Using the Fourier Transform 1171
84.7 Fourier Series and Fourier Transforms . . . . . . . . . 1172
84.8 The Sampling Theorem . . . . . . . . . . . . . . . . . 1173
84.9 The Laplace Transform . . . . . . . . . . . . . . . . . . 1174
84.10 Wavelets and the Haar Basis . . . . . . . . . . . . . . 1175



Contents Volume 3 XLIII

85 Analytic Functions Tool Bag 1179
85.1 Differentiability and analyticity . . . . . . . . . . . . . 1179
85.2 The Cauchy-Riemann Equations . . . . . . . . . . . . 1179
85.3 The Real and Imaginary Parts of an Analytic Function 1180
85.4 Conjugate Harmonic Functions . . . . . . . . . . . . . 1180
85.5 Curves in the Complex Plane . . . . . . . . . . . . . . 1180
85.6 An Analytic Function Defines a Conformal Mapping . 1181
85.7 Complex Integrals . . . . . . . . . . . . . . . . . . . . 1181
85.8 Cauchy’s Theorem . . . . . . . . . . . . . . . . . . . . 1181
85.9 Cauchy’s Representation Formula . . . . . . . . . . . . 1181
85.10 Taylor’s Formula . . . . . . . . . . . . . . . . . . . . . 1182
85.11 The Residue Theorem . . . . . . . . . . . . . . . . . . 1182

86 Fourier Analysis Tool Bag 1183
86.1 Properties of Fourier Coefficients . . . . . . . . . . . . 1183
86.2 Convolution . . . . . . . . . . . . . . . . . . . . . . . . 1183
86.3 Fourier Series Representation . . . . . . . . . . . . . . 1184
86.4 Parseval’s Formula . . . . . . . . . . . . . . . . . . . . 1184
86.5 Discrete Fourier Transforms . . . . . . . . . . . . . . . 1184
86.6 Fourier Transforms . . . . . . . . . . . . . . . . . . . . 1184
86.7 Properties of Fourier Transforms . . . . . . . . . . . . 1185
86.8 The Sampling Theorem . . . . . . . . . . . . . . . . . 1185

87 Incompressible Navier-Stokes: Quick and Easy 1187
87.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 1187
87.2 The Incompressible Navier-Stokes Equations . . . . . . 1188
87.3 The Basic Energy Estimate for Navier-Stokes . . . . . 1189
87.4 Lions and his School . . . . . . . . . . . . . . . . . . . 1190
87.5 Turbulence: Lipschitz with Exponent 1/3? . . . . . . . 1191
87.6 Existence and Uniqueness of Solutions . . . . . . . . . 1192
87.7 Numerical Methods . . . . . . . . . . . . . . . . . . . . 1192
87.8 The Stabilized cG(1)dG(0) Method . . . . . . . . . . . 1193
87.9 The cG(1)cG(1) Method . . . . . . . . . . . . . . . . . 1194
87.10 The cG(1)dG(1) Method . . . . . . . . . . . . . . . . . 1195
87.11 Neumann Boundary Conditions . . . . . . . . . . . . . 1195
87.12 Computational Examples . . . . . . . . . . . . . . . . 1197

References 1203

Index 1205





Volume 1

Derivatives
and

Geometry in R
3

|u(xj) − u(xj−1)| ≤ Lu|xj − xj−1|

u(xj) − u(xj−1) ≈ u′(xj−1)(xj − xj−1)

a · b = a1b1 + a2b2 + a3b3





1
What is Mathematics?

The question of the ultimate foundations and the ultimate meaning
of mathematics remains open; we do not know in what direction it
will find its final solution or whether a final objective answer may be
expected at all. “Mathematizing” may well be a creative activity of
man, like language or music, of primary originality, whose historical
decisions defy complete objective rationalization. (Weyl)

1.1 Introduction

We start out by giving a very brief idea of the nature of mathematics and
the role of mathematics in our society.

1.2 The Modern World: Automatized Production
and Computation

The mass consumption of the industrial society is made possible by the au-
tomatized mass production of material goods such as food, clothes, housing,
TV-sets, CD-players and cars. If these items had to be produced by hand,
they would be the privileges of only a select few.

Analogously, the emerging information society is based on mass con-
sumption of automatized computation by computers that is creating a new
“virtual reality” and is revolutionizing technology, communication, admin-
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Fig. 1.1. First picture of book printing technique (from Danse Macabre, Lyon
1499)

istration, economy, medicine, and the entertainment industry. The infor-
mation society offers immaterial goods in the form of knowledge, infor-
mation, fiction, movies, music, games and means of communication. The
modern PC or lap-top is a powerful computing device for mass produc-
tion/consumption of information e.g. in the form of words, images, movies
and music.

Key steps in the automatization or mechanization of production were:
Gutenbergs’s book printing technique (Germany, 1450), Christoffer Pol-
hem’s automatic machine for clock gears (Sweden, 1700), The Spinnning
Jenny (England, 1764), Jacquard’s punched card controlled weaving loom
(France, 1801), Ford’s production line (USA, 1913), see Fig. 1.1, Fig. 1.2,
and Fig. 1.3.

Key steps in the automatization of computation were: Abacus (Ancient
Greece, Roman Empire), Slide Rule (England, 1620), Pascals Mechanical
Calculator (France, 1650), Babbage’s Difference Machine (England, 1830),
Scheutz’ Difference Machine (Sweden, 1850), ENIAC Electronic Numer-
ical Integrator and Computer (USA, 1945), and the Personal Computer
PC (USA, 1980), see Fig. 1.5, Fig. 1.6, Fig. 1.7 and Fig. 1.8. The Dif-
ference Machines could solve simple differential equations and were used
to compute tables of elementary functions such as the logarithm. ENIAC
was one of the first modern computers (electronic and programmable),
consisted of 18.000 vacuum tubes filling a room of 50 × 100 square feet
with a weight of 30 tons and energy consuming of 200 kilowatts, and
was used to solve the differential equations of ballistic firing tables as
an important part of the Allied World War II effort. A modern laptop
at a cost of $2000 with a processor speed of 2 GHz and internal mem-
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Fig. 1.2. Christoffer Polhem’s machine for clock gears (1700), Spinning Jenny
(1764) and Jaquard’s programmable loom (1801)
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Fig. 1.3. Ford assembly line (1913)

ory of 512 Mb has the computational power of hundreds of thousands of
ENIACs.

Automatization (or automation) is based on frequent repetition of a cer-
tain algorithm or scheme with new data at each repetition. The algorithm
may consist of a sequence of relatively simple steps together creating a more
complicated process. In automatized manufacturing, as in the production
line of a car factory, physical material is modified following a strict repeti-
tive scheme, and in automatized computation, the 1s and 0s of the micro-
processor are modified billions of times each second following the computer
program. Similarly, a genetic code of an organism may be seen as an al-
gorithm that generates a living organism when realized in interplay with
the environment. Realizing a genetic code many times (with small varia-
tions) generates populations of organisms. Mass-production is the key to
increased complexity following the patterns of nature: elementary particle
→ atom → molecule and molecule → cell → organism → population, or
the patterns of our society: individual → group → society or computer →
computer network → global net.

1.3 The Role of Mathematics

Mathematics may be viewed as the language of computation and thus lies
at the heart of the modern information society. Mathematics is also the lan-
guage of science and thus lies at the heart of the industrial society that grew
out of the scientific revolution in the 17th century that began when Leibniz
and Newton created Calculus. Using Calculus, basic laws of mechanics and
physics, such as Newton’s law, could be formulated as mathematical mod-
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Fig. 1.4. Computing device of the Inca Culture

els in the form of differential equations. Using the models, real phenomena
could be simulated and controlled (more or less) and industrial processes
could be created.

The mass consumption of both material and immaterial goods, consid-
ered to be a corner-stone of our modern democratic society, is made possible
through automatization of production and computation. Therefore, math-
ematics forms a fundamental part of the technical basis of the modern
society revolving around automatized production of material goods and
automatized computation of information.

The vision of virtual reality based on automatized computation was for-
mulated by Leibniz already in the 17th century and was developed further
by Babbage with his Analytical Engine in the 1830s. This vision is finally
being realized in the modern computer age in a synthesis of Body & Soul
of Mathematics.

We now give some examples of the use of mathematics today that are
connected to different forms of automatized computation.
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Fig. 1.5. Classical computational tools: Abacus (300 B.C.-), Galileo’s Compass
(1597) and Slide Rule (1620-)
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Fig. 1.6. Napier’s Bones (1617), Pascals Calculator (1630), Babbage’s Difference
Machine (1830) and Scheutz’ Swedish Difference Machine (1850)
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Fig. 1.7. Odhner’s mechanical calculator made in Göteborg, Sweden, 1919–1950

Fig. 1.8. ENIAC Electronic Numerical Integrator and Calculator (1945)
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1.4 Design and Production of Cars

In the car industry, a model of a component or complete car can be made
using Computer Aided Design CAD. The CAD-model describes the ge-
ometry of the car through mathematical expressions and the model can
be displayed on the computer screen. The performance of the component
can then be tested in computer simulations, where differential equations
are solved through massive computation, and the CAD-model is used as
input of geometrical data. Further, the CAD data can be used in automa-
tized production. The new technique is revolutionizing the whole industrial
process from design to production.

1.5 Navigation: From Stars to GPS

A primary force behind the development of geometry and mathematics
since the Babylonians has been the need to navigate using information from
the positions of the planets, stars, the Moon and the Sun. With a clock and
a sextant and mathematical tables, the sea-farer of the 18th century could
determine his position more or less accurately. But the results depended
strongly on the precision of clocks and observations and it was easy for
large errors to creep in. Historically, navigation has not been an easy job.

During the last decade, the classical methods of navigation have been
replaced by GPS, the Global Positioning System. With a GPS navigator
in hand, which we can buy for a couple of hundred dollars, we get our
coordinates (latitude and longitude) with a precision of 50 meters at the
press of a button. GPS is based on a simple mathematical principle known
already to the Greeks: if we know our distance to three point is space with
known coordinates then we can compute our position. The GPS uses this
principle by measuring its distance to three satellites with known positions,
and then computes its own coordinates. To use this technique, we need to
deploy satellites, keep track of them in space and time, and measure rele-
vant distances, which became possible only in the last decades. Of course,
computers are used to keep track of the satellites, and the microprocessor
of a hand-held GPS measures distances and computes the current coordi-
nates.

The GPS has opened the door to mass consumption in navigation, which
was before the privilege of only a few.

1.6 Medical Tomography

The computer tomograph creates a pictures of the inside of a human body
by solving a certain integral equation by massive computation, with data
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Fig. 1.9. GPS-system with 4 satellites

coming from measuring the attenuation of very weak X-rays sent through
the body from different directions. This technique offers mass consump-
tion of medical imaging, which is radically changing medical research and
practice.

1.7 Molecular Dynamics and Medical Drug Design

The classic way in which new drugs are discovered is an expensive and time-
consuming process. First, a physical search is conducted for new organic
chemical compounds, for example among the rain forests in South America.
Once a new organic molecule is discovered, drug and chemical companies
license the molecule for use in a broad laboratory investigation to see if the
compound is useful. This search is conducted by expert organic chemists
who build up a vast experience with how compounds can interact and which
kind of interactions are likely to prove useful for the purpose of controlling
a disease or fixing a physical condition. Such experience is needed to reduce
the number of laboratory trials that are conducted, otherwise the vast range
of possibilities is overwhelming.

The use of computers in the search for new drugs is rapidly increasing.
One use is to makeup new compounds so as to reduce the need to make
expensive searches in exotic locations like southern rain forests. As part of
this search, the computer can also help classify possible configurations of
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Fig. 1.10. Medical tomograph

molecules and provide likely ranges of interactions, thus greatly reducing
the amount of laboratory testing time that is needed.

1.8 Weather Prediction and Global Warming

Weather predictions are based on solving differential equations that de-
scribe the evolution of the atmosphere using a super computer. Reasonably
reliable predictions of daily weather are routinely done for periods of a few
days. For longer periods. the reliability of the simulation decreases rapidly,
and with present day computers daily weather predictions for a period of
two weeks are impossible.

However, forecasts over months of averages of temperature and rainfall
are possible with present day computer power and are routinely performed.

Long-time simulations over periods of 20–50 years of yearly temperature-
averages are done today to predict a possible global warming due to the use
of fossil energy. The reliability of these simulations are debated.

1.9 Economy: Stocks and Options

The Black-Scholes model for pricing options has created a new market of
so called derivative trading as a complement to the stock market. To cor-
rectly price options is a mathematically complicated and computationally
intensive task, and a stock broker with first class software for this purpose
(which responds in a few seconds), has a clear trading advantage.
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Fig. 1.11. The Valium molecule

1.10 Languages

Mathematics is a language. There are many different languages. Our mother
tongue, whatever it happens to be, English, Swedish, Greek, et cetera, is
our most important language, which a child masters quite well at the age
of three. To learn to write in our native language takes longer time and
more effort and occupies a large part of the early school years. To learn
to speak and write a foreign language is an important part of secondary
education.

Language is used for communication with other people for purposes of
cooperation, exchange of ideas or control. Communication is becoming in-
creasingly important in our society as the modern means of communication
develop.

Using a language we may create models of phenomena of interest, and by
using models, phenomena may be studied for purposes of understanding or
prediction. Models may be used for analysis focussed on a close examination
of individual parts of the model and for synthesis aimed at understanding
the interplay of the parts that is understanding the model as a whole.
A novel is like a model of the real world expressed in a written language
like English. In a novel the characters of people in the novel may be analyzed
and the interaction between people may be displayed and studied.
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The ants in a group of ants or bees in a bees hive also have a language
for communication. In fact in modern biology, the interaction between cells
or proteins in a cell is often described in terms of entities ”talking to each
other”.

It appears that we as human beings use our language when we think. We
then seem to use the language as a model in our head, where we try various
possibilities in simulations of the real world: “If that happens, then I’ll do
this, and if instead that happens, then I will do so and so. . .”. Planning our
day and setting up our calender is also some type of modeling or simulation
of events to come. Simulations by using our language thus seems to go on
in our heads all the time.

There are also other languages like the language of musical notation
with its notes, bars, scores, et cetera. A musical score is like a model of
the real music. For a trained composer, the model of the written score
can be very close to the real music. For amateurs, the musical score may
say very little, because the score is like a foreign language which is not
understood.

1.11 Mathematics as the Language of Science

Mathematics has been described as the language of science and technology
including mechanics, astronomy, physics, chemistry, and topics like fluid
and solid mechanics, electromagnetics et cetera. The language of mathe-
matics is used to deal with geometrical concepts like position and form and
mechanical concepts like velocity, force and field. More generally, mathe-
matics serves as a language in any area that includes quantitative aspects
described in terms of numbers, such as economy, accounting, statistics et
cetera. Mathematics serves as the basis for the modern means of electronic
communication where information is coded as sequences of 0’s and 1’s and
is transferred, manipulated or stored.

The words of the language of mathematics often are taken from our usual
language, like points, lines, circles, velocity, functions, relations, transfor-
mations, sequences, equality, inequality et cetera.

A mathematical word, term or concept is supposed to have a specific
meaning defined using other words and concepts that are already defined.
This is the same principle as is used in a Thesaurus, where relatively compli-
cated words are described in terms of simpler words. To start the definition
process, certain fundamental concepts or words are used, which cannot be
defined in terms of already defined concepts. Basic relations between the
fundamental concepts may be described in certain axioms. Fundamental
concepts of Euclidean geometry are point and line, and a basic Euclidean
axiom states that through each pair of distinct points there is a unique
line passing. A theorem is a statement derived from the axioms or other
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theorems by using logical reasoning following certain rules of logic. The
derivation is called a proof of the theorem.

1.12 The Basic Areas of Mathematics

The basic areas of mathematics are

� Geometry

� Algebra

� Analysis.

Geometry concerns objects like lines, triangles, circles. Algebra and Anal-
ysis is based on numbers and functions. The basic areas of mathematics
education in engineering or science education are

� Calculus

� Linear Algebra.

Calculus is a branch of analysis and concerns properties of functions such as
continuity, and operations on functions such as differentiation and integra-
tion. Calculus connects to Linear Algebra in the study of linear functions
or linear transformations and to analytical geometry, which describes ge-
ometry in terms of numbers. The basic concepts of Calculus are

� function

� derivative

� integral.

Linear Algebra combines Geometry and Algebra and connects to Analytical
Geometry. The basic concepts of Linear Algebra are

� vector

� vector space

� projection, orthogonality

� linear transformation.

This book teaches the basics of Calculus and Linear Algebra, which are
the areas of mathematics underlying most applications.



1.13 What Is Science? 17

1.13 What Is Science?

The theoretical kernel of natural science may be viewed as having two
components

� formulating equations (modeling),

� solving equations (computation).

Together, these form the essence of mathematical modeling and computa-
tional mathematical modeling. The first really great triumph of science and
mathematical modeling is Newton’s model of our planetary system as a set
of differential equations expressing Newton’s law connecting force, through
the inverse square law, and acceleration. An algorithm may be seen as
a strategy or constructive method to solve a given equation via computa-
tion. By applying the algorithm and computing, it is possible to simulate
real phenomena and make predictions.

Traditional techniques of computing were based on symbolic or numer-
ical computation with pen and paper, tables, slide ruler and mechanical
calculator. Automatized computation with computers is now opening new
possibilities of simulation of real phenomena according to Natures own
principle of massive repetition of simple operations, and the areas of appli-
cations are quickly growing in science, technology, medicine and economics.

Mathematics is basic for both steps (i) formulating and (ii) solving equa-
tion. Mathematics is used as a language to formulate equations and as a set
of tools to solve equations.

Fame in science can be reached by formulating or solving equations. The
success is usually manifested by connecting the name of the inventor to the
equation or solution method. Examples are legio: Newton’s method, Euler’s
equations, Lagrange’s equations, Poisson’s equation, Laplace’s equation,
Navier’s equation, Navier-Stokes’ equations, Boussinesq’s equation, Ein-
stein’s equation, Schrödinger’s equation, Black-Scholes formula . . . , most
of which we will meet below.

1.14 What Is Conscience?

The activity of the brain is believed to consist of electrical/chemical sig-
nals/waves connecting billions of synapses in some kind of large scale com-
putation. The question of the nature of the conscience of human beings has
played a central role in the development of human culture since the early
Greek civilization, and today computer scientists seek to capture its evasive
nature in various forms of Artificial Intelligence AI. The idea of a division
of the activity of the brain into a (small) conscious “rational” part and
a (large) unconscious “irrational” part, is widely accepted since the days of
Freud. The rational part has the role of “analysis” and “control” towards
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some “purpose” and thus has features of Soul, while the bulk of the “com-
putation” is Body in the sense that it is “just” electrical/chemical waves.
We meet the same aspects in numerical optimization, with the optimization
algorithm itself playing the role of Soul directing the computational effort
towards the goal, and the underlying computation is Body.

We have been brought up with the idea that the conscious is in control
of the mental “computation”, but we know that this is often not the case.
In fact, we seem to have developed strong skills in various kinds of after-
rationalization: whatever happens, unless it is an “accident” or something
“unexpected”, we see it as resulting from a rational plan of ours made up
in advance, thus turning a posteriori observations into a priori predictions.

1.15 How to Come to Grips with the Difficulties
of Understanding the Material of this Book
and Eventually Viewing it as a Good Friend

We conclude this introductory chapter with some suggestions intended to
help the reader through the most demanding first reading of the book and
reach a state of mind viewing the book as a good helpful friend, rather than
the opposite. From our experience of teaching the material of this book,
we know that it may evoke quite a bit of frustration and negative feelings,
which is not very productive.

Mathematics Is Difficult: Choose Your Own Level of Ambition

First, we have to admit that mathematics is a difficult subject, and we see
no way around this fact.Secondly, one should realize that it is perfectly
possible to live a happy life with a career in both academics and industry
with only elementary knowledge of mathematics. There are many examples
including Nobel Prize Winners. This means that it is advisable to set a level
of ambition in mathematics studies which is realistic and fits the interest
profile of the individual student. Many students of engineering have other
prime interests than mathematics, but there are also students who really
like mathematics and theoretical engineering subjects using mathematics.
The span of mathematical interest thus may be expected to be quite wide
in a group of students following a course based on this book, and it seems
reasonable that this would be reflected in the choice of level of ambition.

Advanced Material: Keep an Open Mind and Be Confident

The book contains quite a bit of material which is “advanced” and not
usually met in undergraduate mathematics, and which one may bypass and
still be completely happy. It is probably better to be really familiar with
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and understand a smaller set of mathematical tools and have the ability to
meet new challenges with some self-confidence, than repeatedly failing to
digest too large portions. Mathematics is so rich, that even a life of fully-
time study can only cover a very small part. The most important ability
must be to meet new material with an open mind and some confidence!

Some Parts of Mathematics Are Easy

On the other hand, there are many aspects of mathematics which are not so
difficult, or even “simple”, once they have been properly understood. Thus,
the book contains both difficult and simple material, and the first impres-
sion from the student may give overwhelming weight to the former. To
help out we have collected the most essential nontrivial facts in short sum-
maries in the form of Calculus Tool Bag I and II, Linear Algebra Tool Bag,
Differential Equations Tool Bag, Applications Tool Bag, Fourier Analysis
Tool Bag and Analytic Functions Tool Bag. The reader will find the tool
bags surprisingly short: just a couple pages, altogether say 15–20 pages. If
properly understood, this material carries a long way and is “all” one needs
to remember from the math studies for further studies and professional ac-
tivities in other areas. Since the book contains about 1200 pages it means
50–100 pages of book text for each one page of summary. This means that
the book gives more than the absolute minimum of information and has
the ambition to give the mathematical concepts a perspective concerning
both history and applicability today. So we hope the student does not get
turned off by the quite a massive number of words, by remembering that
after all 15–20 pages captures the essential facts. During a period of study
of say one year and a half of math studies, this effectively means about one
third of a page each week!

Increased/Decreased Importance of Mathematics

The book reflects both the increased importance of mathematics in the
information society of today, and the decreased importance of much of the
analytical mathematics filling the traditional curriculum. The student thus
should be happy to know that many of the traditional formulas are no
longer such a must, and that a proper understanding of relatively few basic
mathematical facts can help a lot in coping with modern life and science.

Which Chapters Can I Skip in a First Reading?

We indicate by * certain chapters directed to applications, which one may
by-pass in a first reading without loosing the main thread of the presenta-
tion, and return to at a later stage if desired.
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Chapter 1 Problems

1.1. Find out which Nobel Prize Winners got the prize for formulating or solving
equations.

1.2. Reflect about the nature of “thinking” and “computing”.

1.3. Find out more about the topics mentioned in the text.

1.4. (a) Do you like mathematics or hate mathematics, or something in between?
Explain your standpoint. (b) Specify what you would like to get out of your
studies of mathematics.

1.5. Present some basic aspects of science.

Fig. 1.12. Left person: “Isn’t it remarkable that one can compute the distance
to stars like Cassiopeja, Aldebaran and Sirius?”. Right person: “I find it even
more remarkable that one may know their names!” (Assar by Ulf Lundquist)
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The Mathematics Laboratory

It is nothing short of a miracle that modern methods of instruction
have not yet entirely strangled the holy curiosity of inquiry.
(Einstein)

2.1 Introduction

This book is complemented by various pieces of software collected into the
Mathematics Laboratory, freely available on the book web site. The Mathe-
matics Laboratory contains different types of software organized under the
following headings: Math Experience, Tools, Applications and Students Lab.

Math Experience serves the purpose of illustrating mathematical con-
cepts from analysis and linear algebra such as roots of equations, Lipschitz
continuity, fixed point iteration, differentiability, the definition of the inte-
gral, basis calculus for functions of several variables.

Tools contains (i) ready-mades such as different solvers for differential
equations and (ii) shells aimed at helping the student to make his own
tools such as solvers of systems of equations and differential equations.

Applications contains more developed software like DOLFIN Dynamic
Object Oriented Library for FInite Elements, and Tanganyika for multi-
adaptive solution of systems of ordinary differential equations.

Students Lab contains constributions from students project work and will
hopefully serve as a source of inspiration transferring know how from old
to new students.
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2.2 Math Experience

Math Experience is a collection of Matlab GUI software designed to of-
fer a deeper understanding of important mathematical concepts and ideas
such as, for example, convergence, continuity, linearization, differentiation,
Taylor polynomials, integration, etc. The idea is to provide on-screen com-
puter “labs” in which the student, by himself guided by a number of well
designed questions, can seek to fully understand (a) the concepts and ideas
as such and (b) the mathematical formulas and equations describing the
concepts, by interacting with the lab environment in different ways. For
example, in the Taylor lab (see Fig. 2.1) it is possible to give a function, or
pick one from a gallery, and study its Taylor polynomial approximation of
different degrees, how it depends on the point of focus by mouse-dragging
the point, how it depends on the distance to the point by zooming in and
out etc. There is also a movie where the terms in the Taylor polynomial are
added one at a time. In the MultiD Calculus lab (see Fig. 2.2) it is possible
to define a function u(x1, x2) and compute its integral over a given curve or
a given domain, to view its gradient field, contour plots, tangent planes etc.
One may also study vector fields (u, v), view their divergence and rotation,
compute the integrals of these quantities to verify the fundamental theo-
rems of vector calculus, view the (u, v) mapped domain and the Jacobian
of the map etc, etc.

The following labs are available from the book web page:

� Func lab – about relations and functions, inverse function etc.

� Graph Gallery – elementary functions and their parameter depen-
dence.

� Cauchy lab – about sequences & convergence

� Lipschitz lab – the concept of continuity

� Root lab – about bisection and fixed point iteration

� Linearization and the derivative

� Newtons lab – illustrating Newton’s method

� Taylor lab – polynomials

� Opti lab – elementary optimization

� Piecewise polynomial lab – about piecewise polynomial approxima-
tion

� Integration lab – Euler and Riemann summation, adaptive integra-
tion
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Fig. 2.1. The Taylor lab

� Dynamical system lab

� Pendulum lab – the effect of linearization and approximation

� Vector algebra – a graphical vector calculator

� Analytic geometry – coupling geometry and linear algebra

� MultiD Calculus – integration and vector Calculus

� FE-lab – illustrating the finite element method

� Adaptive FEM – illustrating adaptive finite element techniques

� Poisson lab – fundamental solutions etc

� Fourier lab

� Wavelet lab

� Optimal control lab – control problems related to differential equations

� Archimedes lab – for experiments related to Archimedes principle
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Fig. 2.2. The MultiD Calculus lab
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Introduction to Modeling

The best material model of a cat is another, or preferably the same,
cat. (Rosenblueth/Wiener in Philosophy of Science 1945)

3.1 Introduction

We start by giving two basic examples of the use of mathematics for de-
scribing practical situations. The first example is a problem in household
economy and the second is a problem in surveying, both of which have
been important fields of application for mathematics since the time of the
Babylonians. The models are very simple but illustrate fundamental ideas.

3.2 The Dinner Soup Model

You want to make a soup for dinner together with your roommate, and
following a recipe you ask your roommate to go to the grocery store and buy
10 dollars worth of potatoes, carrots, and beef according to the proportions
3:2:1 by weight. In other words, your roommate has 10 dollars to spend on
the ingredients, which should be bought in the amounts so that by weight
there are three times as much potatoes as beef and two times as much
carrots as beef. At the grocery store, your roommate finds that potatoes
are 1 dollar per pound, carrots are 2 dollars per pound, and beef is 8 dollars
per pound. Your roommate thus faces the problem of figuring out how much
of each ingredient to buy to use up the 10 dollars.
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One way to solve the problem is by trial and error as follows: Your
roommate could take quantities of the ingredients to the cash register in
the proportions of 3:2:1 and let the clerk check the price, repeating until
a total of 10 dollars is reached. Of course, both your roommate and the
clerk could probably think of better ways to spend the afternoon. Another
possibility would be to make a mathematical model of the situation and
then seek to find the correct amounts to buy by doing some computations.
The basic idea would be to use brains and pen and paper or a calculator,
instead of labor intensive brute physical work.

The mathematical model may be set up as follows: Recalling that we
want to determine the amounts of ingredients to buy, we notice that it is
enough to determine the amount of beef, since we’ll buy twice as much
carrots as beef and three times as much potatoes as beef. Let’s give a name
to the quantity to determine. Let x denote the amount of meat in pounds
to buy. The symbol x here represents an unknown quantity, or unknown,
that we are seeking to determine by using available information.

If the amount of meat is x pounds, then the price of the meat to buy is
8x dollars by the simple computation

cost of meat in dollars = xpounds × 8
dollars
pound

= 8xdollars.

Since there should be three times as much potatoes as meat by weight,
the amount of potatoes in pounds is 3x and the cost of the potatoes is
3x dollars since the price of potatoes is one dollar per pound. Finally, the
amount of carrots to buy is 2x and the cost is 2 times 2x = 4x dollars,
since the price is 2 dollars per pound. The total cost of meat, potatoes and
carrots is found by summing up the cost of each

8x+ 3x+ 4x = 15x.

Since we assume that we have 10 dollars to spend, we get the relation

15x = 10, (3.1)

which expresses the equality of total cost and available money. This is an
equation involving the unknown x and data determined by the physical
situation. From this equation, your roommate can figure out how much
beef to buy. This is done by dividing both sides of (3.1) by 15, which gives
x = 10/15 = 2/3 ≈ 0.67 pounds of meat. The amount of carrots should
then be 2×2/3 = 4/3 ≈ 1.33, and finally the amount of potatoes 3×2/3 = 2
pounds.

The mathematical model for this situation is 15x = 10, where x is the
amount of meat, 15x is the total cost and 10 is the available money. The
modeling consists in expressing the total cost of the ingredients 15x in terms
of the amount of beef x. Note that in this model, we only take into account
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what is essential for the current purpose of buying potatoes, carrots and
meat for the Dinner Soup, and we did not bother to write down the prices
of other items, like ice cream or beer. Determining the useful information is
an important, and sometimes difficult, part of the mathematical modeling.

A nice feature of mathematical models is that they can be reused to
simulate different situations. For example, if you have 15 dollars to spend,
then the model 15x = 15 arises with solution x = 1. If you have 25 dollars
to spend, then the model is 15x = 25 with solution x = 25/15 = 5/3. In
general, if the amount of money y is given, then the model is 15x = y. In
this model we use the two symbols x and y, and assume that the amount
of money y is given and the amount of beef x is an unknown quantity to be
determined from the equation (15x = y) of the model. The roles could shift
around: you may think of the amount of beef x as being given and the total
cost or expenditure y to be determined (according to the formula y = 15x).
In the first case, we would think of the amount of beef x as a function of
the expenditure y and in the second the expenditure y as a function of x.

Assigning symbols to relevant quantities, known or unknown, is an im-
portant step in setting up a mathematical model of something. The idea of
assigning symbols for unknown quantities was used already by the Baby-
lonians (who had frequent use of models like the Dinner Soup model in
organizing the feeding of the many people working on their irrigation sys-
tems).

Suppose that we could not solve the equation 15x = 10, because of a lack
of skill in solving equations (we may have forgotten the trick of dividing by
15 that we learned in school). We could then try to get a solution by some
kind of trial and error strategy as follows. First we assume that x = 1. We
then find that the total cost is 15 dollars, which is too much. We then try
with a smaller quantity of meat, say x = 0.6, and compute the total cost
to 9 dollars, which is too little. We then try with something between 0.6
and 1, say x = 0.7 and find that the cost would be 10.5 dollars, which is
a little too much. We conclude that the right amount must be somewhere
between 0.6 and 0.7, probably closer 0.7. We can continue in the same way
to find as many decimals of x as we like. For instance we check next in
the same way that x must be some where between 0.66 and 0.67. In this
case we know the exact answer x = 2

3 = 0.66666 . . . . The trial and error
strategy just described is a model of the process of bringing food to the
counter and letting the cashier compute the total prize. In the model we
compute the prize ourselves without having to physically collect the items
and bring them to the counter, which simplifies the trial and error process.
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3.3 The Muddy Yard Model

One of the authors owns a house with a 100m×100m backyard that has the
unfortunate tendency to form a muddy lake every time it rains. We show
a perspective of the field on the left in Fig. 3.1. Because of the grading in

Fig. 3.1. Perspective of a field with poor drainage and a model describing the
dimensions

the yard, the owner has had the idea for some time to fix this by digging
a shallow ditch down the diagonal of the yard, laying some perforated
plastic drain pipe, then covering the pipe back up. He is then faced with
the problem of determining the amount of pipe that he needs to purchase.
Since a survey of the property only provides the outside dimensions and
the locations of corners and physically measuring the diagonal through the
mud is not easy to do, he has decided to try to compute the distance using
mathematics. Can mathematics help him in this endeavor?

Inspection of the property and a map indicates that the yard can be
modeled as a horizontal square (the grading seems small), and we thus
seek to compute the length of the diagonal of the square. We display the
model on the right in Fig. 3.1, where we change to units of 100m, so the
field is 1 × 1, and denote the length of the diagonal by x. We now recall
Pythagoras’ theorem, which states that x2 = 12 + 12 = 2. To find the
length x of the drain pipe, we are thus led to solve the equation

x2 = 2. (3.2)

Solving the equation x2 = 2 may seem to be deceptively simple at first;
the positive solution is just x =

√
2 after all. But walking into a store and

asking for
√

2 units of pipe may not get a positive response. Precut pipes
do not come in lengths calibrated by

√
2, neither do measure sticks indicate√

2, and a clerk is thus going to need some concrete information about the
value of

√
2 to be able to measure out a proper piece of pipe.

We can try to pin down the value of
√

2 by using a trial and error strategy.
We can check easily that 12 = 1 < 2 while 22 = 4 > 2. So we know that
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√
2, whatever it is, is between 1 and 2. Next we can check 1.12 = 1.21,

1.22 = 1.44, 1.32 = 1.69, 1.42 = 1.96, 1.52 = 2.25, 1.62 = 2.56, 1.72 = 2.89,
1.82 = 3.24, 1.92 = 3.61. Apparently

√
2 is between 1.4 and 1.5. Next we

can try to fix the third decimal. Now we find that 1.412 = 1.9881 while
1.422 = 2.0164. So apparently

√
2 is between 1.41 and 1.42 and likely

closer to 1.41. It appears that proceeding in this way, we can determine as
many decimal places of

√
2 as we like, and we may consider the problem of

computing how much drain pipe to buy to be solved!
Below we will meet many equations that have to be solved by using

some variation of a trial and error strategy. In fact, most mathematical
equations cannot be solved exactly by some algebraic manipulations, as we
could do (if we were sufficiently clever) in the case of the Dinner Soup model
(3.1). Consequently, the trial and error approach to solving mathematical
equations is fundamentally important in mathematics. We shall also see
that trying to solve equations such as x2 = 2 carries us directly into the very
heart of mathematics, from Pythagoras and Euclid through the quarrels on
the foundations of mathematics that peaked in the 1930s and on into the
present day of the modern computer.

3.4 A System of Equations: The Dinner Soup/Ice
Cream Model

Suppose you would like to finish off the Dinner Soup with some ice cream
dessert at the cost of 3 dollars a pound, still at the total expense of 10
dollars. How much of each item should now be bought?

Well, if the amount ice cream is y pounds, the total cost will be 15x+3y
and thus we have the equation 15x+3y = 10 expressing that the total cost
is equal to the available money. We now have two unknowns x and y, and
we need one more equation. So far, we would be able to set x = 0 and solve
for y = 10

3 spending all the money on ice cream. This would go against
some principle we learned as small kids. The second equation needed could
come from some idea of balancing the amount of ice cream (junk food) to
the amount of carrots (healthy food), for example according to the formula
2x = y + 1, or 2x − y = 1. Altogether, we would thus get the following
system of two equations in the two unknowns x and y:

15x+ 3y = 10,
2x− y = 1.

Solving for y in the second equation, we get y = 2x−1, which inserted into
the first equation gives

15x+ 6x− 3 = 10, that is 21x = 13, that is, x =
13
21
.
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Finally, inserting the value of x = 13
21 ≈ 0.60 into the equation 2x− y = 1,

we get y = 5
21 ≈ 0.24, and we have found the solution of the system of

equations modeling the present situation.

3.5 Formulating and Solving Equations

Let us put the Dinner Soup and Muddy Yard models into the perspective
of formulating and solving equations presented above. Formulating equa-
tions corresponds to collecting information in systematic form, and solving
equations corresponds to drawing conclusions from the collected informa-
tion.

We began by describing the physical situations in the Dinner Soup and
Muddy Yard models in terms of mathematical equations. This aspect is
not just mathematical but involves also whatever knowledge from physics,
economy, history, psychology, etcetera that may be relevant to describe the
situation to be modeled. The equations we obtained in the Dinner Soup
and the Muddy Yard models, namely 15x = 10 and x2 = 2, are examples
of algebraic equations in which the data and the unknown x are both num-
bers. As we consider more complicated situations, we will often encounter
models in which the data and the unknown quantities are functions. Such
models typically contain derivatives and integrals and are then referred to
as differential equations or integral equations.

The second aspect is solving the equations of the model to determine
the unknown and gain new information about the situation at hand. In the
case of the Dinner Soup model, we can solve the model equation 15x = 10
exactly and express the solution x = 2/3 as a rational number. In the
Muddy Yard model we resort to an iterative “trial and error” strategy to
compute as many digits of the decimal expansion of the solution x =

√
2

as we may need. So it goes in general: once in a while, we can write down
a solution of a model equation explicitly, but most often we have to be
content with an approximate solution, the digits of which we can determine
through some iterative computational process.

Note that there is no reason to be disappointed over the fact that equa-
tions representing mathematical models cannot be solved exactly, since the
mathematical model is an approximation anyway, in general. It is better
to have a complicated but accurate mathematical model equation, that ad-
mits only approximate solutions, than to have a trivial inaccurate model
equation that can be solved exactly! The wonderful thing with computers
is that they may compute accurate solutions also to complicated accurate
model equations, which makes it possible to simulate real phenomena.
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Chapter 3 Problems

3.1. Suppose that the grocery store sells potatoes for 40 cents per pound, carrots
for 80 cents per pound, and beef for 40 cents per ounce. Determine the model
relation for the total price.

3.2. Suppose that you change the soup recipe to have equal amounts of carrots
and potatoes while the weight of these combined should be six times the weight
of beef. Determine the model relation for the total price.

3.3. Suppose you go all out and add onions to the soup recipe in the proportion of
2 : 1 to the amount of beef, while keeping the proportions of the other ingredients
the same. The price of onions in the store is $1 per pound. Determine the model
relation for the total price.

3.4. While flying directly over the airport in a holding pattern at an altitude of
1 mile, you see your high rise condominium from the window. Knowing that the
airport is 4 miles from your condominium and pretending that the condominium
has height 0, how far are you from home and a cold beer?

3.5. Devise a model of the draining of a yard that has three sides of approximately
the same length 2 assuming that we drain the yard by laying a pipe from one
corner to the midpoint of the opposite side. What quantity of pipe do we need?

3.6. A father and his child are playing with a teeter-totter which has a seatboard
12 feet long. If the father weighs 170 pounds and the child weighs 45 pounds,
construct a model for the location of the pivot point on the board in order for
the teeter-totter to be in perfect balance? Hint: recall the principle of the lever
which says that the products of the distances from the fulcrum to the masses on
each end of a lever must be equal for the lever to be in equilibrium.
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A Very Short Calculus Course

Mathematics has the completely false reputation of yielding infallible
conclusions. Its infallibility is nothing but identity. Two times two is
not four, but it is just two times two, and that is what we call four
for short. But four is nothing new at all. And thus it goes on in its
conclusions, except that in the height the identity fades out of sight.
(Goethe)

4.1 Introduction

Following up on the general idea of science as a combination of formulating
and solving equations, we describe the bare elements of this picture from
a mathematical point of view. We want to give a brief glimpse of the main
themes of Calculus that will be discovered as we work through the volumes
of this book. In particular, we will encounter the magical words of function,
derivative, and integral. If you have some idea of these concepts already,
you will understand some of the outline. If you have no prior acquaintance
with these concepts, you can use this section to just get a first taste of
what Calculus is all about without expecting to understand the details at
this point. Keep in mind that this is just a glimpse of the actors behind
the curtain before the play begins!

We hope the reader can use this chapter to get a grip on the essence of
Calculus by reading just a couple of pages. But this is really impossible in
some sense because calculus contains so many formulas and details that it
is easy to get overwhelmed and discouraged. Thus, we urge the reader to
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browse through the following couple of pages to get a quick idea and then
return later and confirm with an “of course”.

On the other hand, the reader may be surprised that something that is
seemingly explained so easily in a couple of pages, actually takes several
hundred pages to unwind in this book (and other books). We don’t seem
to be able give a good explanation of this “contradiction” indicating that
“what looks difficult may be easy” and vice versa. We also present short
summaries of Calculus in Chapter Calculus Tool Bag I and Calculus Tool
Bag II, which support the idea that a distilled essence of Calculus indeed
can be given in a couple of pages.

4.2 Algebraic Equations

We will consider algebraic equations of the form: find x̄ such that

f(x̄) = 0, (4.1)

where f(x) is a function of x. Recall that f(x) is said to be a function of
x if for each number x there is a number y = f(x) assigned. Often, f(x)
is given by some algebraic formula: for example f(x) = 15x− 10 as in the
Dinner Soup model, or f(x) = x2 − 2 as in the Muddy Yard model.

We call x̄ a root of the equation f(x) = 0 if f(x̄) = 0. The root of
the equation 15x − 10 = 0 is x̄ = 2

3 . The positive root x̄ of the equation
x2 − 2 = 0 is equal to

√
2 ≈ 1.41. We will consider different methods to

compute a root x̄ satisfying f(x̄) = 0, including the trial and error method
briefly presented above in the context of the Muddy Yard Model.

We will also meet systems of algebraic equations, where we seek to de-
termine several unknowns satisfying several equations, as for the Dinner
Soup/Ice cream model above.

4.3 Differential Equations

We will also consider the following differential equation: find a function x(t)
such that for all t

x′(t) = f(t), (4.2)

where f(t) is a given function, and x′(t) is the derivative of the function x(t).
This equation has several new ingredients. First, we seek here a function
x(t) with a set of different values x(t) for different values of the variable
t, and not just one single value of x like the root the algebraic equation
x2 = 2 considered above. In fact, we met this already in the Dinner Soup
problem in case of a variable amount of money y to spend, leading to the
equation 15x = y with solution x = y

15 depending on the variable y, that is,
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x = x(y) = y
15 . Secondly, the equation x′(t) = f(t) involves the derivative

x′(t) of x(t), so we have to investigate derivatives.
A basic part of Calculus is to (i) explain what a derivative is, and (ii)

solve the differential equation x′(t) = f(t), where f(t) is a given function.
The solution x(t) of the differential equation x′(t) = f(t), is referred to as
an integral of f(t), or alternatively as a primitive function of f(t). Thus,
a basic problem of Calculus is to find a primitive function x(t) of a given
function f(t) corresponding to solving the differential equation x′(t) = f(t).

We now attempt to explain (i) the meaning of (4.2) including the meaning
of the derivative x′(t) of the function x(t), and (ii) give a hint at how to
find the solution x(t) of the differential equation x′(t) = f(t) in terms of
the given function f(t).

As a concrete illustration, let us imagine a car moving on a highway. Let
t represent time, let x(t) be the distance traveled by the car at time t, and
let f(t) be the momentary velocity of the car at time t, see Fig. 4.1.

x(t)

f(t)

Fig. 4.1. Highway with car (Volvo?) with velocity f(t) and travelled distance
x(t)

We choose a starting time, say t = 0 and a final time, say t = 1, and we
watch the car as it passes from its initial position with x(0) = 0 at time
t = 0 through a sequence of increasing intermediate times t1, t2, . . ., with
corresponding distances x(t1), x(t2), . . ., to the final time t = 1 with total
distance x(1). We thus assume that 0 = t0 < t1 < · · · < tn−1 < tn · · · <
tN = 1 is a sequence of intermediate times with corresponding distances
x(tn) and velocities f(tn), see Fig. 4.2.

x(tn−1)

x(tn)

f(tn−1) f(tn)

Fig. 4.2. Distance and velocity at times tn−1 and tn

For two consecutive times tn−1 and tn, we expect to have

x(tn) ≈ x(tn−1) + f(tn−1)(tn − tn−1), (4.3)
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which says that the distance x(tn) at time tn is obtained by adding to the
distance x(tn−1) at time tn−1 the quantity f(tn−1)(tn − tn−1), which is
the product of the velocity f(tn−1) at time tn−1 and the time increment
tn − tn−1. This is because

change in distance = average velocity × change in time,

or traveled distance between time tn−1 and tn equals the (average) velocity
multiplied by the time change tn − tn−1. Note that we may equally well
connect x(tn) to x(tn−1) by the formula

x(tn) ≈ x(tn−1) + f(tn)(tn − tn−1), (4.4)

corresponding to replacing tn−1 by tn in the f(t)-term. We use the approx-
imate equality ≈ because we use the velocity f(tn−1) or f(tn), which is not
exactly the same as the average velocity over the time interval from tn−1

to tn, but should be close to the average if the time interval is short (and
the veolicity does not change very quickly).

Example 4.1. If x(t) = t2, then x(tn) − x(tn−1) = t2n − t2n−1 = (tn +
tn−1)(tn − tn−1), and (4.3) and (4.4) correspond to approximating the av-
erage velocity (tn + tn−1) with 2tn−1 or 2tn, respectively.

The formula (4.3) is at the heart of Calculus! It contains both the deriva-
tive of x(t) and the integral of f(t). First, shifting x(tn−1) to the left and
then dividing by the time increment tn − tn−1, we get

x(tn) − x(tn−1)
tn − tn−1

≈ f(tn−1). (4.5)

This is a counterpart to (4.2), which indicates how to define the derivative
x′(tn−1) in order to have the equation x′(tn−1)) = f(tn−1) fulfilled:

x′(tn−1) ≈
x(tn) − x(tn−1)

tn − tn−1
. (4.6)

This formula says that the derivative x′(tn−1) is approximately equal to
the average velocity

x(tn) − x(tn−1)
tn − tn−1

.

over the time interval between tn−1 and tn. Thus, we may expect that
the equation x′(t) = f(t) just says that the derivative x′(t) of the traveled
distance x(t) with respect to time t, is equal to the momentary velocity f(t).
The formula (4.6) then says that the velocity x′(tn−1) at time tn−1, that is
the momentary velocity at time tn−1, is approximately equal to the average
velocity over the time interval (tn−1, tn). We have now uncovered some of
the mystery of the derivative hidden in (4.3).
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Next, considering the formula corresponding to to (4.3) for the time
instances tn−2 and tn−1, obtained by simply replacing n by n−1 everywhere
in (4.3), we have

x(tn−1) ≈ x(tn−2) + f(tn−2)(tn−1 − tn−2), (4.7)

and thus together with (4.3),

x(tn) ≈
≈x(tn−1)

︷ ︸︸ ︷
x(tn−2) + f(tn−2)(tn−1 − tn−2)+f(tn−1)(tn − tn−1). (4.8)

Repeating this process, and using that x(t0) = x(0) = 0, we get the formula

x(tn) ≈ Xn = f(t0)(t1 − t0) + f(t1)(t2 − t1) + · · ·
+ f(tn−2)(tn−1 − tn−2) + f(tn−1)(tn − tn−1).

(4.9)

Example 4.2. Consider a velocity f(t) = t
1+t increasing with time t from

zero for t = 0 towards one for large t. What is the travelled distance x(tn)
at time tn in this case? To get an (approximate) answer we compute the
approximation Xn according to (4.9):

x(tn) ≈ Xn =
t1

1 + t1
(t2 − t1) +

t2
1 + t2

(t3 − t2) + · · ·

+
tn−2

1 + tn−2
(tn−1 − tn−2) +

tn−1

1 + tn−1
(tn − tn−1).

With a “uniform” time step k = tj − tj−1 for all j, this reduces to

x(tn) ≈ Xn =
k

1 + k
k +

2k
1 + 2k

k + · · ·

+
(n− 2)k

1 + (n− 2)k
k +

(n− 1)k
1 + (n− 1)k

k.

We compute the sum for n = 1, 2, . . . , N choosing k = 0.05, and plot the
resulting values of Xn approximating x(tn) in Fig. 4.3.

We now return to (4.9), and setting n = N we have in particular

x(1) = x(tN ) ≈ f(t0)(t1 − t0) + f(t1)(t2 − t1) + · · ·
+f(tN−2)(tN−1 − tN−1) + f(tN−1)(tN − tN−1),

that is, x(1) is (approximately) the sum of the terms f(tn−1)(tn − tn−1)
with n ranging from n = 1 up to n = N . We may write this in more
condensed form using the summation sign Σ as

x(1) ≈
N∑

n=1

f(tn−1)(tn − tn−1), (4.10)
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Fig. 4.3. Travelled distance Xn approximating x(t) for f(t) = t
1+t

with time
steps k = 0.05

which expresses the total distance x(1) as the sum of all the increments of
distance f(tn−1)(tn − tn−1) for n = 1, . . . , N . We can view this formula as
a variant of the “telescoping” formula

x(1) = x(tN )

=0
︷ ︸︸ ︷
−x(tN−1) + x(tN−1)

= 0
︷ ︸︸ ︷
−x(tN−2) + x(tN−2) · · ·

+

=0
︷ ︸︸ ︷
−x(t1) + x(t1)−x(t0)

= x(tN ) − x(tN−1)
︸ ︷︷ ︸
≈f(tN−1)(tN−tN−1)

+ x(tN−1) − x(tN−2)
︸ ︷︷ ︸
≈f(tN−2)(tN−1−tN−2)

+ x(tN−2) · · · − x(t1)

+ x(t1) − x(t0)
︸ ︷︷ ︸
≈f(t0)(t1−t0)

expressing the total distance x(1) as a sum of all the increments x(tn) −
x(tn−1) of distance (assuming x(0) = 0), and recalling that

x(tn) − x(tn−1) ≈ f(tn−1)(tn − tn−1).

In the telescoping formula, each value x(tn), except x(tN ) = x(1) and
x(t0) = 0, occurs twice with different signs.

In the language of Calculus, the formula (4.10) will be written as

x(1) =
∫ 1

0

f(t) dt, (4.11)

where ≈ has been replaced by =, the sum
∑

has been replaced by the
integral

∫
, the increments tn − tn−1 by dt, and the sequence of “discrete”

time instances tn, running (or rather “jumping” in small steps) from time 0
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to time 1 corresponds to the integration variable t running (“continuously”)
from 0 to 1. We call the right hand side of (4.11) the integral of f(t) from 0
to 1. The value x(1) of the function x(t) for t = 1, is the integral of f(t) from
0 to 1. We have now uncovered some of the mystery of the integral hidden
in the formula (4.10) resulting from summing the basic formula (4.3).

The difficulties with Calculus, in short, are related to the fact that in
(4.5) we divide with a small number, namely the time increment tn −
tn−1, which is a tricky operation, and in (4.10) we sum a large number
of approximations, and the question is then if the approximate sum, that
is, the sum of approximations f(tn−1)(tn − tn−1) of x(tn) − x(tn−1), is
a reasonable approximation of the “real” sum x(1). Note that a sum of
many small errors very well could result in an accumulated large error.

We have now gotten a first glimpse of Calculus. We repeat: the heart is
the formula

x(tn) ≈ x(tn−1) + f(tn−1)(tn − tn−1)

or setting f(t) = x′(t),

x(tn) ≈ x(tn−1) + x′(tn−1)(tn − tn−1),

connecting increment in distance to velocity multiplied with increment in
time. This formula contains both the definition of the integral reflecting
(4.10) obtained after summation, and the definition of the derivative x′(t)
according to (4.6) obtained by dividing by tn− tn−1. Below we will uncover
the surprising strength of these seemingly simple relations.

4.4 Generalization

We shall also meet the following generalization of (4.2)

x′(t) = f(x(t), t) (4.12)

in which the function f on the right hand side depends not only on t but
also on the unknown solution x(t). The analog of formula (4.3) now may
take the form

x (tn) ≈ x (tn−1) + f (x(tn−1), tn−1) (tn − tn−1) , (4.13)

or changing from tn−1 to tn in the f -term and recalling (4.4),

x (tn) ≈ x (tn−1) + f (x(tn), tn) (tn − tn−1) , (4.14)

where as above, 0 = t0 < t1 < · · · < tn−1 < tn · · · < tN = 1 is a sequence
of time instances.

Using (4.13), we may successively determine approximations of x(tn)
for n = 1, 2, . . . , N , assuming that x(t0) is a given initial value. If we use
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instead (4.14), we obtain in each step an algebraic equation to determine
x(tn) since the right hand side depends on x(tn).

In this way, solving the differential equation (4.12) approximately for
0 < t < 1 is reduced to computing x(tn) for n = 1, . . . , N , using the
explicit formula (4.13) or solving the algebraic equation Xn = X(tn−1) +
f(Xn, tn)(tn − tn−1) in the unknown Xn.

As a basic example, we will study the differential equation

x′(t) = x(t) for t > 0, (4.15)

corresponding to choosing f(x(t), t) = x(t). In this case (4.13) takes the
form

x(tn) ≈ x(tn−1) + x(tn−1)(tn − tn−1) = (1 + (tn − tn−1))x(tn−1).

With (tn − tn−1) = 1
N constant for n = 1, . . . , N , we get the formula

x(tn) ≈
(

1 +
1
N

)

x(tn−1) for n = 1, . . . , N.

Repeating this formula, we get x(tn) ≈ (1 + 1
N )(1 + 1

N )x(tn−2), and so on,
which gives

x(1) ≈
(

1 +
1
N

)N

x(0). (4.16)

Later, we will see that there is indeed an exact solution of the equation
x′(t) = x(t) for t > 0 satisfying x(0) = 1, and we shall denote it x(t) =
exp(t), and name it the exponential function. The formula (4.16) gives the
following approximate formula for exp(1), where exp(1) = e is commonly
referred to as the base of the natural logarithm:

e ≈
(

1 +
1
N

)N

. (4.17)

We give below values of (1 + 1
N )N for different N :

N (1 + 1
N )N

1 2
2 2.25
3 2.37
4 2.4414
5 2.4883
6 2.5216
7 2.5465
10 2.5937
20 2.6533
100 2.7048
1000 2.7169
10000 2.7181
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The differential equation x′(t) = x(t) for t > 0, models the evolution of
for example a population of bacteria which grows at a rate x′(t) equal to
the given amount of bacteria x(t) at each time instant t. After each one
time unit such a population has multiplied with the factor e ≈ 2.72.

Fig. 4.4. Graph of exp(t): Exponential growth

4.5 Leibniz’ Teen-Age Dream

A form of Calculus was envisioned by Leibniz already as a teen-ager. Young
Leibniz used to amuse himself with tables of the following form

n 1 2 3 4 5 6 7

n2 1 4 9 16 25 36 49
1 3 5 7 9 11 13
1 2 2 2 2 2 2

or

n 1 2 3 4 5

n3 1 8 27 64 125
1 7 19 37 61
1 6 12 18 24
1 5 6 6 6
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The pattern is that below each number, one puts the difference of that
number and the number to its left. From this construction, it follows that
any number in the table is equal to the sum of all the numbers in the next
row below and to the left of the given number. For example for the squares
n2 in the first table we obtain the formula

n2 = (2n− 1) + (2(n− 1) − 1) + · · · + (2 · 2 − 1) + (2 · 1 − 1), (4.18)

which can also be written as

n2 + n = 2(n+ (n− 1) + · · · + 2 + 1) = 2
n∑

k=1

k. (4.19)

This corresponds to the area of the “triangular” domain in Fig. 4.5, where
each term in the sum (the factor 2 included) corresponds to the area of one
of the colons of squares.

Fig. 4.5.

The formula (4.19) is an analog of the formula

x2 = 2
∫ x

0

y dy

with x corresponding to n, y to k, dy to 1, and
∑n

k=1 to
∫ n

0 . Note that for
n large the n-term in (4.19) is vanishing in comparison with n2 in the sum
n2 + n.

By dividing by n2, we can also write (4.18) as

1 = 2
n∑

k=1

k

n

1
n
− 1
n
, (4.20)

which is an analog of

1 = 2
∫ 1

0

y dy
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with dy corresponding to 1
n , y to k

n and
∑n

k=0 to
∫ 1

0 . Note that the term
− 1

n in (4.20) acts as a small error term that gets smaller with increas-
ing n.

From the second table with n3 we may similarly see that

n3 =
n∑

k=1

(3k2 − 3k + 1), (4.21)

which is an analog of the formula

x3 =
∫ x

0

3y2 dy

with x corresponding to n, y to k and dy = 1.
By dividing by n3, we can also write (4.21) as

1 =
n∑

k=0

3
(
k

n

)2 1
n
− 1
n

n∑

k=0

3
k

n

1
n

+
1
n2
,

which is an analog of

1 =
∫ 1

0

3y2 dy

with dy corresponding to 1
n , y to k

n , and
∑n

k=0 to
∫ 1

0
. Again, the error

terms that appear get smaller with increasing n.
Notice that repeated use of summation allows e.g. n3 to be computed

starting with the constant differences 6 and building the table from
below.

4.6 Summary

We may think of Calculus as the science of solving differential equations.
With a similar sweeping statement, we may view Linear Algebra as the
science of solving systems of algebraic equations. We may thus present the
basic subjects of our study of Linear Algebra and Calculus in the form of
the following two problems:

Find x such that f(x) = 0 (algebraic equation) (4.22)

where f(x) is a given function of x, and

Find x(t) such that x′(t) = f(x(t), t)

for t ∈ (0, 1], x(0) = 0, (differential equation) (4.23)
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where f(x, t) is a given function of x and t. Keeping this crude descrip-
tion in mind when following this book may help to organize the jungle
of mathematical notation and techniques inherent to Linear Algebra and
Calculus.

We shall largely take a constructive approach to the problem of solving
equations, where we seek algorithms through which solutions may be de-
termined or computed with more or less work. Algorithms are like recipes
for finding solutions in a step by step manner. In the process of construc-
tively solving equations we will need numbers of different kinds, such as
natural numbers, integers, rational numbers. We will also need the concept
of real numbers, real variable, real-valued function, sequence of numbers,
convergence, Cauchy sequence and Lipschitz continuous function.

These concepts are supposed to be our humble servants and not terror-
izing masters, as is often the case in mathematics education. To reach this
position we will seek to demystify the concepts by using the constructive
approach as much as possible. We will thus seek to look behind the curtain
on the theater scene of mathematics, where often very impressive looking
phenomena and tricks are presented by math teachers, and we will see that
as students we can very well make these standard tricks ourselves, and in
fact come up with some new tricks of our own which may even be better
than the old ones.

4.7 Leibniz: Inventor of Calculus
and Universal Genius

Gottfried Wilhelm von Leibniz (1646–1716) is maybe the most versatile
scientist, mathematician and philosopher all times. Newton and Leibniz
independently developed different formulations of Calculus; Leibniz nota-
tion and formalism quickly became popular and is the one used still today
and which we will meet below. Leibniz boldly tackled the basic problem
in Physics/Philosophy/Psychology of Body and Soul in his treatise A New
System of Nature and the Communication of Substances as well as the
Union Existing between the Soul and the Body from 1695. In this work
Leibniz presented his theory of Pre-established Harmony of Soul and Body;
In the related Monadology he describes the World as consisting of some
kind of elementary particles in the form of monads, each of which with
a blurred incomplete perception of the rest of the World and thus in pos-
session of some kind of primitive soul. The modern variant of Monadology
is QuantuumMechanics, one of the most spectacular scientific achievements
of the 20th century.

Here is a description of Leibniz from Encyclopedia Britannica: “Leibniz
was a man of medium height with a stoop, broad-shouldered but bandy-
legged, as capable of thinking for several days sitting in the same chair as of
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travelling the roads of Europe summer and winter. He was an indefatigable
worker, a universal letter writer (he had more than 600 correspondents),
a patriot and cosmopolitan, a great scientist, and one of the most powerful
spirits of Western civilization”.

Fig. 4.6. Leibniz, Inventor of Calculus: “Theoria cum praxis”. “When I set myself
to reflect on the Union of Soul with the Body, I seemed to be cast back again into
the open sea. For I could find no way of explaining how the Body causes something
to happen in the Soul, or vice versa. . . Thus there remains only my hypothesis,
that is to say the way of the pre-established harmony–pre-established, that is by
a Divine anticipatory artifice, which is so formed each of theses substances from
the beginning, that in merely following its own laws, which it received with its
being, it is yet in accord with the other, just as if they mutually influenced one
another, or as if, over and above his general concourse, God were for ever putting
in his hands to set them right”

Chapter 4 Problems

4.1. Derive mathematical models of the form y = f(x) connecting the displace-
ment x with the force y = f(x) for the following mechanical systems consisting
of an elastic string in the first two cases and an elastic string coupled to an elas-
tic spring in the third case. Find approximate models of the form y = xr with
r = 1, 3, 1

2
.
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x

x

x

f(x)f(x)
f(x)

Fig. 4.7.

4.2. Like Galileo solve the following differential equations: (a) x′(t) = v, (b)
x′(t) = at, where v and a are constants. Interprets the results in a Pisa setting.

4.3. Consider the table

0 0 2 4 8 16 32 64

0 2 4 8 16 32 64 128

2 4 8 16 32 64 128 256

Do you see any connection to the exponential function?

4.4. The area of a disc of radius one is equal to π. Compute lower and upper
bounds for π by comparing the area of the disc to the areas of inscribed and
circumscribed polygons, see Fig. 4.8.

Fig. 4.8.

4.5. Solve the Dinner Soup/Ice cream problem with the equation 2x = y + 1
replaced by x = 2y + 1.



5
Natural Numbers and Integers

“But”, you might say, “none of this shakes my belief that 2 and 2
are 4”. You are right, except in marginal case. . . and it is only in
marginal cases that you are doubtful whether a certain animal is
a dog or a certain length is less than a meter. Two must be two of
something, and the proposition “2 and 2 are 4” is useless unless it
can be applied. Two dogs and two dogs are certainly four dogs, but
cases arrive in which you are doubtful whether two of them are dogs.
“Well, at any rate there are four animals” you may say. But there
are microorganisms concerning which it is doubtful whether they
are animals or plants. “Well, then living organisms,” you may say.
But there are things of which it is doubtful whether they are living
organisms or not. You will be driven into saying: “Two entities and
two entities are four entities”. When you have told me what you
mean by “entity” I will resume the argument. (Russell)

5.1 Introduction

In this chapter, we recall how natural numbers and integers may be con-
structively defined, and how to prove the basic rules of computation we
learn in school. The purpose is to give a quick example of developing
a mathematical theory from a set of very basic facts. The idea is to give
the reader the capability of explaining to her/his grandmother why, for ex-
ample, 2 times 3 is equal to 3 times 2. Answering questions of this nature
leads to a deeper understanding of the nature of integers and the rules for
computing with integers, which goes beyond just accepting facts you learn
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in school as something given once and for all. An important aspect of this
process is the very questioning of established facts that follows from posing
the why, which may lead to new insight and new truths replacing the old
ones.

5.2 The Natural Numbers

The natural numbers such as 1, 2, 3, 4, . . ., are familiar from our experience
with counting where we repeatedly add 1 starting with 1. So 2 = 1 + 1,
3 = 2+1 = 1+1+1, 4 = 3+1 = 1+1+1+1, 5 = 4+1 = 1+1+1+1+1, and
so on. Counting is a pervasive activity in human society: we count minutes
waiting for the bus to come and the years of our life; the clerk counts change
in the store, the teacher counts exam points, Robinson Crusoe counted the
days by making cuts on a log. In each of these cases, the unit 1 represents
something different; minutes and years, cents, exam points, days; but the
process of counting is the same for all the cases. Children learn to count at
an early age and may count to 10 by the age of say 3. Clever chimpanzees
may also be taught to count to 10. The ability to count to 100 may be
achieved by children of the age of 5.

The sum n+m obtained by adding two natural numbers n and m, is the
natural number resulting from adding 1 first n times and then m times. We
refer to n andm as the terms of the sum n+m. The equality 2+3 = 5 = 3+2
reflects that

(1 + 1) + (1 + 1 + 1) = 1 + 1 + 1 + 1 + 1 = (1 + 1 + 1) + (1 + 1),

which can be explained in words as observing that if we have 5 donuts
in a box, then we can consume them by first eating 2 donuts and then 3
donuts or equally well by first eating 3 donuts and then 2 donuts. By the
same argument we can prove the commutative rule for addition

m+ n = n+m,

and the associative rule for addition

m+ (n+ p) = (m+ n) + p,

where m, n, and p are natural numbers.
The product m × n = mn obtained by multiplying two natural numbers

m and n, is the natural number resulting by adding n to itself m times.
The numbers m and n of a product m×n are called factors of the product.
The commutative rule for multiplication

m× n = n×m (5.1)
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expresses the fact that adding n to itself m times is equal to adding m to
itself n times. This fact can be established by making a square array of
dots with m rows and n columns and counting the total number of dots
m× n in two ways: first by summing the m dots in each column and then
summing over the n columns and second by summing the n dots in each
row and then summing over the m rows, see Fig. 5.1.

m

n

Fig. 5.1. Illustration of the commutative rule for multiplication m×n = n×m.
We get the same sum if first add up the dots by counting across the rows or down
the columns

In a similar way we can prove the associative rule for multiplication

m× (n× p) = (m× n) × p (5.2)

and the distributive rule combining addition and multiplication,

m× (n+ p) = m× n+m× p, (5.3)

for natural numbers m, n, and p. Note that here we use the convention that
multiplications are carried out first, then summations, unless otherwise is
indicated. For example, 2+3×4 means 2+(3×4) = 24, not (2+3)×4 = 20.
To overrule this convention we may use parentheses, as in (2+3)×4 = 5×4.
From (5.3) (and (5.1)) we obtain the useful formula

(m+ n)(p+ q) = (m+ n)p+ (m+ n)q = mp+ np+mq + nq. (5.4)

We define n2 = n× n, n3 = n× n× n, and more generally

np = n× n× · · · × n
( p factors)
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for natural numbers n and p, and refer to np as n to the power p, or the
“p-th power of n”. The basic properties

(
np

)q = npq

np × nq = np+q

np ×mp = (nm)p,

follow directly from the definition, and from the associative and distributive
laws of multiplication.

We also have a clear idea of ranking natural numbers according to size.
We consider m to be larger than n, written as m > n, if we can obtain m
by adding 1 repeatedly to n. The inequality relation satisfies its own set of
rules including

m < n and n < p implies m < p

m < n implies m+ p < n+ p

m < n implies p×m < p× n

m < n and p < q implies m+ p < n+ q,

which hold for natural numbers n, m, p, and q. Of course, n > m is the
same as m < n, and writing m ≤ n means that m < n or m = n.

A way of representing the natural numbers is to use a horizontal line
extending to the right with the marks 1, 2, 3, spaced at a unit distance
consecutively, see Fig. 5.2. This is called the natural number line. The line
serves like a ruler to keep the points lined up in ascending order to the
right.

1 2 3 4

Fig. 5.2. The natural number line

We can interpret all of the arithmetic operations using the number line.
For example, adding 1 to a natural number n means shifting one unit to
the right from the position of n to that of n + 1, and likewise adding p
means shifting p units to the right.

We can also extend the natural number line one unit to the left and mark
that point by 0, which we refer to as zero. We can use 0 as a starting point
from which we get to the point marked 1 by moving one unit to the right,
We can interpret this operation as 0 + 1 = 1, and generally we have

0 + n = n+ 0 = n (5.5)

for n a natural number. We further define n× 0 = 0 × n = 0 and n0 = 1.
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0 1 2 3 4

Fig. 5.3. The extended natural number line, including 0

Representing natural numbers as sums of ones like 1 + 1 + 1 + 1 + 1 or
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1, that is, as cuts on a log or as beads on
a thread, quickly becomes impractical as the size of the number increases.
To be able to express natural numbers of any size, it is convenient to use
a positional system. In a positional system with base 10 we use the digits 0,
1, 2, 3, 4, 5, 6, 7, 8, 9, and express each natural number uniquely as a sum
of terms of the form

d× 10p (5.6)

where d is one of the digits 0, 1, 2, . . . , 9, and p is a natural number or 0.
For example

4711 = 4 × 103 + 7 × 102 + 1 × 101 + 1 × 100.

We normally use the positional system with base 10, where the choice of
base is of course connected to counting using our fingers.

One can use any natural number as the base in a positional system. The
computer normally uses the binary system with base 2, where a natural
number is expressed as a string of 0s and 1s. For example

1001 = 1 × 23 + 0 × 22 + 0 × 21 + 1 × 20, (5.7)

which equals the usual number 9. We will return to this topic below.

5.3 Is There a Largest Natural Number?

The insight that counting always can be continued by adding 1 yet another
time, that is the insight that if n is a natural number, then n+1 is a natural
number, is an important step in the development of a child usually taken in
early school years. Whatever natural number I would assign as the largest
natural number, you could argue that the next natural number obtained by
adding 1 is bigger, and I would probably have to admit that there cannot
be a largest natural number. The line of natural numbers extends for ever
to the right.

Of course, this is related to some kind of unlimited thought experiment. In
reality, time or space could set limits. Eventually, Robinson’s log would be
filled with cuts, and a natural number with say 1050 digits would seem im-
possible to store in a computer since the number of atoms in the Universe is
estimated to be of this order. The number of stars in the Universe is proba-
bly finite although we tend to think of this number as being without bound.
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We may thus say that in principle there is no largest natural number,
while in practice we will most likely never deal with natural numbers bigger
than 10100. Mathematicians are interested in principles and thus would like
to first get across what is true in principle, and then at a later stage what
may be true in practice. Other people may prefer to go to realities directly.
Of course, principles may be very important and useful, but one should not
forget that there is a difference between what is true in principle and what
is really true.

The idea that, in principle, there cannot be a largest natural number,
is intimately connected to the concept of infinity. We may say that there
are infinitely many natural numbers, or that the set of natural numbers is
infinite, in the sense that we can keep on counting or making cuts without
ever stopping; there is always possible to make another cut and add 1
another time. With this view, the concept of infinity is not so difficult to
grasp; it just means that we never come to an end. Infinitely many steps
means a potential to take yet another step independent of the number of
steps we have taken. There is no limit or bound. To have infinitely many
donuts means that we can always take yet another donut whenever we want
independent of how many we have already eaten. This potential seems more
realistic (and pleasant) than actually eating infinitely many donuts.

5.4 The Set N of All Natural Numbers

We may easily grasp the set {1, 2, 3, 4, 5} of the first 5 natural numbers
1, 2, 3, 4, 5. This may be done by writing down the numbers 1, 2, 3, 4 and 5
on a piece of paper and viewing the numbers as constituting one entity, like
a telephone number. We may even grasp the set {1, 2, . . . , 100} of the first
100 natural numbers 1, 2, 3, . . . , 99, 100 in the same way. We may also grasp
individual very large numbers; for instance we might grasp the number
1 000 000 000 by imagining what we could buy for 1 000 000 000 dollars. We
also feel quite comfortable with the principle of being able to add 1 to any
given natural number. We could even agree to denote by N all the natural
numbers that we potentially could reach by repeatedly adding 1.

We can think of N as the set of possible natural numbers and it is clear
that this set is always under construction and can never actually be com-
pleted. It is like a high rise, where continuously new stores can be added
on top without any limit set by city regulations or construction technique.
We understand that N embodies a potential rather than an existing reality,
as we discussed above.

The definition of N as the set of possible natural numbers is a bit vague
because the term “possible” is a bit vague. We are used to the fact that
what is possible for you may be impossible for me and vice versa. Whose
“possible” should we use? With this perspective we leave the door a bit
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open to everyone to have his own idea of N depending on the meaning of
“possible natural number” for each individual.

If we are not happy with this idea of N as “the set of all possible natural
numbers”, with its admitted vagueness, we may instead seek a definition of
“the set of all natural numbers” which would be more universal. Of course
any attempt to display this set by writing down all natural numbers on
a piece of paper, would be rudely interrupted by reality. Deprived of this
possibility, even in principle, it appears that we must seek guidelines from
some Big Brother concerning the meaning of N as “the set of all natural
numbers”.

The idea of a universal Big Brother definition of difficult mathematical
concepts connected to infinity one way or the other, like N, grew strong dur-
ing the late 19th century. The leader of this school was Cantor, who created
a whole new theory dealing with infinite sets and infinite numbers. Cantor
believed he could grasp the set of natural numbers as one completed entity
and use this as a stepping stone to construct sets of even higher degrees
of infinity. Cantors work had profound influence on the view of infinity in
mathematics, but his theories about infinite sets were understood by few
and used by even fewer. What remains of Cantors work today is a firm
belief by a majority of mathematicians that the set of all natural num-
bers may be viewed as a uniquely defined completed entity which may be
denoted by N. A minority of mathematicians, the so-called constructivists
led by Kronecker, have opposed Cantors ideas and would rather think of N

somewhat more vaguely defined as the set of possible natural numbers, as
we proposed above.

The net result appears to be that there is no consensus on the definition
of N. Whatever interpretation of N you prefer, and this is now open to
your individual choice just as religion is, there will always remain some
ambiguity to this notion. Of course, this reflects that we can give names to
things that we cannot fully grasp, like the world, soul, love, jazz music, ego,
happiness et cetera. We all have individual ideas of what these words mean.

Personally, we tend to favor the idea of using N to denote the “set of
possible natural numbers”. Admittedly this is a bit vague (but honest),
and the vagueness does not appear to create any problems in our work.

5.5 Integers

If we associate addition by the natural number p as moving p units to the
right on the natural number line, we can introduce the operation of sub-
traction by p as moving p units to the left. In the setting of donuts in a box,
we can think of addition as putting donuts into the box and subtraction
as taking them out. For example, if we have 12 donuts in the box and eat
7 of them, we know there will be 5 left. We originally got the 12 donuts
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by adding individual donuts into a box, and we may take away donuts, or
subtract them, by taking them back out of the box. Mathematically, we
write this as 12 − 7 = 5 which is just another way of saying 5 + 7 = 12.

We immediately run into a complication with subtraction that we did
not meet with addition. While the sum n + m of two natural numbers is
always a natural number, the difference n−m is a natural number only if
m < n. Moving m units to the left from n will take us outside the natural
number line if m > n. For example, the difference 12− 15 would arise if we
wanted to take 15 donuts out of a box with 12 donuts. Similar situations
arise frequently. If we want to buy a titanium bike frame for $2500, while
we only have $1500 in the bank, we know we have to borrow $1000. This
$1000 is a debt and does not represent a positive amount in our savings
account, and thus does not correspond to a natural number.

To handle such situations, we extend the natural numbers {1, 2, 3, · · · }
by adjoining the negative numbers −1, −2, −3, · · · together with 0. The
result is the set of integers

Z = {· · · ,−3,−2,−1, 0, 1, 2, 3, · · ·} = {0,±1,±2,±3, · · ·}.

We say that 1, 2, 3, · · · , are the positive integers while −1, −2, −3, · · · ,
are the negative integers. Graphically, we think of extending the natural
number line to the left and then marking the point that is one unit distance
to the left of 0 as −1, and so on, to get the integer number line, see Fig. 5.4.

− −− 0 11 22 33

Fig. 5.4. The integer number line

We may define the sum n +m of two integers n and m as the result of
adding m to n as follows. If n and m are both natural numbers, or positive
integers, then n+m is obtained the usual way by starting at 0, moving n
units to the right followed by m more units to the right. If n is positive
and m is negative, then n+m is obtained starting at 0, moving n units to
the right, and then m units back to the left. Likewise if n is negative and
m is positive, then we obtain n+m by starting at 0, moving n units to the
left and then m units to the right. Finally, if both n and m are negative,
then we obtain n+m by starting at 0, moving n units to the left and then
m more units to the left. Adding 0, we move neither right nor left, and
thus n + 0 = n for all integers n. We have now extended the operation of
addition from the natural numbers to the integers.

Next, to define the operation of subtraction, we first agree to denote by
−n the integer with the opposite sign to the integer n. We then have for
any integer n that −(−n) = n, reflecting that taking the opposite sign
twice gives the original sign, and n+ (−n) = (−n) + n = 0, reflecting that
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moving n units back and forth starting at 0 will end up at 0. We now define
n−m = −m+ n = n+ (−m), which we refer to as subtracting m from n.
We see that subtracting m from n is the same as adding −m to n.

Finally, we need to extend multiplication to integers. To see how to do
this, we seek guidance by formally multiplying the equality n+ (−n) = 0,
where n a natural number, by the natural number m. We then obtain
m × n + m × (−n) = 0, which suggest that m × (−n) = −(m × n), since
m× n+ (−(m× n)) = 0. We are thus led to define m× (−n) = −(m× n)
for positive integers m and n, and likewise (−n) ×m = −(n × m). Note
that by this definition, −n×m may be interpreted both as (−n) ×m and
as −(n ×m). In particular we have that (−1) × n = −n for n a positive
integer. Finally, to see how to define (−n) × (−m) for n and m positive
integers, we multiply the equalities n+(−n) = 0 and m+(−m) = 0 to get
formally n×m+n× (−m)+(−n)×m+(−n)× (−m) = 0, which indicates
that −n×m+ (−n)× (−m) = 0, that is (−n)× (−m) = n×m, which we
now take as a definition of the product of two negative numbers (−n) and
(−m). In particular we have (−1) × (−1) = 1. We have now defined the
product of two arbitrary integers (of course we set n × 0 = 0 × n = 0 for
any integer n).

To sum up, we have defined the operations of addition and multiplica-
tion of integers and we can now verify all the familiar rules for computing
with integers including the commutative, associative and distributive rules
stated above for natural numbers.

Note that we may say that we have constructed the negative integers
{−1,−2, . . .} from the given natural numbers {1, 2, . . .} through a process
of reflection around 0, where each natural number n gets its mirror image
−n. We thus may say that we construct the integer line from the natural
number line through a process of reflection around 0. Kronecker said that
the natural numbers were given by God and that all other numbers, like
the negative integers, are invented or constructed by man.

Another way to define or construct −n for a natural number n is to think
of −n as the solution x = −n of the equation n+x = 0 since n+(−n) = 0,
or equally well as the solution of x+n = 0 since (−n)+n = 0. This idea is
easily extended from n to −n, i.e. to the negative integers, by considering
−(−n) to be the solution of x+(−n) = 0. Since n+(−n) = 0, we conclude
the familiar formula −(−n) = n. To sum up, we may view −n to be the
solution of the equation x+ n = 0 for any integer n.

We further extend the ordering of the natural numbers to all of Z by
defining m < n if m is to the left of n on the integer line, that is, if m is
negative and n positive, or zero, or if also n is negative but −m > −n. This
ordering is a little bit confusing, because we like to think of for example
−1000 as a lot bigger number than −10. Yet we write −1000 < −10 saying
that −1000 is smaller than −10. What we need is a measure of the size of
a number, disregarding its sign. This will be the topic next.
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5.6 Absolute Value and the Distance Between
Numbers

As just indicated, it is convenient to be able to discuss the size of numbers
independent of the sign of the number. For this purpose we define the
absolute value |p| of the number p by

|p| =

{
p, p ≥ 0
−p, p < 0.

For example, |3| = 3 and | − 3| = 3. Thus |p| measures the size of the
number p, disregarding its sign, as desired. For example |− 1000| > |− 10|.

Often we are interested in the difference between two numbers p and q,
but are concerned primarily with the size of the difference and care less
about its sign, that is we are interested in |p − q| corresponding to the
distance between the two numbers on the number line.

For example suppose we have to buy a piece of molding for a doorway
and when using a tape measure we position one side of the doorframe at
2 inches and the opposite side at 32 inches. We would not go to the store
and ask the person for a piece of molding that begins at 2 inches and ends
at 32 inches. Instead, we would only tell the clerk that we need 32−2 = 30
inches. In this case, 30 is the distance between 32 and 2. We define the
distance between two integers p and q as |p− q|.

By using the absolute value, we insure that the distance between p and q
is the same as the distance between q and p. For example, |5− 2| = |2− 5|.

In this book, we will be dealing with inequalities combined with the
absolute value frequently. We give an example close to every student’s heart.

Example 5.1. Suppose the scores on an exam that are within 5 of 79 out
of 100 get a grade of B and we want to write down the list of scores that
get a B. This includes all scores x that are a distance of at most 5 from
79, which can be written

|x− 79| ≤ 5. (5.8)

There are two possible cases: x < 79 and x ≥ 79. If x ≥ 79 then |x −
79| = x − 79 and (5.8) becomes x − 79 ≤ 5 or x ≤ 84. If x < 79 then
|x− 79| = −(x− 79) and (5.8) means that −(x− 79) ≤ 5 or (x− 79) ≥ −5
or x ≥ 74. Combining these results we have 79 ≤ x ≤ 84 as one possibility
or 74 ≤ x < 79 as another possibility, or in other words, 74 ≤ x ≤ 84.

In general if |x| < b, then we have the two possibilities −b < x < 0 or
0 ≤ x < b which means that −b < x < b. We can actually solve both cases
at one time.
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Example 5.2. |x− 79| ≤ 5 means that

−5 ≤ x− 79 ≤ 5
74 ≤ x ≤ 84

To solve |4 − x| ≤ 18, we write

−18 ≤ 4 − x ≤ 18
18 ≥ x− 4 ≥ −18 (Note the changes!)

22 ≥ x ≥ −14

Example 5.3. To solve the following inequality in x:

|x− 79| ≥ 5. (5.9)

we first assume that x ≥ 79, in which case (5.9) becomes x − 79 ≥ 5 or
x ≥ 84. Next, if x ≤ 79 then (5.9) becomes −(x− 79) ≥ 5 or (x− 79) ≤ −5
or x ≤ −74. The answer is thus all x with x ≥ 84 or x ≤ −74.

Finally we recall that multiplying an inequality by a negative number
like (−1) reverses the inequality:

m < n implies −m > −n.

5.7 Division with Remainder

We define division with remainder of a natural number n by another natural
number m, as the process of computing nonnegative integers p and r < m
such that n = pm+r. The existence of unique p and r follows by considering
the sequence of natural numbersm, 2m, 3m, . . ., and noting that there must
be a unique p such that pm ≤ n < (p+ 1)m, see Fig. 5.5.

(p− 1)m pm (p+ 1)mn

m = 5 and n = pm+ r with r = 2 < m

Fig. 5.5. Illustration of pm ≤ n < (p+ 1)m

Setting r = n − pm, we obtain the desired representation n = pm + r
with 0 ≤ r < m. We call r the remainder in division of n by m. When
the remainder r is zero, then we obtain a factorization n = pm of n as
a product of the factors p and m.
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We can find the proper p in division with remainder of n bym by repeated
subtraction of m. For example, if n = 63 and m = 15, then we may write

63 = 15 + 48
63 = 15 + 15 + 34 = 2 × 15 + 33

63 = 3 × 15 + 18
63 = 4 × 15 + 3,

and thus find that in this case p = 4 and r = 3.
A more systematic procedure for division with remainder is the long

division algorithm, which is taught in school. We give two examples (63 =
4 × 15 + 3 again, and 2418610 = 19044× 127 + 22) in Fig. 5.5.TS

a

15 63

4

60
3

127 2418610
127

1148
1143

561
508

530
508

22

19044

1×127

9×127

4×127

4×127

4×15

Fig. 5.6. Two examples of long division

5.8 Factorization into Prime Factors

A factor of a natural number n is a natural number m that divides into n
without leaving a remainder, that is, n = pm for some natural number p.
For example, 2 and 3 are both factors of 6. A natural number n always has
factors 1 and n since 1×n = n. A natural number n is called a prime number
if the only factors of n are 1 and n. The first few prime numbers (excluding
1 since such factors are not of much interest) are {2, 3, 5, 7, 11, · · ·}. The
only even prime number is 2. Suppose that we take the natural number n
and try to find two factors n = pq. Now there are two possibilities: either
the only two factors are 1 and n, i.e. n is prime, or we find two factors p
and q, neither of which are 1 or n. By the way, it is easy to write a program
to search for all the factors of a given natural number n by systematically
dividing by all the natural numbers up to n. Now in the second case, both
p and q must be less than n. In fact p ≤ n/2 and q ≤ n/2 since the
smallest possible factor not equal to 1 is 2. Now we repeat by factoring
p and q separately. In each case, we either find the number is prime or

TS
a Please confirm this reference to Fig. 5.5.
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we factor it into a product of smaller natural numbers. Then we continue
with the smaller factors. Eventually this process must stop since n is finite
and the factors at any stage are no larger than half the size of the factors
of the previous stage. When the process has stopped, we have factored
n into a product of prime numbers. This factorization is unique except
for order. One consequence of the factorization into prime numbers is the
following fact. Suppose that we know that 2 is a factor of n. If n = pq is
any factorization of n, it follows that at least one of the factors p and q
must have a factor of 2. The same is true for prime number factors 3, 5, 7
etc., that is for any prime number factor.

5.9 Computer Representation of Integers

Since we will be using the computer throughout this course, we have to
point out some properties of computer arithmetic. We are distinguishing
arithmetic carried out on a computer from the “theoretical” arithmetic we
learn about in school.

The fundamental issue that arises when using a computer stems from the
physical limitation on memory. A computer must store numbers on a physi-
cal device which cannot be “infinite”. Hence, a computer can only represent
a finite number of numbers. Every computer language has a finite limit on
the numbers it can represent. It is quite common for a computer language to
have INTEGER and LONG INTEGER types of variables, where an INTE-
GER variable is an integer in the range of {−32768,−32767, . . . , 32767},
which are the numbers that take two bytes of storage, and a long inte-
ger variable is an integer in the range {−2147483648, −2147483647, . . . ,
2147483647}, which are the integers requiring four bytes of storage (where
a “byte” of memory consists of 8 “bit-cells”, each capable of storing either
a zero or a one). This can have some serious consequences, as anyone who
programs a loop using an integer index that goes above the appropriate
limit finds out. In particular, we cannot check whether some fact is true
for all integers using a computer to test each case.

Chapter 5 Problems

5.1. Identify five ways in your life in which you count and the unit “1” for each
case.

5.2. Use the natural number line representation to interpret and verify the
equalities: (a) x+ y = y + x and (b) x+ (y + z) = (x+ y) + z: that hold for any
natural numbers x, y, and z:TS

b
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5.3. Use (two and three dimensional) arrays of dots to interpret and verify a)
the distributive rule for multiplication m× (n+ p) = m× n+m× p and b) the
associative rule (m× n) × p = m× (n× p).

5.4. Use the definition of np for natural numbers n and p to verify that (a)(
np

)q
= npq and (b) np × nq = np+q for natural numbers n, p, q.

5.5. Prove that m × n = 0 if and only if m = 0 or n = 0, for integers m and n.
What does or mean here? Prove that for p �= 0, p × m = p × n if and only if
m = n. What can be said if p = 0?

5.6. Verify using (5.4) that for integers n and m,

(n+m)2 = n2 + 2nm+m2

(n+m)3 = n3 + 3n2m+ 3nm2 +m3

(n+m)(n−m) = n2 −m2.

(5.10)

5.7. Use the integer number line to illustrate the four possible cases in the
definition of n+m for integers n and m.

5.8. Divide (a) 102 by 18, (b) −4301 by 63, and (c) 650912 by 309 using long
division.

5.9. (a) Find all the natural numbers that divide into 40 with zero remainder.
(b) Do the same for 80.

5.10. (Abstract) Use long division to show that

a3 + 3a2b+ 3ab2 + b3

a+ b
= a2 + 2ab+ b2.

5.11. (a) Write a MATLAB� routine that tests a given natural number n to
see if it is prime. Hint: systematically divide n by the smaller natural numbers
from 2 to n/2 to check whether there are factors. Explain why it suffices to check
up to n/2. (b) Use this routine to write a MATLAB� routine that finds all the
prime numbers less than a given number n. (c) List all the prime numbers less
than 1000.

5.12. Factor the following integers into a product of prime numbers; (a) 60, (b)
96, (c) 112, (d) 129.

5.13. Find two natural numbers p and q such that pq contains a factor of 4 but
neither p nor q contains a factor of 4. This means that the fact that some natural
number m is factor of a product n = pq does not imply that m must be a factor
of either p or q. Why doesn’t this contradict the fact that if pq contains a factor
of 2 then at least one of p or q contains a factor of 2?
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5.14. Pick out the invalid rules from the following list

a < b implies a− c < b− c

(a+ b)2 = a2 + b2

(
c(a+ b)

)2
= c2(a+ b)2

ac < bc implies a < b

a− b < c implies a < c+ b

a+ bc = (a+ b)c

In each case, find numbers that show the rule is invalid.

5.15. Solve the following inequalities:

(a) |2x− 18| ≤ 22 (b) |14 − x| < 6

(c) |x− 6| > 19 (d) |2 − x| ≥ 1

5.16. Verify that the following is true for arbitrary integers a, b and c: (a) |a2| =
a2 (b) |a|2 = a2 (c) |ab| = |a| |b| (d) |a+ b| ≤ |a| + |b| (e) |a− b| ≤ |a| + |b|
(f) |a+ b− c| ≤ |a| + |b| + |c| (g) |a| ≤ |a− b| + |b| (h) ||a| − |b|| ≤ |a− b|

5.17. Show that the inequalities (e)-(h) of Problem 5.17 follow once you have (d)
and the fact that |a| = | − a| for any integer a.

5.18. Write a little program in the computer language of your choice that finds
the largest integer that the language can represent. Hint: usually one of two things
happen if you try to set an integer variable to a value that is too large: either
you get an error message or the computer gives the variable a negative value.





6
Mathematical Induction

There is a tradition of opposition between adherents of induction
and deduction. In my view it would be just as sensible for the two
ends of a worm to quarrel. (Whitehead)

6.1 Induction

Carl Friedrich Gauss (1777–1885), sometimes called the Prince of Mathe-
matics, is one of the greatest mathematicians all times. In addition to an
incredible ability to compute (especially important in the 1800s) and an
unsurpassed talent for mathematical proof, Gauss had an inventive imagi-
nation and a restless interest in nature and he made important discoveries
in a staggering range of pure and applied mathematics. He was also a pio-
neer in the constructionist sense, digging deeply into many of the accepted
mathematical truths of his time in order to really understand what ev-
eryone “knew” had to be true. Perhaps the only really unfortunate side
to Gauss is that he wrote about his work only very sparingly and many
mathematicians that followed him were doomed to reinvent things that he
already knew.

There is a story about Gauss in school at the age of ten which goes as
follows. His old-fashioned arithmetic teacher would like to show off to his
students by asking them to add a large number of sequential numbers by
hand, something the teacher knew (from a book) could be done quickly
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and accurately by using the following neat formula:

1 + 2 + 3 + · · · + (n− 1) + n =
n(n+ 1)

2
. (6.1)

Note that the “· · · ” indicate that we add all the natural numbers between 1
and n. Using the formula makes it possible to replace the n−1 additions on
the left by a multiplication and a division, which is a considerable reduction
in work, especially if you are using a piece of chalk and a slate to do the
sums.

The teacher posed the problem of computing the sum 1 + 2 + · · ·+ 99 to
the class, and almost immediately Gauss came up and laid his slate down
on the desk with the correct answer (4950), while the rest of the class still
were in the beginning of a long struggle. How did young Gauss manage
to compute the sum so quickly? Did he already know the nice formula
(6.1)? Of course not, but he immediately derived it using the following
clever argument: To sum 1 + 2 + · · · + 99, group the numbers two by two
as follows:

1 + · · · + 99
= (1 + 99) + (2 + 98) + (3 + 97) + · · · (49 + 51) + 50
= 49 × 100 + 50 = 49 × 2 × 50 + 50 = 99 × 50

which agrees with the formula (6.1) with n = 99. One can use this type of
argument to prove the validity of (6.1) for any natural number n.

A modern teacher without a need to show off, could state the formula
(6.1) and ask the students to use it with n = 99, for example, and then go
home and play the trick with their parents.

Let’s now look at the problem of verifying that the formula (6.1) is true
for any natural number n, once this formula is given to us. Suppose, we
are not as clever as Gauss and don’t find the nice way of grouping the
numbers two by two indicated above. We are thus asked just to check if
a given formula is correct, and not to first find the formula itself and then
prove its validity. This is like in a multiple choice test, where we may be
asked if King Gustav Adolf II of Sweden died 1632 or 1932 or not at all, as
opposed to a direct question what year this king died. Everyone knows that
a multiple choice questions may be easier to answer than a direct question.

We are thus asked to prove that the formula (6.1) holds for any natural
number n. It is easy enough to verify that it is true for n = 1: 1 = 1× 2/2:
for n = 2: 1 + 2 = 3 = 2 × 3/2: and for n = 3: 1 + 2 + 3 = 6 = 3 × 4/2.
Checking the validity in this way for any natural number, one at a time, up
to say n = 1000, would be very tiring. Of course we could try to get help
from a computer, but the computer would also get stuck if n is very large.
We also know in the back of our minds that no matter how many natural
numbers n we check, there will always be natural numbers left which we
have not yet checked.
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Is there some other way of checking the validity of (6.1) for any natu-
ral number n? Yes, we could try the principle of mathematical induction,
based on the idea of showing that if the formula is valid for n, then it is
automatically valid also for n+ 1.

1 2 3 n n+1

Fig. 6.1. The principle of induction: If n falls then n + 1 will fall, so if 1 falls
they all fall!

The first step is then to check that the formula is valid for n = 1. We al-
ready took this easy step. The remaining step, which is called the inductive
step, is to show that if the formula holds for a certain natural number, then
it also holds for the next natural number. The principle of mathematical
induction now states that the formula must be true for any natural num-
ber n. You are probably ready to accept this principle on intuitive grounds:
we know that the formula holds for n = 1. By the inductive step, it then
holds for the next number, that is for n = 2, and thus for n = 3 again by
the induction step, and then for n = 4, and so on. Since we will eventually
reach any natural number this way, we may be pretty sure that the formula
holds for any natural number. Of course the principle of mathematical in-
duction is based on the conviction that we will eventually reach any natural
number if we start with 1 and then add 1 sufficiently many times.

Let us now take the induction step in the attempted proof of (6.1). We
thus assume that the formula (6.1) is valid for n = m− 1, where m ≥ 2 is
a natural number. In other words, we assume that

1 + 2 + 3 + · · · +m− 1 =
(m− 1)m

2
. (6.2)

We now want to prove that the formula holds for the next natural number
n = m. To do this for (6.1), we add m to both sides of (6.2) to get

1 + 2 + 3 + · · · +m− 1 +m =
(m− 1)m

2
+m

=
m2 −m

2
+

2m
2

=
m2 −m+ 2m

2

=
m(m+ 1)

2

which shows the validity of the formula for n = m. We have thus verified
that if (6.1) is true for a certain natural number n = m− 1 then it is true
for the next natural number n = m, that is we have verified the inductive
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step. Repeating the inductive step, we see that (6.1) holds for any natural
number n.

We may phrase the proof of the inductive step alternatively as follows,
where we don’t bother to introduce the natural number m. In the refor-
mulation we assume that (6.1) holds with n replaced by n− 1, that is, we
assume that

1 + 2 + 3 + · · · + n− 1 =
(n− 1)n

2
.

Adding n to both sides, we get

1 + · · · + n− 1 + n =
(n− 1)n

2
+ n =

n(n+ 1)
2

which is (6.1) as desired. We may thus take the inductive step by proving
(6.1) assuming the validity of (6.1) with n replaced by n− 1.

Formulas like (6.1) have a close connection to the basic integration for-
mulas of Calculus we meet later and they also occur, for example, when
computing compound interest on a savings account or adding up popu-
lations of animals. The formulas are thus useful not only for impressing
people.

Many students may find that verifying a property like (6.1) for specific
n like 1 or 2 or 100 is not so difficult to do. But the general inductive step:
assuming the formula is true for some given natural number and showing
that it is then true for the next natural number, causes some uneasiness be-
cause the given number is not specified concretely. Don’t let this feeling of
strangeness stop you from trying out the problems: like much of mathemat-
ics, actually doing the problems is not as bad as the anticipation of having
to do the problems (like going to the dentist). Working out some induction
problems is good practice for getting used to some of the arguments that
we encounter later.

The method of induction may be useful for showing the validity of a given
formula, but first you have to find the formula in some way, which may
require some good intuition, trial and error, or some other insight (like the
clever idea of Gauss). Induction may thus help you because it gives you
some kind of method of approach (assume the validity for some natural
number and then prove validity for the next), but you must have a good
guess or conjecture to start from.

You could try to come up with the formula (6.1) by some trial and error,
once you have the courage to start looking for a formula. You could argue
roughly that the average size of the numbers 1 to n is n/2, and since there
are n numbers to add, their sum should be something like nn

2 , which is
pretty close to the correct (n + 1)n

2 . You don’t need to be Gauss to see
this.

We now give three additional examples illustrating the use of mathemat-
ical induction.
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Example 6.1. First we show the following formula for the sum of a finite
geometric series:

1 + p+ p2 + p3 + · · · + pn =
1 − pn+1

1 − p
(6.3)

where p is the quotient, which we here assume to be a given natural number,
and n is a natural number. Note that we think of p as being fixed and the
induction is on the number n with n+ 1 being the number of terms in the
series. The formula (6.3) holds for n = 1, since

1 + p =
(1 − p)(1 + p)

1 − p
=

1 − p2

1 − p
,

where we use the formula a2 − b2 = (a− b)(a+ b). Assuming it is true with
n replaced by n− 1, we have

1 + p+ p2 + p3 + · · · + pn−1 =
1 − pn

1 − p
.

We add pn to both sides to get

1 + p+ p2 + p3 + · · · + pn−1 + pn =
1 − pn

1 − p
+ pn

=
1 − pn

1 − p
+
pn(1 − p)

1 − p

=
1 − pn+1

1 − p

which shows the inductive step.

Of course, a much simpler way to verify (6.3) is to just note that (1−p)(1+
p+p2+p3+· · ·+pn) = 1+p+p2+p3+· · ·+pn−p−p2−p3−· · ·−pn−pn+1 =
1 − pn+1, and then simply divide by 1 − p.

Example 6.2. Induction can also be used to show properties that do not
involve sums. For example, we show an inequality that is useful. For any
fixed natural number p,

(1 + p)n ≥ 1 + np (6.4)

for any natural number n. The inequality (6.4) is certainly valid for n = 1,
since (1 + p)1 = 1 + 1 × p. Now assume it holds for n− 1,

(1 + p)n−1 ≥ 1 + (n− 1)p.

We multiply both sides by the positive number 1 + p,

(1 + p)n = (1 + p)n−1(1 + p) ≥ (1 + (n− 1)p)(1 + p)

≥ 1 + (n− 1)p+ p+ (n− 1)p2 ≥ 1 + np+ (n− 1)p2.

Since (n − 1)p2 is nonnegative, we can take it away from the right-hand
side and then obtain (6.4).
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6.2 Changes in a Population of Insects

Induction is also often used to derive models. We now present an example
involving the growth in a population of insects. We consider a simplified
situation of a population of an insect in which the adults breed during
the first summer they are alive then die before the following summer. We
want to figure out how the population of these insects changes year by
year. This is an important issue for instance if the insects carry disease
or consume farm crops. In general, there are many factors that affect the
rate of reproduction; the food supply, the weather, pesticides, and even the
population itself. But in first phase of the modelling, we simplify all of this
by assuming that the number of offspring produced each breeding season
is simply proportional to the number of insects alive during that season.
Experimentally this is often a valid assumption if the population is not too
large.

Because we are describing populations of the insects during different
years, we need to introduce a notation that makes it easy to associate vari-
able names with different years. We use the index notation to do this. We
let P0 denote the current or initial population and P1, P2, · · · , Pn, · · ·
denote the populations during subsequent years number 1, 2, · · · , n, · · ·
respectively. The index or subscript on Pn is a convenient way to denote the
year. Following our assumption, we know that Pn is always proportional to
Pn−1. Our modelling assumption is that the population Pn, after any num-
ber of years n, is proportional to, that is a fixed multiple of, the population
Pn−1 the year before. Using R to denote the constant of proportionality,
we thus have

Pn = RPn−1. (6.5)

Assuming the initial population P0 is known, the problem is to figure out
when the population reaches a specific level M . In other words, find the
first n such that Pn ≥M .

In order to do this, we want to find a formula expressing the dependence
of Pn on n. We can do this by using induction on (6.5). Since (6.5) also
holds for n− 1, i.e. Pn−1 = RPn−2. Substituting, we find

Pn = RPn−1 = R(RPn−2) = R2Pn−2.

Now we substitute for Pn−2 = RPn−3, Pn−3 = RPn−4, and so on. After
n− 2 more substitutions, we find

Pn = RnP0. (6.6)

Since R and P0 are known, this gives an explicit formula for Pn in terms of
n. Note that the way we use induction in this example might seem different
than the previous examples. But the difference is only superficial. To make
the induction argument look the same as for the previous examples, we
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can assume that (6.6) holds for n − 1 and then use (6.5) to show that it
therefore holds for n.

Returning to the question of finding n such that Pn ≥ M , the model
problem is to find n such that

Rn ≥M/P0. (6.7)

As long asR > 1,Rn eventually grows large enough to do this. For example,
if R = 2, then Pn grows quickly with n. If P0 = 1 000, then P1 = 2 000,
P5 = 32 000, and P10 = 1 024 000.

Chapter 6 Problems

6.1. Prove the following formulas:

(a) 12 + 22 + 32 + · · · + n2 =
n(n+ 1)(2n+ 1)

6
(6.8)

and

(b) 13 + 23 + 33 + · · · + n3 =

(
n(n+ 1)

2

)2

: (6.9)

hold for all natural numbers n by using induction.

6.2. Using induction, show the following formula holds for all natural numbers
n,

1

1 × 2
+

1

2 × 3
+

1

3 × 4
+ · · · + 1

n(n+ 1)
=

1

n+ 1
.

6.3. Using induction, show the following inequalities hold for all natural numbers
n:

(a) 3n2 ≥ 2n+ 1 (b) 4n ≥ n2

6.4. The problem is to model the population of a species of insects that has
a single breeding season during the summer. The adults breed during the first
summer they are alive then die before the following summer. Assuming that the
number of offspring born each breeding season is proportional to the square of
the number of adults, express the population of the insects as a function of the
year.

6.5. The problem is to model the population of a species of insects that has
a single breeding season during the summer. The adults breed during the first
summer they are alive then die before the following summer and moreover the
adults kill and eat some of their offspring. Assuming that the number of offspring
born each breeding season is proportional to the number of adults and that
a number of offspring are killed by the adults is proportional to the square of the
number of adults, derive an equation relating the population of the insects in one
year to the population in the previous year.



70 6. Mathematical Induction

6.6. (Harder) The problem is to model the population of a species of insects
that has a single breeding season during the summer. The adults breed during
the first and second summers they are alive then die before their third summer.
Assuming that the number of offspring born each breeding season is proportional
to the number of adults that are alive, derive an equation relating the population
of the insects in any year past the first to the population in the previous two
years.

6.7. Derive the formula (6.1) by verifying the sum

1 + 2 + · · · + n− 1 + n
+ n + n− 1 + · · · + 2 + 1

n+ 1 + n+ 1 + · · · + n+ 1 + n+ 1

and showing that this means that 2(1 + 2 + · · · + n) = n× (n+ 1).

6.8. (Harder) Prove the formula for the geometric sum (6.3) holds by using
induction on long division on the expression

pn+1 − 1

p− 1
.

Fig. 6.2. Gauss 1831: “I protest against the use of infinite magnitude as some-
thing completed, which in mathematics is never permissible. Infinity is merely
a facon parlerTS

a , the real meaning being a limit which certain ratios approach
indefinitely near, while others are permitted to increase without restriction”

TS
a Do you mean “façon de parler”?

Editor’s or typesetter’s annotations (will be removed before the final TEX run)



7
Rational Numbers

The chief aim of all investigations of the external world should be
to discover the rational order and harmony which has been imposed
on it by God and which He revealed to us in the language of math-
ematics. (Kepler)

7.1 Introduction

We learn in school that a rational number r is a number of the form r =
p
q = p/q, where p and q are integers with q �= 0. Such numbers are also
refereed to as fractions or ratios or quotients. We call p the numerator and q
the denominator of the fraction or ratio. We know that p

1 = p, and thus the
rational numbers include the integers. A basic motivation for the invention
of rational numbers is that with them we can solve equations of the form

qx = p

with p and q �= 0 integers. The solution is x = p
q . In the Dinner Soup model

we met the equation 15x = 10 of this form with solution x = 10
15 = 2

3 .
Clearly, we could not solve the equation 15x = 10 if x was restricted to
be a natural number, so you and your roommate should be happy to have
access to the rational numbers.

If the natural number m is a factor of the natural number n so that
n = pm with p a natural number, then p = n

m , in which case thus n
m is

a natural number. If division of n by m leaves a non-zero remainder r, so
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that n = pm+ r with 0 < r < m, then n
m = p+ r

m , which is not a natural
number.

7.2 How to Construct the Rational Numbers

Suppose now that your roommate has an unusual background and has never
heard about rational numbers, but fortunately is very familiar with integers
and is more than willing to learn new things. How could you quickly explain
to her/him what rational numbers are and how to compute with them? In
other words, how could you convey how to construct rational numbers from
integers, and how to add, subtract, multiply and divide rational numbers?
One possibility would be to simply say that x = p

q is “that thing” which
solves the equation qx = p, with p and q �= 0 integers. For example, a quick
way to convey the meaning of 1

2 would be to say that it is the solution
of the equation 2x = 1, that is 1

2 is the quantity which when multiplied
by 2 gives 1. We would then use the notation x = p

q to indicate that the
numerator p is the right hand side and the denominator q is the factor on
the left hand side in the equation qx = p. We could equally well think of
x = p

q as a pair, or more precisely as an ordered pair x = (p, q) with a first
component p and a second component q representing the right hand side
and the left hand side factor of the equation qx = p respectively. Note that
the notation p

q is nothing but an alternative way of ordering the pair of
integers p and q with an “upper” p and a “lower” q; the horizontal bar in
p
q separating p and q is just a counterpart of the comma separating p and
q in (p, q).

We could now directly identify some of these pairs (p, q) or “new things”
with already known objects. Namely, a pair (p, q) with q = 1 would be
identified with the integer p since in this case the equation is 1x = p with
solution x = p. We could thus write (p, 1) = p corresponding to writing
p
1 = p, as we are used to do.

Suppose now you would like to teach your roommate how to operate with
rational numbers using the rules that are familiar to us who know about
rational numbers, once you have conveyed the idea that a rational number
is an ordered pair (p, q) with p and q �= 0 integers. We could seek inspiration
from the construction of the rational number (p, q) = p

q as that thing which
solves the equation qx = p with p and q �= 0 integers. For example, suppose
we want to figure out how to multiply the rational number x = (p, q) = p

q

with the rational number y = (r, s) = r
s . We then start from the defining

equations qx = p and sy = r. Multiplying both sides, using the fact that
xs = sx so that qxsy = qsxy = qs(xy), we find that

qs(xy) = pr,
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from which we conclude that

xy = (pr, qs) =
pr

qs
,

since z = xy visibly solves the equation qsz = pr. We thus conclude the
familiar rule

xy =
p

q
× r

s
=
pr

qs
or (p, q) × (r, s) = (pr, qs), (7.1)

which says that numerators and denominators are multiplied separately.
Similarly to get a clue how to add two rational numbers x = (p, q) = p

q

and y = (r, s) = r
s , we again start from the defining equations qx = p and

sy = r. Multiplying both sides of qx = p by s, and both sides of sy = r by
q, we find qsx = ps and qsy = qr. From these equations and the fact that
for integers qs(x+ y) = qsx+ qsy, we find that

qs(x+ y) = ps+ qr,

which suggests that

x+ y =
p

q
+
r

s
=
ps+ qr

qs
or (p, q) + (r, s) = (ps+ qr, qs). (7.2)

This gives the familiar way of adding rational numbers by using a common
denominator.

We further note that for s �= 0, qx = p if and only if sqx = sp, (see
Problem 5.5). Since the two equations qx = p and sqx = sp have the same
solution x,

p

q
= x =

sp

sq
or (p, q) = (sp, sq). (7.3)

This says that a common nonzero factor s in the numerator and the de-
nominator may be cancelled out or, vice versa introduced.

With inspiration from the above calculations, we may now define the ra-
tional numbers to be the ordered pairs (p, q) with p and q �= 0 integers, and
we decide to write (p, q) = p

q . Inspired by (7.3), we define (p, q) = (sp, sq)
for s �= 0, thus considering (p, q) and (sp, sq) to be (two representatives of)
one and the same rational number. For example, 6

4 = 3
2 .

We next define the operations of multiplication × and addition + of
rational numbers by (7.1) and (7.2). We may further identify the rational
number (p, 1) with the integer p, since p solves the equation 1x = p. We can
thus view the rational numbers as an extension of the integers, in the same
way that the integers are an extension of the natural numbers. We note that
p+r = (p, 1)+(r, 1) = (p+r, 1) = p+r and pr = (p, 1)×(r, 1) = (pr, 1) = pr,
and thus addition and multiplication of the rational numbers that can be
identified with integers is performed as before.
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We can also define division (p, q)/(r, s) of the rational number (p, q) by
the rational number (r, s) with r �= 0, as the solution x of the equation
(r, s)x = (p, q). Since (r, s)(ps, qr) = (rps, sqr) = (p, q),

x = (p, q)/(r, s) =
(p, q)
(r, s)

= (ps, qr),

which we can also write as
p
q
r
s

=
ps

qr
.

Finally, we may order the rational numbers as follows. We define the ratio-
nal number (p, q) (with q �= 0) to be positive, writing (p, q) > 0 whenever
p and q have the same sign, and for two rational numbers (p, q) and (r, s)
we write (p, q) < (r, s) whenever (r, s)− (p, q) > 0. Note the difference can
be computed as (r, s) − (p, q) = (qr − sp, sq) because −(p, q) is just a con-
venient notation for (−p, q). Note also that −(p, q) = (−p, q) = (p,−q),
which we recognize as

−p
q

=
−p
q

=
p

−q .

The absolute value |r| of a rational number r = (p, q) = p
q is defined as

for natural numbers by

|r| =
{
r if r ≥ 0,
−r if r < 0. (7.4)

where as above −r = −(p, q) = − p
q = −p

q = p
−q .

We can now verify all the familiar rules for computing with rational
numbers by using the rules for integers already established.

Of course we use xn with x rational and n a natural number to denote
the product of n factors x. We also write

x−n =
1
xn

for natural numbers n and x �= 0. Defining x0 = 1 for x rational, we have
defined xn for x rational n integer, with x �= 0 if n < 0.

We finally check that we can indeed solve equations of the form qx = p,
or (q, 1)x = (p, 1), with q �= 0 and p integers. The solution is x = (p, q)
since (q, 1)(p, q) = (qp, q) = (p, 1).

So we have constructed the rational numbers from the integers in the
sense that we view each rational number p

q as an ordered pair (p, q) of
integers p and q �= 0 and we have specified how to compute with rational
numbers using the rules for computing with integers.

We note that any quantity computed using addition, subtraction, mul-
tiplication, and division of rational numbers (avoiding division by zero)
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always produces another rational number. In the language of mathemati-
cians, the set of rational numbers is “closed” under arithmetic operations,
since these operations do not lead out of the set. Hopefully, your (receptive)
roommate will now be satisfied.

7.3 On the Need for Rational Numbers

The need of using rational numbers is made clear in early school years. The
integers alone are too crude an instrument and we need fractions to reach
a satisfactory precision. One motivation comes from our daily experience
with measuring quantities of various sorts. When creating a set of standards
for measuring quantities, such as the English foot-pound system or the
metric system, we choose some arbitrary quantities to mark as the unit
measurement. For example, the meter or the yard for distance, the pound
or the kilogram for weight, the minute or second for time. We measure
everything in reference to these units. But rarely does a quantity measure
out to be an even number of units and so we are forced to deal with fractions
of the units. The only possible way to avoid this would be to pick extremely
small units (like the Italian lire), but this is impractical. We even give
names to some particular units of fractions; centimeters are 1/100 of meters,
millimeters are 1/1000 of a meter, inches are 1/12 of foot, ounces are 1/16
of a pound, and so on.

Consider the problem of adding 76 cm to 5 m. We do this by changing
the meters into centimeters, 5 m = 500 cm, then adding to get 576 cm.
But this is the same thing as finding a common denominator for the two
distances in terms of a centimeter, i.e. 1/100 of a meter, and adding the
result.

7.4 Decimal Expansions of Rational Numbers

The most useful way to represent a rational number is in the form of a dec-
imal expansion, such as 1/2 = 0.5, 5/2 = 2.5, and 5/4 = 1.25. In general,
a finite decimal expansion is a number of the form

±pmpm−1 · · · p2p1p0.q1q2 · · · qn, (7.5)

where the digits pm, pm−1, . . . , p0, q0, . . . , qn are each equal to one of the
natural numbers {0, 1, · · · , 9} while m and n are natural numbers. The
decimal expansion (7.5) is a shorthand notation for the number

± pm10m + pm−110m−1 + · · · + p1101 + p0100

+ q110−1 + · · · + qn−110−(n−1) + qn10−n.
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For example

432.576 = 4 × 102 + 3 × 101 + 2 × 100 + 5 × 10−1 + 7 × 10−2 + 6 × 10−3.

The integer part of the decimal number (7.5) is pmpm−1 · · · p1p0, while the
decimal or fractional part is 0.q1q2 · · · qn. For example, 432.576 = 432 +
0.576.

The decimal expansion is computed by continuing the long division algo-
rithm “past” the decimal point rather than stopping when the remainder
is found. We illustrate in Fig. 7.1.

Fig. 7.1. Using long division to obtain a decimal expansion

A finite decimal expansion is necessarily a rational number because it
is a sum of rational numbers. This can also be understood by writing
pmpm−1 · · · p1p0.q1q2 · · · qn as the quotient of the integers:

pmpm−1 · · · p1p0.q1q2 · · · qn =
pmpm−1 · · · p1p0.q1q2 · · · qn

10n
,

like 432.576 = 432576/103.

7.5 Periodic Decimal Expansions
of Rational Numbers

Computing decimal expansions of rational numbers using long division
leads immediately to an interesting observation: some decimal expansions
do not “stop”. In other words, some decimal expansions are never-ending,
that is contain an infinite number of nonzero decimal digits. For exam-
ple, the solution to the equation 15x = 10 in the Dinner Soup model is
x = 2/3 = .666 · · · . Further, 10/9 = 1.11111 · · · , as displayed in Fig. 7.2.
The word “infinite” is here to indicate that the decimal expansion contin-
ues without ever stopping. We can find many examples of infinite decimal
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Fig. 7.2. The decimal expansion of 10/9 never stops

expansions:

1
3

= .3333333333 · · ·

2
11

= .18181818181818 · · ·

4
7

= .571428571428571428571428 · · ·

We conclude that the system of rational numbers p
q with p and q �= 0

integers, and the decimal system, don’t fit completely. To express certain
rational numbers decimally is impossible with only a finite number of dec-
imals, unless we are prepared to accept some imprecision.

We note that in all the above examples of infinite decimal expansions,
the digits in the decimal expansion begin to repeat after some point. The
digits in 10/9 and 1/3 repeat in each entry, the digits in 2/11 repeat after
every two entries, and the digits in 4/7 repeat after every six entries. We
say that these decimal expansions are periodic.

In fact, if we consider the process of long division in computing the
decimal expansion of p/q, then we realize that the decimal expansion of any
rational number must either be finite (if the remainder eventually becomes
zero), or periodic (if the remainder is never zero). To see that these are the
only alternatives, we assume that the expansion is not finite. At every stage
in the division process the remainder will then be nonzero, and disregarding
the decimal point, the remainder will correspond to a natural number r
satisfying 0 < r < q. In other words, remainders can take at most q − 1
different forms. Continuing long division at most q steps must thus leave
a remainder, whose digits have come up at least once before. But after that
first repetition of remainder, the subsequent remainders will repeat in the
same way and thus the decimal expansion will eventually be periodic.
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The periodic pattern of a rational number may take a long time to begin
repeating. We give an example:

1043
439

= 2.37585421412300683371298405466970387243735763097

94988610478359908883826879271070615034168564920
27334851936218678815489749430523917995444191343
96355353075170842824601366742596810933940774487
4715261958997722095671981776765 37585421412300
68337129840546697038724373576309794988610478359
90888382687927107061503416856492027334851936218
67881548974943052391799544419134396355353075170
84282460136674259681093394077448747152619589977
22095671981776765 · · ·

Once a periodic pattern of the decimal expansion of a rational number
has developed, then we may consider the complete decimal expansion to
be known in the sense that we can give the value of any decimal of the
expansion without having to continue the long division algorithm to that
decimal. For example, we are sure that the 231th digit of 10/9 = 1.111 · · ·
is 1, and the 103th digit of .56565656 · · · is 5.

A rational number with an infinite decimal expansion cannot be exactly
represented using a finite decimal expansion. We now seek to consider the
error committed by truncating an infinite periodic expansion to a finite
one. Of course, the error must be equal to the number corresponding to
the decimals left out by truncating to a finite expansion. For example,
truncating after 3 decimals, we would have

10
9

= 1.111 + 0.0001111 · · · ,

with the error equal to 0.0001111 · · · , which certainly must be less than
10−3. Similarly, truncating after n decimals, the error would be less than
10−n.

However, since this discussion directly involves the infinite decimal ex-
pansion left out by truncation, and since we have so far not specified how
to operate with infinite decimal expansions, let us approach the problem
from a somewhat different angle. Denoting the decimal expansion of 10/9
truncated after n decimals by 1.1 · · · 1n (that is with n decimals equal to 1
after the point), we have

1.11 · · · 11n = 1 + 10−1 + 10−2 + · · · + 10−n+1 + 10−n.
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Computing the sum on the right hand side using the formula (6.3) for
a geometric sum, we have

1.11 · · ·11n =
1 − 10−n−1

1 − 0.1
=

10
9

(1 − 10−n−1), (7.6)

and thus
10
9

= 1.11 · · ·11n +
10−n

9
. (7.7)

The error committed by truncation is thus 10−n/9, which we can bound by
10−n to simplify. The error 10−n/9 will get as small as we please by taking
n large enough, and thus we can make 1.11 · · ·11n as close as we like to
10/9 by taking n large enough. This leads us to interpreting

10
9

= 1.11111111 · · ·

as meaning that we can make the numbers 1.111 · · ·1n as close as we like
to 10/9 by taking n large. In particular, we would have

|10
9

− 1.11 · · ·11n| ≤ 10−n.

Taking sufficiently many decimals in the never ending decimal expansion
of 10

9 makes the error smaller than any given positive number.
We give another example before considering the general case. Computing

we find that 2/11 = .1818181818 · · · . Taking the first m pairs of the digits
18, we get

.1818 · · ·18m =
18
100

+
18

10000
+

18
1000000

+ · · · + 18
102m

=
18
100

(

1 +
1

100
+

1
1002

+ · · · + 1
100m−1

)

=
18
100

1 − (100−1)m

1 − 100−1
=

18
100

100
99

(1 − 100−m)

=
2
11

(1 − 100−m).

that is
2
11

= 0.1818 · · ·18m +
2
11

100−m,

so that
| 2
11

− 0.1818 · · ·18m| ≤ 100−m.

We thus interpret 2/11 = .1818181818 · · · as meaning that we can make the
numbers .1818 · · ·18m as close as we like to 2/11 by taking m sufficiently
large.
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We now consider the general case of an infinite periodic decimal expan-
sion of the form

p = .q1q2 · · · qnq1q2 · · · qnq1q2 · · · qn · · · ,

where each period consists of the n digits q1 · · · qn. Truncating the decimal
expansion after m periods, we get using (6.3), as

pm =
q1q2 · · · qn

10n
+
q1q2 · · · qn

10n2
+ · · · + q1q2 · · · qn

10nm

=
q1q2 · · · qn

10n

(

1 +
1

10n
+

1
(10n)2

+ · · · + 1
(10n)m−1

)

=
q1q2 · · · qn

10n

1 − (10−n)m

1 − 10−n
=
q1q2 · · · qn
10n − 1

(
1 − (10−n)m

)
,

that is
q1q2 · · · qn
10n − 1

= pm +
q1q2 · · · qn
10n − 1

10−nm,

so that ∣
∣
∣
∣
q1q2 · · · qn
10n − 1

− pm

∣
∣
∣
∣ ≤ 10−nm.

We conclude that we may interpret

p =
q1q2 · · · qn
10n − 1

to mean that the difference between the truncated decimal expansion pm of
p and q1q2 · · · qn/(10n − 1) can be made smaller than any positive number
by taking the number of periods m large enough, that is by taking more
digits of p into account. Thus, we may view p to be equal to a rational
number, namely p = q1q2 · · · qn/(10n − 1).

Example 7.1. 0.123123123 · · · is the same as the rational number 123
99 , and

4.121212 · · · is the same as 4 + 12
9 = 4×9+12

9 = 48
9 .

We conclude that each infinite periodic decimal expansion may be con-
sidered to be equal to a rational number, and vice versa. We may thus sum-
marize the discussion in this section as the following fundamental theorem.

Theorem 7.1 The decimal expansion of a rational number is periodic.
A periodic decimal expansion is equal to a rational number.

7.6 Set Notation

We have already encountered several examples of sets, for example the
set {1, 2, 3, 4, 5} of the first 5 natural numbers, and the (infinite) set N =
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{1, 2, 3, 4, · · · } of all (possible) natural numbers. A set is defined by its
elements. For example, the set A = {1, 2, 3, 4, 5} consists of the elements
1, 2, 3, 4 and 5. To denote that an object is an element of a set we use the
symbol ∈, for example 4 ∈ A. We further have that 7 ∈ N but 7 /∈ A.
To define a set we have to somehow specify its elements. In the two given
examples we could accomplish this by simply listing its elements within the
embracing set indicators { and }. As we encounter more complicated sets we
have to somewhat develop our notation. One convenient way is to specify
the elements of a set through some relevant property. For example A =
{n ∈ N : n ≤ 5}, to be interpreted as “the set of natural numbers n such
that n ≤ 5”. For another example, the set of odd natural numbers could be
specified as {n ∈ N : n odd} or {n ∈ N : n = 2j − 1 for some j ∈ N}. The
colon : is here interpreted as “such as”.

Given sets A and B, we may construct several new sets. In particular,
we denote by A∪B the union of A and B consisting of all elements which
belong to at least one of the sets A and B, and by A∩B the intersection of
A and B consisting of all elements which belong to both A and B. Further
A\B denotes the set of elements in A which do not belong to B, which may
be interpreted as “subtracting” B (or rather B ∪A) from A, see Fig. 7.3.

Fig. 7.3. The sets A ∪B, A ∩ B and A\B

We further denote by A×B the product set of A and B which is the set
of all possible ordered pairs (a, b) where a ∈ A and b ∈ B.

Example 7.2. If A = {1, 2, 3} and B = {3, 4}, then A ∪ B = {1, 2, 3, 4},
A ∩ B = {3}, A\B = {1, 2} and A × B = {(1, 3), (1, 4), (2, 3), (2, 4), (3, 3),
(3, 4)}.

7.7 The Set Q of All Rational Numbers

It is common to use Q to denote the set of all possible rational numbers,
that is, the set of numbers x of the form x = p/q = (p, q), where p and q �= 0
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are integers. We often omit the “possible” and just say that Q denotes the
set of rational numbers, which we can write as

Q =
{

x =
p

q
: p, q ∈ Z, q �= 0

}

.

We can also describe Q as the set of finite or periodic decimal expansions.

7.8 The Rational Number Line and Intervals

Recall that we represent the integers using the integer number line, which
consists of a line on which we mark regularly spaced points. We can also use
a line to represent the rational numbers. We begin with the integer number
line and then add the rational numbers that have one decimal place:

− · · · ,−1,−.9,−.8, · · · ,−.1, 0, .1, .2, · · · , .9, 1, · · · .

Then we add the rational numbers that have two decimal places:

− · · · ,−.99,−.98, · · · ,−.01, 0, .01, .02, · · · , 98, .99, 1, · · · .

Then onto the rational numbers with 3, 4, · · · decimal places. We illustrate
in Fig. 7.4.

Fig. 7.4. Filling in the rational number line between −4 and 4 starting with
integers, rationals with one digit, and rationals with two digits, and so on

We see that there are quickly so many points to plot that the number
line looks completely solid. A solid line would mean that every number is
rational, something we discuss later. But in any case, a drawing of a number
line appears solid. We call this the rational number line.

For given rational numbers a and b with a ≤ b we say that the rational
numbers x such that a ≤ x ≤ b is a closed interval and we denote the
interval by [a, b]. We also write

[a, b] = {x ∈ Q : a ≤ x ≤ b}
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The points a and b are called the endpoints of the interval. Similarly we
define open (a, b) and half-open intervals [a, b) and (a, b] by

(a, b) = {x ∈ Q : a < x < b},

[a, b) = {x ∈ Q : a ≤ x < b}, and (a, b] = {x ∈ Q : a < x ≤ b}.
In an analogous way, we write all the rational numbers larger than a num-
ber a as

(a,∞) = {x ∈ Q : a < x} and [a,∞) = {x ∈ Q : a ≤ x}.

We write the set of numbers less than a in a similar way. We also represent
intervals graphically by marking the points on the rational line segment,
as we show in Fig. 7.5. Note how we use an open circle or a closed circle to
mark the endpoints of open and closed intervals.

.5 2

.5 < x < 2

.3 .4

.3 x .4

-8 4

-8 < x 4

.45 3

.45 x 3

Fig. 7.5. Various rational line intervals

7.9 Growth of Bacteria

We now present a model from biology related to population dynamics re-
quiring the use of rational numbers.

Certain bacteria cannot produce some of the amino acids they need for
the production of protein and cell reproduction. When such bacteria are
cultured in growth media containing sufficient amino acids, then the popu-
lation doubles in size at a regular time interval, say on the order of an hour.
If P0 is the initial population at the current time and Pn is the population
after n hours, then we have

Pn = 2Pn−1 (7.8)

for n ≥ 1. This model is similar to the model (6.5) we used to describe
the insect population in Model 6.2. If the bacteria can keep growing in this
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way, then we know from that model that Pn = 2nP0. However if there is
a limited amount of amino acid, then the bacteria begin to compete for
the resource. As a result, the population will no longer double every hour.
The question is what happens to the bacteria population as time increases?
Does it keep increasing, does it decrease to zero (die out), or does it tend
to some constant value for example?

To model this, we allow the proportionality factor 2 in (7.8) to vary with
the population in such a way that it decreases as the population increases.
For example, we assume there is a constant K > 0 such that the population
at hour n satisfies

Pn =
2

1 + Pn−1/K
Pn−1. (7.9)

With this choice, the proportionality factor 2/(1 + Pn−1/K) is always less
than 2 and clearly decreases as Pn−1 increases. We emphasize that there
are many other functions that have this behavior. The right choice is the
one that gives results that match experimental data from the laboratory. It
turns out that the choice we have made does fit experimental data well and
(7.9) has been used as a model not only for bacteria but also for certain
human populations as well as for fisheries.

We now seek a formula expressing how Pn depends on n. We define
Qn = 1/Pn, then (7.9) implies (check this!) that

Qn =
Qn−1

2
+

1
2K

.

Now we use induction as we did for the insect model:

Qn =
1
2
Qn−1 +

1
2K

=
1
22
Qn−2 +

1
2K

+
1

4K

=
1
23
Qn−3 +

1
2K

+
1

4K
1

8K
...

=
1
2n
Q0 +

1
2K

(

1 +
1
2

+ · · · + 1
2n−1

)

With each hour that passes, we add another term onto the sum giving Qn

while we want to figure out what happens to Qn as n increases. Using the
formula for the sum of the geometric series (6.3), which turns out to hold
for the sum of rational numbers as well as for integers, we find

Pn =
1
Qn

=
1

1
2nQ0 + 1

K

(
1 − 1

2n

) . (7.10)
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7.10 Chemical Equilibrium

The solubility of ionic precipitates is an important issue in analytical chem-
istry. For the equilibrium

A x B y � xA y+ + yB x− (7.11)

for a saturated solution of slightly soluble strong electrolytes, the solubility
product constant is given by

Ksp = [ A y+]x[ B x−]y. (7.12)

The solubility product constant is useful for predicting whether or not
a precipitate can form in a given set of conditions and the solubility of an
electrolyte for example.

We will use it to determine the solubility of Ba(IO 3 ) 2 in a .020 mole/liter
solution of KIO 3:

Ba(IO 3 ) 2 � Ba 2+ + 2 IO−
3

given that the Ksp for Ba(IO 3 ) 2 is 1.57 × 10−9. We let S denote the
solubility of Ba(IO 3 ) 2. By a mass law, we know that S = [ Ba 2+] while
iodate ions come from both the KIO 3 and the Ba(IO 3 ) 2. The total iodate
concentration is the sum of these contributions,

[ IO−
3 ] = (.02 + 2S).

Substituting these into (7.12), we get the equation

S (.02 + 2S)2 = 1.57 × 10−9. (7.13)

Chapter 7 Problems

7.1. Explain to your roommate what rational numbers are and how to manipu-
late them. Change roles in this game.

7.2. Prove the commutative, associative and distributive law for rational num-
bers.

7.3. Verify the commutative and distributive rules for addition and multiplica-
tion of rational numbers from the given definitions of addition and multiplication.

7.4. Using the usual definitions for multiplication and additions of rational
numbers show that if r, s and t are rational numbers, then r(s+ t) = rs+ rt.
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7.5. Determine the set of x satisfying the following inequalities:

(a) |3x − 4| ≤ 1 (b) |2 − 5x| < 6

(c) |14x − 6| > 7 (d) |2 − 8x| ≥ 3

7.6. Verify that for rational numbers r, s, and t

|s − t| ≤ |s| + |t|, (7.14)

|s − t| ≤ |s− u| + |t− u|, (7.15)

and
|st| = |s| |t|. (7.16)

7.7. A person running on a large ship runs 8.8 feet/second while heading toward
the bow while the ship is moving at 16 miles/hour. What is the speed of the
runner relative to a stationary observer? Interpret the computation giving the
solution as finding a common denominator.

7.8. Compute decimal expansions for (a) 3/7, (b) 2/13, and (c) 5/17.

7.9. Compute decimal expansions for (a) 432/125 and (b) 47.8/80.

7.10. Find rational numbers corresponding to the decimal expansions

(a) 42424242 · · · , (b) .881188118811 · · · , and (c) .4290542905 · · · .

7.11. Represent the following sets as parts of the rational number line:

(a) {x ∈ Q : −3 < x}
(b) {x ∈ Q : −1 < x ≤ 2 and 0 < x < 4}
(c) {x ∈ Q : −1 ≤ x ≤ 3 or − 2 < x < 2}
(d) {x ∈ Q : x ≤ 1 or x > 2}.

7.12. Find an equation for the number of milligrams of Ba(IO 3)2 that can be
dissolved in 150 ml of water at 25◦ C with Ksp = 1.57× 10−9 moles2/liter3. The
reaction is

Ba(IO 3 ) 2 � Ba 2+ + 2 IO −
3

7.13. You invest some money in a bond that yields 9% interest each year.
Assuming that you invest any money you make from interest in more bonds for
an initial investment of $C0, write down a model giving the amount of money
you have after n years. View the growth of your capital with n using MATLAB�

for example.



8
Pythagoras and Euclid

(1) At its deepest level, reality is mathematical in nature.
(2) Philosophy can be used for spiritual purification.
(3) The soul can rise to union with the divine.
(4) Certain symbols have a mystical significance.
(5) All brothers of the order should observe strict loyalty and secrecy.
(Beliefs of Pythagoras)

8.1 Introduction

In this chapter, we discuss a couple of basic useful facts from geometry.
In doing so, we make connections to the origins of mathematics in ancient
Greece 2500 years ago and in particular to two heros; Pythagoras and
Euclid. In their work, we find roots of most of the topics we will meet
below.

8.2 Pythagoras Theorem

You have probably heard about Pythagoras theorem for a triangle with
a right angle since it is a very fundamental and important result of ge-
ometry. Recall, we used Pythagoras theorem in the Muddy Yard model for
example. Pythagoras theorem states that if the sides next to the right angle
have lengths a and b and the side opposite the right angle (the hypotenuse)
has length c, then (see Fig. 8.1).
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a

b
c

c2 = a2 + b2

Fig. 8.1. Pythagoras’ theorem

Suppose that our roommate has never heard about this result, as unlikely
as it may be. How can we convince her/him that Pythagoras theorem
is true? That is, how can we prove it? Well, we could argue as follows:
Construct a rectangle surrounding the triangle by drawing a line parallel
to the hypotenuse through the right angle corner and lines at right angles to
the hypotenuse through the other two corners, see Fig. 8.2. We have now
three triangles, two new adjoined to the original one. All these triangles
have the same form, that is they have the same angles: one right angle of
90◦, one angle of size α and one of size β, see Fig. 8.2. This is because
α + β = 90◦, since the sum of the angles of a triangle is always 180◦,
and a right angle is 90◦. Since the three triangles have the same angles,
they have the same form, or in other words, the triangles are similar. This
means that the ratio of corresponding sides is equal for all three triangles.
Using this fact twice, we see that x/a = a/c and y/b = b/c. We conclude
that c = x + y = a2/c + b2/c or c2 = a2 + b2, which is the statement of
Pythagoras theorem.

a

b
c

x

y

α

α

α

β

β

β

Fig. 8.2. Proof of Pythagoras theorem
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That should convince our roommate granted that she/he is reasonably
familiar with (i) the fact that the sum of the angles of a triangle is 180◦,
and (ii) the concept of similar triangles. If not, we may have to help our
roommate through the following two sections.

8.3 The Sum of the Angles of a Triangle is 180◦

Consider a triangle with corners A, B and C and angles α, β and γ ac-
cording to Fig. 8.3. We recall that the angle between two lines (or line
segments) meeting at a point, measures how much one of the lines is ro-
tated with respect to the other line. The most natural unit for this is “turn”
or “revolution”. The arm of a clock makes a full turn from 12 to 12 and
a half turn from 12 to 6. When we turn the first page of our newspaper
over and all the way around, we have rotated it one full turn. If we have
plenty of space, like when sitting at the breakfast table alone, we just turn
the page over which makes an angle of half a turn. We commonly use a sys-
tem of degrees to measure angles, where one full turn corresponds to 360
degrees. Of course half a turn is the same as 180 degrees and quarter of
a turn is 90 degrees, which is a right angle.

A B

C

α

α

β

β

γ

Fig. 8.3. The angles of a triangle sum up to 180◦

Returning to the triangle in Fig. 8.3, we would like to understand why
α + β + γ = 180◦. To do this, draw a straight line parallel to the base
AB through the corner C opposite to the base. The angles formed at C
are α, γ and β, and their sum thus is 180◦, which we wanted to show.
We here use the fact that a line crossing two parallel lines crosses the two
parallel lines at equal angles, see Fig. 8.4. This statement is Euclid’s famous
fifth axiom for geometry, which is called the parallel axiom. An axiom is
something we take for granted without asking for any motivation. We may
accept the validity of an axiom on intuitive grounds, or just accept it as
a rule of a game. Euclidean geometry is based on five axioms, the first of
which states that through two different points there is a unique straight
line, see Fig. 8.5. In the axioms, undefined concepts like point and straight
line appear. When we think of these concepts, we use our intuition from
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α

α

Fig. 8.4. Two parallel lines intersected by a third one

A

B

Fig. 8.5. Euclids first axiom: through two different points there is a unique
straight line

our experience of the real world. The second axiom states that a piece of
a straight line can be extended to a straight line. The third axiom states
that one can construct a circle with a given center and given radius and
the fourth axiom states that all right angles are equal.

Euclidean geometry concerns plane geometry, which may be thought of
as the geometry on a flat surface. We may think of a soccer field as being
flat, but we know that very large pieces of surface of the Earth cannot
be considered to be fully flat. Geometry on curved surfaces is called non-
Euclidean geometry. Non-Euclidean geometry has some surprising features
and in particular there is no parallel axiom. Consequently, the sum of the
angles of a triangle on the curved surface of the Earth may be different from
180◦. See Fig. 8.6, where the sum of the angles of the indicated triangle
with three right angles (can you see it?) is 270◦, and not at all 180◦.

Fig. 8.6. A “triangle” on the Earth with one corner at the North Pole and two
corners at the Equator with longitude difference of 90◦
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8.4 Similar Triangles

Two triangles with the same angles are said to be similar. Euclid says that
the ratio of corresponding sides of two similar triangles are the same. If
a triangle has sides of lengths a, b and c, then a similar triangle will have
side lengths ā = ka, b̄ = kb and c̄ = kc, where k > 0 is a common scale
factor, in other words the ratio of the corresponding side lengths is the
same: ka

kb = a
b , ka

kc = a
c and kb

kc = b
c . Another way of viewing this fact is

to say that the angles of a triangle do not change if we change the size
of the triangle by changing the side lengths with a common factor. This
is not true in non-Euclidean geometry. If we increase the size of a (large)
triangle on the surface of the Earth, then the angles will increase. We pose
as a challenge to the reader the problem of proving from Euclid’s axioms
that similar triangles indeed have proportional sides, see Problem 8.4.

a

bc

ā

b̄c̄

a/b = ā/b̄

Fig. 8.7. The sides of similar triangles are proportional

8.5 When Are Two Straight Lines Orthogonal?

We continue with an application of Pythagoras theorem that is of fun-
damental importance in both calculus and linear algebra, and which has
served as the basic theoretical tool of a carpenter through the centuries.
We ask the question: how can we determine if two intersecting straight
lines of the Euclidean plane intersect under a right angle, that is if the two
straight lines are orthogonal or not, see Fig. 8.8. This question typically
comes up when constructing the foundation of a rectangular building. As-
sume that the two lines intersect at the point O and assume one of the lines
passes through a point A and the other through a point B in the plane,
see Fig. 8.8. We now consider the triangle AOB and ask if the angle AOB
is equal to 90◦, that is if the side OA is orthogonal to the side OB, see
Fig. 8.9 We could try to check this directly with a portable right angle,
but that would always leave some room for incorrect decision if the dimen-
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90◦?

Fig. 8.8. Are these two (pieces of) lines orthogonal?
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c2 = a2 + b2

Fig. 8.9. Test of right-angledness

sion of the portable right angle is much smaller than the triangle AOB
itself. This would normally be the case when seeking to determine where
to put the corners of a foundation of a building. Another possibility is to
use Pythagoras theorem. We would expect that if

a2 + b2 = c2 (8.1)

where a is the length of the side OA, b is the length of side OB and c
that of the side AB, see Fig. 8.9, then the angle BOA would be 90◦. We
shall prove that this is so shortly, but let’s first see how a carpenter would
use this result in practice. He would then cut three pieces of a string, of
length 3, 4 and 5 units. The beauty of these numbers is that they fit into
the equation (8.1):

32 + 42 = 52 (8.2)

If our conjecture is correct, then a triangle with sides 3, 4 and 5 will have
a right angle. Assuming now that a = 3, b = 4 we could check if the
triangle AOB has a right angle by putting the string of length 5 along AB
and check if c = 5. If so, then the angle AOB would be 90◦. Using three
pieces of strings of length 3, 4 and 5 units, the carpenter can thus construct
a right angle. The choice of units is important in practical applications of
this idea. Very short strings would be cheap but the precision would suffer,
and very long strings would be impractical to handle.

Let’s now go back to the conjecture that if a2 + b2 = c2 then the triangle
AOB would have a right angle. To convince ourselves we could following
Euclid argue as follows: Construct a right-angled triangle DQE with the
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right angle at Q and with the length ofDQ equal to a and the length of EQ
equal to b. Then by Pythagoras theorem the length of DE squared would
be equal to a2 + b2. But we assume that c2 = a2 + b2 and thus the length
of DE is c. This means that the triangles DQE and AOB would have the
same side lengths and thus would be similar. Hence, the angle AOB would
be equal to the angle DQE, which is equal to 90◦, and we have proved that
AOB is right angled.

We can use the equality a2 + b2 = c2 as a test of orthogonality of the
sides OA and OB using the trick of the carpenter, but this could still leave
some uncertainty, for instance if we had to use strings of dimension very
much smaller than the foundation.

Suppose now that we know the coordinates (a1, a2) of the corner A and
the coordinates (b1, b2) of corner B. This could be the case if the triangle
is in fact defined by specifying these coordinates, which could happen if we
use a map to identify the triangle. Then we would have

a2 = a2
1 + a2

2, b2 = b21 + b22, c2 = (b1 − a1)2 + (b2 − a2)2

where the last equality follows from Fig. 8.10. We conclude that

c2 = b21 + a2
1 − 2b1a1 + b22 + a2

2 − 2b2a2 = a2 + b2 − 2(a1b1 + a2b2)

We see that a2 + b2 = c2 if and only if

a1b1 + a2b2 = 0. (8.3)

Thus, our test of orthogonality is reduced to checking the algebraic relation
a1b1 + a2b2 = 0. If we know the coordinates (a1, a2) and (b1, b2), this con-
dition can be checked by multiplying numbers and is therefore not subject
to taste or individual decision (up to round-off)

The magic formula (8.3) for checking orthogonality will play an impor-
tant role below. It translates a geometric fact (orthogonality) into an arith-
metic equality.

O a1

a2

b1

b2

c

A

B

Fig. 8.10.
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8.6 The GPS Navigator

GPS (Global Positioning System) is a wonderful new invention. It was de-
veloped by the U.S. Military in the 1980s, but now has important civil
use. You can buy at GPS receiver for less than 200 dollars and carry it
in your pocket on your hiking tour in the mountains, in your sailing boat
out on the ocean, or in your car driving through the desert or the city
of Los Angeles. At a press of a button on the receiver, it gives you your
present coordinates: latitude and longitude as an ordered pair of num-
bers (57.25, 12.60), where the first number (57.25) is the latitude, and
the second number is the longitude (12.60). The precision may be about
10 meters. More advanced use of GPS may give you a precision as good as
1 millimeter.

Knowing your coordinates, you can identify your present position on
a map and decide in what direction to proceed to come to your goal.
GPS thus solves the main problem of navigation: to figure out your co-
ordinates on a map. Before the GPS this could be very difficult and the
results could be very unreliable. Determining the latitude was relatively
easy if you could see the sun and measure its height over the horizon
at noon using a sextant. Determining the longitude was much more dif-
ficult and would require a good clock. The main motivation for all the
work that went into developing accurate clocks or chronometers in the
18th century, was to determine your longitude at sea. The results be-
fore the chronometer could be grossly inaccurate: you could believe, like
Columbus, that you had come to India, while in fact you were close to
America!

GPS is based on a simple (and clever) mathematical principle. We present
the basic idea supposing that our world is a Euclidean plane equipped with
a coordinate system. Our problem is to find our coordinates. Suppose we
can measure our distance to two points A and B with known positions,
which we denote by dA and dB. With the available information, we can say
that we must be located at one of the points of intersection of the circle
with center A and radius dA and the circle with center B and radius dB ,
according to Fig. 8.11. Note that Euclid’s third axiom tells us that the two
circles do exist.

To find the coordinates (x1, x2) of the intersection points, we have to
solve the following system of two equations in the two unknowns x1 and
x2:

(x1 − a1)2 + (x2 − a2)2 = d2
A (x1 − b1)2 + (x2 − b2)2 = d2

B .

If we can solve this system of equations, we can determine where we are,
granted we have some extra information which tells us which of the two
possible solutions applies. In three dimensions, we would have to determine
our distance to three points in space with known locations and solve a cor-
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A
B

?

dA
dB

Fig. 8.11. Positioning using GPS

responding system of three equations with three unknowns, corresponding
to the intersection of three spheres.

GPS uses a system of 24 satellites deployed in groups of 4 in each of 6
orbital planes. Each satellite has a circular orbit of radius about 26.000
km and the orbital period is 12 hours. Each satellite has an accurate
clock and there is a surveying system that keeps track of the positions
of the satellites at each time instant. A GPS receiver receives a signal
from each visible satellite which encodes the position and clock time of
the satellite. The receiver measures the time delay, by comparing the re-
ceived time with its own time, and then computes the distance to the
satellite knowing the speed of light. Knowing the distance to three satel-
lites and their positions, the GPS then computes its position as one of
the two intersection points of three spheres. One of these points will be
way out in space and can be eliminated if we are sure that we are on
Earth. The result is our location in space specified with latitude, longi-
tude and height above the sea. In practice, a 4th satellite is needed to
calibrate the clocks of the satellites and the receiver, which is necessary
to compute the distances correctly. If more than 4 satellites are visible,
the GPS computes a least squares approximate solution to the resulting
over-determined system of equations, and the precision increases with the
number of satellites.

GPS gives a coupling of geometry to arithmetics or algebra. Each physical
point is space is connected to a triple of numbers representing latitude,
longitude and height.
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8.7 Geometric Definition of sin(v) and cos(v)

Consider a right-angled triangle with an angle v, and sides of length a, b
and c, as in Fig. 8.12. We recall the definitions

cos(v) =
a

c
sin(v) =

b

c
.

Note that the values of cos(v) and sin(v) do not depend of the particular
triangle we have used, only on v. This is because another right-angled tri-
angle with the same angle v and sides ā, b̄ and c̄ as to the right in Fig. 8.12
would be similar to the one considered first, and ratios of corresponding
pairs of sides in similar triangles are the same, as we have concluded be-
fore. In other words, a/c = ā/c̄ and b/c = b̄/c̄. For example, we may use
a triangle with c = 1 in which case cos(v) = a and sin(v) = b. If we imbed
such a triangle in the unit circle x2

1 +x2
2 = 1 as illustrated in Fig. 8.13, then

a = x1 and b = x2. That is, cos(v) = x1 and sin(v) = x2. This imbedding
also makes it possible to extend the definition of cos(v) and sin(v), and in
particular, to angles v with 90◦ ≤ v < 180◦.

8.8 Geometric Proof of Addition Formulas

a

b
c

ā

b̄
c̄

vv

Fig. 8.12. cos(v) = a/c and sin(v) = b/c

v
x1

x1

x2

x2

(x1, x2)

x2
1 + x2

2 = 1

1

Fig. 8.13. cos(v) = x1 and sin(v) = x2
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for cos(v)

As an application of the definition of sin(v) and cos(v), we give a geometric
proof of the following infamous formula,

cos(β − α) = cos(β) cos(α) + sin(β) sin(α) (8.4)

The proof is given in the following figure and is based on using the defini-
tions of cos(v) and sin(v) with v = α, v = β and v = β − α, respectively.
Consider the two right-angled triangles to the left in Fig. 8.14 with a com-
mon side of length 1, and with the lengths of the other sides expressed in
terms of sines and cosines of the present angles. To the right in Fig. 8.14,
we have formed two other right-angled triangles in the same figure, both
with an angle β. From the definition of cos(β) and sin(β), respectively, we
find that the base in the larger left triangle is cos(β) cos(α) and the base
in the smaller upper right triangle is sin(β) sin(α). We thus conclude that
cos(β − α) = cos(β) cos(α) + sin(β) sin(α).

1

α

β

ββ − α

cos(α)cos(α)

sin(α)sin(α)

cos(β−α) cos(β) cos(α)

sin(β) sin(α)

Fig. 8.14. Why cos(β − α) = cos(β) cos(α) + sin(β) sin(α)

From Fig. 8.14, we can similarly conclude that

sin(β − α) = sin(β) cos(α) − cos(β) sin(α). (8.5)

Below,, we shall redefine cos(v) and sin(v) as the solutions of certain funda-
mental differential equations. In particular, this will define cos(v) and sin(v)
for arbitrary “angles” v, including vs greater than 180◦ and less than 0◦, the
latter corresponding to angles obtained by moving the point (x1, x2) clock-
wise from (1, 0) on the unit circle in Fig. 8.13, with sin(v) = − sin(−v)
and cos(v) = cos(−v) in accordance with the formulas cos(v) = x1 and
sin(v) = x2 above.
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8.9 Remembering Some Area Formulas

We remind the reader about the following well-known formulas for the areas
of rectangles, triangles, and circles, shown in Fig. 8.15. Below we will come
back to these basic formulas and motivate them more closely.

Fig. 8.15. Some common formulas for areas A

8.10 Greek Mathematics

Greek mathematics is dominated by the schools of Pythagoras and Euclid.
Pythagoras’ school is based on numbers, that is arithmetic, and Euclid’s
on geometry. 2000 years later in the 17th century, Descartes fused the two
approaches together by creating analytic geometry.

Mathematics was traditionally used in Babylonia and Greece for practical
calculations in astronomy and navigation et cetera, while the Pythagoreans
“transformed mathematics into an education for aristocrats (free men) from
being a skill of slaves”. As a result experimental science and mechanics
became poorly developed in the classical Greek period. Instead the principle
of logical deduction was dominating.

Pythagoras was born 585 B.C. on the island Samos off the coast of Asia
Minor and founded his own school on Croton, a Greek settlement in south-
ern Italy. The Pythagorean school was a brotherhood that kept its deep-
est knowledge secret. The Pythagoreans associated with aristocrats and
Pythagoras himself was murdered for political reasons about 497 B.C., af-
ter which his followers spread over Greece.

The Platonic school, called the Academy, was founded in Athens 387
B.C. by Plato (427–347 B.C), a great idealistic philosopher. Plato was
a follower of the Pythagoreans and said that “arithmetic has a very great
and elevating effect, compelling the soul to reason about abstract number,
and rebelling against the introduction of visible or tangible objects into the
argument. . .” Plato liked mathematics because it gave evidence of existence
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of that wonderful world of perfect objects like numbers, triangles, points, et
cetera, with which Plato was so enthralled. Plate considered the real world
to be imperfect and corrupt.

The discovery (we’ll come back to this below) that the length of the
diagonal of a square of side one, represented by the number

√
2, could not

be expressed as the quotient of two natural numbers, that is that
√

2 is
not a rational number, was a strong blow to Pythagorean’s belief that the
universe could be understood through relations between natural numbers.
Ultimately, this led to the development of the Euclidean school based on
geometry instead of arithmetic, where the irrational nature of

√
2 could be

handled, or more precisely avoided. For Euclid, the diagonal of a square was
just a geometric entity, which simply had a certain length. One did not have
to express it using numbers. The length was what it was, namely the length
of the diagonal of a square of side one. Similarly, Euclid “geometrized”
arithmetic. For example, the product ab of two numbers a and b can be
viewed as the area of the rectangle with sides a and b.

The prime example of a system based on logical deduction is the Ele-
ments, which is the monumental treatise on geometry in thirteen books
by Euclid. The development proceeds from axioms and definitions through
theorems derived by using the rules of logic.

A particular language has developed for expressing logical dependencies.
For example, A ⇒ B means “if A then B”, that is, B follows from A, so
that if A is valid then B is also valid, also expressed as “A implies B”.
Similarly A⇐ B means that A follows from B. If A implies B and also B
implies A, we say that A and B are equivalent, expressed as A⇔ B.

Example 8.1. x > 0 ⇒ x+ 1 > 0.

Book I begins with definitions and axioms, and continues with theorems
on congruence, parallel lines, and proves the Pythagorean theorem. Book
I-IV all treat rectilinear figures made up by straight line segments. Book V
concerns proportions (!) and is considered as maybe the greatest achieve-
ments of Euclidean geometry. Book VI treats similar figures (!!). Books
VII-IX concern natural numbers, and Book X goes into irrational numbers
like

√
2. Books XI, XII and XIII concern geometry in three dimensions and

the method of exhaustion connected to computing the area of curvilinear
figures or volumes.

8.11 The Euclidean Plane Q
2

If we accept the parallel axiom, which in particular leads to the conclusion
that the sum of the angles of a triangle is 180◦ as we saw above, this means
that effectively we are assuming that we are working on a flat surface or
a Euclidean plane.
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We thus assume the reader has an intuitive idea of a Euclidean plane,
to be thought of as a very large flat surface extending in all directions
without any borders. For instance, like an endless flat parking place without
a single car. In this Euclidean plane, which we imagine consists of points,
we imagine a coordinate system consisting of two straight lines in the plane
meeting at a right angle at a point which we call the origin. We imagine
each coordinate axis to be a copy of the line of rational numbers Q, see
Fig. 8.16.

x1

x2

O

(x1, x2)

Fig. 8.16. Coordinate system of the Euclidean plane

We identify one coordinate axis as axis 1 and the other as coordinate
axis 2. We can then associate to each point in the plane two coordinates x1

and x2, where x1 represents the intersection with axis 1 of the line through
the point parallel to axis 2 and vice versa. We write the coordinates as
(x1, x2), which we think of as an ordered pair of rational numbers with
a first component x1 ∈ Q and a second component x2 ∈ Q. We thus seek
to represent the Euclidean plane as the set Q

2 = {(x1, x2) : x1, x2 ∈ Q},
that is, the set of ordered pairs (x1, x2) with x1 and x2 rational numbers.
To each point in the Euclidean plane corresponds its coordinates, which is
an ordered pair of rational numbers, and to each ordered pair of rational
numbers corresponds the point in the plane with those coordinates.

8.12 From Pythagoras to Euclid to Descartes

The idea is thus to associate to each geometrical point of the Euclidean
plane, its coordinates as an ordered pair of rational numbers. This cou-
ples geometrical points to arithmetic, or algebra based on numbers, and is
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a most basic and fruitful connection to make. This was the idea of Descartes
who followed the idea of Pythagoras to base geometry on numbers. Euclid
turned this around and based numbers on geometry.

We will come back to the coupling of geometry and algebra many times
below. It is probably the most basic idea of the whole of mathematics.
The power comes from associating numbers to points in space, and then
working with numbers instead of points. This is the “arithmetrization” of
geometry of Descartes in the 17th century, which preceded Calculus and
changed the history of mankind.

However, following the idea of Pythagoras and Descartes to base geom-
etry on numbers, we will run into a quite serious difficulty which will force
us to extend the rational numbers to real numbers including also so called
irrational numbers. This exciting story will be unraveled below.

8.13 Non-Euclidean Geometry

But, not all geometry that is useful is based on Euclid’s axioms. In this cen-
tury, for example, physicists have used non-Euclidean geometry to explain
how the universe behaves. One of the first people to consider non-Euclidean
geometry was the great mathematician Gauss.

Gauss’ interest in non-Euclidean geometry gives a good picture of how
his mind worked. By the time Gauss was sixteen, he had begun to se-
riously question Euclidean geometry. At the time that Gauss lived, Eu-
clidean geometry had obtained an almost holy status and was held by
many mathematicians and philosophers to be one of the higher truths that
could never be questioned. Yet, Gauss was bothered by the fact that Eu-
clidean geometry rested on postulates that apparently could not be proved,
such as two parallel lines cannot meet. He went on to develop a theory of
non-Euclidean geometry in which parallel lines can meet and this theory
seemed to be as good as Euclidean geometry for describing the world.
Gauss did not publish his theory, fearing too much controversy, but he
decided that it should be tested. In Euclidean geometry, the sum of the
angles in a triangle add up to 180◦ while in the non-Euclidean geome-
try this is not true. So centuries before the age of modern physics, Gauss
conducted an experiment to see if the universe is “curved” by measuring
the angles in the triangle made up by three mountain peaks. Unfortu-
nately, the accuracy of his instruments was not good enough to settle the
question.
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Chapter 8 Problems

8.1. Which point has the coordinates (latitude-longitude) (57.25, 12.60)? Deter-
mine your own coordinates.

8.2. Derive (8.5) from Fig. 8.14.

8.3. Give another proof of Pythagoras’ Theorem.

8.4. (a) Prove from Euclid’s axioms that the sides of two triangles with the
same angles are proportional (Hint: use the 5th axiom a lot). (b) Prove that the
three lines bisecting each angle of a triangle, intersect at a common point inside
the triangle. (Hint: Decompose the given triangle into three triangles joining
the corners with the point intersection of two of the bisectors). (c) Prove that
the three lines joining each corner of a given triangle with the mid-point of the
opposite side, intersect at a common point inside the triangle.

Fig. 8.17. Two classical tools



9
What is a Function?

He who loves practice without theory is like the sailor who boards
ship without rudder and compass and never knows where he may
cast. (Leonardo da Vinci)

All Bibles or sacred codes have been the causes of the following
Errors:
1. That Man has two real existing principles, Viz: a Body & a Soul.
2. That Energy, call’d Evil, is alone from the Body; & that Reason,
call’d Good, is alone from the Soul.
3. That God will torment Man in Eternity for following his Energies.
But the following Contraries to these are True:
1. Man has no Body distinct from his Soul; for that call’d Body is
a portion of Soul discern’d by the five Senses, the chief inlets of Soul
in this age.
2. Energy is the only life and is from the Body: and Reason is the
bound or outward circumference of Energy.
3. Energy is Eternal Delight. (William Blake 1757–1827)

9.1 Introduction

The concept of a function is fundamental in mathematics. We already met
this concept in the context of the Dinner Soup model, where the total cost
was 15x (dollars) if the amount of beef was x (pounds). For every amount
of beef x, there is a corresponding total cost 15x. We say that the total
cost 15x is a function of, or depends on, the amount of beef x.



104 9. What is a Function?

The term function and the mathematical notation we use today was
introduced by Leibniz (1646–1716), who said that f(x), which reads “f of
x”, is a function of x if for each value of x in some prescribed set of values
over which x can vary, there is assigned a unique value f(x). In the Dinner
Soup model f(x) = 15x. It is helpful to think of x as the input, while f(x)
is the corresponding output, so that as the value of x varies, the value of
f(x) varies according to the assignment. Correspondingly, we often write
x → f(x) to signify that x is mapped onto f(x). We also think of the
function f as a “machine” that transforms x into f(x):

x
f
→ f(x),

see also Fig. 9.1.

f

x
f(x)

Df Rf

Fig. 9.1. Illustration of f : Df → Rf

We refer to x as a variable since x can take different values, and x is
also called the argument of the function. The prescribed set of values over
which x can vary is called the domain of the function f and is denoted by
D(f). The set of values f(x) corresponding to the values of x in the domain
D(f), is called the range R(f) of f(x). As x varies over the domain D(f),
the corresponding function value f(x) varies over R(f). We often write this
symbolically as f : D(f) → R(f) indicating that for each x ∈ D(f) there
is a value f(x) ∈ R(f) assigned.

In the context of the Dinner Soup model with f(x) = 15x, we may choose
D(f) = [0, 1], if we decide that the amount of beef x can vary in the interval
[0, 1], in which case R(f) = [0, 15]. For each amount x of beef in the interval
[0, 1], there is a corresponding total cost f(x) = 15x in the interval [0, 15].
Again: the total cost 15x is a function of the amount of beef x. We may
also choose the domain D(f) to be some other set of possible values of the
amount of beef x such as D(f) = [a, b], where a and b are positive rational
numbers, with the corresponding range R(f) = [15a, 15b], or D(f) = Q

+

with the corresponding range R(f) = Q
+, where Q

+ is the set of positive
rational numbers. We may even consider the function x → f(x) = 15x
with D(f) = Q and the corresponding range R(f) = Q, which would lead
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outside the Dinner Soup model since there x is non-negative. For a given
assignment x→ f(x), that is, a given function f(x), we may thus associate
different domains D(f) and corresponding ranges R(f) depending on the
setting.

It is common to assign a variable name to the output of a function,
for example we may write y = f(x). Thus, the value of the variable y
is given by the value f(x) assigned to the variable x. We therefore call
x the independent variable and y the dependent variable. The independent
variable x takes on values in the domainD(f), while the dependent variable
y takes on values in the range R(f).

Note that the names we use for the independent variable and the depen-
dent variable for a given function f can be changed. The names x and y
are common, but there is nothing special about these letters. For example,
z = f(u) denotes the same function if we do not change f , i.e. the function
y = 15x can just as well be written z = 15u. In both cases, to a given
number x or u the function f assigns that number multiplied by 15, that
is 15x or 15u. Thus we refer to “the function f(x)” while in fact it would
be more correct to just say “the function f”, because f is the “name” of
the function, while f(x) is more like a description or definition of the func-
tion. Nevertheless we will often use the somewhat sloppy language “the
function f(x)” because it identifies both the name of the function and its
definition/description.

Example 9.1. The function x → f(x) = x2, or in short the function
f(x) = x2, may be considered with domain D(f) = Q

+ and range
R(f) = Q

+, but also with domain D(f) = Q and again R(f) = Q
+, or

with D(f) = Z, and R(f) = {0,±1,±2,±4, . . .}. We illustrate in Fig. 9.2.

−1 0 1 2 3 4 5 −1 0 1 2 3 4 5

Df Rf

f(x) = x2

Fig. 9.2. Illustration of f : Q → Q
+ with f(x) = x2

Example 9.2. For the function f(z) = z + 3 we may choose, for example,
D(f) = N and R(f) = {4, 5, 6, . . .}, or D(f) = Z and R(f) = Z.

Example 9.3. We may consider the function f(n) = 2−n with D(f) = N

and R(f) = { 1
2 ,

1
4 ,

1
8 , . . .}.

Example 9.4. For the function x→ f(x) = 1/x we may choose D(f) = Q
+

and R(f) = Q
+. For any given x in Q

+, the value f(x) = 1/x is in Q
+,

and thus R(f) is a subset of Q
+. Correspondingly, for any given y in Q

+
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there is an x in Q
+ with y = 1/x, and thus R(f) = Q

+, that is R(f) fills
up the whole of Q

+.

While the domain D(f) of a function f(x) often is given by the context
or the nature of f(x), it is often difficult to exactly determine the corre-
sponding range R(f). We therefore often interpret f : D(f) → B to mean
that for each x in D(f) there is an assigned value f(x) that belongs to
the set B. The range R(f) is thus included in B, but the set B may be
bigger than R(f). This relieves us from figuring out exactly what set R(f)
is, which would be required to give f : D(f) → R(f) substance. We say
that f maps D(f) onto R(f) since every element of the set R(f) is of the
form f(x) for some x ∈ D(f), and writing f : D(f) → B we say that f
maps D(f) into the set B.

The notation f : D(f) → B then rather serves the purpose of describ-
ing the nature or type of the function values f(x), than more precisely
what function values are assumed as x varies over D(f) For example, writ-
ing f : D(f) → N indicates that the function values f(x) are natural
numbers. Below we will meet functions x → f(x), where the variable x
does not represent just a single number, but something more general like
a pair of numbers, and likewise f(x) may be a pair of numbers. Writing
f : D(f) → B with the proper sets D(f) and B, may contain the informa-
tion that x is a number and f(x) is pair of numbers. We will meet many
concrete examples below.

Example 9.5. The function f(x) = x2 satisfies f : Q → [0,∞) with
D(f) = Q and R(f) = [0,∞), but we can also write f : Q → Q, indi-
cating that x2 is a rational number if x is, see Fig. 9.2.

Example 9.6. The function

f(x) =
x3 − 4x2 + 1

(x − 4)(x− 2)(x+ 3)

is defined for all rational numbers x �= 4, 2,−3, so it is natural to define
D(f) = {x ∈ Q, x �= 4, x �= 2, x �= −3}. It is often the case that we take
the domain to be the largest set of numbers for which a function is defined.
The range is hard to compute, but certainly we have f : D(f) → Q.

9.2 Functions in Daily Life

In daily life, we stumble over functions right and left. A car dealer assigns
a price f(x), which is a number, to each car x in his lot. Here D(f) may
be a set of numbers if each car is identified by a number, or D(f) may be
some other listing of the cars such as {Chevy85blue, Olds93pink,. . . }, and
the range R(f) is the set of all different prices of the cars in D(f). When
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the government makes out our tax bill, it is assigning one number f(x),
representing the amount we owe, to another number x, representing our
salary. Both the domain D(f) and the range R(f) in this example change
a lot depending on the political winds.

Any quantity which varies over time may be viewed as a function of time.
The daily maximum temperature in degrees Celsius in Stockholm during
1999 is a certain function f(x) of the day x of the year, with D(f) =
{1, 2, . . . , 365} and R(f) normally a subset of [−30, 30]. The price f(x)
of a stock during one day of trade at the Stockholm Stock Exchange is
a function of the time x of the day, with D(f) = [10.00, 17.00] and R(f)
the range of variation of the stock price during the day. The length of
women’s skirts varies over the years around the level of the knee, and is
supposed to be a good indicator of the variation of the economical climate.
The length of a human being varies over the life time, and the thickness of
the ozone layer over years.

We may also simultaneously consider several quantities depending on
time, like for example the temperature t(x) in degrees Celsius and wind
velocity w(x) in meter per second in Chicago as functions of time x, where
x ranges over the month of January, and we may combine the two values
t(x) and w(x) into a pair of numbers “t(x) and w(x)”, which we may write
as f(x) = “t(x) and w(x)” or in short-hand f(x) = (t(x), w(x)) with the
parenthesis enclosing the pair. For example writing, f(10) = (−30, 20),
would give the information that the 10th of January was a tough day with
temperature −30◦C and wind 20 meter per second. From this information
we could compute the adjusted temperature -50◦C that day taking the
wind factor into account.

Likewise the input variable x could represent a pair of numbers, like
a temperature and a wind speed and the output could be the adjusted
temperature with the wind factor taken into account (Find the formula!).

We conclude that the input x of a function f(x) may be of many different
types, single numbers, pairs of numbers, triples of numbers, et cetera, as
well as the output f(x).

Example 9.7. A book may consist of a set of pages numbered from 1 to
N . We may introduce the function f(n) defined on D(f) = {1, 2, · · · , N},
with f(n) representing the physical page with number n. In this case the
range R(f) is the collection of pages of the book.

Example 9.8. A movie consists of a sequence of pictures that are displayed
at the rate of 16 pictures per second. We usually watch a movie from the
first to the last picture. Afterwards we might talk about different scenes in
the movie, which corresponds to subsets of the totality of pictures. A very
few people, like the film editor and director, might consider the movie on
the level of the individual elements in the domain, that is the pictures on the
film. When editing the movie, they number the picture frames 1, 2, 3, · · · , N
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where 1, 2, . . . 16 are the numbers of the pictures displayed sequentially dur-
ing the first second, and N is the number of the last picture. We may then
consider the movie as a function f(n) with D(f) = {1, 2, · · · , N}, which to
each number n in D(f) associates the picture frame with number n.

Example 9.9. A telephone directory of the people living in a city like
Göteborg is simply a printed version of the function f(x) that to each
person x in Göteborg with a listed number, assigns a telephone number.
For example, if x = Anders Andersson then f(x) = 4631123456 which is
the telephone number of Anders Andersson. If we have to find a telephone
listing, our thought is first to get the telephone book, that is the printed
representation of the entire domain and range of the function f , and then to
determine the image, i.e. telephone number, of an individual in the domain.
In this example, we arrange the domain of individual names of people
living in Göteborg in such a way that it is easy to search for a particular
input. That is we list the individuals alphabetically. We could use another
arrangement, say by listing individuals in order of their social security
numbers.

Example 9.10. The 1890 census (population count) in the US was per-
formed using Herman Hollerith’s (1860–1829) punched card system, where
the data for each person (sex, age, address, et cetera) was entered in the
form of holes in certain positions on a dollar bill size card, which could
then be read automatically by a machine using a system of pins connecting
electrical circuits through the holes, see Fig. 9.3. The total population was
found to be 62.622.250 after a processing time of three months with the
Hollerith system instead of the projected 2 years. Evidently, we may view
the Hollerith system as a function from the set of all 1890 US citizens to the
deck of punched cards. To further exploit his system Hollerith founded the
Tabulating Machine Company, which was renamed International Business
Machines Corporation IBM in 1924.

There is one important aspect of all the three above examples, book,
movie and directory, not captured viewing these objects as certain func-
tions x → f(x) with a certain domain D(f) and range R(f), namely, the
ordering of D(f). The pages of a book, and pictures of a film are numbered
consecutively, and the domain of a directory is also ordered alphabetically.
In the case of a book or film the ordering helps to make sense out of the
material, and a dictionary without any order is almost useless. Of course,
swapping through films has become a part of the life-style of to-day, but
the risk of a loss of understanding is obvious. To be able to catch the main
idea or plot of a book or film as a whole it is necessary to read the pages or
view the pictures in order. The ordering helps us to get an overall meaning.

Similarly, it is useful to be able to catch the main properties of a func-
tion f(x), and this can sometimes be done by graphing or visualizing the
function using some suitable ordering of D(f). We now go into the topic of
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Fig. 9.3. Hermann Hollerith, inventor of the punched card machine: “My friend
Dr. Billings one night at the pub suggested to me that there ought to be some
mechanical way of doing the census, something on the principle of the Jacquard
loom, whereby holes in a card regulate the pattern to be woven”

graphing functions f(x) with D(f) and R(f) subsets of Q, of course with
the usual ordering of Q, and with the purpose of trying to grasp the nature
of a given function “as a whole”.

9.3 Graphing Functions of Integers

So far we have described a function both by listing all its values in a table
like the phone book and by giving a formula like f(n) = n2 and indicating
the domain. It is also useful to have a picture of the behavior of a function,
or in other words, to represent a function geometrically. Graphing functions
is a way of visualizing a function so that we can grasp the nature of the
function “in one shot” or as one object. For example, we can describe the
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function as increasing in this region and decreasing in this other region,
giving an idea of how it behaves without being specific.

We begin by describing the graphing of functions f : Z → Z. Recall that
integers are represented geometrically using the integer line. To describe the
input and output to a function f : Z → Z, we therefore need two number
lines so that we can mark the points in D(f) on one and the points in R(f)
on the other. A convenient way to arrange these two number lines is to place
them orthogonal to each other as in Fig. 9.4. If we mark the points obtained
by intersecting vertical lines through integer points on the horizontal axis
with the horizontal lines through integer points on the vertical axis, we
get a grid of points like that shown in Fig. 9.4. This is called the integer
coordinate plane. Each number line is called an axis of the coordinate plane
while the intersection point of the two number lines is called the origin and
is denoted by 0.

Fig. 9.4. The integer coordinate plane

As we saw, a function f : Z → Z can be represented by making a list with
the inputs placed side-by-side with the corresponding outputs. We show
such a table for f(n) = n2 in Fig. 9.5. We can represent such a table also in
the integer coordinate plane by marking only those points corresponding
to an entry in the table, i.e. marking each intersection point of the line
rising vertically from the input and the line extending horizontally from
the corresponding output. We draw the plot corresponding to f(n) = n2

in Fig. 9.5.

Example 9.11. In Fig. 9.6, we plot n, n2, and 2n along the vertical axis with
n = 1, 2, 3, . . . , 6 along the horizontal axis. The plot suggests 2n grows more
quickly than both n and n2 as n increases. In Fig. 9.7, we plot n−1, n−2,
and 2−n with n = 1, 2, .., 6, and we see that 2−n decreases most rapidly
and n−1 least rapidly. Compare these results to Fig. 9.6.

Instead of using a table to list the points for a function, we can represent
a point on the integer plane mathematically by means of an ordered pair of
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n f(n)

0
1

-1
2
-2

3
-3

0
1

1
4
4

9
9

4
-4

5
-5

16
16

25
25

6
-6

36
36 2 4-2-4

5

10

15

Fig. 9.5. A tabular listing of f(n) = n2 and a graph of the points associated
with the function f(n) = n2 with domain equal to the integers

2 4 6

20

40

60

20

40

60

0

10

30

50

Fig. 9.6. Plots of the functions � f(n) = n, �f(n) = n2, and • f(n) = 2n

with D(f) = N

numbers. To the point in the plane located at the intersection of the vertical
line passing through n on the horizontal axis and the horizontal line passing
through m on the vertical axis, we associate the pair of numbers (n,m).
These are the coordinates of the point. Using this notation, we can describe
the function f(n) = n2 as the set of ordered pairs

{(0, 0), (1, 1), (−1, 1), (2, 4), (−2, 4), (3, 9), (−3, 9), · · · }.
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2 4 6

.5

1

0

.25

.75

1 3 5

Fig. 9.7. Plots of the functions � f(n) = n−1, � f(n) = n−2, and • f(n) = 2−n

with D(f) = N

Note that we always associate the first number in the ordered pair with the
horizontal location of the point and the second number with the vertical
location. This is an arbitrary choice.

We can illustrate the idea of a function giving a transformation of its
domain into its range nicely using its graph. Consider Fig. 9.5. We start
at a point in the domain on the horizontal axis and follow a line straight
up to the point on the graph of the function. From this point, we follow
a line horizontally to the vertical axis. In other words, we can find the
output associated to a given input by tracing first a vertical line and then
a horizontal line.

Note also that for functions with D(f) = N or D(f) = Q it is only
possible to graph part of the function, simply because we cannot in practice
extend the natural or integer number line all the way to “infinity”. Of
course, a table representation of such a function must also be limited to
a finite range of argument values. Only a defining formula of the function
values, like f(n) = n2 (together with a specification of D(f)), can give the
full picture in this case.

9.4 Graphing Functions of Rational Numbers

Now we consider plotting a function f : Q → Q. Following the lead of
functions of integers, we plot functions of rational numbers on the rational
coordinate plane which we construct by placing two rational number lines
called the axes at right angles and meeting at the origins and then marking
every point that has rational number coordinates. Of course considering
Fig. 7.4, such a plane will appear to be solid even if it is not solid. We
avoid plotting an example!

If we begin the plot of a function of rational numbers as above by writing
down a list of values, we realize immediately that graphing a function of
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rational numbers is more complicated than graphing a function of integers.
When we compute values of a function of integers, we cannot compute all
the values because there are infinitely many integers. Instead we choose
a smallest and largest integer and compute the values of the functions
for those integers in between. For the same reason, we can not compute
all the values of a function defined on the rational numbers. But now we
have to cut off the list also in another way: we have to choose a smallest
and largest number for making the list as before, but we also have to de-
cide how many points to use in between the low and high values. In other
words, we cannot compute the values of the function at all the rational
numbers in between two rational numbers. This means that a list of val-
ues of a function of rational numbers always has “gaps” in between the
points where we evaluate the function. We give an example to make this
clear.

Example 9.12. We list some values of the function f(x) = 1
2x+ 1

2 defined
on the rational numbers:

x 1
2x+ 1

2

−5 −2
−2.8 −.9
−2 −.5
−1.2 −.1
−1 0

x 1
2x+ 1

2

−.6 .2
.2 .6
1 1
3 2
5 3

and then plot the function values in Fig. 9.8.

Fig. 9.8. A plot of the function values of f(x) = 1
2
x+ 1

2
, and several functions

taking on the same values at the sample points

The values we list for this example suggest strongly that we should draw
a straight line through the indicated points in order to plot the function.
However, we cannot be sure that this is the correct graph because there
are many functions that agree with 1

2x+ 1
2 at the points we computed, for
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example we show two of them in Fig. 9.8. Therefore, to graph a function
accurately, we would need to evaluate it at many more points than we have
used in Fig. 9.8 in general. On the other hand we cannot possibly compute
the values f(x) for all possible rational numbers x, so that in the end we still
have to guess the values of the function in between the points we compute,
assuming that the function does not do anything strange there. Matlab
for example fills the gaps between the computed points with straight line
segments when plotting.

Deciding whether or not we have evaluated a function defined on the
rational numbers enough times to be able to guess its behavior is an in-
teresting and important problem. This is not just a theoretical problem
by the way: if we have to measure some quantities during an experiment
that should theoretically lie on a line, we are very likely to get a plot of
a function that is close to a line, but that has little wiggles because of
experimental error.

In fact we are able to use Calculus to help with this decision. For now, we
will assume that the functions we plot vary smoothly between the sample
points, which is largely true for the functions we consider in this book.

We finish this chapter by giving another example of a plot. In the next
chapter, we spend a lot more time on plotting.

Example 9.13. We list some values of the function f(x) = x2 defined on
the rational numbers:

x x2

−4 16
−3.5 12.25
−3.1 9.618
−2 4

−1.8 3.24
−1.4 1.96
−1 1

x x2

−.8 .64
−.4 .16

0 0
.2 .04

1.2 1.44
1.5 2.25

2.21 4.8841

x x2

2.3 5.29
2.4 5.76

3 9
3.1 9.61
3.6 12.96
3.7 13.69

4 16

and then plot the function values in Fig. 9.9.

9.5 A Function of Two Variables

We give an example of a function of two variables. The total cost in the
Dinner Soup/Ice Cream model was

15x+ 3y,

where x was the amount of beef and y that of ice cream. We may view the
total cost 15x + 3y as a function f(x, y) = 15x + 3y of the two variables
x and y. For each value of x and y there is a corresponding function value
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Fig. 9.9. A plot of some of the points given by f(x) = x2 and a smooth curve
that passes through the points

f(x, y) = 15x+3y representing the total cost. We think here of both x and
y as independent variables which may vary freely, corresponding to any
combination of beef and ice cream, and the function value z = f(x, y) as
a dependent variable. For each pair of values of x and y there is assigned
a value of z = f(x, y) = 15x+3y. We may write (x, y) → f(x, y) = 15x+3y,
denoting the pair of x and y by (x, y).

This represents a very natural and very important extension of the con-
cept of a function considered so far: a function may depend on two indepen-
dent variables. Assuming that for the function f(x, y) = 15x+ 3y we allow
both x and y to vary over [0,∞), we will write f : [0,∞)× [0,∞) → [0,∞)
to denote that for each x ∈ [0,∞) and y ∈ [0,∞), that is for each pair
(x, y) ∈ [0,∞)× [0,∞), there is a unique value f(x, y) = 15x+ 3y ∈ [0,∞)
assigned.

Example 9.14. The prize your roommate has to pay for the x pounds of
beef and y pounds of ice cream is p = 15x+ 3y, that is p = f(x, y) where
f(x, y) = 15x+ 3y.

Example 9.15. The time t required for a certain bike trip depends on the dis-
tance s of the trip, and on the (mean) speed v as s

v , that is t = f(s, v) = s
v .

Example 9.16. The pressure p in an ideal (thin) gas mixture depends on the
temperature T and volume V occupied of the gas as p = f(T, V ) = nRT

V ,
where n is the number of moles of gas molecules and R is the universal gas
constant.
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9.6 Functions of Several Variables

Of course we may go further and consider functions depending on several
independent variables.

Example 9.17. Letting your roommate decide the amount of beef x, carrots
y and potatoes z in the Dinner Soup, the cost k of the soup will be k =
8x+ 2y + z depending on the three variables x, y and z. The cost is thus
given by k = f(x, y, z) where f(x, y, z) = 8x+ 2y + z.

Example 9.18. The temperature u at a certain position depends on the
three space coordinates x, y and z, as well as on time t, that is u =
u(x, y, z, t).

As we come to consider situations with more than just a few indepen-
dent variables, it soon becomes necessary to change notation and use some
kind of indexation of the variables like for example denoting the spacial
coordinates x, y and z instead by x1, x2 and x3. For example, we may then
write the function u in the last example as u(x, t) where x = (x1, x2, x3)
contains the three space coordinates.

Chapter 9 Problems

9.1. Identify four functions you encounter in your daily life and determine the
domain and range for each.

9.2. For the function f(x) = 4x − 2, determine the range corresponding to: (a)
D(f) = (−2, 4], (b) D(f) = (3,∞), (c) D(f) = {−3, 2, 6, 8}.

9.3. Given that f(x) = 2 − 13x, find the domain D(f) corresponding to the
range R(f) = [−1, 1] ∪ (2,∞).

9.4. Determine the domain and range of f(x) = x3/100 + 75 where f(x) is
a function giving the temperature inside an elevator holding x people and with
a maximum capacity of 9 people.

9.5. Determine the domain and range of H(t) = 50− t2 where H(t) is a function
giving the height in meters of a ball dropped at time t = 0.

9.6. Find the range of the function f(n) = 1/n2 defined on D(f) = {n ∈ N :
n ≥ 1}.

9.7. Find the domain and a set B containing the range of the function f(x) =
1/(1 + x2).
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9.8. Find the domain of the functions

(a)
2 − x

(x+ 2)x(x− 4)(x− 5)
(b)

x

4 − x2
(c)

1

2x+ 1
+

x2

x− 8

9.9. (Harder) Consider the function f(n) defined on the natural numbers where
f(n) is the remainder obtained by dividing n by 5 using long division. So for
example, f(1) = 1, f(6) = 1, f(12) = 2, etc. Determine R(f).

9.10. Illustrate the map f : N → Q using two intervals where f(n) = 2−n.

9.11. Plot the following functions f : Z → Z after making a list of at least 5
values: (a) f(n) = 4 − n, (b) f(n) = 2n− n2, (c) f(n) = (n+ 1)3.

9.12. Draw three different curves that pass through the points

(−2,−1), (−1,−.5), (0, .25), (1, 1.5), (3, 4).

9.13. Plot the functions; (a) 2−n, (b) 5−n, and (c) 10−n; defined on the natural
numbers n. Compare the plots.

9.14. Plot the function f(n) = 10
9

(1− 10−n−1) defined on the natural numbers.

9.15. Plot the function f : Q → Q with f(x) = x3 after making a table of values.

9.16. Write a MATLAB� function that takes two rational arguments x and y
and returns their sum x+ y.

9.17. Write a MATLAB� function that takes two arguments x and y repre-
senting two velocities, and returns the time gained per kilometer by raising the
velocity from x to y.





10
Polynomial functions

Sometimes he thought to himself, “Why?” and sometimes he thought,
“Wherefore?”, and sometimes he thought, “Inasmuch as which?”.
(Winnie-the Pooh)

He was one of the most original and independent of men and never
did anything or expressed himself like anybody else. The result was
that it was very difficult to take notes at his lectures so that we
had to trust mainly to Rankine’s text books. Occasionally in the
higher classes he would forget all about having to lecture and, after
waiting for ten minutes or so, we sent the janitor to tell him that
the class was waiting. He would come rushing into the door, taking
a volume of Rankine from the table, open it apparently at random,
see some formula or other and say it was wrong. He then went up to
the blackboard to prove this. He wrote on the board with his back
to us, talking to himself, and every now and then rubbed it all out
and said it was wrong. He would then start afresh on a new line, and
so on. Generally, towards the end of the lecture he would finish one
which he did not rub out and say that this proved Rankine was right
after all. (Rayleigh about Reynolds)

10.1 Introduction

We now proceed to study polynomial functions, which are fundamental
in Calculus and Linear Algebra. A polynomial function, or polynomial,
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f(x) has the form

f(x) = a0 + a1x+ a2x
2 + a3x

3 + · · · + anx
n, (10.1)

where a0, a1, · · · , an, are given rational numbers called the coefficients
and the variable x varies over some set of rational numbers. The value
of a polynomial function f(x) can be directly computed by adding and
multiplying rational numbers. The Dinner Soup function f(x) = 15x is an
example of a linear polynomial with n = 1, a0 = 0 and a1 = 15, and the
Muddy Yard function f(x) = x2 is an example of a quadratic function with
n = 2, a0 = a1 = 0, and a2 = 1.

If all the coefficients ai are zero, then f(x) = 0 for all x and we say that
f(x) is the zero polynomial. If n denotes the largest subscript with an �= 0,
we say that the degree of f(x) is n. The simplest polynomials besides the
zero polynomial are the constant polynomials f(x) = a0 of degree 0. The
next simplest cases are the linear polynomials f(x) = a0 + a1x of degree 1
and quadratic polynomials f(x) = a0 + a1x + a2x

2 of degree 2 (assuming
a1 �= 0 respectively a2 �= 0), which we just gave examples of, and we
met a polynomial of degree 3 in the model of solubility of Ba(IO 3 ) 2 in
Proposition 7.10.

The polynomials are basic “building blocks” in the mathematics of func-
tions, and spending some effort understanding polynomials and learning
some facts about them will be very useful to us later on. Below we will meet
other functions such as the elementary functions including trigonometric
functions like sin(x) and the exponential function exp(x). The elementary
functions are all solutions of certain fundamental differential equations,
and evaluation of these functions requires solution of the corresponding
differential equation. Thus, these functions are not called elementary be-
cause they are elementary to evaluate, like a polynomial, but because they
satisfy fundamental “elementary” differential equations.

In the history of mathematics, there has been two grand attempts to
describe “general functions” in terms of (i) polynomial functions (power
series) or (ii) trigonometric functions (Fourier series). In the finite element
method of our time, general functions are described using piecewise polyno-
mials.

We start with linear and quadratic functions, before considering general
polynomial functions.

10.2 Linear Polynomials

We start with the linear polynomial y = f(x) = mx, where m is a rational
number. We write here m instead of a1 because this notation is often used.
We may choose D(f) = Q and if m �= 0 then R(f) = Q because if y is any
rational number, then x = y/m inserted into f(x) = mx gives the value



10.2 Linear Polynomials 121

of f(x) = y. In other words the function f(x) = mx with m �= 0 maps Q

onto Q.
One way to view the set of (x, y) that satisfy y = mx is to realize that

such (x, y) also satisfy y/x = m. Suppose that (x0, y0) and (x1, y1) are two
points satisfying y/x = m. If we draw a triangle with one corner at the
origin and with one side parallel to the x axis of length x0 and another
side parallel to the y axis of length y0 then draw the corresponding triangle
for the other point with sides of length x1 and y1, see Fig. 10.1, then the
condition

y0
x0

= m =
y1
x1

means that these two triangles are similar. In fact any point (x, y) satisfying
y/x = m must form a triangle similar to the triangle made by (x0, y0), see
Fig. 10.1. This means that such points lie on a line that passes through the
origin as indicated.

Fig. 10.1. Points satisfying y = mx form similar triangles. In this figure,m = 3/2

In the language of architecture, m, or the ratio of y to x, is called the
rise over the run while mathematicians call m the slope of the line. If
we imagine standing on a straight road going up hill, then the slope tells
how much we have to climb for any horizontal distance we travel. In other
words, the larger the slope m, the steeper the line. By the way, if the slope
is negative then the line slopes downwards. We show some different lines
in Fig. 10.2. When the slope m = 0, then we get a horizontal line sitting
on top of the x axis. A vertical line on the other hand is the set of points
(x, y) where x = a for some constant a. Vertical lines do not have a well
defined slope.

Using the slope to describe how a line increases or decreases does not
depend on the line passing through the origin. We can start at any point
on a line and ask how much the line rises or lowers if we move horizontally
a distance x, see Fig. 10.3. If the points are (x0, y0) and (x1, y1), then y1−y0
is the amount of “rise” corresponding to the “run” of x1 − x0. Hence the
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-2   2

y=2x

-4

-2

 

2

4

y=x/2

y=-x/3

y=-x

Fig. 10.2. Examples of lines

(x0,y0)

(x1,y1)

x1 - x0

y1 - y0

Fig. 10.3. The slope of any line is determined by the amount of rise over the
amount of run between any two points on the line

slope of the line through the points (x0, y0) and (x1, y1) is

m =
y1 − y0
x1 − x0

.

If (x, y) is any other point on the line, then we know that

y − y0
x− x0

= m =
y1 − y0
x1 − x0

or

(y − y0) = m(x− x0). (10.2)

This is called the point-slope equation for a line.
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Example 10.1. We find the equation of the line through (4,−5) and (2, 3).
The slope is

m =
3 − (−5)

2 − 4
= 4

and the line is y − 3 = 4(x− 2).

We can rewrite (10.2) to resemble (10.1) by multiplying out the terms in
(10.2) and solving for y. This yields the slope-intercept form:

y = mx+ b, (10.3)

with b = y1 −mx1. b is called the y-intercept of the line because the line
crosses the y axis at the point (0, b), i.e. at a height of b. The difference
between the graphs of y = mx and y = mx + b is simply that every point
on y = mx+b is translated vertically a distance of b from the corresponding
point on y = mx. In other words, we can graph y = mx+b by first graphing
y = mx and the moving the line vertically by an amount of b. We illustrate
in Fig. 10.4. When b > 0 we move the line up and when b < 0 we move
the line down. Evidently, we can find the slope-intercept form directly from
knowing two points.

Fig. 10.4. The graph of y = mx+ b is found by translating the graph of y = mx
vertically by an amount b. In this case b > 0

Example 10.2. We find the slope-intercept form of the line through (−3, 5)
and (4, 1). The slope is

m =
5 − 1
−3 − 4

= −4
7
.

To compute the y-intercept, we substitute either point into the equation
y = − 4

7x+ b, for example,

5 = −4
7
×−3 + b

so b = 23/7 and y = − 4
7x+ 23

7 .
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The technique of translating a known graph can be very useful when
graphing. For example once we have plotted y = 4x, we can quickly plot
y = 4x− 12, y = 4x− 1

5 , y = 4x+ 1, and y = 4x+ 113.45 by translation.

10.3 Parallel Lines

We now draw a connection to the parallel axiom of Euclidean geometry,
which we discussed in chapter Euclid and Pythagoras. First, let y = mx+b1
and y = mx+ b2 be two lines with same slope m, but different y-intercepts
b1 and b2, so that the lines are not identical. These two lines cannot ever
cross, since there is no x for which mx + b1 = mx + b2, because b1 �= b2.
We conclude that two lines with the same slope are parallel in the sense of
Euclidean geometry.

On the other hand, if y = m1x+ b1 and y = m2x+ b2 are two lines with
different slopes m1 �= m2, then the two lines will cross, since we can solve
the equation m1x+b1 = m2x+b2 uniquely, to get x = (b1−b2)/(m2−m1).
We conclude that two lines corresponding to two linear polynomials y =
m1x+ b1 and y = m2x+ b2 are parallel if and only if m1 = m2.

Example 10.3. We find the equation of the line that is parallel to the line
through (2, 5) and (−11, 6) and passing through (1, 1). The slope of the line
must be m = (6 − 5)/(−11− 2) = −1/13. Therefore, 1 = −1/13× 1 + b or
b = 14/13 and y = − 1

13x+ 14
13 .

Example 10.4. We can find the point of intersection between the line y =
2x + 3 and y = −7x − 4 by setting 2x + 3 = −7x − 4. Adding 7x and
subtracting 3 from both sides 2x + 3 + 7x − 3 = −7x − 4 + 7x − 3 gives
9x = −7 or x = −7/9. We can get the value of y from either equation,
y = 2x+ 3 = 2(−7

9 ) + 3 = 13
9 or y = −7x− 4 = −7(−7

9 ) − 4 = 13
9 .

10.4 Orthogonal Lines

Lets us next show that two lines corresponding to two linear polynomials
y = m1x + b1 and y = m2x + b2 are orthogonal, that is make an angle of
90◦ or 270◦, if and only if m1m2 = −1.

Since the values of b1 and b2 can be changed without changing the direc-
tions of the lines, it is sufficient to show that the statement is true for two
lines that pass through the origin. Assume now that the lines are orthogo-
nal. Then m1 and m2 must have different signs, since otherwise either both
of the lines are increasing or both are decreasing and then they cannot be
perpendicular. Now consider the triangles drawn in Fig. 10.5. The lines are
perpendicular only if the angles θ1 and θ2 that the lines make with the x
axis add up to 90◦. This can happen only if the triangles drawn are similar.
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θ1
θ2

m1

m2

Line 1

Line 2

Fig. 10.5. Similar triangles defined by perpendicular lines with slope m1 and
m2. The angles θ1 and θ2 add up to 90◦

This means that 1/|m1| = 1/|m2| or |m1| |m2| = 1. This shows the result
since m1 and m2 have opposite signs or m1m2 < 0.

Finally, assuming that m1m2 = −1 shows that the two triangles are
similar and the orthogonality follows.

Example 10.5. We find the equation of the line that is perpendicular to
the line through (2, 5) and (−11, 6) and passing through (1, 1). The slope
of the first line is m = (6 − 5)/(−11− 2) = −1/13, so the slope of the line
we compute is −1/(−1/13) = 13. Therefore, 1 = 13× 1 + b or b = −12 and
y = 13x− 12.

We will return to the topic of parallel and orthogonal lines in a little
wider setting in chapter Analytic geometry in Q

2. In particular, the so far
excluded cases with vertical or horizontal lines, will then be included in
a natural way.

10.5 Quadratic Polynomials

The general quadratic polynomial has the form

f(x) = a2x
2 + a1x+ a0

for constants a2, a1, and a0, where we assume a2 �= 0 (otherwise we go
back to the linear case).

We show how to plot such a function by using the idea of plotting lines
in the previous section starting with the simplest example of a quadratic
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function
y = f(x) = x2.

The domain of f is the set of rational numbers while the range contains
some of the nonnegative rational numbers. We list some of the values here:

x x2

−2 4
−1 1
−.5 .25

x x2

−.25 .125
−.1 .01

0 0

x x2

.1 .01

.5 .25
1 1

x x2

2 4
3 9
4 16

We also observe that f(x) = x2 is increasing for x > 0, which means that
if 0 < x1 < x2 then f(x1) < f(x2). This follows because x1 < x2 means
that x1 × x1 < x2 × x1 < x2 × x2. Likewise, we can show that f(x) = x2 is
decreasing for x < 0, which means that if x1 < x2 < 0 then f(x1) > f(x2).
This means that the function at least cannot wiggle very much in between
the values we compute. We plot the values of f(x) = x2 in Fig. 10.6 for
601 equally spaced points between x = −3 and x = 3.

-4 -3 -2 -1   1 2 3 4
-2

1

4

7

10

Fig. 10.6. Plot of f(x) = x2. The function is decreasing for x < 0 and increasing
for x > 0

To draw the graph of a general quadratic function, we follow the idea
behind computing the graphs of lines by using translation. We start with
f(x) = x2 and then change that graph to get the graph of any other
quadratic. There are two kinds of changes we make.

The first change is called scaling. Consider the plots of the quadratic
functions in Fig. 10.7. Each of these functions has the form y = f(x) = a2x

2

for a constant a2. Their plots all have the same basic shape as y = x2.
However the heights of the points on y = a2x

2 are a factor of |a2| higher
or lower than the height of the corresponding point on y = x2: higher if
|a2| > 1 and lower if |a2| < 1. If a2 < 0 then the plot is also “flipped” or
reflected through the x-axis.

The second change we consider is translation. The two possibilities are
to translate horizontally, or sideways, and vertically. We show examples of
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Fig. 10.7. Plots of y = x2 scaled four different ways

both in Fig. 10.8. Graphs of quadratic functions of the form f(x) = (x+x0)2

can be drawn by moving the graph of y = x2 sideways to the right a distance
of |x0| if x0 < 0 and to the left a distance of x0 if x0 > 0. The easiest way
to remember which direction to translate is to figure out the new position
of the vertex, which is the lowest or highest point of the quadratic. For
y = (x−1)2, the lowest point is x = 1 and the graph is obtained by moving
the graph of y = x2 so the vertex is now at x = 1. For y = (x + .5)2, the
vertex is at x = −.5 and we get the graph by moving the graph of y = x2

to the left a distance of .5. On the other hand, the graph of a function
y = x2 + d can be obtained by translating the graph of y = x2 vertically,
in a fashion similar to what we did for lines. Recall that d > 0 translates
the graph upwards and d < 0 downwards.

Fig. 10.8. Plots of y = x2 translated four different ways

Now it is possible to put all of this together to plot the graph of the
function y = f(x) = a(x− x0)2 + d by scaling and translating the graph of
y = x2. We perform each operation in the same order that we would use to
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do the arithmetic in computing values of f(x); first translate horizontally
by x0, then scale by a, and finally translate vertically by d.

Example 10.6. We plot y = −2(x + 1)2 + 3 in Fig. 10.9 by starting with
y = x2 in (a), translating horizontally to get y = (x + 1)2 in (b), scaling
vertically to get y = −2(x+ 1)2 in (c), and finally translating vertically to
get y = −2(x+ 1)2 + 3 in (d).

Fig. 10.9. Plotting y = −2(x+ 1)2 + 3 in a systematic way

The last step is to consider the plot of the quadratic y = ax2 + bx + c.
The idea is to first rewrite this in the form y = a(x− x0)2 + d for some x0

and d, then we can draw the graph easily. To explain how to do this, we
work backwards using the example y = −2(x + 1)2 + 3. Multiplying out,
we get

y = −2(x2 + 2x+ 1) + 3 = −2x2 − 4x− 2 + 3 = −2x2 − 4x+ 1.

Now if we are given y = −2x2 − 4x+ 1, we can do the following steps

y = −2x2 − 4x+ 1

= −2(x2 + 2x) + 1

= −2(x2 + 2x+ 1 − 1) + 1

= −2(x2 + 2x+ 1) + 2 + 1

= −2(x+ 1)2 + 3.

This procedure is called completing the square. Given x2 + bx, the idea to
add the number m so that x2 + bx + m is the square (x − x0)2 for some
appropriate x0. Of course we also have to subtract m so we don’t change
the function. Note that we added and subtracted 1 inside the parenthesis in
the example above! If we multiply out, we get

(x− x0)2 = x2 − 2x0x+ x2
0
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which is supposed to match

x2 + bx+m.

This means that x0 = −b/2 while m = x2
0 = b2/4. In the example above,

b = 2, x0 = −1, and m = 1.

Example 10.7. We complete the square on y2 − 3x + 7. Here b = −3,
x0 = 3/2, and m = 9/4. So we write

y2 − 3x+ 7 = y2 − 3x+
9
4
− 9

4
+ 7

=
(

y − 3
2

)2

+
19
4
.

Example 10.8. We complete the square on 6y2 + 4y − 2. We first have to
write

6y2 + 4y − 2 = 6
(

y2 +
2
3
y

)

− 2.

Now b = 2/3, x0 = −1/3, and m = 1/9. So we write

6y2 + 4y − 2 = 6
(

y2 +
2
3
y +

1
9
− 1

9

)

− 2

= 6
(

y +
1
3

)2

− 6
9
− 2

= 6
(

y +
1
3

)2

− 8
3
.

Example 10.9. We complete the square on y = 1
2x

2 − 2x+ 3.

1
2
x2 − 2x+ 3 =

1
2
(x2 − 4x) + 3

=
1
2
(x2 − 4x+ 4 − 4) + 3

=
1
2
(x− 2)2 − 2 + 3

=
1
2
(x− 2)2 + 1.

10.6 Arithmetic with Polynomials

We turn now to investigating properties of polynomials of general degree,
beginning with arithmetic properties. Recall that if we add, subtract, or
multiply two rational numbers, then the result is another rational number.
In this section, we show that the analogous property holds for polynomials.
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The Σ Notation for Finite Sums

Before exploring arithmetic with polynomials, we introduce a convenient
notation for dealing with long finite sums using the Greek letter sigma Σ.
Given any n + 1 quantities {a0, a1, · · · , an} indexed with subscripts, we
write the sum

a0 + a1 + · · · + an =
n∑

i=0

ai.

The index of the sum is i and it is assumed that it takes on all the integers
between the lower limit, which is 0 here, and the upper limit, which is n
here, of the sum.

Example 10.10. The finite harmonic series of order n is

n∑

i=1

1
i

= 1 +
1
2

+
1
3

+ · · · 1
n

while the finite geometric series of order n with factor r is

1 + r + r2 + · · · + rn =
n∑

i=0

ri.

Notice that the index i is a dummy variable in the sense that it can be
renamed or the sum can be rewritten to start at another integer.

Example 10.11. The following sums are all the same:

n∑

i=1

1
i

=
n∑

z=1

1
z

=
n−1∑

i=0

1
i+ 1

=
n+3∑

i=4

1
i− 3

.

Using the Σ notation, we can write the general polynomial (10.1) in the
more condensed form:

f(x) =
n∑

i=0

aix
i = a0 + a1x

1 + · · · + anx
n.

Example 10.12. We can write

1 + 2x+ 4x2 + 8x3 + · · · + 220x20 =
20∑

i=0

2ixi

and

1 − x+ x2 − x3 − · · · − x99 =
99∑

i=0

(−1)ixi.

since (−1)i = 1 if i is even and (−1)i = −1 if i is odd.
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Addition of Polynomials

Given two polynomials

f(x) = a0 + a1x
1 + a2x

2 + · · · + anx
n

and
g(x) = b0 + b1x

1 + b2x
2 + · · · + bnx

n

we may define a new polynomial denoted by (f + g)(x), and referred to as
the sum of f(x) and g(x), by termwise addition of f(x) and g(x) as follows:

(f + g)(x) = (b0 + a0) + (b1 + a1)x1 + (b2 + a2)x2 + · · · (bn + an)xn.

Changing the order of summation, we see that

(f + g)(x) =
n∑

i=0

(ai + bi)xi =
n∑

i=0

aix
i +

n∑

i=0

bix
i = f(x) + g(x).

We can thus define the polynomial (f + g)(x) being the sum of f(x) and
g(x) by the formula

(f + g)(x) = f(x) + g(x).

We will below extend this definition to general functions.

Example 10.13. If f(x) = 1 + x2 − x4 + 2x5 and g(x) = 33x+ 7x2 + 2x5,
then

(f + g)(x) = 1 + 33x+ 8x2 − x4 + 4x5,

where of course we “fill in” the “missing” monomials, i.e. those with coef-
ficients equal to zero in order to use the definition.

In general, to add the polynomials

f(x) =
n∑

i=0

aix
i

of degree n (assuming that an �= 0) and the polynomial

g(x) =
m∑

i=0

bix
i

of degree m, where we assume that m ≤ n, we just fill in the “missing”
coefficients in g by setting bm+1 = bm+2 = · · · bn = 0, and add using the
definition.

Example 10.14.
15∑

i=0

(i+ 1)xi +
30∑

i=0

xi =
30∑

i=0

aix
i

with

ai =

{
i+ 2, 0 ≤ i ≤ 15
i, 16 ≤ i ≤ 30
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Multiplication of a Polynomial by a Number

Given a polynomial

f(x) =
n∑

i=0

aix
i,

and a number c ∈ Q we define a new polynomial denoted by (cf)(x), and
referred to as the product of f(x) by the number c, as follows:

(cf)(x) =
n∑

i=0

caix
i.

We note that we can equivalently define (cf)(x) by

(cf)(x) = cf(x) = c× f(x).

Example 10.15.

2.3(1 + 6x− x7) = 2.3 + 13.8x− 2.3x7.

Equality of Polynomials

Following these definitions, we say that two polynomials f(x) and g(x) are
equal if (f − g)(x) is the zero polynomial with all coefficients equal to zero,
that is the coefficients of f(x) and g(x) are the same. Two polynomials are
not necessarily equal because they happen to have the same value at just
one point!

Example 10.16. f(x) = x2 − 4 and g(x) = 3x− 6 are both zero at x = 2
but are not equal.

Linear Combinations of Polynomials

We may now combine polynomials by adding them and multiplying them
by rational numbers, and thereby obtain new polynomials. Thus, if f1(x),
f2(x), · · · , fn(x) are n given polynomials and c1, · · · , cn are n given num-
bers, then

f(x) =
n∑

m=1

cmfm(x)

is a new polynomial called the linear combination of the polynomials f1,
· · · , fn with coefficients c1, · · · , cn.

Example 10.17. The linear combination of 2x2 and 4x−5 with coefficients
1 and 2 is

1
(
2x2

)
+ 2

(
4x− 5

)
= 2x2 + 8x− 10.
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A general polynomial

f(x) =
n∑

i=0

aix
i

can be described as a linear combination of the particular polynomials 1, x,
x2, · · · , xn, which are called the monomials, see Fig. 10.11 below, with the
coefficients a0, a1, . . . , an. To make the notation consistent, we set x0 = 1
for all x.

We sum up:

Theorem 10.1 A linear combination of polynomials is a polynomial. A gen-
eral polynomial is a linear combination of monomials.

As a consequence of the definitions made, we get a number of rules for
linear combinations of polynomials that reflect the corresponding rules for
rational numbers. For example, if f , g and h are polynomials and c is
rational number, then

f + g = g + f, (10.4)
(f + g) + h = f + (g + h), (10.5)

c(f + g) = cf + cg, (10.6)

where the variable x was omitted for simplicity.

Multiplication of Polynomials

We now go into multiplication of polynomials. Given two polynomials f(x)
=

∑n
i=0 aix

i and g(x) =
∑m

j=0 bjx
j , we define a new polynomial denoted

by (fg)(x), and referred to as the product of f(x) and g(x), as follows

(fg)(x) = f(x)g(x).

To see that this is indeed a polynomial we consider first the product of two
monomials f(x) = xj and g(x) = xi:

(fg)(x) = f(x)g(x) = xjxi = xj × xi = xj+i.

We see that the degree of the product is the sum of the degrees of the
monomials.

Next, if f(x) = xj and a polynomial g(x) =
∑n

i=0 aix
i, then by dis-

tributing xj , we get

(fg)(x) = xjg(x) = a0x
j + a1x

j × x+ a2x
j × x2 + · · · + anx

j × xn

= a0x
j + a1x

1+j + a2x
2+j + · · · + anx

n+j

=
n∑

i=0

aix
i+j ,

which is a polynomial of degree n+ j.
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Example 10.18.

x3(2 − 3x+ x4 + 19x8) = 2x3 − 3x4 + x7 + 19x11.

Finally, for two general polynomials f(x) =
∑n

i=0 aix
i and g(x) =∑m

j=0 bjx
j , we have

(fg)(x) = f(x)g(x) =

(
n∑

i=0

aix
i

)(
m∑

i=0

bix
i

)

=
n∑

i=0



 aix
i

m∑

j=0

bjx
j



 =
n∑

i=0



ai

m∑

j=0

bjx
i+j





=
n∑

i=0

m∑

j=0

aibjx
i+j .

which is a polynomial of degree n+m. We consider an example

Example 10.19.

(1 + 2x+ 3x2)(x− x5) = 1(x− x5) + 2x(x− x5) + 3x2(x− x5)

= x− x5 + 2x2 − 2x6 + 3x3 − 3x7

= x+ 2x2 + 3x3 − x5 − 2x6 − 3x7

We sum up:

Theorem 10.2 The product of a polynomial of degree n and a polynomial
of degree m is a polynomial of degree n+m.

The usual commutative, associative, and distributive laws hold for mul-
tiplication of polynomials f , g, and h:

fg = gf, (10.7)
(fg)h = f(gh), (10.8)

(f + g)h = fh+ gh, (10.9)

where we again left out the variable x.
Products are tedious to compute but luckily it is not necessary very often

and if the polynomials are complicated, we can use MAPLE� to compute
them for example. There are a couple of examples that are good to keep in
mind:

(x+ a)2 = (x+ a)(x+ a) = x2 + 2ax+ a2

(x + a)(x− a) = x2 − a2

(x+ a)3 = x3 + 3ax2 + 3a2x+ a3
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10.7 Graphs of General Polynomials

A general polynomial of degree greater than 2 or 3 can be a quite compli-
cated function and it is difficult to say much specific about their plots. We
show an example in Fig. 10.10. When the degree of a polynomial is large,
the tendency is for the plot to have large “wiggles” which makes it difficult
to plot the function. The value of the polynomial shown in Fig. 10.10 is
987940.8 at x = 3.

-1.05 -0.30 0.45 1.20

-8

-4

 

4

8

12

Fig. 10.10. A plot of y = 1.296 + 1.296x − 35.496x2 − 57.384x3 + 177.457x4

+203.889x5 − 368.554x6 − 211.266x7 + 313.197x8 + 70.965x9 − 97.9x10 − 7.5x11

+10x12

On the other hand, we can plot the monomials rather easily. It turns
out that once the degree n ≥ 2, the plots of the monomials with even
degree n all have a similar shape, as do the plots of all the monomials
with odd degree. We show some samples in Fig. 10.11. One of the most
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x2

x7
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Fig. 10.11. Plots of some monomials
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obvious feature of the graphs of the monomials are the symmetry in the
plots. When the degree is even, the plots are symmetric across the y-axis,
see Fig. 10.12. This means that the value of the monomial is the same for
x and −x, or in other words xm = (−x)m for m even. When the degree is
odd, the plots are symmetric through the origin. In other words, the value
of the function for x is the negative of the value of the function for −x or
(−x)m = −xm for m odd.

x

y x
even

-x

x

y

-x

xodd

Fig. 10.12. The symmetries of the monomial functions of even and odd degree

We can use the ideas of scaling and translation to graph functions of the
form y = a(x− x0)m + d.

Example 10.20. We plot y = −.5(x−1)3−6 in Fig. 10.13 by systematically
using translations and scaling. Luckily, however, there is no procedure like
completing the square for monomials of higher degree.

-1

 

1 2

-27

-13.5

 

13.5

27

x3

(x-1)3

-.5(x-1)3

-.5(x-1)3-6

Fig. 10.13. The procedure for plotting y = −.5(x− 1)3 − 6
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10.8 Piecewise Polynomial Functions

We started this chapter by declaring that polynomials are building blocks
for the mathematics of functions. An important class of functions con-
structed using polynomials are the piecewise polynomials. These are func-
tions that are equal to polynomials on intervals contained in the domain.

We have already met one example, namely

|x| =

{
x, x ≥ 0
−x, x < 0

The function |x| looks like y = x for x ≥ 0 and y = −x for x < 0. We plot
it in Fig. 10.14. The most interesting thing to note about the graph of |x|
is the sharp corner at x = 0, which occurs right at the transition point of
this piecewise polynomial.

Fig. 10.14. Plot of y = |x|

Fig. 10.15. Plot of a piecewise (quadratic) polynomial function
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Chapter 10 Problems

10.1. Find the point-slope equations of the lines passing through the following
pairs of points. Plot the line in each case.

(a) (1, 3) & (2, 7) (b) (−4, 2) & (−6, 3)

(c) (3, 7) & (5, 7) (d) (3.5, 1.5) & (2.1, 11.8)

(e) (−3, 2) & (−3, 3) (f) (2,−1) & (4,−7).

10.2. Find the slope-intercept equations of the lines passing through the follow-
ing pairs of points. Plot the line in each case.

(a) (4,−6) & (14, 2) (b) (3,−2) & (−1, 4)

(c) (13, 4) & (13, 89) (d) (4, 4) & (6, 4)

(e) (−.2, 9) & (−.4, 7) (f) (−1,−1) & (−4, 7).

10.3. Find a formula for the x-intercept of a line given in the form y = mx+ b
in terms of m and b.

10.4. Plot the lines y = 1
2
x, y = 1

2
x−2, y = 1

2
x+4, y = 1

2
x+1 using translation.

10.5. Are the lines 2 − y = 7(4 − x) and y = 7x− 13 parallel?

10.6. Are the lines y = 3
11
x− 4 and y = 13 − 11

3
x perpendicular?

10.7. Find the point of intersection of the following pairs of lines:

(a) y = 3x+ 2 and y = −4x− 2,

(b) y − 5 = 7(x− 1) and y + 3 = −4(x− 9).

10.8. Find the lines that are (a) parallel and (b) perpendicular to the line
through (9, 4) and (−1, 3) and passing through the point (3, 0).

10.9. Find the lines that are (a) parallel and (b) perpendicular to the line
through (−2, 7) and (8, 8) and passing through the point (1, 2).

10.10. Show that f(x) = x2 is decreasing for x < 0.

10.11. Plot the following quadratic functions for −2 ≤ x ≤ 2: (a) 6x2, (b) − 1
4
x2,

(c) 4
3
x2.

10.12. Plot the following quadratic functions for −3 ≤ x ≤ 3: (a) (x− 2)2, (b)
(x+ 1.5)2, (c) (x+ .5)2.

10.13. Plot the following quadratic functions for −2 ≤ x ≤ 2: (a) x2 − 3, (b)
x2 + 2, (c) x2 − .5.
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10.14. Plot the following quadratic functions for −3 ≤ x ≤ 3: (a) − 1
2
(x−1)2+2,

(b) 2(x+ 2)2 − 5, (c) 1
3
(x− 3)2 − 1.

10.15. Complete the square on the following quadratic functions then plot them
for −3 ≤ x ≤ 3: (a) x2 + 4x+ 5, (b) 2x2 − 2x− 1

2
, (c) − 1

3
x2 + 2x− 1.

10.16. Write the following finite sums using the summation notation. Be sure
to get the starting and ending values for the index correct!

(a) 1 + 1
4

+ 1
9

+ 1
16

+ · · · + 1
n2 (b) −1 + 1

4
− 1

9
+ 1

16
− · · · ± 1

n2

(c) 1 + 1
2×3

+ 1
3×4

+ · · · + 1
n×(n+1)

(d) 1 + 3 + 5 + 7 + · · · + 2n+ 1

(e) x4 + x5 + · · · + xn (f) 1 + x2 + x4 + x6 + · · · + x2n.

10.17. Write the finite sum

n∑

i=1

i2 so that: (a) i starts with −1, (b) i starts with

15, (c) the coefficent has the form (i+ 4)2, (d) i ends with n+ 7.

10.18. Given f1(x) = −4+6x+7x3, f2(x) = 2x2 −x3 +4x5 and f3(x) = 2−x4,
compute the following polynomials: (a) f1 − 4f2, (b) 3f2 − 12f1, (c) f2 + f1 + f3,
(d) f2f1, (e) f1f3, (f) f2f3, (g) f1f3 − f2, (h) (f1 + f2)f3, (i) f1f2f3.

10.19. For a equal to a constant, compute (a) (x+a)2, (b) (x+a)3, (c) (x−a)3,
(d) (x+ a)4.

10.20. Compute f1f2 where f1(x) =

8∑

i=0

i2xi and f2(x) =

11∑

j=0

1

j + 1
xj .

10.21. Plot the function

f(x) = 360x − 942x2 + 949x3 − 480x4 + 130x5 − 18x6 + x7

using Matlab or Maple. This takes some trial and error in choosing a good interval
on which to plot. You should make plots on several different intervals, starting
with −.5 ≤ x ≤ .5 then increasing the size.

10.22. (a) Show that the monomial x3 is increasing for all x. (b) Show the
monomial x4 is decreasing for x < 0 and increasing for x > 0.

10.23. Plot the following monomial functions for −3 ≤ x ≤ 3: (a) x3, (b) x4,
(c) x5.

10.24. Plot the following polynomials for −3 ≤ x ≤ 3:

(a) 1
3
(x+ 2)3 − 2 (b) 2(x− 1)4 − 13 (c) (x+ 1)5 − 1.

10.25. Plot the following piecewise polynomials for −2 ≤ x ≤ 2

(a) f(x) =






1, −2 ≤ x ≤ −1,

x2, −1 < x < 1,

x, 1 ≤ x ≤ 2.

(b) f(x) =






−1 − x, −2 ≤ x ≤ −1,

1 + x, −1 < x ≤ 0,

1 − x, 0 < x ≤ 1,

−1 + x, 1 < x ≤ 2.





11
Combinations of functions

And he gave a deep sigh, and tried very hard to listen to what Owl
was saying. (Winnie-the Pooh)

11.1 Introduction

In this chapter we consider different ways of creating new functions by com-
bining old ones. We often seek to describe complicated functions as combi-
nations of simpler functions that we know. In the last chapter, we saw how
a general polynomials can be created adding up multiples of monomials,
that is, as linear combinations of monomials. In this chapter, we consider
first linear combinations of arbitrary functions, then multiplication and
division, and finally composition of functions.

The idea of combining simple things to get complex ones is fundamental
in many different settings. Music is a good example: chords or harmonies
are formed by combining single tones, complex rhythmic patterns may be
formed by overlaying simple basic rhythmic patterns, single instruments
are combined to form an orchestra. Another example is a fancy dinner that
is made up of an entree, main dish, dessert, coffee, together with aperitif,
wines and cognac, in endless combinations. Moreover, each dish is formed
by combining ingredients like beef, carrots and potatoes.
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11.2 Sum of Two Functions and Product
of a Function with a Number

Given two functions f1 : Df1 → Q and f2 : Df2 → Q, we define a new
function denoted by (f1 + f2)(x), and referred to as the sum of f1(x) and
f2(x), as follows

(f1 + f2)(x) = f1(x) + f2(x), for x ∈ Df1 ∩Df2 .

Of course, we have to assume that x belongs to both Df1 and Df2 for both
f1(x) and f2(x) to be defined. We can thus write Df1+f2 = Df1 ∩Df2 .

Further, given a function f : Df → Q and a number c ∈ Q, we define
a new function denoted by (cf)(x), and referred to as the product of f(x)
with c, as follows

(cf)(x) = cf(x) for x ∈ Df .

The domain of cf is equal to the domain of f , that is, Dcf = Df .
The definitions of sum of functions and product of a function with a num-

ber are consistent with the corresponding definitions for polynomials made
above.

Example 11.1. The function f(x) = x3 + 1/x defined on Df = {x ∈ Q :
x �= 0} is the sum of the functions f1(x) = x3 with domain Df1 = Q

and f2(x) = 1/x with domain Df2 = {x in Q : x �= 0}. The function
f(x) = x2 + 2x defined on Z is the sum of x2 defined on Q and 2x defined
on Z.

11.3 Linear Combinations of Functions

Given n functions f1 : Df1 → Q, . . . , fn : Dfn → Q, and numbers c1, . . . , cn,
we define the linear combination of f1, . . . , fn with coefficients c1, . . . , cn,
denoted by (c1f + · · · + cnfn)(x), as follows

(c1f + · · · + cnfn)(x) = c1f1(x) + · · · + cnfn(x)

The domain Dc1f+···+cnfn of the linear combination c1f + · · ·+ cnfn is the
intersection of the domains Df1 , · · · , Dfn .

Example 11.2. The domain of the linear combination of
{

1
x ,

x
1+x ,

1+x
2+x

}

given by

− 1
x

+ 2
x

1 + x
+ 6

1 + x

2 + x

is {x in Q : x �= 0, x �= −1, x �= −2}.

The sigma notation is useful for writing general linear combinations.
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Example 11.3. The linear combination of
{

1
x , · · · ,

1
xn

}
given by

2
x

+
4
x

+
8
x

+ · · · + 2n

xn
=

n∑

i=1

2i

xi

has domain {x in Q : x �= 0}.

11.4 Multiplication and Division of Functions

We multiply functions using the same idea used to multiply polynomials.
Given two functions f1 : Df1 → Q and f2 : Df2 → Q we define the product
function (f1f2)(x) by

(f1f2)(x) = f1(x)f2(x) for x ∈ Df1 ∩Df2 ,

and quotient function by

(f1/f2)(x) =
f1
f2

(x) =
f1(x)
f2(x)

for x ∈ Df1 ∩Df2 ,

where we of course also assume that f2(x) �= 0.

Example 11.4. The function

f(x) = (x2 − 3)3
(

x6 − 1
x
− 3

)

with Df = {x ∈ Q : x �= 0} is the product of the functions f1(x) = (x2−3)3

and f2(x) = x6 − 1/x− 3. The function f(x) = x2 2x is the product of x2

and 2x.

Example 11.5. The domain of

1 + 1/(x+ 3)
2x− 5

is the intersection of {x in Q : x �= −3} and {x in Q} excepting x = 5/2 or
{x in Q : x �= −3, 5/2}.

11.5 Rational Functions

The quotient f1/f2 of two polynomials f1(x) and f2(x) is called a rational
function. This is the analog of a rational number which is the quotient of
two integers.
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Example 11.6. The function f(x) = 1/x is a rational function defined for
{x in Q : x �= 0}. The function

f(x) =
(x3 − 6x+ 1)(x11 − 5x6)
(x4 − 1)(x+ 2)(x− 5)

is a rational function defined on {x in Q : x �= 1,−1,−2, 5}.

In an example above, we saw that x− 3 divides into x2 − 2x− 3 exactly
because x2 − 2x− 3 = (x− 3)(x+ 1) so

x2 − 2x− 3
x− 3

= x+ 1.

In the same way, a rational number p/q sometimes simplifies to an inte-
ger, in other words q divides into p exactly without a remainder. We can
determine if this is true by using long division. It turns out that long divi-
sion also works for polynomials. Recall that in long division, we match the
leading digit of the denominator with the remainder at each stage. When
dividing polynomials, we write them as a linear combination of monomials
starting with the monomial of highest degree and then match coefficients
of the monomials one by one.

Example 11.7. We show a couple of examples of polynomial division. In
Fig. 11.1, we give an example where the remainder is zero. We conclude
that

x3 + 4x2 − 2x+ 3
x− 1

= x2 + 5x+ 3.

x3 + 4x2 - 2x - 3

x2 + 5x+ 3

x-1
x3 -    x2

5x2 - 2x

5x2 - 5x

3x2 - 3x
3x2 - 3x

0

Fig. 11.1. An example of polynomial division with no remainder

In Fig. 11.2, we give an example in which there is a non-zero remainder,
i.e. we carry out the division to the point where the remaining numerator
has lower degree than the denominator. Note that in this example, the
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2x4 + 0x3 + 7x2 - 8x + 3

2x2 - 2x +15

x2+x-3
2x4 + 2x3  - 6x2

- 2x3+13x2 - 8x

15x2 - 14x + 3

-29x +48

- 2x3-  2x2 + 6x

15x2 + 15x -45

Fig. 11.2. An example of polynomial division with a remainder

numerator is “missing” a term so we fill in the missing term with a zero
coefficient to make the division easier. We conclude that

2x4 + 7x2 − 8x+ 3
x2 + x− 3

= 2x2 − 2x+ 15 +
−29x+ 48
x2 + x− 3

.

We shall now consider polynomial division in the special case of a de-
nominator of the form x − x̄ of degree one, where x̄ is considered fixed,
resulting in

f(x) = (x− x̄) g(x) + r(x), (11.1)

where the reminder polynomial r(x) now must be of degree zero, that is
a constant.

The following result is of particular interest. If f(x) is a polynomial of
degree n with f(x̄) = 0, then x − x̄ is a factor of f(x), that is, division of
f(x) with x− x̄ gives

f(x) = (x− x̄) g(x) + r(x) (11.2)

with r(x) ≡ 0. Conversely, if r(x) ≡ 0, then obviously f(x̄) = 0. For the
proof of this we note that the degree of r(x) is less than the degree of x− x̄,
that is r(x) is in fact a constant. Further r(x̄) = 0 because f(x̄) = 0. That
is r(x) is a constant which is zero, that is r(x) ≡ 0. We have thus proved

Theorem 11.1 If x̄ is a root of a polynomial f(x), that is if f(x̄) = 0,
then f(x) factors as f(x) = (x− x̄)g(x) for some polynomial g(x) of degree
one less than the degree of f(x). The factor g(x) can be found by polynomial
division of f(x) by x− x̄.

11.6 The Composition of Functions

Given two functions f1 and f2, we can define a new function f by first
applying f1 to an input and then applying f2 to the result, i.e.

f(x) = f2(f1(x))
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We say that f is the composition of f2 and f1 and we write f = f2 ◦ f1,
that is

(f2 ◦ f1)(x) = f2(f1(x)).

We illustrate this operation in Fig. 11.3.

x

f1 f2

Df1
Df2

f1(x) f2(f1(x))

Fig. 11.3. Illustration of the composition f2 ◦ f1

Example 11.8. If f1(x) = x2 and f2(x) = x+1 then f1◦f2(x) = f1(f2(x)) =
(x+ 1)2 while f2 ◦ f1 = f2(f1(x)) = x2 + 1.

This example illustrates the general fact that f2◦f1 �= f1◦f2 in most cases.
Determining the domain of the composition of f2 ◦ f1 can be compli-

cated. Certainly to compute f2(f1(x)), we have to make certain that x is
in the domain of f1 otherwise f1(x) will be undefined. Next we apply f2 to
the result, therefore f1(x) must have a value that is in the domain of f2.
Therefore the domain of f2 ◦f1 is the set of points x in Df1 such that f1(x)
is in Df2 .

Example 11.9. Let f1(x) = 3 + 1/x2 and f2(x) = 1/(x − 4). Then Df1 =
{x in Q : x �= 0} while Df2 = {x in Q : x �= 4}. Therefore to compute
f2 ◦ f1, we must avoid any points where 3 + 1/x2 = 4 or 1/x2 = 1 or x = 1
and x = −1. We conclude that Df2◦f1 = {x in Q : x �= 0, 1,−1}.

Chapter 11 Problems

11.1. Determine the domains of the following functions

(a) 3(x− 4)3 + 2x2 +
4x

3x− 1
+

6

(x− 1)2
(d)

(2x− 3) 2
x

4x+ 6

(b) 2 +
4

x
− 6x+ 4

(x− 2)(2x+ 1)
(e)

6x− 1

(2 − 3x)(4 + x)

(c) x3

(

1 +
1

x

)

(f)
4

x+ 2
+

6

x2 + 3x+ 2
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11.2. Write the following linear combinations using the sigma notation and
determine the domain of the result.

(a) 2x(x− 1) + 3x2(x− 1)2 + 4x3(x− 1)3 + · · · + 100x101(x− 1)101

(b)
2

x− 1
+

4

x− 2
+

8

x− 3
+ · · · + 8192

x− 13

11.3. (a) Let f(x) = ax + b, where a and b are numbers and show that f(x +
y) = f(x) + f(y) for all numbers x and y. (b) Let g(x) = x2 and show that
g(x+ y) �= g(x) + g(y) unless x and y have special values.

11.4. Use polynomial division on the following rational functions to show that
the denominator divides the numerate exactly or to compute the remainder if
not.

(a)
x2 + 2x− 3

x− 1
(b)

2x2 − 7x− 4

2x+ 1

(c)
4x2 + 2x− 1

x+ 6
(d)

x3 + 3x2 + 3x+ 2

x+ 2

(e)
5x3 + 6x2 − 4

2x2 + 4x+ 1
(f)

x4 − 4x2 − 5x− 4

x2 + x+ 1

(g)
x8 − 1

x3 − 1
(h)

xn − 1

x− 1
, n in N

11.5. Given f1(x) = 3x−5, f2(x) = 2x2+1, and f3(x) = 4/x, write out formulas
for the following functions

(a) f1 ◦ f2 (b) f2 ◦ f3 (c) f3 ◦ f1 (d) f1 ◦ f2 ◦ f3

11.6. With f1(x) = 4x+ 2 and f2(x) = x/x2, show that f1 ◦ f2 �= f2 ◦ f1.

11.7. Let f1(x) = ax + b and f2(x) = cx + d where a, b, c, and d are rational
numbers. Find a condition on the numbers a, b, c, and d that implies that f1◦f2 =
f2 ◦ f1 and produce an example that satisfies the condition.

11.8. For the given functions f1 and f2, determine the domain of f2 ◦ f1

(a) f1(x) = 4 − 1

x
and f2(x) =

1

x2

(b) f1(x) =
1

(x− 1)2
− 4 and f2(x) =

x+ 1

x
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Lipschitz Continuity

Calculus required continuity, and continuity was supposed to require
the infinitely little, but nobody could discover what the infinitely
little might be. (Russell)

12.1 Introduction

When we graph a function f(x) of a rational variable x, we make a leap of
faith and assume that the function values f(x) vary “smoothly” or “contin-
uously” between the sample points x, so that we can draw the graph of the
function without lifting the pen. In particular, we assume that the function
value f(x) does not make unknown sudden jumps for some values of x. We
thus assume that the function value f(x) changes by a small amount if we
change x by a small amount. A basic problem in Calculus is to measure
how much the function values f(x) may change when x changes, that is,
to measure the “degree of continuity” of a function. In this chapter, we ap-
proach this basic problem using the concept of Lipschitz continuity, which
plays a basic role in the version of Calculus presented in this book.

There will be a lot of inequalities (< and ≤) and absolute values (| · |)
in this chapter, so it might be a good idea before you start to review the
rules for operating with these symbols from Chapter Rational numbers.
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Fig. 12.1. Rudolph Lipschitz (1832–1903), Inventor of Lipschitz continuity: “In-
deed, I have found a very nice way of expressing continuity. . .”

12.2 The Lipschitz Continuity of a Linear Function

To start with we consider the behavior of a linear polynomial. The value
of a constant polynomial doesn’t change when we change the input, so the
linear polynomial is the first interesting example to consider. Suppose the
linear function is f(x) = mx + b, with m ∈ Q and b ∈ Q given, and let
f(x1) = mx1 + b and f(x2) = mx2 + b to be the function values values
for x = x1 and x = x2. The change in the input is |x2 − x1| and for the
corresponding change in the output |f(x1) − f(x2)|, we have

|f(x2) − f(x1)| = |(mx2 + b) − (mx1 + b)| = |m(x2 − x1)| = |m||x2 − x1|.
(12.1)

In other words, the absolute value of the change in the function values
|f(x2) − f(x1)| is proportional to the absolute value of the change in the
input values |x2 − x1| with constant of proportionality equal to the slope
|m|. In particular, this means that we can make the change in the output
arbitrarily small by making the change in the input small, which certainly
fits our intuition that a linear function varies continuously.

Example 12.1. Let f(x) = 2x give the total number of miles for an “out
and back” bicycle ride that is x miles one way. To increase a given ride by
a total of 4 miles, we increase the one way distance x by 4/2 = 2 miles
while to increase a ride by a total of .01 miles, we increase the one way
distance x by .005 miles.

We now make an important observation: the slope m of the linear func-
tion f(x) = mx + b determines how much the function values change as
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the input value x changes. The larger |m| is, the steeper the line is, and
the more the function changes for a given change in input. We illustrate in
Fig. 12.2.

y = 3x

y = 1/2x

Fig. 12.2. These two linear functions which change a different amount for a given
change in input

Example 12.2. Suppose that f1(x) = 4x + 1 while f2(x) = 100x − 5. To
increase the value of f1(x) at x by an amount of .01, we change the value
of x by .01/4 = .0025. On the other hand, to change the value of f2(x) at
x by an amount of .01, we change the value of x by .01/100 = .0001.

12.3 The Definition of Lipschitz Continuity

We are now prepared to introduce the concept of Lipschitz continuity,
designed to measure change of function values versus change in the in-
dependent variable for a general function f : I → Q where I is a set
of rational numbers. Typically, I may be an interval of rational numbers
{x ∈ Q : a ≤ x ≤ b} for some rational numbers a and b. If x1 and x2 are two
numbers in I, then |x2−x1| is the change in the input and |f(x2)−f(x1)| is
the corresponding change in the output. We say that f is Lipschitz contin-
uous with Lipschitz constant Lf on I, if there is a (necessarily nonnegative)
constant Lf such that

|f(x1) − f(x2)| ≤ Lf |x1 − x2| for all x1, x2 ∈ I. (12.2)

As indicated by the notation, the Lipschitz constant Lf depends on the
function f , and thus may vary from being small for one function to be
large for another function. If Lf is small, then f(x) may change only a little
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with a small change of x, while if Lf is large, then f(x) may change a lot
under only a small change of x. Again: Lf may vary from small to large
depending on the function f .

Example 12.3. A linear function f(x) = mx + b is Lipschitz continuous
with Lipschitz constant Lf = |m| on the entire set of rational numbers Q.

Example 12.4. We show that f(x) = x2 is Lipschitz continuous on the
interval I = [−2, 2] with Lipschitz constant Lf = 4. We choose two rational
numbers x1 and x2 in [−2, 2]. The corresponding change in the function
values is

|f(x2) − f(x1)| = |x2
2 − x2

1|.
The goal is to estimate this in terms of the difference in the input values
|x2 −x1|. Using the identity for products of polynomials derived in Section
10.6, we get

|f(x2) − f(x1)| = |x2 + x1| |x2 − x1|. (12.3)

We have the desired difference on the right, but it is multiplied by a factor
that depends on x1 and x2. In contrast, the analogous relationship (12.1)
for the linear function has a factor that is constant, namely |m|. At this
point, we have to use the fact that x1 and x2 are in the interval [−2, 2],
which means that

|x2 + x1| ≤ |x2| + |x1| ≤ 2 + 2 = 4,

by the triangle inequality. We conclude that

|f(x2) − f(x1)| ≤ 4|x2 − x1|

for all x1 and x2 in [−2, 2].

Lipschitz continuity quantifies the idea of continuous behavior of a func-
tion f(x) using the Lipschitz constant Lf . We repeat: If Lf is moderately
sized then small changes in input x yield small changes in the function’s
output f(x), but a large Lipschitz constant means that the function’s val-
ues f(x) may make a large change when the input values x change by only
a small amount.

However it is important to note that there is a certain amount of impre-
cision inherit to the definition of Lipschitz continuity (12.2) and we have to
be circumspect about drawing conclusions when the Lipschitz constant is
large. The reason is that (12.2) is only an upper estimate on how much
the function changes and the actual change might be much smaller than
indicated by the constant.

Example 12.5. From Example 12.4, we know that f(x) = x2 is Lipschitz
continuous on I = [−2, 2] with Lipschitz constant Lf = 4. It is also Lips-
chitz constant on I with Lipschitz constant Lf = 121 since

|f(x2) − f(x1)| ≤ 4|x2 − x1| ≤ 121|x2 − x1|.
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But the second value of Lf greatly overestimates the change in f , whereas
the value Lf = 4 is just about right when x1 and x2 are near 2 since
22 − 1.92 = .39 = 3.9 × (2 − 1.9) and 3.9 ≈ 4.

To determine the Lipschitz constant, we have to make some estimates and
the result can vary greatly depending on how difficult the estimates are to
compute and our skill at making estimates.

It is also important to note that the size and location of the interval in
the definition is important and if we change the interval then we expect to
get a different Lipschitz constant Lf .

Example 12.6. We show that f(x) = x2 is Lipschitz continuous on the
interval I = [2, 4], with Lipschitz constant Lf = 8. Starting with (12.3), for
x1 and x2 in [2, 4] we have

|x2 + x1| ≤ |x2| + |x1| ≤ 4 + 4 = 8

so
|f(x2) − f(x1)| ≤ 8|x2 − x1|

for all x1 and x2 in [2, 4].

The reason that the Lipschitz constant is bigger in the second example is
clear from the graph, see Fig. 12.3, where we show the change in f corre-
sponding to equal changes in x near x = 2 and x = 4. Because f(x) = x2 is
steeper near x = 4, f changes more near x = 4 for a given change in input.

−4 −2 0 2 4

16

Fig. 12.3. The change in f(x) = x2 for equal changes in x near x = 2 and x = 4
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Example 12.7. f(x) = x2 is Lipschitz continuous on I = [−8, 8] with Lips-
chitz constant Lf = 16 and on I = [−400, 200] with Lf = 800.

In all of the examples involving f(x) = x2, we use the fact that the
interval under consideration is of finite size. A set of rational numbers I
is bounded with size a if |x| ≤ a for all x in I, for some (finite) rational
number a.

Example 12.8. The set of rational numbers I = [−1, 500] is bounded but
the set of even integers is not bounded.

While linear functions are Lipschitz continuous on the unbounded set Q,
functions that are not linear are usually only Lipschitz continuous on
bounded sets.

Example 12.9. The function f(x) = x2 is not Lipschitz continuous on the
set Q of rational numbers. This follows from (12.3) because |x1 + x2| can
be made arbitrarily large by choosing x1 and x2 freely in Q, so it is not
possible to find a constant Lf such that

|f(x2) − f(x1)| = |x2 + x1||x2 − x1| ≤ Lf |x2 − x1|

for all x1 and x2 in Q.

The definition of Lipschitz continuity is due to the German mathemati-
cian Rudolph Lipschitz (1832–1903), who used his concept of continuity to
prove existence of solutions to some important differential equations. This
is not the usual definition of continuity used in Calculus courses, which
is purely qualitative, while Lipschitz continuity is quantitative. Of course
there is a strong connection, and a function which is Lipschitz continuous
is also continuous according to the usual definition of continuity, while the
opposite may not be true: Lipschitz continuity is a somewhat more de-
manding property. However, quantifying continuous behavior in terms of
Lipschitz continuity simplifies many aspects of mathematical analysis and
the use of Lipschitz continuity has become ubiquitous in engineering and
applied mathematics. It also has the benefit of eliminating some rather
technical issues in defining continuity that are tricky yet unimportant in
practice.

12.4 Monomials

Continuing the investigation of continuous functions, we next show that
the monomials are Lipschitz continuous on bounded intervals, as we expect
based on their graphs.
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Example 12.10. We show that the function f(x) = x4 is Lipschitz continu-
ous on I = [−2, 2] with Lipschitz constant Lf = 32. We choose x1 and x2

in I and we want to estimate

|f(x2) − f(x1)| = |x4
2 − x4

1|

in terms of |x2 − x1|.
To do this we first show that

x4
2 − x4

1 = (x2 − x1)(x3
2 + x2

2x1 + x2x
2
1 + x3

1)

by multiplying out

(x2 − x1)(x3
2 + x2

2x1 + x2x
2
1 + x3

1)

= x4
2 + x3

2x1 + x2
2x

2
1 + x2x

3
1 − x3

2x1 − x2
2x

2
1 − x2x

3
1 − x4

1

and then cancelling the terms in the middle to get x4
2 − x4

1.

This means that

|f(x2) − f(x1)| = |x3
2 + x2

2x1 + x2x
2
1 + x3

1| |x2 − x1|.

We have the desired difference |x2 − x1| on the right and we just have to
bound the factor |x3

2 + x2
2x1 + x2x

2
1 + x3

1|. By the triangle inequality

|x3
2 + x2

2x1 + x2x
2
1 + x3

1| ≤ |x2|3 + |x2|2|x1| + |x2||x1|2 + |x1|3.

Now because x1 and x2 are in I, |x1| ≤ 2 and |x2| ≤ 2, so

|x3
2 + x2

2x1 + x2x
2
1 + x3

1| ≤ 23 + 22 2 + 2 22 + 23 = 32

and
|f(x2) − f(x1)| ≤ 32|x2 − x1|.

Recall that the Lipschitz constant of f(x) = x2 on I is Lf = 4. The fact
that the Lipschitz constant of x4 is larger than the constant for x2 on [−2, 2]
is not surprising considering the plots of the two functions, see Fig. 10.12.

We can use the same technique to show that the function f(x) = xm is
Lipschitz continuous where m is any natural number.

Example 12.11. The function f(x) = xm is Lipschitz continuous on any
interval I = [−a, a], where a is a positive rational number, with Lipschitz
constant Lf = mam−1. Given x1 and x2 in I, we want to estimate

|f(x2) − f(x1)| = |xm
2 − xm

1 |

in terms of |x2 − x1|. We can do this using the fact that

xm
2 − xm

1 = (x2 − x1)(xm−1
2 + xm−2

2 x1 + · · · + x2x
m−2
1 + xm−1

1 )

= (x2 − x1)
m−1∑

i=0

xm−1−i
2 xi

1.
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We show this by first multiplying out

(x2 − x1)
m−1∑

i=0

xm−1−i
2 xi

1 =
m−1∑

i=0

xm−i
2 xi

1 −
m−1∑

i=0

xm−1−i
2 xi+1

1

To see that there is a lot of cancellation among the terms in the middle in
the two sums on the right, we separate the first term out of the first sum
and the last term in the second sum

(x2 − x1)
m−1∑

i=0

xm−1−i
2 xi

1 = xm
2 +

m−1∑

i=1

xm−i
2 xi

1 −
m−2∑

i=0

xm−1−i
2 xi+1

1 − xm
1

and then changing the index in the second sum to get

(x2 − x1)
m−1∑

i=0

xm−1−i
2 xi

1

= xm
2 +

m−1∑

i=1

xm−i
2 xi

1 −
m−1∑

i=1

xm−i
2 xi

1 − xm
1 = xm

2 − xm
1 .

This is tedious, but it is good practice to go through the details and make
sure this argument is correct.

This means that

|f(x2) − f(x1)| =

∣
∣
∣
∣
∣

m−1∑

i=0

xm−1−i
2 xi

1

∣
∣
∣
∣
∣
|x2 − x1|.

We have the desired difference |x2 − x1| on the right and we just have to
bound the factor ∣

∣
∣
∣
∣

m−1∑

i=0

xm−1−i
2 xi

1

∣
∣
∣
∣
∣
.

By the triangle inequality
∣
∣
∣
∣
∣

m−1∑

i=0

xm−1−i
2 xi

1

∣
∣
∣
∣
∣
≤

m−1∑

i=0

|x2|m−1−i|x1|i.

Now because x1 and x2 are in [−a, a], |x1| ≤ a and |x2| ≤ a. So
∣
∣
∣
∣
∣

m−1∑

i=0

xm−1−i
2 xi

1

∣
∣
∣
∣
∣
≤

m−1∑

i=0

am−1−iai =
m−1∑

i=0

am−1 = mam−1.

and
|f(x2) − f(x1)| ≤ mam−1|x2 − x1|.
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12.5 Linear Combinations of Functions

Now that we have seen that the monomials are Lipschitz continuous on
a given bounded interval, it is a short step to show that any polynomial
is Lipschitz continuous on a given bounded interval. But rather than just
do this for polynomials, we show that a linear combination of arbitrary
Lipschitz continuous functions is Lipschitz continuous

Suppose that f1 is Lipschitz continuous with constant L1 and f2 is Lip-
schitz continuous with constant L2 on the interval I. Note that here (and
below) we condense the notation and write e.g. L1 instead of Lf1 . Then
f1 + f2 is Lipschitz continuous with constant L1 + L2 on I, because if we
choose two points x and y in I, then

|(f1 + f2)(y) − (f1 + f2)(x)| = |(f1(y) − f1(x)) + (f2(y) − f2(x))|
≤ |f1(y) − f1(x)| + |f2(y) − f2(x)|
≤ L1|y − x| + L2|y − x|
= (L1 + L2)|y − x|

by the triangle inequality. The same argument shows that f2−f1 is Lipschitz
continuous with constant L1 +L2 as well (not L1−L2 of course!). It is even
easier to show that if f(x) is Lipschitz continuous on an interval I with
Lipschitz constant L then cf(x) is Lipschitz continuous on I with Lipschitz
constant |c|L.

From these two facts, it is a short step to extend the result to any linear
combination of Lipschitz continuous functions. Suppose that f1, · · · , fn are
Lipschitz continuous on I with Lipschitz constants L1, · · · , Ln respectively.
We use induction, so we begin by considering the linear combination of two
functions. From the remarks above, it follows that c1f1 + c2f2 is Lipschitz
continuous with constant |c1|L1 + |c2|L2. Next given i ≤ n, we assume that
c1f1 + · · · + ci−1fi−1 is Lipschitz continuous with constant |c1|L1 + · · · +
|ci−1|Li−1. To prove the result for i, we write

c1f1 + · · · + cifi =
(
c1f1 + · · · + ci−1fi−1

)
+ cnfn.

But the assumption on
(
c1f1 + · · ·+ ci−1fi−1

)
means that we have written

c1f1 + · · · + cifi as the sum of two Lipschitz continuous functions, namely(
c1f1 + · · · + ci−1fi−1

)
and cnfn. The result follows by the result for the

linear combination of two functions. By induction, we have proved

Theorem 12.1 Suppose that f1, · · · , fn are Lipschitz continuous on I with
Lipschitz constants L1, · · · , Ln respectively. Then the linear combination
c1f1+· · ·+cnfn is Lipschitz continuous on I with Lipschitz constant |c1|L1+
· · · + |cn|Ln.

Corollary 12.2 A polynomial is Lipschitz continuous on any bounded
interval.
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Example 12.12. We show that the function f(x) = x4 − 3x2 is Lipschitz
continuous on [−2, 2], with constant Lf = 44. For x1 and x2 in [−2, 2], we
have to estimate

|f (x2) − f (x1)| =
∣
∣
(
x4

2 − 3x2
2

)
−
(
x4

1 − 3x2
1

)∣
∣

=
∣
∣
(
x4

2 − x4
1

)
−
(
3x2

2 − 3x2
1

)∣
∣

≤
∣
∣x4

2 − x4
1

∣
∣ + 3

∣
∣x2

2 − x2
1

∣
∣ .

From Example 12.11, we know that x4 is Lipschitz continuous on [−2, 2]
with constant 32 while x2 is Lipschitz continuous on [−2, 2] with Lipschitz
constant 4. Therefore

|f(x2) − f(x1)| ≤ 32|x2 − x1| + 3 × 4|x2 − x1| = 44|x2 − x1|.

12.6 Bounded Functions

Lipschitz continuity is related to another important property of a function
called boundedness. A function f is bounded on a set of rational numbers
I if there is a constant M such that, see Fig. 12.4

|f(x)| ≤M for all x in I.

In fact if we think about the estimates we have made to verify the definition
of Lipschitz continuity (12.2), we see that in every case these involved
showing that some function is bounded on the given interval.

x

y

y = f(x)

y = M

y = −M

Fig. 12.4. A bounded function on I

Example 12.13. To show that f(x) = x2 is Lipschitz continuous on [−2, 2]
in Example 12.4, we proved that |x1 + x2| ≤ 4 for x1 and x2 in [−2, 2].
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It turns out that a function that is Lipschitz continuous on a bounded
domain is automatically bounded on that domain. To be more precise,
suppose that a function f is Lipschitz continuous with Lipschitz constant
Lf on a bounded set I with size a and choose a point y in I. Then for any
other point x in I

|f(x) − f(y)| ≤ Lf |x− y|.
First we know that |x− y| ≤ |x| + |y| ≤ 2a. Also, since |b+ c| ≤ |d| means
that |b| ≤ |d| + |c| for any numbers a, b, c, we get

|f(x)| ≤ |f(y)| + Lf |x− y| ≤ |f(y)| + 2Lfa.

Even though we don’t know |f(y)|, we do know that it is finite. This shows
that |f(x)| is bounded by the constant M = |f(y)| + 2Lfa for any x in Q.
We express this by saying that f(x) is bounded on I. We have thus proved

Theorem 12.3 A Lipschitz continuous function on a bounded set I is
bounded on I.

Example 12.14. In Example 12.12, we showed that f(x) = x4 + 3x2 is
Lipschitz continuous on [−2, 2] with Lipschitz constant Lf = 44. Using
this argument, we find that

|f(x)| ≤ |f(0)| + 44|x− 0| ≤ 0 + 44 × 2 = 88

for any x in [−2, 2]. Since x4 is increasing for 0 ≤ x, in fact we know that
|f(x)| ≤ |f(2)| = 16 for any x in [−2, 2]. So the estimate on the size of |f |
using the Lipschitz constant is not very accurate.

12.7 The Product of Functions

The next step in investigating which functions are Lipschitz continuous is
to consider the product of two Lipschitz continuous functions on a bounded
interval I. We show that the product is also Lipschitz continuous on I. More
precisely, if f1 is Lipschitz continuous with constant L1 and f2 is Lipschitz
continuous with constant L2 on a bounded interval I then f1f2 is Lipschitz
continuous on I. We choose two points x and y in I and estimate by using
the old trick of adding and subtracting the same quantity

|f1(y)f2(y) − f1(x)f2(x)|
= |f1(y)f2(y) − f1(y)f2(x) + f1(y)f2(x) − f1(x)f2(x)|
≤ |f1(y)f2(y) − f1(y)f2(x)| + |f1(y)f2(x) − f1(x)f2(x)|
= |f1(y)| |f2(y) − ff2(x)| + |f2(x)| |f1(y) − f1(x)|

Now Theorem 12.3, which says that Lipschitz continuous functions are
bounded, implies there is some constant M such that |f1(y)| ≤ M and
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|f2(x)| ≤ M for x, y ∈ I. Using the Lipschitz continuity of f1 and f2 in I,
we find

|f1(y)f2(y) − f1(x)f2(x)| ≤ML1|y − x| +ML2|y − x|
= M(L1 + L2)|y − x|.

We summarize

Theorem 12.4 If f1 and f2 are Lipschitz continuous on a bounded interval
I then f1f2 is Lipschitz continuous on I.

Example 12.15. The function f(x) = (x2 + 5)10 is Lipschitz continuous
on the set I = [−10, 10] because x2 + 5 is Lipschitz continuous on I and
therefore (x2+5)10 = (x2+5)(x2+5) · · · (x2+5) is as well by Theorem 12.4.

12.8 The Quotient of Functions

Continuing our investigation, we now consider the ratio of two Lipschitz
continuous functions. In this case however, we require more information
about the function in the denominator than just that it is Lipschitz con-
tinuous. We also have to know that it does not become too small. To
understand this, we first consider an example.

Example 12.16. We show that f(x) = 1/x2 is Lipschitz continuous on the
interval [1/2, 2], with Lipschitz constant L = 64. We choose two points x1

and x2 in Q and we estimate the change

|f(x2) − f(x1)| =
∣
∣
∣
∣

1
x2

2

− 1
x2

1

∣
∣
∣
∣

by first doing some algebra

1
x2

2

− 1
x2

1

=
x2

1

x2
1x

2
2

− x2
2

x2
1x

2
2

=
x2

1 − x2
2

x2
1x

2
2

=
(x1 + x2)(x1 − x2)

x2
1x

2
2

.

This means that

|f(x2) − f(x1)| =
∣
∣
∣
∣
x1 + x2

x2
1x

2
2

∣
∣
∣
∣ |x2 − x1|.

Now we have the good difference on the right, we just have to bound the
factor. The numerator of the factor is the same as in Example 12.4, and
we know that

|x1 + x2| ≤ 4.

We also know that

x1 ≥ 1
2

implies
1
x1

≤ 2 implies
1
x2

1

≤ 4
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and likewise 1
x2
2
≤ 4. So we get

|f(x2) − f(x1)| ≤ 4 × 4 × 4 |x2 − x1| = 64|x2 − x1|.

In this example, we have to use the fact that the left-hand endpoint of the
interval I is 1/2. The closer the left-hand endpoint is to zero, the larger
the Lipschitz constant will be. In fact, 1/x2 is not Lipschitz continuous on
[0, 2].

We mimic this example in the general case f1/f2 by assuming that the
denominator f2 is bounded below by a positive constant. We give the proof
of the following theorem as an exercise.

Theorem 12.5 Assume that f1 and f2 are Lipschitz continuous functions
on a bounded set I with constants L1 and L2 and moreover assume there
is a constant m > 0 such that |f2(x)| ≥ m for all x in I. Then f1/f2 is
Lipschitz continuous on I.

Example 12.17. The function 1/x2 does not satisfy the assumptions of
Theorem 12.5 on the interval [0, 2] and we know that it is not Lipschitz
continuous on that interval.

12.9 The Composition of Functions

We conclude the investigation into Lipschitz continuity by considering the
composition of Lipschitz continuous functions. This is actually easier than
either products or ratios of functions. The only complication is that we
have to be careful about the domains and ranges of the functions. Consider
the composition f2(f1(x)). Presumably, we have to restrict x to an interval
on which f1 is Lipschitz continuous and we also have to make sure that the
values of f1 are in a set on which f2 is Lipschitz continuous.

So we assume that f1 is Lipschitz continuous on I1 with constant L1 and
that f2 is Lipschitz continuous on I2 with constant L2. If x and y are points
in I1 then as long as f1(x) and f1(y) are in I2 then

|f2(f1(y)) − f2(f1(x))| ≤ L2|f1(y) − f1(x)| ≤ L1L2|y − x|.

We summarize as a theorem.

Theorem 12.6 Let f1 be Lipschitz continuous on a set I1 with Lipschitz
constant L1 and f2 be Lipschitz continuous on I2 with Lipschitz constant
L2 such that f1(I1) ⊂ I2. Then the composite function = f2◦f1 is Lipschitz
continuous on I1 with Lipschitz constant L1L2.

Example 12.18. The function f(x) = (2x− 1)4 is Lipschitz continuous on
any bounded interval since f1(x) = 2x − 1 and f2(x) = x4 are Lipschitz
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continuous on any bounded interval. If we consider the interval [−.5, 1.5]
then f1(I) ⊂ [−2, 2]. From Example 12.10, we know that x4 is Lipschitz
continuous on [−2, 2] with Lipschitz constant 32 while the Lipschitz con-
stant of 2x− 1 is 2. Therefore, f is Lipschitz continuous on [−.5, 1.5] with
constant 64.

Example 12.19. The function 1/(x2 − 4) is Lipschitz continuous on any
closed interval that does not contain either 2 or −2. This follows because
f1(x) = x2 − 4 is Lipschitz continuous on any bounded interval while
f2(x) = 1/x is Lipschitz continuous on any closed interval that does not
contain 0. To avoid zero, we must avoid x2 = 4 or x = ±2.

12.10 Functions of Two Rational Variables

Until now, we have considered functions f(x) of one rational variable x.
But of course, there are functions that depend on more than one input.
Consider for example the function

f(x1, x2) = x1 + x2,

which to each pair of rational numbers x1 and x2 associates the sum x1+x2.
We may write this as f : Q × Q → Q, meaning that to each x1 ∈ Q and
x2 ∈ Q we associate a value f(x1, x2) ∈ Q. For example, f(x1, x2) = x1+x2.
We say that f(x1, x2) is a function of two independent rational variables x1

and x2. Here, we think of Q×Q as the set of all pairs (x1, x2) with x1 ∈ Q

and x2 ∈ Q.
We shall write Q

2 = Q×Q and consider f(x1, x2) = x1+x2 as a function
f : Q

2 → Q. We will also consider functions f : I × J → Q, where I and
J are subsets such as intervals, of Q. This just means that for each x1 ∈ I
and x2 ∈ J , we associate a value f(x1, x2) ∈ Q.

We may naturally extend the concept of Lipschitz continuity to functions
of two rational variables. We say that f : I×J → Q is Lipschitz continuous
with Lipschitz constant Lf if

|f(x1, y1) − f(x2, y2)| ≤ Lf(|x1 − x2| + |y1 − y2|)

for x1, x2 ∈ I and y1, y2 ∈ J .

Example 12.20. The function f : Q
2 → Q defined by f(x1, x2) = x1 + x2

is Lipschitz continuous with Lipschitz constant Lf = 1.

Example 12.21. The function f : [0, 2] × [0, 2] → Q defined by f(x1, x2) =
x1x2 is Lipschitz continuous with Lipschitz constant Lf = 2, since for
x1, x2 ∈ [0, 1]

|x1x2 − y1y2| = |x1x2 − y1x2 + y1x2 − y1y2|
≤ |x1 − y1|x2 + y1|x2 − y2| ≤ 2(|x1 − y1| + |x2 − y2|).
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12.11 Functions of Several Rational Variables

The concept of a function also extends to several variables, i.e. we con-
sider functions f(x1, . . . , xd) of d rational variables. We write f : R

d → Q

if for given rational numbers x1, · · · , xd, a rational number denoted by
f(x1, . . . , xd) is given.

The definition of Lipschitz continuity also directly extends. We say that
f : Q

d → Q is Lipschitz continuous with Lipschitz constant Lf if for all
x1, · · · , xd ∈ Q and y1, · · · , yd ∈ Q,

|f(x1, . . . , xd) − f(y1, . . . , yd)| ≤ Lf (|x1 − y1| + · · · + |xd − yd|).

Example 12.22. The function f : R
d → Q defined by f(x1, . . . , xd) = x1 +

x2 + · · ·xd is Lipschitz continuous with Lipschitz constant Lf = 1.

Chapter 12 Problems

12.1. Verify the claims in Example 12.7.

12.2. Show that f(x) = x2 is Lipschitz continuous on [10, 13] directly and
compute a Lipschitz constant.

12.3. Show that f(x) = 4x− 2x2 is Lipschitz continuous on [−2, 2] directly and
compute a Lipschitz constant.

12.4. Show that f(x) = x3 is Lipschitz continuous on [−2, 2] directly and com-
pute a Lipschitz constant.

12.5. Show that f(x) = |x| is Lipschitz continuous on Q directly and compute
a Lipschitz constant.

12.6. In Example 12.10, we show that x4 is Lipschitz continuous on [−2, 2]
with Lipschitz constant L = 32. Explain why this is a reasonable value for the
Lipschitz constant.

12.7. Show that f(x) = 1/x2 is Lipschitz continuous on [1, 2] directly and
compute the Lipschitz constant.

12.8. Show that f(x) = 1/(x2 + 1) is Lipschitz continuous on [−2, 2] directly
and compute a Lipschitz constant.

12.9. Compute the Lipschitz constant of f(x) = 1/x on the intervals (a) [.1, 1],
(b) [.01, 1], and [.001, 1].

12.10. Find the Lipschitz constant of the function f(x) =
√
x with D(f) =

(δ,∞) for given δ > 0.
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12.11. Explain why f(x) = 1/x is not Lipschitz continuous on (0, 1].

12.12. (a) Explain why the function

f(x) =

{
1, x < 0

x2, x ≥ 0

is not Lipschitz continuous on [−1, 1]. (b) Is f Lipschitz continuous on [1, 4]?

12.13. Suppose the Lipschitz constant L of a function f is equal to L = 10100.
Discuss the continuity properties of f(x) and in particular decide if f continuous
from a practical point of view.

12.14. Assume that f1 is Lipschitz continuous with constant L1, f2 is Lipschitz
continuous with constant L2 on a set I , and c is a number. Show that f1 − f2 is
Lipschitz continuous with constant L1 +L2 on I and cf1 is Lipschitz continuous
with constant cL1 on I .

12.15. Show that the Lipschitz constant of a polynomial f(x) =
∑n
i=0 aix

i on
the interval [−c, c] is

L =

n∑

i=1

|ai|ici−1 = |a1| + 2c|a2| + · · · + ncn−1|an|.

12.16. Explain why f(x) = 1/x is not bounded on [−1, 0].

12.17. Prove Theorem 12.5.

12.18. Use the theorems in this chapter to show that the following functions
are Lipschitz continuous on the given intervals and try to estimate a Lipschitz
constant or prove they are not Lipschitz continuous.

(a) f(x) = 2x4 − 16x2 + 5x on [−2, 2] (b)
1

x2 − 1
on

[

−1

2
,
1

2

]

(c)
1

x2 − 2x− 3
on [2, 3) (d)

(

1 +
1

x

)4

on [1, 2]

12.19. Show the function

f(x) =
1

c1x+ c2(1 − x)

where c1 > 0 and c2 > 0 is Lipschitz continuous on [0, 1].
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Sequences and limits

He sat down and thought, in the most thoughtful way he could think.
(Winnie-the-Pooh)

13.1 A First Encounter with Sequences and Limits

The decimal expansions of rational numbers discussed in chapter Rational
Numbers leads into the concepts sequence, converging sequence and limit of
a sequence, which play a fundamental role in mathematics. The develop-
ment of calculus has largely been a struggle to come to grips with certain
evasive aspects of these concepts. We will try to uncover the mysteries by
being as concrete and down-to-earth as possible.

We begin recalling the decimal expansion 1.11 . . . of 10
9 , and that by (7.7)

10
9

= 1.11 · · ·11n +
1
9
10−n. (13.1)

Rewriting this equation and replacing for simplicity 1
910−n by the up-

per bound 10−n, we get the following estimate for the difference between
1.111 · · ·11n and 10/9,

∣
∣
∣
∣
10
9

− 1.11 · · ·11n

∣
∣
∣
∣ ≤ 10−n. (13.2)

This estimate shows that we may consider 1.11 · · ·11n as an approximation
of 10/9, which becomes increasingly accurate as the number of decimal
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places n increases. In other words, the error |10/9 − 1.11 · · ·11n| can be
made as small as we please by taking n sufficiently large. If we want the
error to be smaller than or equal to 10−10, then we simply choose n ≥ 10.

We may view the successive approximations 1.1, 1.11, 1.111, 1.11 . . .11n,
and so on, as a sequence of numbers an, with n = 1, 2, 3, . . ., where a1 = 1.1,
a2 = 1.11, . . ., an = 1.11 . . .11n, . . ., are called the elements of the sequence.
More generally, a sequence a1, a2, a3, . . ., is a never-ending list of elements
a1, a2, a3, . . ., where the index takes successively the values of the natural
numbers 1, 2, 3, . . .. A sequence of rational numbers is a list a1, a2, a3, . . .,
where each element an is a rational number. We will denote a sequence by

{an}∞n=1

which thus means the never ending list a1, a2, a3, . . ., of elements an,
with the index n going through the natural numbers n = 1, 2, 3, . . .. The
symbol ∞, called “infinity”, indicates that the list continues for ever in the
same sense that the natural numbers 1, 2, 3, . . . , continues for ever without
coming to an end.

We now return to the sequence of rational numbers {an}∞n=1, where
an = 1.11..11n, that is the sequence {1.11..11n}∞n=1. The accuracy of ele-
ment an = 1.11 . . . 11n, as an approximation of 10

9 , increases as the number
of decimals n increases. Each number in the sequence in turn is a better
approximation to 10/9 than the preceding number and as we move from left
to right the numbers become ever closer to 10/9. An advantage of consider-
ing the sequence {1.11..11n}∞n=1 or never ending list 1.1, 1.11, 1.111,. . . , is
that we are ready to meet any accuracy requirement that could be posed.
If we just consider one element, say 1.11..1110, then we could not meet an
accuracy requirement in the approximation of 10

9 of say 10−15. But if we
have the whole sequence at hand, then we can pick the element 1.11..1116

or 1.11..1117 or more generally any 1.11..11n with n ≥ 15, as a decimal ap-
proximation of 10

9 with an error less than 10−15. The sequence thus gives
us a whole “bag” of numbers, or a collection of approximations with which
we can meet any accuracy requirement in the approximation of 10

9 . The
sequence 1.1, . . . , 1.11..11n, . . . , thus can be viewed as a collection of suc-
cessively more accurate approximations of 10

9 , where we can satisfy any
desired accuracy.

We say that the sequence {1.11..11n}∞n=1 converges to the value 10
9 , since

the difference between 10
9 and 1.11..11n becomes smaller than any given

positive number if only we take n large enough, as follows from (13.2).
We say that 10

9 is the limit of the sequence {an}∞n=1={1, 11..11n}∞n=1. We
will express the convergence of the sequence {an}∞n=1 with elements an =
1.11 . . .11n, as follows:

lim
n→∞

an =
10
9

or lim
n→∞

1.11..11n =
10
9
.
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The limit 10
9 does not have a finite decimal expansion. The elements

1.11..11n of the converging sequence {1.11..11n}∞n=1 are finite decimal ap-
proximations of the limit 10

9 , with an error which is smaller than any given
positive number if we only take n large enough.

Suppose that we restrict ourselves to work with finite decimal expansions,
which is what a computer usually does. In this case we cannot exactly
express the value 10

9 with the available resources, because 10
9 does not have

a finite decimal expansion. As a substitute or approximation we may choose
for example 1.11..1110, but there is limit to the accuracy with this single
element. It would not be entirely correct to say that 10

9 = 1.11..1110. If
we instead have the whole sequence {1.11..11n}∞n=1 at hand, then we can
meet any accuracy by choosing the element 1.11..11n with n large enough.
Choosing more and more decimals, we could increase the accuracy to any
desired degree.

The sequence {1.11..11n}∞n=1 includes finite decimal approximations of
10
9 satisfying any given positive tolerance or accuracy requirement. This is
sometimes expressed as

1.111 . . . =
10
9
,

where the three little dots are there to indicate that any precision could
be attained by taking sufficiently many decimals (all equal to 1). Another
way of writing this, would be

lim
n→∞

1.11..11n =
10
9
,

avoiding the possible ambiguity using the three little dots.

13.2 Socket Wrench Sets

To tighten or loosen a hex bolt with head diameter 2/3, a mechanic needs to
use a socket wrench of a slightly bigger size. The tolerance on the difference
between the sizes of the bolt and the wrench depend on the tightness, the
material of the bolt and the wrench, and conditions such as whether the
bolt threads are lubricated and whether the bolt is rusty or not. If the
wrench is too large then the head of the bolt will simply be stripped before
the bolt is tightened or loosened. We show two wrenches with different
tolerances in Fig. 13.1.

An amateur mechanic would have one socket, of say dimension 0.7.
A pro mechanic would perhaps have 10 sockets of dimensions 0.7, 0.67,
0.667,. . . ,0.66 · · ·66710. Both the amateur and pro would get stuck under
sufficiently tough conditions because the socket would be too large to do
the job.
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Fig. 13.1. Two socket wrenches with different tolerances

A ideal expert mechanic would have the whole sequence {0.66 · · ·67n}∞n=1

at his/her disposal with the error of wrench number n being estimated by

∣
∣
∣
∣0.66 · · ·67n − 2

3

∣
∣
∣
∣ ≤ 10−n.

The ideal expert can thus reach into the tool chest and pull out a wrench
that meets any accuracy requirement, and would thus be able to turn the
bolt under arbitrarily tough conditions, or meet any crank torque specified
by a bicycle manufacturer. More precisely, the ideal expert could be thought
of as being able to construct a socket himself to meet any given tolerance or
accuracy. If necessary, the ideal mechanic could construct a wrench of for
example the dimension 0.66 · · ·6720, unless he already has such a wrench
in his (big) tool chest. The amateur and pro mechanic would not have this
capability of constructing their own wrenches, but would have to be content
with their ready-made wrench sets (which they could buy in the hard-ware
store). We expect the cost to construct a wrench of dimension 0.6 · · ·67n

to increase (rapidly) with n, since the precision in the construction process
has to improve.

As a general point, computing the numbers 0.66 · · ·67n by long division
of 2

3 , requires more work as n increases. What we gain from doing more
work is better accuracy in using 0.66 · · ·67n as an approximation to 2

3 .
Trading work for accuracy is the central idea behind solving equations
using computation, especially on a computer. An estimate like (13.2) gives
a quantitative measurement of how much accuracy we gain for each increase
in work and so such estimates are useful not only to mathematicians but
to engineers and scientists.

The need of approximating better and better in this case may be seen as
an incompatibility of two systems: the bolt has dimension 2

3 in the system
of rational numbers, and the wrenches come in the decimal system 0.7,
0.67, 0.667,. . . and there is no wrench of size exactly 2

3 .
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13.3 J.P. Johansson’s Adjustable Wrenches

The adjustable wrench is a Swedish invention created 1891 by the genius
J.P. Johansson (1839–1924) see Fig. 13.2. In principle the adjustable wrench
is an analog device which fits a bolt of any size within a certain range. Every
mechanic knows that an adjustable wrench may fail in cases when a prop-
erly chosen fixed size wrench does not, because the size of the adjustable
wrench is not completely stable under increasing torque.

Fig. 13.2. The Swedish inventor J.P. Johansson with two adjustable wrenches
of different design

13.4 The Power of Language:
From Infinitely Many to One

The decimal expansion 0.6666 . . . of 2
3 contains infinitely many decimals.

The sequence {0.66 · · ·667n}∞n=1 contains infinitely many elements, which
are increasingly accurate approximations of 2

3 . Talking or thinking of in-
finitely many decimals or infinitely many elements, presents a serious dif-
ficulty, which is handled by introducing the concept of a sequence. A se-
quence has infinitely many elements, but the sequence itself is just one
entity. We thus group the infinitely many elements together to form one
sequence, and thus pass from infinity to one. After this semantic construc-
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tion, we are thus able to speak about one sequence and may momentarily
forget that the sequence in fact has infinitely many elements.

This would be like speaking about the expert mechanics tool chest con-
taining the sequence {0.66 · · ·667n}∞n=1 of infinitely many wrenches as one
entity. One tool chest with infinitely many wrenches. To call a tool chest
a wrench seems strange initially, but we could get there by first calling
the tool chest something like a “super-wrench”, and then later omit the
“super”.

Analogously, we could say that 0.6666 . . . is a “super-number” because
it has infinitely many decimals, and then forget the “super” and say that
0.6666 . . . , is a number. In fact, this makes complete sense since we identify
0.6666 . . . with 2

3 , which is a number. Below, we shall meet non-periodic
infinite decimal expansions that do not correspond to rational numbers.
Initially, we may think of these as some kind of “super-number”, and then
later will refer such numbers as “real numbers”.

The discussion illustrates the usefulness of the concept of one set or
sequence with infinitely many elements. Of course, we should be aware of
the risk involved using the language to hide real facts. Political language
is often used this way, which is one reason for the eroding credibility of
politicians. As mathematicians, there is no reason that we should try to be
as honest as possible, and use the language as clearly as possible.

13.5 The ε − N Definition of a Limit

The mathematical formulation of the idea of a limit says that the terms an

of a convergent sequence {an}∞n=1 differ from the limit A with as little as
we please if only the index n is large enough, and we decided to write this
as

lim
n→∞

an = A,

There is a mathematical jargon to express this fact that has become ex-
tremely popular. It was developed by Karl Weierstrass (1815–97), see
Fig. 13.3 and takes the following form: The limit of the sequence {an}∞n=1

equals A, which we write as

lim
n→∞

an = A,

if for any (rational) ε > 0 there is a natural number N such that

|an −A| ≤ ε for all n ≥ N

For example, we know that the value of 10/9 is approximated by the element
1.11 · · ·1n from the sequence {1.11 · · ·1n} to any specified accuracy (bigger
than zero) by taking n sufficiently large. We know from (13.2) that

∣
∣
∣
∣
10
9

− 1.11 · · ·1n

∣
∣
∣
∣ ≤ 10−n,
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Fig. 13.3. Weierstrass to Sonya Kovalevskaya: “. . . dreamed and been enrap-
tured of so many riddles that remain for us to solve, on finite and infinite spaces,
on the stability of the world system, and on all the other major problems of the
mathematics and the physics of the future. . . . you have been close . . . throughout
my entire life . . . and never have I found anyone who could bring me such under-
standing of the highest aims of science and such joyful accord with my intentions
and basic principles as you”

and thus ∣
∣
∣
∣
10
9

− 1.11 · · ·1n

∣
∣
∣
∣ ≤ ε

if 10−n ≤ ε. We can phrase this as
∣
∣
∣
∣
10
9

− 1.11 · · ·1n

∣
∣
∣
∣ ≤ ε

if n ≥ N , where 10−N ≤ ε. If ε = .p1p2 · · · , where p1 = p2 = · · · = pm = 0,
while pm+1 �= 0, then we may choose any N such that N ≥ m. We see that
choosing ε smaller, requires N to be bigger, and thus N depends on ε.

We emphasize that the ε − N definition of convergence is a fancy way
of saying that the difference |A− an| can be made smaller than any given
positive number if only n is taken large enough.

There is a risk (and temptation) in using the ε−N definition of conver-
gence, instead of the more pedestrian “as small as we please if only n is
large enough”. The statement “|A−an| can be made smaller than any given
positive number if only n is large enough” is a very qualitative statement.
Nothing is said about how large n has to be to reach a certain accuracy.
A very qualitative statement is necessarily a bit vague. On the other hand,
the statement “for any ε > 0 there is an N such that |A − an| ≤ ε if
n ≥ N” has the form of a very exact and precise statement, while in fact
it may be as qualitative as the first statement, unless the dependence of N
on ε is made clear. The risk is thus that using the ε − N -jargon, we may
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get confused and believe that something vague, in fact is very precise. Of
course there is also a temptation in this, which relates to the general idea
of mathematics as something being extremely precise. So be cautious and
don’t get fooled by simple tricks: the ε−N limit definition is vague to the
extent the dependence of N on ε is vague.

The concept of a limit of a sequence of numbers is central to calculus.
It is closely connected to never-ending decimal expansions, that is decimal
expansions with infinitely many non-zero decimals. The elements in the
sequence with this connection are obtained by successively taking more and
more decimals into account. In fact, the fundamental reason for looking
at sequences comes form this connection. However, as happens, the idea
of a sequence and limit has taken on a life of its own, which has been
plaguing many students of calculus. We will try to refrain from excesses
in this direction and keep a strong connection with the original motivation
for introducing the concepts of sequences and limits, namely describing
successively better and better approximations of solutions of equations.

We shall now practice the ε−N jargon in a couple of examples to show
that certain sequences have limits. The sequences we present are “artifi-
cial”, that is given by cooked-up formulas, but we use them to illustrate
basic aspects. After going through these examples, the reader should be
able to look through the apparent mystery of the ε − N definition, and
understand that it expresses something intuitively quite simple. But re-
member: the ε − N definition of a limit is vague to the extent that the
dependence of N on ε is vague.

Example 13.1. The limit of the sequence { 1
n}∞n=1 equals 0, i.e.

lim
n→∞

1
n

= 0.

Note that this is obvious simply because 1
n can be made as close to 0 as

we please by taking n large enough. We shall now phrase this obvious (and
trivial fact) using the ε − N jargon. We thus have to satisfy the devious
mathematician who gives an ε > 0 and asks for a natural number N such
that ∣

∣
∣
∣
1
n
− 0

∣
∣
∣
∣ ≤ ε (13.3)

for all n ≥ N . Well, to satisfy this request we choose N to be any natural
number larger than (or equal to) 1/ε, for instance the smallest natural
number larger than or equal to 1/ε. Then (13.3) holds for n ≥ N , and
we have satisfied the devious demand, which shows that limn→∞

1
n = 0.

In this example, the connection between ε and N is very clear: we can
take N to be the smallest natural number larger than or equal to 1/ε. For
example, if ε = 1/100, then N = 100. We hope the reader can make the
connection of the simple idea that 1/n gets as close to 0 as we please by
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taking n sufficiently large, and the more pompous phrasing of this idea in
the ε−N -jargon.

Example 13.2. We next show that the limit of the sequence { n
n+1}∞n=1 =

{ 1
2 ,

2
3 , · · · } equals 1, that is

lim
n→∞

n

n+ 1
= 1. (13.4)

We compute
∣
∣
∣
∣1 − n

n+ 1

∣
∣
∣
∣ =

∣
∣
∣
∣
n+ 1 − n

n+ 1

∣
∣
∣
∣ =

1
n+ 1

,

which shows that n
n+1 is arbitrarily close to 1 if n is large enough, and thus

proves the claim. We now phrase this using the ε−N jargon. Let thus ε > 0
be given. Now 1

n+1 ≤ ε provided that n ≥ 1/ε− 1. Hence
∣
∣
∣1 − n

n+1

∣
∣
∣ ≤ ε for

all n ≥ N provided N is chosen so that N ≥ 1/ε− 1. Again this proves the
claim.

Example 13.3. The sum

1 + r + r2 + · · · + rn =
n∑

i=0

ri = sn

is said to be a finite geometric series of order n with factor r, including the
powers ri of the factor r up to i = n. We considered this series above with
r = 0.1 and sn = 1.11 · · ·11n. We now consider an arbitrary value of the
factor r in the range |r| < 1. We recall the formula

sn =
n∑

i=0

ri =
1 − rn+1

1 − r

valid for any r �= 1. What happens as the number n of terms get bigger
and bigger? To answer this it is natural to consider the sequence {sn}∞n=1.
We shall prove that if |r| < 1, then

lim
n→∞

sn = lim
n→∞

(1 + r + r2 + · · · + rn) =
1

1 − r
, (13.5)

which we will write as
∞∑

i=0

ri =
1

1 − r
if |r| < 1.

Intuitively, we feel that this is correct, because rn+1 gets as small as we
please by taking n large enough (remember that |r| < 1). We say that∑∞

i=0 r
i is an infinite geometric series with factor r.
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We now give an ε−N proof of (13.5). We need to show that for any ε > 0,
there is an N such that

∣
∣
∣
∣
1 − rn+1

1 − r
− 1

1 − r

∣
∣
∣
∣ =

∣
∣
∣
∣
rn+1

1 − r

∣
∣
∣
∣ ≤ ε

for all n ≥ N . To this end it is sufficient, since |r| < 1, to find N such that

|r|N+1 ≤ ε |1 − r| (13.6)

Since |r| < 1, we can make |r|N+1 as small as we please by taking N
sufficiently large, and thus we can also satisfy the inequality (13.6) by taking
N sufficiently large. Below, we will define a function called the logarithm
that we can use to get a precise value for N as a function of ε from (13.6).

13.6 A Converging Sequence Has a Unique Limit

The limit of a converging sequence is uniquely defined. This should be
self-evident from the fact that it is impossible to be arbitrarily close to
two different numbers at the same time. Try! We now also give a more
lengthy proof using a type of argument often found in math books. The
reader could profit from going through this argument and understanding
that something seemingly difficult, in fact can hide a very simple idea.

We start from the following variation of the triangle inequality, see Prob-
lem 7.15,

|a− b| ≤ |a− c| + |c− b| (13.7)

which holds for all a, b, and c. Suppose that the sequence {an}∞n=1 converges
to two possibly different numbers A1 and A2. Using (13.7) with a = A1,
b = A2, and c = an, we get

|A1 −A2| ≤ |an −A1| + |an −A2|

for any n. Now because an converges to A1, we can make |an − A1| as
small as we like, and in particular smaller than 1

4 |A1 −A2| if A1 �= A2, by
taking n large enough. Likewise we can make |an − A2| ≤ 1

4 |A1 − A2| by
taking n large enough. By (13.7), this means that |A1 −A2| ≤ 1

2 |A1 −A2|
for n large, which can only hold if A1 = A2, and thus contradicts the
obstructional assumption A1 �= A2, which therefore must be rejected.

We note that if limn→∞ an = A then also, for example, limn→∞ an+1 = A,
and limn→∞ an+7 = A. In other word, only the “very tail” of a sequence
{an} matters to the limit limn→∞ an.
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13.7 Lipschitz Continuous Functions
and Sequences

A basic reason for introducing the concept of a Lipschitz continuous func-
tion f : Q → Q is its relation to sequences of rational numbers. The
fundamental issue is the following. Let {an} be a converging sequence with
rational limit limn→∞ an and let f : Q → Q be a Lipschitz continuous
function with Lipschitz constant L. What can be said about the sequence
{f(an)}? Does it converge and if so, to what?

The answer is easy to state: the sequence {f(an)} converges and

lim
n→∞

f(an) = f
(

lim
n→∞

an

)
.

The proof is also easy. By the Lipschitz continuity of f : Q → Q, we have
∣
∣
∣f(am) − f

(
lim

n→∞
an

)∣
∣
∣ ≤ L

∣
∣
∣am − lim

n→∞
an

∣
∣
∣ .

Since {an} converges to A, the right-hand side can be made smaller than
any given positive number by taking m large enough, and thus we can also
make the left hand side smaller than any positive number by choosing m
large enough, which shows the desired result.

Note that since limn→∞ an is a rational number, the function value
f(limn→∞ an) is well defined since we assume that f : Q → Q.

We see that it is sufficient that f(x) is Lipschitz continuous on an inter-
val I containing all the elements an as well as limn→∞ an. We have thus
proved the following fundamental result.

Theorem 13.1 Let {an} be a sequence with rational limit limn→∞ an. Let
f : I → Q be a Lipschitz continuous function, and assume that an ∈ I for
all n and limn→∞ an ∈ I. Then,

lim
n→∞

f(an) = f
(

lim
n→∞

an

)
. (13.8)

Note that choosing I to be a closed interval guarantees that limn→∞ an ∈ I
if an ∈ I for all n.

We now look at some examples.

Example 13.4. In the growth of bacteria model of Chapter Rational Num-
bers, we need to compute

lim
n→∞

Pn = lim
n→∞

1
1
2n
Q0 +

1
K

(

1 − 1
2n

) .

The sequence {Pn} is obtained by applying the function

f(x) =
1

Q0x+ 1
K (1 − x)
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to the terms in the sequence
{

1
2n

}
. Since limn→∞ 1/2n = 0, we have

limn→∞ Pn = f(0) = K, since f is Lipschitz continuous on for example
[0, 1/2]. The Lipschitz continuity follows from the fact that f(x) is the
composition of the function f2(x) = Q0x + 1

K (1 − x) and the function
f2(y) = 1/y.

Example 13.5. The function f(x) = x2 is Lipschitz continuous on bounded
intervals. We conclude that if {an}∞n=1 converges to a rational limit A, then

lim
n→∞

(an)2 = A2.

In the next chapter, we will be interested in computing limn→∞(an)2 for
a certain sequence {an}∞n=1 arising in connection with the Muddy Yard
model, which will bring a surprise. Can you guess what it is?

Example 13.6. By Theorem 13.1, with appropriate choices (which?) of the
function f(x):

lim
n→∞

(
3 + 1

n

4 + 2
n

)9

=
(

lim
n→∞

3 + 1
n

4 + 2
n

)9

=
(

limn→∞(3 + 1
n )

limn→∞(4 + 2
n )

)9

=
(

3
4

)9

.

Example 13.7. By Theorem 13.1,

lim
n→∞

(2−n)7 + 14(2−n)4 − 3(2−n) + 2 = 07 + 14 × 04 − 3 × 0 + 2 = 2.

13.8 Generalization to Functions of Two Variables

We recall that a function f : I × J → Q of two rational variables, where I
and J are closed intervals of Q, is said to be Lipschitz continuous if there
is constant L such that

|f(x1, x2) − f(x̄1, x̄2)| ≤ L(|x1 − x̄1| + |x2 − x̄2|)

for x1, x̄1 ∈ I and x2, x̄2 ∈ J .
Let now {an} and {bn} be two converging sequences of rational numbers

with an ∈ I and bn ∈ J . Then

f
(

lim
n→∞

an, lim
n→∞

bn

)
)TS

b = lim
n→∞

f(an, bn). (13.9)

The proof is immediate:
∣
∣
∣f

(
lim

n→∞
an, lim

n→∞
bn

)
)TS

b − f (am, bm)
∣
∣
∣ ≤ L

(∣
∣
∣ lim
n→∞

an − am

∣
∣
∣ +

∣
∣
∣ lim
n→∞

bn − bm

∣
∣
∣
)

(13.10)

TS
b Please check this closing parenthesis.
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13.9 Computing Limits 177

where the right hand side can be made arbitrarily small by choosing m
large enough.

We give a first application of this result with f(x1, x2) = x1+x2, which is
Lipschitz continuous on Q×Q with Lipschitz constant L = 1. We conclude
from (13.9) the natural formula

lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn (13.11)

stating that the limit of the sum is the sum of the limits.
Similarly we have, of course, using the function f(x1, x2) = x1 − x2,

lim
n→∞

(an − bn) = lim
n→∞

an − lim
n→∞

bn.

As a special case choosing an = a for all n,

lim
n→∞

(a+ bn) = a+ lim
n→∞

bn.

Next, we consider the function f(x1, x2) = x1x2, which is Lipschitz con-
tinuous on I×J , if I and J are closed bounded intervals of Q. Using (13.9)
we find that if {an} and {bn} are two converging sequences of rational
numbers, then

lim
n→∞

(an × bn) = lim
n→∞

an × lim
n→∞

bn,

stating that the limit of the products is the product of the limits.
As a special case choosing an = a for all n, we have

lim
n→∞

(a× bn) = a lim
n→∞

bn.

We now consider the function f(x1, x2) = x1/x2, which is Lipschitz con-
tinuous on I × J , if I and J are closed intervals of Q with J not including
0. If bn ∈ J for all n and limn→∞ bn �= 0, then

lim
n→∞

(an/bn) =
limn→∞ an

limn→∞ bn
,

stating that the limit of the quotient is the quotient of the limits if the
limit of the denominator is not zero.

13.9 Computing Limits

We now apply the above rules to compute some limits.

Example 13.8. Consider {2 + 3n−4 + (−1)nn−1}∞n=1.

lim
n→∞

(
2 + 3n−4 + (−1)nn−1

)

= lim
n→∞

2 + 3 lim
n→∞

n−4 + lim
n→∞

(−1)nn−1

= 2 + 3 × 0 + 0 = 2.
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To do this example, we use (13.11) and the fact that

lim
n→∞

n−p =
(

lim
n→∞

n−1
)p

= 0p = 0

for any natural number p.

Another useful fact is

lim
n→∞

rn =






0 if |r| < 1,
1 if r = 1,
diverges to ∞ if r > 1,
diverges otherwise.

We showed the case when r = 1/2 in Example 13.4 and you will show the
general result later as an exercise.

Example 13.9. Using 13.3, we can solve for the limiting behavior of the
population of bacteria described in Example 13.4. We have

lim
n→∞

Pn =
1

lim
n→∞

1
2n
Q0 + lim

n→∞

1
K

(

1 − 1
2n

)

=
1

0 +
1
K

(1 − 0)
= K.

In words, the population of the bacteria growing under the limited resources
as modeled by the Verhulst model tends to a constant population.

Example 13.10. Consider
{

4
1 + n−3

3 + n−2

}∞

n=1

.

We compute the limit using the different rules:

lim
n→∞

4
1 + n−3

3 + n−2
= 4

limn→∞(1 + n−3)
limn→∞(3 + n−2)

= 4
1 + limn→∞ n−3

3 + limn→∞ n−2

= 4
1 + 0
3 + 0

=
4
3
.

Example 13.11. Consider
{

6n2 + 2
4n2 − n+ 1000

}∞

n=1

.
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Before computing the limit, think about what is going on as n becomes
large. In the numerator, 6n2 is much larger than 2 when n is large and
likewise in the denominator, 4n2 becomes much larger than −n + 1000 in
size when n is large. So we might guess that for n large,

6n2 + 2
4n2 − n+ 1000

≈ 6n2

4n2
=

6
4
.

This would be a good guess for the limit. To see that this is true, we use
a trick to put the sequence in a better form to compute the limit:

lim
n→∞

6n2 + 2
4n2 − n+ 1000

= lim
n→∞

(6n2 + 2)n−2

(4n2 − n+ 1000)n−2

= lim
n→∞

6 + 2n−2

4 − n−1 + 1000n−2

=
6
4

where we finished the computation as in the previous example.

The trick of multiplying top and bottom of a ratio by a power can also be
used to figure out when a sequence converges to zero or diverges to infinity.

Example 13.12.

lim
n→∞

n3 − 20n2 + 1
n8 + 2n

= lim
n→∞

(n3 − 20n2 + 1)n−3

(n8 + 2n)n−3

= lim
n→∞

1 − 20n−1 + n−3

n5 + 2n−2
.

From this we see that the numerator converges to 1 while the denominator
increases without bound. Therefore

lim
n→∞

n3 − 20n2 + 1
n8 + 2n

= 0.

Example 13.13.

lim
n→∞

−n6 + n+ 10
80n4 + 7

= lim
n→∞

(−n6 + n+ 10)n−4

(80n4 + 7)n−4

= lim
n→∞

−n2 + n−3 + 10n−4

80 + 7n−4
.

From this we see that the numerator grows in the negative direction without
bound while the denominator tends towards 80. Therefore

{
−n6 + n+ 10

80n4 + 7

}∞

n=1

diverges to −∞.
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13.10 Computer Representation
of Rational Numbers

The decimal expansion ±pmpm−1 · · · p1p0.q1q2 · · · qn uses the base 10 and
consequently each of the digits pi and qj may take on one of the 10 val-
ues 0, 1, 2, . . .9. Of course, it is possible to use bases other than ten. For
example, the Babylonians used the base sixty and thus their digits range
between 0 and 59. The computer operates with the base 2 and the two
digits 0 and 1. A base 2 number has the form

± pm2m + pm−12m−1 + . . .+ p222 + p121 + p020 + q12−1 + q22−2

+ . . .+ qn−12−(n−1) + qn2−n,

which we again may write in short hand

±pmpm−1 . . . p1p0.q1q2 . . . qn = pmpm−1 . . . p1p0 + 0.q1q2 . . . qn

where again n and m are natural numbers, and now each pi and qj take
the value 0 or 1. For example, in the base two

11.101 = 1 · 21 + 1 · 20 + 1 · 2−1 + 1 · 2−3.

In the floating point arithmetic of a computer using the standard 32 bits,
numbers are represented in the form

±r2N ,

where 1 ≤ r ≤ 2 is the mantissa and the exponent N is an integer. Out of
the 32 bits, 23 bits are used to store the mantissa, 8 bits are used to store the
exponent and finally one bit is used to store the sign. Since 210 ≈ 10−3 this
gives 6 to 7 decimal digits for the mantissa while the exponent N may range
from −126 to 127, implying that the absolute value of numbers stored on the
computer may range from approximately 10−40 to 1040. Numbers outside
these ranges cannot be stored by a computer using 32 bits. Some languages
permit the use of double precision variables using 64 bits for storage with
11 bits used to store the exponent, giving a range of −1022 ≤ n ≤ 1023,
52 bits used to store the the mantissa, giving about 15 decimal places.

We point out that the finite storage capability of a computer has two
effects when storing rational numbers. The first effect is similar to the
effect of finite storage on integers, namely only rational numbers within
a finite range can be stored. The second effect is more subtle but actually
has more serious consequences. This is the fact that numbers are stored
only up to a specified number of digits. Any rational number that requires
more than the finite number of digits in its decimal expansions, which
included all rational numbers with infinite periodic expansions for example,
are therefore stored on a computer with an error. So for example 2/11 is
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stored as .1818181 or .1818182 depending on whether the computer rounds
or not.

But this is not the end of the story. Introduction of an error in the
7’th or 15’th digit would not be so serious except for the fact that such
round-off errors accumulate when arithmetic operations are performed. In
other words, if we add two numbers with a small error, the result may have
a larger error being the sum of the individual errors (unless the errors have
opposite sign or even cancel).

We give below in Chapter Series an example showing a startling conse-
quence of working with finite decimal representations with round off errors.

13.11 Sonya Kovalevskaya: The First Woman
With a Chair in Mathematics

Sonya Kovalevskaya (1850–91) was a student of Weierstrass and as the
first woman ever got a position 1889 as Professor in Mathematics at the
University of Stockholm, see Fig. 13.4. Her mentor was Gösta Mittag-Leffler
(1846–1927), famous Swedish mathematician and founder of the prestigous
journal Acta Mathematica, see Fig. 21.34.

Kovalevskaya was 1886 awarded the 5,000 francs Prix Bordin for her
paper Mèmoire sur un cas particulier du problème de le rotation d’un corps
pesant autour d’un point fixe, ou l’intgration s’effectue l’aide des fonctions
ultraelliptiques du temps. At the height of her career, Kovalevskaya died of
influenza complicated by pneumonia, only 41 years old.

Fig. 13.4. Sonya Kovalevskaya, first woman as a Professor of Mathematics:“I be-
gan to feel an attraction for my mathematics so intense that I started to neglect
my other studies” (at age 11)
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Chapter 13 Problems

13.1. Plot the functions; (a) 2−n, (b) 5−n, and (c) 10−n; defined on the natural
numbers n. Compare the plots.

13.2. Plot the function f(n) = 10
9

(1− 10−n−1) defined on the natural numbers.

13.3. Write the following sequences using the index notation:

(a) {1, 3, 9, 27, · · · } (b) {16, 64, 256, · · · }

(c) {1,−1, 1,−1, 1, · · · } (d) {4, 7, 10, 13, · · · }

(e) {2, 5, 8, 11, · · · } (f) {125, 25, 5, 1, 1
5
,

1

25
,

1

125
, · · · }.

13.4. Show the following limits hold using the formal definition of the limit:

(a) lim
n→∞

8

3n+ 1
= 0 (b) lim

n→∞
4n+ 3

7n− 1
=

4

7
(c) lim

n→∞
n2

n2 + 1
= 1.

13.5. Show that lim
n→∞

rn = 0 for any r with |r| ≤ 1/2.

13.6. One of the classic paradoxes posed by the Greek philosophers can be solved
using the geometric series. Suppose you are in Paulding county on your bike, 32
miles from home. You break a spoke, you have no more food and you drank the
last of your water, you forgot to bring money and it starts to rain. While riding
home, as wont to do, you begin to think about how far you have to ride. Then
you have a depressing thought: you can never get home! You think to yourself:
first I have to ride 16 miles, then 8 miles after that, then 4 miles, then 2, then 1,
then 1/2, then 1/4, and so on. Apparently you always have a little way to go, no
matter how close you are, and you have to add up an infinite number of distances
to get anywhere! The Greek philosophers did not understand how to interpret
a limit of a sequence, so this caused them a great deal of trouble. Explain why
there is no paradox involved here using the sum of a geometric series.

13.7. Show the following hold using the formal definition for divergence to
infinity:

(a) lim
n→∞

−4n+ 1 = −∞ (b) lim
n→∞

n3 + n2 = ∞.

13.8. Show that lim
n→∞

rn = ∞ for any r with |r| ≥ 2.

13.9. Find the values of

(a) 1 − .5 + .25 − .125 + · · ·

(b) 3 +
3

4
+

3

16
+ · · ·

(c) 5−2 + 5−3 + 5−4 + · · ·
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13.10. Find formulas for the sums of the following series by using the formula
for the sum of the geometric series assuming |r| < 1:

(a) 1 + r2 + r4 + · · ·

(b) 1 − r + r2 − r3 + r4 − r5 + · · ·

13.11. Determine the number of different sequences there are in the following
list and identify the sequences that are equal.

(a)

{
4n/2

4 + (−1)n

}∞

n=1

(b)

{
2n

4 + (−1)n

}∞

n=1

(c)

{
2 car

4 + (−1) car

}∞

car =1

(d)

{
2n−1

4 + (−1)n−1

}∞

n=2

(e)

{
2n+2

4 + (−1)n+2

}∞

n=0

(f)

{

8
2n

4 + (−1)n+3

}∞

n=−2

.

13.12. Rewrite the sequence

{
2 + n2

9n

}∞

n=1

so that: (a) the index n runs from

−4 to ∞, (b) the index n runs from 3 to ∞, (c) the index n runs from 2 to −∞.

13.13. Show that (7.14) holds by considering the different cases: a < 0, b < 0,
a < 0, b > 0, a > 0, b < 0, a > 0, b > 0. Show that (13.7) holds using (7.14) and
the fact that a− c+ c− b = a− b.

13.14. Suppose that {an}∞n=1 converges to A and {bn}∞n=1 converges to B. Show
that {an − bn}∞n=1 converges to A−B.

13.15. (Harder) Suppose that {an}∞n=1 converges to A and {bn}∞n=1 converges
to B. Show that if bn �= 0 for all n and B �= 0, then {an/bn}∞n=1 converges to
A/B. Hint: write

an
bn

− A

B
=
an
bn

− an
B

+
an
B

− A

B

and the fact that for n large enough, |bn| ≥ B/2. Be sure to say why the last fact
is true!

13.16. Compute the limits of the sequences {an}∞n=1 with the indicated terms
or show they diverge.
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(a) an = 1 +
7

n
(b) an = 4n2 − 6n

(c) an =
(−1)n

n2
(d) an =

2n2 + 9n+ 3

6n2 + 2

(e) an =
(−1)nn2

7n2 + 1
(f) an =

(
2

3

)n
+ 2

(g) an =
(n− 1)2 − (n+ 1)2

n
(h) an =

1 − 5n8

4 + 51n3 + 8n8

(i) an =
2n3 + n+ 1

6n2 − 5
(j) an =

(
7
8

)n − 1
(

7
8

)n
+ 1

.

13.17. Compute the following limits

(a) lim
n→∞

(
n+ 3

2n+ 8

)37

(b) lim
n→∞

(
31

n2
+

2

n
+ 7

)4

(c) lim
n→∞

1
(
2 + 1

n

)8 (d) lim
n→∞





(((

1 +
2

n

)2
)3)4





5

.

13.18. Rewrite the following sequences as a function applied to another sequence
three different ways:

(a)

{(
n2 + 2

n2 + 1

)3
}∞

n=1

. (b)
{
(n2)4 + (n2)2 + 1

}∞
n=1

13.19. Show that the infinite decimal expansion 0.9999 . . . is equal to 1. In other
words, show that

lim
n→∞

0.99 · · · 99n = 1,

where 0.99 · · · 99n contains n decimals all equal to 9.

13.20. Determine the number of digits used to store rational numbers in the pro-
gramming language that you use and whether the language truncates or rounds.

13.21. The machine number u is the smallest positive number u stored in a com-
puter that satisfies 1 + u > 1. Note that u is not zero! For example in a single
precision language 1+ .00000000001 = 1, explain why. Write a little program that
computes the u for your computer and programming language. Hint: 1 + .5 > 1
in any programming language. Also 1 + .25 > 1. Continue. . .



14
The Square Root of Two

He is unworthy of the name man who is ignorant of the fact that the
diagonal of a square is incommensurable with its side. (Plato)

Just as the introduction of the irrational number is a convenient
myth which simplifies the laws of arithmetics. . . so physical objects
are postulated entities which round out and simplify our account of
the flux of existence. . . The conceptual scheme of physical objects is
likewise a convenient myth, simpler than the literal truth and yet
containing that literal truth as a scattered part. (Quine)

14.1 Introduction

We met the equation x2 = 2 in the context of the Muddy Yard model,
trying to determine the length of the diagonal of a square with side length
1. We have learned in school that the (positive) solution of the equation
x2 = 2 is x =

√
2. But, honestly speaking, what is in fact

√
2? To simply

say that it is the solution of the equation x2 = 2, or “that number which
when squared is equal to 2”, leads to circular reasoning, and would not
help much when trying to by a pipe of length

√
2.

We then may recall again from school that
√

2 ≈ 1.41, but computing
1.412 = 1.9881, we see that

√
2 is not exactly equal to 1.41. A better guess

is 1.414, but then we get 1.4142 = 1.999386. We use MAPLE� to compute
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the decimal expansion of
√

2 to 415 places:

x = 1.4142135623730950488016887242096980785696718753
7694807317667973799073247846210703885038753432
7641572735013846230912297024924836055850737212
6441214970999358314132226659275055927557999505
0115278206057147010955997160597027453459686201
4728517418640889198609552329230484308714321450
8397626036279952514079896872533965463318088296
4062061525835239505474575028775996172983557522
0337531857011354374603408498847160386899970699

Computing x2 again using MAPLE�, we find that

x2 = 1.999999999999999999999999999999999999999999999
999999999999999999999999999999999999999999999
999999999999999999999999999999999999999999999
999999999999999999999999999999999999999999999
999999999999999999999999999999999999999999999
999999999999999999999999999999999999999999999
999999999999999999999999999999999999999999999
999999999999999999999999999999999999999999999
999999999999999999999999999999999999999999999
999999999986381037002790393547544921481567520
719364336722392248627179189098787015809960232
640597261312640760405691299950309295747831888
596950070887405605833650165227157380944559332
069004581726422217393596953324251515876023360
427299488914180359897103820495618481233332162
516016097283137123064499497943653479698629776
683334066577024031851330600242723212517527304
354776748660808998780793579777475964587708250
3170068870585486010

The number x = 1.4142 · · ·699 satisfies the equation x2 = 2 to a high
degree of precision but not exactly. In fact, it turns out that no matter how
many digits we take in a guess of

√
2 with a finite decimal expansion, we

never get a number which squared gives exactly 2. So it seems that we have
not yet really caught the exact value of

√
2. So what is it?
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To get a clue, we may try to examine the decimal expansion of
√

2, but
we will not find any pattern. In particular, the first 415 places show no
periodic pattern.

14.2
√

2 Is Not a Rational Number!

In this section, we show that
√

2 cannot be a rational number of the form
p/q with p and q natural numbers, and thus the decimal expansion of

√
2

cannot be periodic. In the proof we use the fact that a natural number can
be uniquely factored into prime factors. We showed this in chapter Natural
Numbers and Integers. One consequence of the factorization into prime
numbers is the following fact: Suppose that we know that 2 is a factor of n.
If n = pq is a factorization of n into integers p and q, if follows that at least
one of the factors p and q must have a factor of 2.

We argue by contradiction. Thus we shall show that assuming that
√

2 is
rational leads to a contradiction, and thus

√
2 cannot be rational. We thus

assume that
√

2 = p/q, where all common factors in the natural numbers p
and q have been divided out. For example if p and q both have the factor 3,
then we replace p by p/3 and q by q/3, which does not change the quotient
p/q. We write this as

√
2q = p where p and q have no common factors, or

squaring both sides, 2q2 = p2. Since the left hand side contains the factor 2,
the right hand side p2 must contain the factor 2, which means that p must
contain the factor 2. Thus we can write p = 2× p̄ with p̄ a natural number.
We conclude that 2q2 = 4× p̄2, that is q2 = 2× p̄2. But the same argument
implies that q must also contain a factor of 2. Thus both p and q contain
the factor 2 which contradicts the original assumption that p and q had
no common factors. Assuming

√
2 to be rational number thus leads to

a contradiction and therefore
√

2 cannot be a rational number.
The argument just given was known to the Pythagoreans, who thus knew

that
√

2 is not a rational number. This knowledge caused a lot of trouble.
On one hand,

√
2 represents the diagonal of a square of side one, so it

seemed that
√

2 had to exist. On the other hand, the Pythagorean school of
philosophy was based on the principle that everything could be described
in terms of natural numbers. The discovery that

√
2 was not a rational

number, that is that
√

2 could not be viewed as a pair of natural numbers,
came as a shock! Legend says that the person who discovered the proof
was punished by the gods for revealing an imperfection in the universe.
The Pythagoreans tried to keep the discovery secret by teaching it only
to a select few, but eventually the discovery was revealed and after that
the Pythagorean school quickly fell apart. At the same time, the Euclidean
school, which was based on geometry instead of numbers, became more
influential. Considered from the point of view of geometry, the difficulty
with

√
2 seems to “disappear”, because no one would question that a square
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of side length 1 will have a diagonal of a certain length, and we could then
simply define

√
2 to be that length. The Euclidean geometric school took

over and ruled all through the Dark Ages until the time of Descartes in the
17th century who resurrected the Pythagorean school based on numbers,
in the form of analytical geometry. Since the digital computer of today
is based on natural numbers, or rather sequences of 0s and 1s, we may
say that Pythagoras ideas are very much alive today: everything can be
described in terms of natural numbers. Other Pythagorean dogmas like
“never eat beans” and “never pick up anything that has fallen down” have
not survived equally well.

14.3 Computing
√

2 by the Bisection Algorithm

We now present an algorithm for computing a sequence of rational numbers
that satisfy the equation x2 = 2 more and more accurately. That is, we
construct a sequence of rational number approximations of a solution of
the equation

f(x) = 0 (14.1)

with f(x) = x2 − 2. The algorithm uses a trial and error strategy that
checks whether a given number r satisfies f(r) < 0 or f(r) > 0, i.e. if
r2 < 2 or r2 > 2. All of the numbers r constructed during this process are
rational, so none of them can ever actually equal

√
2.

We begin by noting that f(1) < 0 since 12 < 2 and f(2) > 0 since 22 > 2.
Now since 0 < x < y means that x2 < xy < y2, we know that f(x) < 0 for
all 0 < x ≤ 1 and f(x) > 0 for all x ≥ 2. So any solution of (14.1) must lie
between 1 and 2. Hence we choose a point between 1 and 2 and check the
sign of f at that point. For the sake of symmetry, we choose the halfway
point 1.5 = (1 + 2)/2 of 1 and 2. We find that f(1.5) > 0. Remembering
that f(1) < 0, we conclude that a (positive) solution of (14.1) must lie
between 1 and 1.5.

We continue, next checking the mean value 1.25 of 1 and 1.5 to find that
f(1.25) < 0. This means that a solution of (14.1) must lie between 1.25 and
1.5. Next we choose the point halfway between these two, 1.375, and find
that f(1.375) < 0, implying that any solution of (14.1) lies between 1.375
and 1.5. We can continue to search in this way as long as we like, each time
determining two rational numbers that “trap” any solution of (14.1). This
process is called the Bisection algorithm.

1. Choose the initial values x0 and X0 so that f(x0) < 0 and f(X0) > 0.
Set i = 1.

2. Given two rational numbers xi−1 and Xi−1 with the property that
f(xi−1) < 0 and f(Xi−1) > 0, set x̄i = (xi−1 +Xi−1)/2.
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� If f(x̄i) = 0, then stop.

� If f(x̄i) < 0, then set xi = x̄i and Xi = Xi−1.

� If f(x̄i) > 0, then set xi = xi−1 and Xi = x̄i.

3. Increase i by 1 and go back to step 2.

We list the output for 20 steps from a MATLAB�m-file implementing
this algorithm in Fig. 14.1 with x0 = 1 and X0 = 2.

i xi Xi

0 1.00000000000000 2.00000000000000
1 1.00000000000000 1.50000000000000
2 1.25000000000000 1.50000000000000
3 1.37500000000000 1.50000000000000
4 1.37500000000000 1.43750000000000
5 1.40625000000000 1.43750000000000
6 1.40625000000000 1.42187500000000
7 1.41406250000000 1.42187500000000
8 1.41406250000000 1.41796875000000
9 1.41406250000000 1.41601562500000
10 1.41406250000000 1.41503906250000
11 1.41406250000000 1.41455078125000
12 1.41406250000000 1.41430664062500
13 1.41418457031250 1.41430664062500
14 1.41418457031250 1.41424560546875
15 1.41418457031250 1.41421508789062
16 1.41419982910156 1.41421508789062
17 1.41420745849609 1.41421508789062
18 1.41421127319336 1.41421508789062
19 1.41421318054199 1.41421508789062
20 1.41421318054199 1.41421413421631

Fig. 14.1. 20 steps of the Bisection algorithm

14.4 The Bisection Algorithm Converges!

By continuing the Bisection algorithm without stopping, we generate two
sequences of rational numbers {xi}∞i=0 and {Xi}∞i=0. By construction,

x0 ≤ x1 ≤ x2 ≤ · · · and X0 ≥ X1 ≥ X2 ≥ · · ·
xi < Xj for all i, j = 0, 1, 2, . . .

In other words, the terms xi either increase or stay constant while the
Xi always decrease or remain constant as i increases, and any xi is smaller
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than any Xj. Moreover, the choice of the midpoint means that the distance
between Xi and xi is always strictly decreasing as i increases. In fact,

0 ≤ Xi − xi ≤ 2−i for i = 0, 1, 2, · · · , (14.2)

i.e. the difference between the value xi for which f(xi) < 0 and the value
Xi for which f(Xi) > 0 is halved for each step increase i by 1. This means
that as i increases, more and more digits in the decimal expansions of xi

and Xi agree. Since 2−10 ≈ 10−3, we gain approximately 3 decimal places
for every 10 successive steps of the bisection algorithm. We can see this in
Fig. 14.1.

The estimate (14.2) on the difference of Xi − xi also implies that the
terms in the sequence {xi}∞i=0 become closer as the index increase. This
follows because xi ≤ xj < Xj ≤ Xi if j > i so (14.2) implies

|xi − xj | ≤ |xi −Xi| ≤ 2−i if j ≥ i.

that is
|xi − xj | ≤ 2−i if j ≥ i. (14.3)

We illustrate in Fig. 14.2. In particular, this means that when 2−i ≤
10−N−1, the first N decimals of xj are the same as the first N decimals in
xi for any j ≥ i.

In other words, as we compute more and more numbers xi, more and
more leading decimals of the numbers xi agree. We conclude that the se-
quence {xi}∞i=0 determines a specific (infinite) decimal expansion. To get
the first N digits of this expansion, we simply take the first N digits of any
number xj in the sequence with 2−j ≤ 10−N−1. By the inequality (14.3),
all such xj agree in the first N digits.

If this infinite decimal expansion was the decimal expansion of a rational
number x̄, then we would of course have

x̄ = lim
i→∞

xi.

xi Xixj Xj

|xi − xj |

|xi −Xi|

Fig. 14.2. |xi − xj | ≤ |Xi − xi|
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However, we showed above that the decimal expansion defined by the se-
quence {xi}∞i=0 cannot be periodic. So there is no rational number x̄ that
can be the limit of the sequence {xi}.

We have now come to the point where the Pythagoreans got stuck 2.500
years ago. The sequence {xi} “tries to converge” to a limit, but the limit
is not a number of the type we already know, that is a rational number.
To avoid the fate of the Pythagoreans, we have to find a way out of this
dilemma. The limit appears to be a number of a new kind and thus it ap-
pears that we have to somehow extend the rational numbers. The extension
will be accomplished by viewing any infinite decimal expansion, periodic
or not, as some kind of number, more precisely as a real number. In this
way, we will clearly get an extension of the set of rational numbers since
the rational numbers correspond to periodic decimal expansions. We will
refer to non-periodic decimal expansions as irrational numbers.

For the extension from rational to real numbers to make sense, we must
show that we can compute with irrational numbers in pretty much the same
way as with rational numbers. We shall see this is indeed possible and we
shall see that the basic idea when computing with irrational numbers is
the natural one: compute with truncated decimal expansions! We give the
details in the next chapter devoted to a study of real numbers.

Let us now summarize and see where we stand: the Bisection algorithm
applied to the equation x2 − 2 = 0 generates a sequence {xi}∞i=1 satisfying

|xi − xj | ≤ 2−i if j ≥ i. (14.4)

The sequence {xi}∞i=1 defines an infinite non-periodic decimal expansion,
which we will view as an irrational number. We will give this irrational
number the name

√
2. We thus use

√
2 as a symbol to denote a certain

infinite decimal expansion determined by the Bisection algorithm applied
to the equation x2 − 2 = 0.

We now need to specify how to compute with irrational numbers. Once
we have done this, it remains to show that the particular irrational number
named

√
2 constructed above indeed does satisfy the equation x2 = 2. That

is after defining multiplication of irrational numbers like
√

2, we need to
show that √

2
√

2 = 2. (14.5)

Note that this equality does not follow directly by definition, as it would
if we had defined

√
2 as “that thing” which multiplied with itself equals 2

(which doesn’t make sense since we don’t know that “that thing” exists).
Instead, we have now defined

√
2 as the infinite decimal expansion defined

by the Bisection algorithm applied to x2−2 = 0, and it is a non-trivial step
to first define what we mean by multiplying

√
2 by

√
2, and then to show

that indeed
√

2
√

2 = 2. This is what the Pythagoreans could not manage
to do, which had devastating effects on their society.
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We return to verifying (14.5) after showing in the next chapter how to
compute with real numbers, so that in particular we know how to multiply
the irrational number

√
2 with itself!

14.5 First Encounters with Cauchy Sequences

We recall that the sequence {xi} defined by the Bisection algorithm for
solving the equation x2 = 2, satisfies

|xi − xj | ≤ 2−i if j ≥ i, (14.6)

from which we concluded that the sequence {xi}∞i=1 specifies a certain infi-
nite decimal expansion. To get the firstN decimals of the expansion we take
the first N decimals of any number xj in the sequence with 2−j ≤ 10−N−1.
Any two such xj will agree to N decimals in the sense that their difference
is a most 1 in decimal place N + 1.

The sequence {xi} satisfying (14.6) is an example of a Cauchy sequence
of rational numbers. More generally, a sequence {yi} of rational numbers is
said to be a Cauchy sequence if for any ε > 0 there is a natural number N
such that

|yi − yj | ≤ ε if i, j ≥ N.

To show that the sequence {xi} satisfying (14.6) is indeed a Cauchy se-
quence, we first choose ε > 0 and then we choose N so that 2−N ≤ ε.

As a basic example let us prove that the sequence {xi}∞i=1 with xi = i−1
i

is a Cauchy sequence. We have for j > i
∣
∣
∣
∣
i− 1
i

− j − 1
j

∣
∣
∣
∣ =

∣
∣
∣
∣
(i− 1)j − i(j − 1)

ij

∣
∣
∣
∣ =

∣
∣
∣
∣
i− j

ij

∣
∣
∣
∣ ≤

1
i
.

For a given ε > 0, we now choose the natural number N ≥ 1/ε, so that
1

N+1 ≤ ε, in which case we have
∣
∣
∣
∣
i− 1
i

− j − 1
j

∣
∣
∣
∣ ≤ ε if i, j ≥ N.

This shows that {xi} with xi = i−1
i is a Cauchy sequence, and thus con-

verges to a limit limi→∞ xi. We proved above that limi→∞ xi = 1.

14.6 Computing
√

2 by the Deca-section Algorithm

We now describe a variation of the Bisection algorithm for x2−2 = 0 called
the Deca-section algorithm. Like the Bisection algorithm, the Deca-section
algorithm produces a sequence of numbers {xi}∞i=0 that converges to

√
2.
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In the Deca-section algorithm, the element xi agrees with
√

2 to i decimal
places, and thus the rate of convergence is easy to grip.

The Deca-section algorithm looks the same as the Bisection algorithm
except that at each step the current interval is divided into 10 subintervals
instead of 2. We start again with f(x) = x2 − 2 and x0 = 1 and X0 = 2
so that f(x0) < 0 and f(X0) > 0. Now we compute the value of f at the
intermediate rational points 1.1, 1.2, · · · , 1.9 and then choose two consec-
utive numbers x1 and X1 with f(x1) < 0 and f(X1) > 0. There has to be
two such consecutive points because we know that f(x0) = f(1) < 0 and
then either f(y) < 0 for all y = 1.1, 1.2, · · · , 1.9 at which point f(2) > 0,
so we set x1 = 1.9 and X1 = 2, or f(y) > 0 at some intermediate point. We
find that this gives x1 = 1.4 and X1 = 1.5. Now we continue the process by
evaluating f at the rational numbers 1.41, 1.42, · · · , 1.49, and then choosing
two consecutive numbers x2 and X2 with f(x2) < 0 and f(X2) > 0. This
gives x2 = 1.41 and X2 = 1.42. Then we work on the third, fourth, fifth, · · ·
decimal places in order, obtaining two sequences {xi}∞i=0 and {Xi}∞i=0 both
converging to

√
2. We show the first 14 steps computed using a MATLAB�

m-file implementation of this algorithm in Fig. 14.3.

i xi Xi

0 1.00000000000000 2.00000000000000
1 1.40000000000000 1.50000000000000
2 1.41000000000000 1.42000000000000
3 1.41400000000000 1.41500000000000
4 1.41420000000000 1.41430000000000
5 1.41421000000000 1.41422000000000
6 1.41421300000000 1.41421400000000
7 1.41421350000000 1.41421360000000
8 1.41421356000000 1.41421357000000
9 1.41421356200000 1.41421356300000
10 1.41421356230000 1.41421356240000
11 1.41421356237000 1.41421356238000
12 1.41421356237300 1.41421356237400
13 1.41421356237300 1.41421356237310
14 1.41421356237309 1.41421356237310

Fig. 14.3. 14 steps of the deca-section algorithm

By construction
|xi −Xi| ≤ 10−i,

and also
|xi − xj | ≤ 10−i for j ≥ i. (14.7)

The inequality (14.7) implies that {xi} is a Cauchy sequence and thus de-
termines an infinite decimal expansion. Since in the Deca-section algorithm,
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we gain one decimal per step, we may identify element xi of the sequence
with the truncated decimal expansion with i decimals. In this case there
is thus a very simple connection between the Cauchy sequence and the
decimal expansion.

Chapter 14 Problems

14.1. Use the evalf function in MAPLE� to compute
√

2 to 1000 places and
then square the result and compare to 2.

14.2. (a) Show that
√

3 (see Problem 3.5) is irrational. Hint: use a powerful
mathematical technique: try to copy a proof you already know. (b) Do the same
for

√
a where a is any prime number.

14.3. Specify three different irrational numbers using the digits 3 and 4.

14.4. Program the Bisection algorithm. Write down the output for 30 steps
starting with: (a) x0 = 1 and X0 = 2, (b) x0 = 0 and X0 = 2, (c) x0 = 1 and
X0 = 3, (d) x0 = 1 and X0 = 20. Compare the accuracy of the methods at each
step by comparing the values of xi versus the decimal expansion of

√
2 given

above. Explain why there is a difference in accuracy resulting from the different
initial values.

14.5. (a) Use the program in Problem 14.4 and write down the output for 40
steps using x0 = 1 and X0 = 2. (b) Describe anything you notice about the last
10 values xi and Xi. (c) Explain what you see. (Hint: consider floating point
representation on the computer you use.)

14.6. Using the results in Problem 14.4(a), make plots of: (a) |Xi − xi| versus
i (b) |xi − xi−1| versus i; and (c) |f(xi)| versus i. In each case, determine if the
quantity decreases by a factor of 1/2 after each step.

14.7. Solve the equations x2 = 3 and x3 = 2 using the Bisection algorithm.
Also, make the algorithm find the negative root of x2 = 3.

14.8. Show that if a < 0 and b > 0 then b− a < c implies |b| < c and |a| < c.

14.9. (a) Write down an algorithm for Deca-section. (b) Program the algorithm
in (a) and then compute 16 steps using x0 = 0 and X0 = 2.

14.10. (a) Construct a “trisection” algorithm; (b) implement the trisection al-
gorithm and compute 30 steps using x0 = 0 and X0 = 2; (c) show that the
tridiagonal algorithm determines a decimal expansion and call this x̄; (d) Show
that x̄ =

√
2; (e) get an estimate on |xi − x̄|.

14.11. Compute the cost of the tridiagonal algorithm from Problem 14.10 and
compare to the costs of the Bisection and Deca-section methods.

14.12. Use the Bisection code from Problem 14.4 to compute
√

3 (recall Prob-
lem 3.5). Hint: 1 <

√
3 < 2.



15
Real numbers

I often say that when you can measure what you are speaking about,
and express it in numbers, you know something about it; but when
you cannot express it in numbers, your knowledge is of a meagre
and unsatisfactory kind: it may be the beginning of knowledge, but
you have scarcely, in your thoughts, advanced to the stage of science,
whatever the matter may be. (Kelvin 1889)

Vattnet drar sig tillbaka
stenarna blir synliga.

Det var länge sen sist.
De har egentligen inte förändrats.

De gamla stenarna.

(Brunnen, Lars Gustafsson, 1977)

15.1 Introduction

We are now ready to introduce the concept of a real number. We shall view
a real number as being specified by an infinite decimal expansion of the
form

±pm · · · p0.q1q2q3 · · ·

with a never ending list of decimals q1, q2, . . ., where each one of the pi

and qj are one of the 10 digits 0, 1, . . . , 9. We met the decimal expansion
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1.4142135623 . . . of
√

2 above. The corresponding sequence {xi}∞i=1 of trun-
cated decimal expansions is given by the rational numbers

xi = ±pm · · · p0.q1 · · · qi = ±(pm10m + · · · + qi10−i).

We have for j > i,

|xi − xj | = |0.0 · · ·0qi+1 · · · qj | ≤ 10−i. (15.1)

We conclude that the sequence {xi}∞i=1 of truncated decimal expansions of
the infinite decimal expansion ±pm · · · p0.q1q2q3 · · · , is a Cauchy sequence
of rational numbers.

More generally, we know from the discussion in Chapter Sequences and
Limits, that any Cauchy sequence of rational numbers specifies an infinite
decimal expansion and thus a Cauchy sequence of rational numbers specifies
a real number. We may thus view a real number as being specified by an
infinite decimal expansion, or by a Cauchy sequence of rational numbers.
Note that we use the semantic trick of referring to an infinite decimal
expansion as one real number.

We divide real numbers into two types: rational numbers with periodic
decimal expansions and irrational numbers with non-periodic decimal ex-
pansions. Note that we may naturally include rational numbers with finitely
many nonzero decimals, like 0.25, as particular periodic infinite decimal ex-
pansions with all the decimals qi = 0 for i sufficiently large.

We say that the infinite decimal expansion ±pm · · · p0.q1q2q3 · · · specifies
the real number x = ±pm · · · p0.q1q2q3 · · · , and we agree to write

lim
i→∞

xi = x, (15.2)

where {xi}∞i=1 is the corresponding sequence of truncated decimal expan-
sions of x. If x = ±pm · · · p0.q1q2q3 · · · is a periodic expansion, that is if
x is a rational number, this agrees with our earlier definition from Chap-
ter Sequences and Limits of the limit of the sequence {xi}∞i=1 of truncated
decimal expansions of x. For example, we recall that

10
9

= lim
i→∞

xi, where xi = 1.11 · · ·1i.

If x = ±pm · · · p0.q1q2q3 · · · is non-periodic, that is, if x is an irrational
number, then (15.2) serves as a definition, where the real number is specified
by the decimal expansion x = ±pm · · · p0.q1q2q3 · · · , that is the real number
x specified by the Cauchy sequence {xi}∞i=1 of truncated decimal expansions
of x, is denoted by limi→∞ xi. Alternatively, (15.2) serves to denote the limit
limi→∞ xi by ±pm · · · p0.q1q2q3 · · · .

For the sequence {xi}∞i=1 generated by the Bisection algorithm applied
to the equation x2 − 2 = 0, we decided to write

√
2 = limi→∞ xi, and thus
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we may write
√

2 = 1.412 . . . , with 1.412 . . . , denoting the infinite decimal
expansion given by the Bisection algorithm.

We shall now specify how to compute with real numbers defined in this
way. In particular, we shall specify how to add, subtract, multiply and
divide real numbers. Of course we will do this so that it extends our expe-
rience in computing with rational numbers. This will complete our process
of extending the natural numbers to obtain first the integers and then the
rational numbers, and finally the real numbers.

We denote by R the set of all possible real numbers, that is the set of all
possible infinite decimal expansions. We discuss this definition in Chapter
Do Mathematicians Quarrel? below.

15.2 Adding and Subtracting Real Numbers

To exhibit the main concern, consider the problem of adding two real num-
bers x and x̄ specified by the decimal expansions

x = ±pm · · · p0.q1q2q3 · · · = lim
i→∞

xi,

x̄ = ±p̄m · · · p̄0.q̄1q̄2q̄3 · · · = lim
i→∞

x̄i,

with corresponding truncated decimal expansions

xi = ±pm · · · p0.q1 · · · qi,
x̄i = ±p̄m · · · p̄0.q̄1 · · · q̄i.

We know how to add xi and x̄i: we then start from the right and add the
decimals qi and q̄i, and get a new ith decimal and possibly a carry-over
digit to be added to the sum of the next digits qi−1 and q̄i−1, and so on.
The important thing to notice is that we start from the right (smallest
decimal) and move to the left (larger decimals).

Now, trying to add the two infinite sequences x = ±pm · · · p0.q1q2q3 · · ·
and x̄ = ±p̄m · · · p̄0.q̄1q̄2q̄3 · · · in the same way by starting from the right,
we run into a difficulty because there is no far right decimal to start with.
So, what can we do?

Well, the natural way out is of course to consider the sequence {yi}
generated by yi = xi + x̄i. Since both {xi} and {x̄i} are Cauchy sequences,
it follows that {yi} is also a Cauchy sequence, and thus defines a decimal
expansion and thus defines a real number. Of course, the right thing is then
to define

x+ x̄ = lim
i→∞

yi = lim
i→∞

(xi + x̄i).

This corresponds to the formula

lim
i→∞

xi + lim
i→∞

x̄i = lim
i→∞

(xi + x̄i).
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We give a concrete example: To compute the sum of

x =
√

2 = 1.4142135623730950488 · · ·

and

x̄ =
1043
439

= 2.3758542141230068337 · · · ,

we compute yi = xi+x̄i for i = 1, 2, . . ., which defines the decimal expansion
of x+ x̄, see Fig. 15.1. We may notice that occasionally adding two digits

i xi + x̄i

1 3
2 3.7
3 3.78
4 3.789
5 3.7900∗

6 3.79006
7 3.790067
8 3.7900677
9 3.79006777

10 3.790067776
11 3.7900677764
12 3.79006777649
13 3.790067776496
14 3.7900677764960
15 3.79006777649609
16 3.790067776496101∗

17 3.7900677764961018
18 3.79006777649610187
19 3.790067776496101881∗

20 3.7900677764961018825∗
...

...

Fig. 15.1. Computing the decimal expansion of
√

2 + 1043/439 by using the
truncated decimal sequences. Note the changes in the digits marked by the ∗
where adding the new digits affects previous digits

affects the digits to the left, as in 0.9999 + 0.0001 = 1.000.
Similarly, the difference x − x̄ of two real numbers x = limi→∞ xi and

x̄ = limi→∞ x̄i is of course defined by

x− x̄ = lim
i→∞

(xi − x̄i).



15.3 Generalization to f(x, x̄) with f Lipschitz 199

15.3 Generalization to f(x, x̄) with f Lipschitz

We now generalize to other combinations of real numbers than addition.
Suppose we want to combine x and x̄ to a certain quantity f(x, x̄) depend-
ing on x and x̄, where x and x̄ are real numbers. For example, we may
choose f(x, x̄) = x + x̄, corresponding to determining the sum x + x̄ of
two real numbers x and x̄ or f(x, x̄) = xx̄ corresponding to multiplying x
and x̄.

To be able to define f(x, x̄) following the idea used in the case f(x, x̄) =
x+x̄, we suppose that f : Q×Q → Q is Lipschitz continuous. This is a very
crucial assumption and our focus on the concept of Lipschitz continuity is
largely motivated by its use in the present context.

We know from Chapter Sequences and Limits that if x = limi→∞ xi and
x̄ = limi→∞ x̄i are rational, then

f(x, x̄) = f( lim
i→∞

xi, lim
i→∞

x̄i) = lim
i→∞

f(xi, x̄i)

If x = limi→∞ xi and x̄ = limi→∞ x̄i are irrational, we simply decide to
use this formula to define the real number f(x, x̄). This is possible, be-
cause {f(xi, x̄i)} is a Cauchy sequence and thus defines a real number.
Note that {f(xi, x̄i)} is a Cauchy sequence because {xi} and {x̄i} are both
Cauchy sequences and f : Q×Q → Q is Lipschitz continuous. The formula
containing this crucial information is

|f(xi, x̄i) − f(xj , x̄j)| ≤ L(|xi − xj | + |x̄i − x̄j |)

where L is the Lipschitz constant of f .
Applying this reasoning to the case f : Q×Q → Q with f(x, x̄) = x+ x̄,

which is Lipschitz continuous with Lipschitz constant L = 1, we define the
sum x+ x̄ of two real numbers x = limi→∞ xi and x̄ = limi→∞ x̄i by

x+ x̄ = lim
i→∞

(xi + x̄i),

that is
lim

i→∞
xi + lim

i→∞
x̄i = lim

i→∞
(xi + x̄i). (15.3)

This is exactly what we did above.
We repeat, the important formula is

f( lim
i→∞

xi, lim
i→∞

x̄i) = lim
i→∞

f(xi, x̄i),

which we already know for x = limi→∞ xi and x̄ = limi→∞ x̄i rational and
which defines f(x, x̄) for x or x̄ irrational. We also repeat that the Lipschitz
continuity of f is crucial.

We may directly extend to Lipschitz functions f : I × J → Q, where I
and J are intervals of Q, under the assumption that xi ∈ I and x̄i ∈ J for
i = 1, 2, . . .
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15.4 Multiplying and Dividing Real Numbers

The function f(x, x̄) = xx̄ is Lipschitz continuous for x ∈ I and x̄ ∈ J ,
where I and J are bounded intervals of Q. We may thus define the product
xx̄ of two real numbers x = limi→∞ xi and x̄ = limi→∞ x̄i as follows:

xx̄ = lim
i→∞

xix̄i.

The function f(x, x̄) = x
x̄ is Lipschitz continuous for x ∈ I and x̄ ∈ J ,

if I and J are bounded intervals of Q and J is bounded away from 0. We
may thus define the quotient x

x̄ of two real numbers x = limi→∞ xi and
x̄ = limi→∞ x̄i with x̄ �= 0 by

x

x̄
= lim

i→∞

xi

x̄i
.

15.5 The Absolute Value

The function f(x) = |x| is Lipschitz continuous on Q. We may thus define
the absolute value |x| of a real number x = limi→∞ xi by

|x| = lim
i→∞

|xi|.

If {xi} is the sequence of truncated decimal expansions of x = limi→∞ xi,
then by (15.1) we have |xj −xi| ≤ 10−i for j > i, and thus taking the limit
as j tends to infinity,

|x− xi| ≤ 10−i for i = 1, 2, . . . (15.4)

15.6 Comparing Two Real Numbers

Let x = limi→∞ xi and x̄ = limi→∞ x̄i be two real numbers with corre-
sponding sequences of truncated decimal expansions {xi}∞i=1 and {x̄i}∞i=1.
How can we tell if x = x̄? Is it necessary that xi = x̄i for all i? Not quite.
For example, consider the two numbers x = 0.99999 · · · and x̄ = 1.0000 · · · .
In fact, it is natural to give a little more freedom and say that x = x̄ if and
only if

|xi − x̄i| ≤ 10−i for i = 1, 2, . . . (15.5)
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This condition is clearly sufficient to motivate to write x = x̄, since the
difference |xi − x̄i| becomes as small as we please by taking i large enough.
In other words, we have

|x− x̄| = lim
i→∞

|xi − x̄i| = 0,

so x = x̄.
Conversely if (15.5) does not hold, then there is a positive ε and i such

that
xi − x̄i > 10−i + ε or xi − x̄i < 10−i − ε.

Since |xi − xj | ≤ 10−i for j > i, we must then have

xj − x̄j > ε or xj − x̄j < −ε for j > i

and thus taking the limit as j tends to infinity

x− x̄ ≥ ε or x− x̄ ≤ −ε.

We conclude that two real numbers x and x̄ either satisfy x = x̄, or x > x̄
or x < x̄.

This conclusion, however, hides a subtle point. To know if two real num-
bers are equal or not, may require a complete knowledge of the decimal ex-
pansions, which may not be realistic. For example, suppose we set x = 10−p,
where p is the decimal position of the start of the first sequence of 59 dec-
imals all equal to 1 in the decimal expansion of

√
2. To complete the defi-

nition of x, we set x = 0 if there is no such p. How are we to know if x > 0
or x = 0, unless we happen to find that sequence of 59 decimals all equal
to 1 among say the first 1050 decimals, or whatever number of decimals of√

2 we can think of possibly computing. In a case like this, it seems more
reasonable to say that we cannot know if x = 0 or x > 0.

15.7 Summary of Arithmetic with Real Numbers

With these definitions, we can easily show that the usual commutative,
distributive, and associative rules for rational numbers all hold for real
numbers. For example, addition is commutative since

x+ x̄ = lim
i→∞

(xi + x̄i) = lim
i→∞

(x̄i + xi) = x̄+ x.

15.8 Why
√

2
√

2 Equals 2

Let {xi} and {Xi} be the sequences given by the Bisection algorithm ap-
plied to the equation x2 = 2 constructed above. We have defined

√
2 = lim

i→∞
xi, (15.6)
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that is, we denote by
√

2 the infinite non-periodic decimal expansion given
by the Bisection algorithm applied to the equation x2 = 2.

We now verify that
√

2
√

2 = 2, which we left open above. By the defini-
tion of multiplication of real numbers, we have

√
2
√

2 = lim
i→∞

x2
i , (15.7)

and we thus need to show that

lim
i→∞

x2
i = 2 (15.8)

To prove this fact, we use the Lipschitz continuity of the function x → x2

on [0, 2] with Lipschitz constant L = 4, to see that

|(xi)2 − (Xi)2| ≤ 4|xi −Xi| ≤ 2−i+2.

where we use the inequality |xi −Xi| ≤ 2−i. By construction x2
i < 2 < X2

i ,
and thus in fact

|x2
i − 2| ≤ 2−i+2

which shows that
lim

i→∞
(xi)2 = 2

and (15.8) follows.
We summarize the approach used to compute and define

√
2 as follows:

� We use the Bisection Algorithm applied to the equation x2 = 2 to de-
fine a sequence of rational numbers {xi}∞i=0 that converges to a limit,
which we denote by

√
2 = limi→∞ xi.

� We define
√

2
√

2 = limi→∞(xi)2.

� We show that limi→∞(xi)2 = 2.

� We conclude that
√

2
√

2 = 2 which means that
√

2 solves the equation
x2 = 2.

15.9 A Reflection on the Nature of
√

2

We may now return to comparing the following two definitions of
√

2:

1.
√

2 is “that thing” which when squared is equal to 2

2.
√

2 is the name of the decimal expansion given by the sequence
{xi}∞i=1 generated by the Bisection algorithm for the equation x2 = 2,
which with a suitable definition of multiplication satisfies

√
2
√

2 = 2.
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This is analogous to the following two definitions of 1
2 :

1. 1
2 is “that thing” which when multiplied by 2 equals 1

2. 1
2 is the ordered pair (1, 2) which with a suitable definition of multi-
plication satisfies the equation (2, 1) × (1, 2) = (1, 1).

We conclude that in both cases the meaning 1. could be criticized for
being unclear in the sense that no clue is given to what “that thing” is
in terms of already known things, and that the definition appears circular
and eventually seems to be just a play with words. We conclude that only
the definition 2. has a solid constructive basis, although we may intuitively
use 1. when we think.

Occasionally, we can do computations including
√

2, where we only need
to use that (

√
2)2 = 2, and we do not need the decimal expansion of

√
2.

For example, we can verify that (
√

2)4 = 4 by only using that (
√

2)2 = 2
without knowing a single decimal of

√
2. In this case we just use

√
2 as

a symbol for “that thing which squared equals 2”. It is rare that this kind
of symbolic manipulation only, leads to the end and gives a definite answer.

We note that the fact that
√

2 solves the equation x2 = 2 includes some
kind of convention or agreement or definition. What we actually did was
to show that the truncated decimal expansions of

√
2 when squared could

be made arbitrarily close to 2. We took this as a definition, or agreement,
that (

√
2)2 = 2. Doing this, solved the dilemma of the Pythagoreans, and

thus we may (almost) say that we solved the problem by agreeing that the
problem did not exist. This may be the only way out in some (difficult)
cases.

In fact, the standpoint of the famous philosopher Wittgenstein was that
the only way to solve philosophical problems was to show (after much work)
that in fact the problem at hand does not exist. The net result of this kind of
reasoning would appear to be zero: first posing a problem and then showing
that the problem does not exist. However, the process itself of coming to this
conclusion would be considered as important by giving added insight, not
so much the result. This approach also could be fruitful outside philosophy
or mathematics.

15.10 Cauchy Sequences of Real Numbers

We may extend the notion of sequence and Cauchy sequence to real num-
bers. We say that {xi}∞i=1 is a sequence of real numbers if the elements xi

are real numbers. The definition of convergence is the same as for sequences
of rational numbers. A sequence {xi}∞i=1 of real numbers converges to a real
number x if for any ε > 0 there is a natural number N such that |xi−x| < ε
for i ≥ N and we write x = limi→∞ xi.
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We say that a sequence {xi}∞i=1 of real numbers is a Cauchy sequence if
for all ε > 0 there is a natural number N such that

|xi − xj | ≤ ε for i, j ≥ N. (15.9)

If {xi}∞i=1 is a converging sequence of real numbers with limit x =
limi→∞ xi, then by the Triangle Inequality,

|xi − xj | ≤ |x− xi| + |x− xj |,

where we wrote xi − xj = xi − x + x − xj . This proves that {xi}∞i=1 is
a Cauchy sequence. We state this (obvious) result as a theorem.

Theorem 15.1 A converging sequence of real numbers is a Cauchy se-
quence of real numbers.

A Cauchy sequence of real numbers determines a decimal expansion just
in the same way as a sequence of rational numbers does. We may assume,
possibly by deleting elements and changing the indexing, that a Cauchy
sequence of real numbers satisfies |xi − xj | ≤ 2−i for j ≥ i.

We conclude that a Cauchy sequence of real numbers converges to a real
number. This is a fundamental result about real numbers which we state
as a theorem.

Theorem 15.2 A Cauchy sequence of real numbers converges to a unique
real number.

The use of Cauchy sequences has been popular in mathematics since the
days of the great mathematician Cauchy in the first half of the 19th century.
Cauchy was a teacher at Ecole Polytechnique in Paris, which was created
by Napoleon and became a model for technical universities all over Europe
(Chalmers 1829, Helsinki 1849, . . . ). Cauchy’s reform of the engineering
Calculus course including his famous Cours d’Analyse also became a model,
which permeates much of the Calculus teaching still today.

15.11 Extension from f : Q → Q to f : R → R

In this section, we show how to extend a given Lipschitz continuous function
f : Q → Q, to a function f : R → R. We thus assume that f(x) is defined for
x rational, and that f(x) is a rational number, and we shall now show how
to define f(x) for x irrational. We shall see that the Lipschitz continuity
is crucial in this extension process. In fact, much of the motivation for
introducing the concept of Lipschitz continuity, comes from its use in this
context.

We have already met the basic issues when defining how to compute with
real numbers, and we follow the same idea for a general function f : Q → Q.
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If x = limi→∞ xi is an irrational real number, with the sequence {xi}∞i=1

being the truncated decimal expansions of x, we define f(x) to be the real
number defined by

f(x) = lim
i→∞

f(xi). (15.10)

Note that by the Lipschitz continuity of f(x) with Lipschitz constant L,
we have

|f(xi) − f(xj)| ≤ L|xi − xj |,

which shows that the sequence {f(xi)}∞i=1 is a Cauchy sequence, because
{xi}∞i=1 is a Cauchy sequence Thus limi→∞ f(xi) exists and defines a real
number f(x). This defines f : R → R, and we say that this function is
the extension of f : Q → Q, from the rational numbers Q to the real
numbers R.

Similarly, we can generalize and extend a Lipschitz continuous function
f : I → Q, where I = {x ∈ Q : a ≤ x ≤ b} is an interval of rational
numbers, to a function f : J → R, where J = {x ∈ R : a ≤ x ≤ b} is the
corresponding interval of real numbers. Evidently, the extended function
f : J → R satisfies:

f( lim
i→∞

xi) = lim
i→∞

f(xi), (15.11)

for any convergent sequence {xi} in J (with automatically limi→∞ xi ∈ J
because J is closed).

15.12 Lipschitz Continuity of Extended Functions

If f : Q → Q is Lipschitz continuous with Lipschitz constant Lf , then its
extension f : R → R is also Lipschitz continuous with the same Lipschitz
constant Lf . This is because if x = limi→∞ xi and y = limi→∞ yi, then

|f(x) − f(y)| =
∣
∣
∣ lim
i→∞

(f(xi) − f(yi))
∣
∣
∣ ≤ L lim

i→∞
|xi − yi| = L|x− y|.

It is now straightforward to show that the properties of Lipschitz contin-
uous functions f : Q → Q stated above hold for the corresponding extended
functions f : R → R. We summarize in the following theorem

Theorem 15.3 A Lipschitz continuous function f : I → R, where I =
[a, b] is an interval of real numbers, satisfies:

f( lim
i→∞

xi) = lim
i→∞

f(xi), (15.12)

for any convergent sequence {xi} in I. If f : I → R and g : I → R

are Lipschitz continuous, and α and β are real numbers, then the linear
combination αf(x) + βg(x) is Lipschitz continuous on I. If the interval
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I is bounded, then f(x) and g(x) are bounded and f(x)g(x) is Lipschitz
continuous on I. If I is bounded and moreover |g(x)| ≥ c > 0 for all x in
I, where c is some constant, then f(x)/g(x) is Lipschitz continuous on I.

Example 15.1. We can extend any polynomial to be defined on the real
numbers. This is possible because a polynomial is Lipschitz continuous on
any bounded interval of rational numbers.

Example 15.2. The previous example means that we can extend f(x) = xn

to the real numbers for any integer n. We can also show that f(x) = x−n is
Lipschitz continuous on any closed interval of rational numbers that does
not contain 0. Therefore f(x) = xn can be extended to the real numbers,
where n is any integer provided that when n < 0, x �= 0.

15.13 Graphing Functions f : R → R

Graphing a function f : R → R follows the same principles as graphing
a function f : Q → Q.

15.14 Extending a Lipschitz Continuous Function

Suppose f : (a, b] → R is Lipschitz continuous with Lipschitz constant
Lf on the half-open interval (a, b], but that the value of f(a) has not
been defined. Is there a way to define f(a) so that the extended function
f : [a, b] → R is Lipschitz continuous? Yes, there is. To see this we let
{xi}∞i=1 be a sequence of real numbers in (a, b] converging to a, that is
limi→∞ xi = a. The sequence {xi}∞i=1 is a Cauchy sequence, and because
f(x) is Lipschitz continuous on (a, b], so is the sequence {f(xi)}∞i=1, and
thus limi→∞ f(xi) exists and we may then define f(a) = limi→∞ f(xi).
It follows readily that the extended function f : [a, b] → R is Lipschitz
continuous with the same Lipschitz constant.

We give an application of this idea arising when considering quotients
of two functions. Clearly, we must avoid points at which the denominator
is zero and the numerator is nonzero. However, if both the numerator and
denominator are zero at a point, the function can be extended to that point
if the quotient function is Lipschitz continuous off the point. We give first
a “trivial” example.

Example 15.3. Consider the quotient

x− 1
x− 1

with domain {x ∈ R : x �= 1}. Since

x− 1 = 1 × (x− 1) (15.13)
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for all x, it is natural to “divide” the polynomials to get

x− 1
x− 1

= 1. (15.14)

However, the domain of the constant function 1 is R so the left- and right-
hand sides of (15.14) have different domains and therefore must represent
different functions. We plot the two functions in Fig. 15.2. We see that the
two functions agree at every point except for the “missing” point x = 1.

11

Fig. 15.2. Plots of (x− 1)/(x− 1) on the left and 1 on the right

Example 15.4. Since x2 − 2x− 3 = (x− 3)(x+ 1), we have for x �= 3 that

x2 − 2x− 3
x− 3

= x+ 1.

The function (x2 − 2x − 3)/(x − 3) defined for {x ∈ R : x �= 3} may be
extended to the function x+ 1 defined for all x in R.

Note that the fact that two functions f1 and f2 are zero at the same points
does not mean that we can automatically replace their quotient by a func-
tion defined at all points.

Example 15.5. The function

x− 1
(x− 1)2

,

defined for {x ∈ R : x �= 1}, is equal to the function 1/(x− 1) also defined
on {x ∈ R : x �= 1}, which cannot be extended to x = 1.

15.15 Intervals of Real Numbers

Let a and b be two real numbers with a < b. The set of real numbers
x such that x > a and x < b, that is {x ∈ R : a < x < b}, is called
the open interval between a and b and is denoted by (a, b). Graphically
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we draw a thick line on the number line connecting little circles drawn at
positions a and b. We illustrate in Fig. 15.3. The word “open” refers to
the strict inequality defining (a, b) and we use the curved parentheses “(”
and the open circle on the number line to mark this. a and b are called the
endpoints of the interval. An open interval does not contain its endpoints.
The closed interval [a, b] is the set {x : a ≤ x ≤ b} and is denoted on the
number line using solid circles. Note the use of square parentheses “[” when
the inequalities are not strict. A closed interval does contain its endpoints.
Finally, we can have half-open intervals with one end open and the other
closed, such as (a, b] = {x : a < x ≤ b}. See Fig. 15.3.

a b

a < x < b

a b

a ≤ x < b

a b

a < x ≤ b

a b

a ≤ x ≤ b

Fig. 15.3. Intervals corresponding to the real numbers between two real numbers
a and b. Note the use of a solid and closed circles in the four cases

We also have “infinite” intervals such as (−∞, a) = {x : x < a} and
[b,∞) = {x : b ≤ x}. We illustrate these in Fig. 15.4. With this notation,
we denote the set of real numbers by R = (−∞,∞).

Clearly, we can now consider Lipschitz continuous functions f : I → R

defined on intervals I of R.

a

x < a

b

b ≤ x 

Fig. 15.4. Infinite intervals (−∞, a) and [b,∞)

15.16 What Is f(x) if x Is Irrational?

Note that if x is irrational, then the process of determining the sequence of
truncated decimal expansions of x and f(x) is carried out in parallel. The
more decimals we have of x, the more decimals we get of f(x). This is sim-
ply because f(x) = limi→∞ f(xi) with {xi}∞i=1 the sequence of truncated
decimal expansions of x. This is obvious from Fig. 15.5. This means that
the conventional idea of viewing f(x) as a function of x comes into a new
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light. In the traditional way of thinking of a function f(x), we think of x
as given and then associating the value f(x) to x. We may even write this
as x→ f(x) indicating that we go from x to f(x).

However, we just noticed that when x is irrational, we cannot start from
knowing all the decimals of x, and then determine f(x). Instead, we deter-
mine successively the decimal expansions xi and the corresponding function
values f(xi), that is, we may write xi → f(xi) for i = 1, 2, . . ., but not re-
ally x→ f(x). We rather jump back and forth between approximations xi

of x and approximations f(xi) of f(x). This means that we do not have
exact knowledge of x when we compute f(x). In order to make this process
to be meaningful, we need the function f(x) to be Lipschitz continuous. In
this case, small changes in x cause small changes in f(x), and the extension
process is possible.

Example 15.6. We evaluate f(x) = .4x3−x for x =
√

2 using the truncated
decimal sequence {xi} in Fig. 15.5.

i xi .4x3
i − xi

1 1 −.6
2 1.4 .0976
3 1.41 .1212884
4 1.414 .1308583776
5 1.4142 .1313383005152
6 1.41421 .1313623002245844
7 1.414213 .1313695002035846388
8 1.4142135 .13137070020305452415
9 1.41421356 .1313708442030479314744064

10 1.414213562 .1313708490030479221535281312
...

...
...

Fig. 15.5. Computing the decimal expansion of f(
√

2) for f(x) = .4x3 − x by
using the truncated decimal sequence

This leads to the idea that we can only talk about Lipschitz continuous
functions. If some association of x-values to values f(x) is not Lipschitz
continuous, this association should not deserve to be called a function. We
are thus led to the conclusion that all functions are Lipschitz continuous
(more or less).

This statement would be shocking to many mathematicians, who are
used to work with discontinuous functions day and night. In fact, in large
parts of mathematics (e.g. integration theory), a lot of attention is payed
to extremely discontinuous “functions”, like the following popular one

f(x) = 0 if x is rational,
f(x) = 1 if x is irrational.
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Whatever this is, it is not a Lipschitz function, and thus from our perspec-
tive, we would not consider it to be a function at all. This is because for
some arguments x it may be extremely difficult to know if x is rational
or irrational, and then we would not know which of the vastly different
function values f(x) = 0 or f(x) = 1 to choose. To be able to determine if
x is rational or not, we may have to know the infinite decimal expansion
of x, which may be impossible to us as human beings. For example, if we
didn’t know the smart argument showing that x =

√
2 cant be rational,

we would not be able to tell from any truncated decimal expansion of
√

2
whether f(x) = 0 or f(x) = 1.

We would even get into trouble trying to define the following “func-
tion” f(x)

f(x) = a if x < x̄,

f(x) = b if x ≥ x̄,

with a “jump” at x̄ from a value a to a different value b. If x̄ is irrational,
we may lack complete knowledge of all the decimals of x̄, and it may be
virtually impossible to determine for a given x if x < x̄ or x ≥ x̄. It would be
more natural to view the “function with a jump” as two functions composed
of one Lipschitz function

f(x) = a if x ≤ x̄,

and another Lipschitz function

f(x) = b if x ≥ x̄,

with two possible values a �= b for x = x̄: the value a from the left (x ≤ x̄),
and the value b from the right (x ≥ x̄), see Fig. 15.6.

"+" "="

x̄x̄x̄

Fig. 15.6. A “jump function” viewed as two functions

It thus seems that we have to reject the very idea that a function f(x) can
be discontinuous. This is because we cannot assume that we know x exactly,
and thus we can only handle a situation where small changes in x causes
small changes in f(x), which is the essence of Lipschitz continuity. Instead
we are led to handle functions with jumps as combinations of Lipschitz
continuous functions with two possible values at the jumps, one value from
the right and another value from the left.
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15.17 Continuity Versus Lipschitz Continuity

As indicated, we use a definition of continuity (Lipschitz continuity), which
differs from the usual definition met in most Calculus texts. We recall the
basic property of a Lipschitz continuous function f : I → R:

f
(

lim
i→∞

xi

)
= lim

i→∞
f(xi), (15.15)

for any convergent sequence {xi} in I with limi→∞ xi ∈ I. Now, the stan-
dard definition of continuity of a function f : I → R starts at the relation
(15.15), and reads as follows: The function f : I → R is said to be con-
tinuous on I (according to the standard definition) if (15.15) holds for
any convergent sequence {xi} in I with limi→∞ xi ∈ I. Apparently, a Lips-
chitz continuous function is continuous according to the standard definition,
while the opposite implication does not have to be true. In other words, we
use a somewhat more stringent definition than the standard one.

The standard definition satisfies a condition of maximality (attractive to
many pure mathematicians), but suffers from an (often confusing) use of
limits. In fact, the intuitive idea of “continuous dependence” of function
values f(x) of a real variable x, can be expressed as “f(x) is close to f(y)
whenever x is close to y”, of which Lipschitz continuity gives a quantitative
precise formulation, while the connection in the standard definition is more
farfetched. Right?

Chapter 15 Problems

15.1. Define a “sentence” to be any combination of 500 characters consisting of
26 letters and spaces lined up in a row. Compute (approximately) the number of
possible sentences.

15.2. Suppose that x and y are two real numbers and {xi} and {yi} are the
sequences generated by truncating their decimal expansions. Using (7.14) and
(15.4), obtain estimates on (a) |(x+ y)− (xi + yi)| and (b) |xy − xiyi|. Hint: for
(b), use that xy − xiyi = (x− xi)y + xi(y − yi), and explain why (15.4) implies
that for i sufficiently big, |xi| ≤ |x| + 1.

15.3. Find i as small as possible such that |xy − xiyi| ≤ 10−6 if x ≈ 100 and
y ≈ 1. Find i and j as small as possible such that |xy − xiyj | ≤ 10−6

15.4. Let x = .37373737 · · · and y =
√

2 and {xi} and {yi} be the sequences
generated by truncating their decimal expansions. Compute the first 10 terms of
the sequences defining x + y and y − x and the first 5 terms of the sequences
defining xy and x/y. Hint: follow the example in Fig. 15.1.

15.5. Let x be the limit of the sequence

{
i

i+ 1

}

. Is x < 1?. Give a reason for

your answer.
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15.6. Let x be the limit of the sequence of rational numbers {xi} where the
first i− 1 decimal places of xi agree with the first i− 1 decimal places of

√
2, the

i’th decimal place is equal to 3, and the rest of the decimal places are zero. Is
x =

√
2? Give a reason for your answer.

15.7. Let x, y, and z be real numbers. Show the following properties hold.

(a) x < y and y < z implies x < z.

(b) x < y implies x+ z < y + z.

(c) x < y implies −x > −y.

15.8. Find the set of x that satisfies (a) |
√

2x− 3| ≤ 7 and (b) |3x − 6
√

2| > 2.

15.9. Verify that the triangle inequality (7.14) extends to real numbers s and t.

15.10. (Harder) (a) If p is a rational number, x is a real number, and {xi} is
any sequence of rational numbers that converges to x, show that p < x implies
that p < xi for all i sufficiently large. (b) If x and y are real numbers and {yi}
is any sequence that converges to y, show that x < y implies x < yi for all i
sufficiently large.

15.11. Show that the following sequences are Cauchy sequences.

(a)

{
1

(i+ 1)2

}

(b)

{

4 − 1

2i

}

(c)

{
i

3i+ 1

}

15.12. Show that the sequence {i2} is not a Cauchy sequence.

15.13. Let {xi} denote the sequence of real numbers defined by

x1 = .373373337 · · ·
x2 = .337733377333377 · · ·
x3 = .333777333377733333777 · · ·
x4 = .333377773333377773333337777 · · ·

...

(a) Show that the sequence is a Cauchy sequence and (b) find lim
i→∞

xi. This shows

that a sequence of irrational numbers can converge to a rational number.

15.14. Can a number of the form sx+ t, with s and t rational and x irrational,
be rational?

15.15. Let {xi} and {yi} be Cauchy sequences with limits x and y respectively.
(a) Show that {xi−yi} is a Cauchy sequence and compute its limit. (b) Assuming

there is a constant c such that yi ≥ c > 0 for all i, show that

{
xi
yi

}

is a Cauchy

sequence and compute its limit.
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15.16. Show that a sequence that converges is a Cauchy sequence. Hint: if {xi}
converges to x, write xi−xj = (xi−x)+(x−xj) and use the triangle inequality.

15.17. (Harder) Let {xi} be an increasing sequence, xi−1 ≤ xi, which is bounded
above, i.e. there is a number c such that xi ≤ c for all i. Prove that {xi} con-
verges. Hint: Use a variation of the argument for the convergence of the bisection
algorithm.

15.18. Compute the first 5 terms of the sequence that defines the value of the

function f(x) =
x

x+ 2
at x =

√
2. Hint: follow Fig. 15.5 and use the evalf function

of MAPLE� in order to determine all the digits.

15.19. Let {xi} be the sequence with xi = 3 − 2

i
and f(x) = x2 − x. What is

the limit of the sequence {f(xi)}?

15.20. Show that |x| is Lipschitz continuous on the real numbers R.

15.21. Let n be a natural number. Show that
1

xn
is Lipschitz continuous on

the set of rational numbers Q = {x : .01 ≤ x ≤ 1} and find a Lipschitz constant
without using Theorem 15.3. Hint: Use the identity

xn2 − xn1 = (x2 − x1)
(
xn−1

2 + xn−2
2 x1 + xn−3

2 x2
1

+ · · · + x2
2x
n−3
1 + x2x

n−2
1 + xn−1

1

)

= (x2 − x1)

n−1∑

j=0

xn−1−j
2 xj1

after showing that it is true. Note there are n terms in the last sum, the Lipschitz
constant definitely depends on n.

15.22. Show Theorem 15.3 is true.

15.23. Write each of the following sets using the interval notation and then
mark the sets on a number line.

(a) {x : −2 < x ≤ 4} (b) {x : −3 < x < −1} ∪ {x : −1 < x ≤ 2}
(c) {x : x = −2, 0 ≤ x} (b) {x : x < 0} ∪ {x : x > 1}

15.24. Produce an interval that contains all the points 3 − 10−j for j ≥ 0 but
does not contain 3.

15.25. Using MATLAB� or MAPLE�, graph the following functions on one
graph: y = 1 × x, y = 1.4 × x, y = 1.41 × x, y = 1.414 × x, y = 1.4142 × x,
y = 1.41421 × x. Use your results to explain how you could graph the function
y =

√
2 × x.

15.26. (a) Give a definition of an interval (a, b) where a and b are real numbers
in terms of intervals with rational endpoints. (b) Do the same for [a, b].
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15.27. Explain why there are infinitely many real numbers between any two
distinct real numbers by giving a systematic way to write them down. Hint: first
consider the case when the two distinct numbers are integers and work one digit
at a time.

15.28. Find the Lipschitz constant of the function f(x) =
√
x with D(f) =

(δ,∞) for given δ > 0.

The aim of Book X of Euclid’s treatise on the “Elements” is to in-
vestigate the commensurable and the incommensurable, the rational
and irrational continuous quantities. This science has its origin in
the school of Pythagoras, but underwent an important development
in the hands of the Athenian, Theaetetus, who is justly admired for
his natural aptitude in this as in other branches of mathematics.
One of the most gifted of men, he patiently pursued the investiga-
tion of truth contained in these branches of science . . . and was in
my opinion the chief means of establishing exact distinctions and
irrefutable proofs with respect to the above mentioned quantities.
(Pappus 290–350 (about))
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The Bisection Algorithm for f(x) = 0

Divide ut regnes (divide and conquer). (Machiavelli 1469–1527)

16.1 Bisection

We now generalize the Bisection algorithm used above to compute the
positive root of the equation x2 − 2 = 0, to compute roots of the equation

f(x) = 0 (16.1)

where f : R → R is a Lipschitz continuous function. The Bisection algo-
rithm reads as follows, where TOL is a given positive tolerance:

1. Choose initial values x0 andX0 with x0 < X0 so that f(x0)f(X0) < 0.
Set i = 1.

2. Given two rational numbers xi−1 < Xi−1 with the property that
f(xi−1)f(Xi−1) < 0, set x̄i = (xi−1 +Xi−1)/2.

� If f(x̄i) = 0, then stop.

� If f(x̄i)f(Xi−1) < 0, then set xi = x̄i and Xi = Xi.

� If f(x̄i)f(xi−1) < 0, then set xi = xi and Xi = x̄i.

3. Stop if Xi − xi ≤ TOL.

4. Increase i by 1 and go back to step 2.
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The equation f(x) = 0 may have many roots, and the choice of initial
approximations x0 and X0 such that f(x0)f(X0) ≤ 0 restricts the search
for one or more roots to the interval [x0, X0]. To find all roots of an equation
f(x) it may be necessary to systematically search for all the possible start
intervals [x0, X0].

The proof that the Bisection algorithm converges is the same as that
given above in the special case when f(x) = x2 − 0. By construction, we
have after i steps, assuming that we don’t stop because f(x̄i) = 0 and
X0 − x0 = 1, that

0 ≤ Xi − xi ≤ 2−i,

and as before that
|xi − xj | ≤ 2−i if j ≥ i.

Again, {xi}∞i=1 is a Cauchy sequence and thus converges to a unique real
number x̄, and by construction

|xi − x̄| ≤ 2−i and |Xi − x̄| ≤ 2−i.

It remains to show that x̄ is a root of f(x) = 0, that is, we have to show
that f(x̄) = 0. By definition f(x̄) = f(limi→∞ xi) = limi→∞ f(xi) and thus
we need to show that limi→∞ f(xi) = 0. To this end we use the Lipschitz
continuity to see that

|f(xi) − f(Xi)| ≤ L|xi −Xi| ≤ L2−i.

Since f(xi)f(Xi) < 0, that is the signs of f(xi) and f(Xi) are different,
this proves that in fact

|f(xi)| ≤ L2−i (and also |f(Xi)| ≤ L2−i),

which proves that limi→∞ f(xi) = 0, and thus f(x̄) = limi→∞ f(xi) = 0 as
we wanted to show.

We summarize this as a theorem, which is known as Bolzano’s Theorem
after the Catholic priest B. Bolzano (1781–1848), who was one of the first
people to work out analytic proofs of properties of continuous functions.

Theorem 16.1 (Bolzano’s Theorem) If f : [a, b] → R is Lipschitz
continuous and f(a)f(b) < 0, then there is a real number x̄ ∈ [a, b] such
that f(x̄) = 0.

One consequence of this theorem is called the Intermediate Value The-
orem, which states that if g(x) is Lipschitz continuous on an interval [a, b]
then g(x) takes on every value between g(a) and g(b) at least once as x
varies over [a, b]. This follows applying Bolzanos theorem to the function
f(x) = g(x) − y = 0, where y lies between f(a) and f(b).

Theorem 16.2 (The Intermediate Value Theorem) If f : [a, b] → R

is Lipschitz continuous then for any real number y in the interval between
f(a) and f(b), there is a real number x ∈ [a, b] such that f(x) = y.
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Fig. 16.1. Bernard Placidus Johann Nepomuk Bolzano 1781–1848, Czech math-
ematician, philosopher and catholic priest: “My special pleasure in mathemat-
ics rested therefore particularly on its purely speculative parts, in other words
I prized only that part of mathematics which was at the same time philosophy”

16.2 An Example

As an application of the Bisection algorithm, we compute the roots of the
chemical equilibrium equation (7.13) in Chapter Rational Numbers,

S (.02 + 2S)2 − 1.57 × 10−9 = 0. (16.2)

We show a plot of the function involved in Fig. 16.2. Apparently there
are roots near −.01 and 0, but to compute them it seems advisable to first

-.02  .02

-0.000008

0.000032

0.000072

Fig. 16.2. A plot of the function S (.02 + 2S)2 − 1.57 × 10−9
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rescale the equation. We then first multiply both sides of (16.2) by 109 to
get

109 × S (.02 + 2S)2 − 1.57 = 0,

and write

109 × S (.02 + 2S)2 = 103 × S × 106 × (.02 + 2S)2

= 103 × S ×
(
103

)2 × (.02 + 2S)2 = 103 × S ×
(
103 × (.02 + 2S)

)2

= 103 × S ×
(
20 + 2 × 103 × S

)2
.

If we name a new variable x = 103S, then we obtain the following equation
to solve

f(x) = x(20 + 2x)2 − 1.57 = 0. (16.3)

The polynomial f(x) has more reasonable coefficients and the roots are
not nearly as small as in the original formulation. If we find a root x of
f(x) = 0, then we can find the physical variable S = 10−3x. We note that
only positive roots can have any meaning in this model, since we cannot
have “negative” solubility.

The function f(x) is a polynomial and thus is Lipschitz continuous on
any bounded interval, and thus the Bisection algorithm can be used to
compute its roots. We plot f(x) in Fig. 16.3. It appears that f(x) = 0
might have one root near 0 and another root near −10.

-11 -5.3 .4

 
-600

-250

100

 

Fig. 16.3. A plot of the function f(x) = x(20 + 2x)2 − 1.57

To compute a positive root, we now choose x0 = −.1 and X0 = .1 and
apply the Bisection algorithm for 20 steps. We show the results in Fig. 16.4.
This suggests that the root of (16.3) is x ≈ .00392 or S ≈ 3.92 × 10−6.
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i xi Xi

0 −0.10000000000000 0.10000000000000
1 0.00000000000000 0.10000000000000
2 0.00000000000000 0.05000000000000
3 0.00000000000000 0.02500000000000
4 0.00000000000000 0.01250000000000
5 0.00000000000000 0.00625000000000
6 0.00312500000000 0.00625000000000
7 0.00312500000000 0.00468750000000
8 0.00390625000000 0.00468750000000
9 0.00390625000000 0.00429687500000
10 0.00390625000000 0.00410156250000
11 0.00390625000000 0.00400390625000
12 0.00390625000000 0.00395507812500
13 0.00390625000000 0.00393066406250
14 0.00391845703125 0.00393066406250
15 0.00391845703125 0.00392456054688
16 0.00392150878906 0.00392456054688
17 0.00392150878906 0.00392303466797
18 0.00392150878906 0.00392227172852
19 0.00392189025879 0.00392227172852
20 0.00392189025879 0.00392208099365

Fig. 16.4. 20 steps of the Bisection algorithm applied to (16.3) using x0 = −.1
and X0 = .1

16.3 Computational Cost

We applied the Deca-section to compute
√

2 above. Of course we can use
this method also for computing the root of a general equation. Once we
have more than one method to compute a root of a equation, it is natural to
ask which method is “best”. We have to decide what we mean by “best” of
course. For this problem, best might mean “most accurate” or “cheapest”
for example. The exact criteria depends on our needs.

The criteria may depend on many things, such as the the level of accu-
racy to try to achieve. Of course, this depends on the application and the
computational cost. In the Muddy Yard Model, a couple of decimal places
is certainly sufficient from a practical point of view. If we actually tried to
measure the diagonal using a tape measure for example, we would only get
to within a few centimeters of the true value even neglecting the difficulty
of measuring along a straight line. For more accuracy, we could use a laser
and measure the distance to within a couple of wavelengths, and thus we
might want to compute with a corresponding precision of many decimals.
This would of course be overkill in the present case, but could be neces-
sary in applications to e.g. astronomy or geodesic (for instance continental
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drift). In physics there is a strong need to compute certain quantities with
many digits. For example one would like to know the mass of the electron
very accurately. In applications of mechanics, a couple of decimals in the
final answer may often be enough.

For the Deca-section and Bisection algorithms, accuracy is apparently
not an issue, since both algorithms can be executed until we get 16 places or
whatever number of digits is used for floating point representation. There-
fore the way to compare the methods is by the amount of computing time
it takes to achieve a given level of accuracy. This computing time is often
called the cost of the computation, a left-over from the days when computer
time was actually purchased by the second.

The cost involved in one of these algorithms can be determined by fig-
uring out the cost per iteration step and then multiplying by the total
number of steps we need to reach the desired accuracy. In one step of the
Bisection Algorithm, the computer must compute the midpoint between
two points, evaluate the function f at that point and store the value tem-
porarily, check the sign of the function value, and then store the new xi

and Xi. We assume that the time it takes for the computer to do each of
these operations can be measured and we define

Cm = cost of computing the midpoint
Cf = cost of evaluating f at a point

C± = cost of checking the sign of a variable
Cs = cost of storing a variable.

The total cost of one step of the bisection algorithm is Cm +Cf +C±+4Cs,
and the cost after Nb steps is

Nb(Cm + Cf + C± + 4Cs). (16.4)

One step of the Deca-section algorithm has a considerably higher cost be-
cause there are 9 intermediate points to check. The total cost after Nd steps
of the Deca-section algorithm is

Nd(9Cm + 9Cf + 9C± + 20Cs). (16.5)

On the other hand, the difference |xi − x̄| decreases by a factor of 1/10
after each step of the Deca-section algorithm as compared to a factor of
1/2 after each step of the Bisection algorithm. Since 1/23 > 1/10 > 1/24,
this means that the Bisection algorithm requires between 3 and 4 times as
many steps as the Deca-section algorithm in order to reduce the initial size
|x0− x̄| by a given factor. So Nb ≈ 4Nd. This gives the cost of the Bisection
Algorithm as

4Nd(Cm + Cf + C± + 4Cs) = Nd(4Cm + 4Cf + 4C± + 16Cs)

as compared to (16.5). This means that the Bisection algorithm is cheaper
to use than the Deca-section algorithm.
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Do Mathematicians Quarrel?*

The proofs of Bolzano’s and Weierstrass theorems have a decidedly
non-constructive character. They do not provide a method for actu-
ally finding the location of a zero or the greatest or smallest value of
a function with a prescribed degree of precision in a finite number of
steps. Only the mere existence, or rather the absurdity of the non-
existence, of the desired value is proved. This is another important
instance where the “intuitionists” have raised objections; some have
even insisted that such theorems be eliminated from mathematics.
The student of mathematics should take this no more seriously than
did most of the critics. (Courant)

I know that the great Hilbert said “We will not be driven out from
the paradise Cantor has created for us”, and I reply “I see no reason
to walking in”. (R. Hamming)

There is a concept which corrupts and upsets all others. I refer not to
the Evil, whose limited realm is that of ethics; I refer to the infinite.
(Borges).

Either mathematics is too big for the human mind or the human
mind is more than a machine. (Gödel)

17.1 Introduction

Mathematics is often taught as an “absolute science” where there is a clear
distinction between true and false or right and wrong, which should be uni-
versally accepted by all professional mathematicians and every enlightened
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layman. This is true to a large extent, but there are important aspects of
mathematics where agreement has been lacking and still is lacking. The
development of mathematics in fact includes as fierce quarrels as any other
science. In the beginning of the 20th century, the very foundations of math-
ematics were under intense discussion. In parallel, a split between “pure”
and “applied” mathematics developed, which had never existed before. Tra-
ditionally, mathematicians were generalists combining theoretical mathe-
matical work with applications of mathematics and even work in mechanics,
physics and other disciplines. Leibniz, Lagrange, Gauss, Poincaré and von
Neumann all worked with concrete problems from mechanics, physics and
a variety of applications, as well as with theoretical mathematical questions.

In terms of the foundations of mathematics, there are different “math-
ematical schools” that view the basic concepts and axioms somewhat dif-
ferently and that use somewhat different types of arguments in their work.
The three principal schools are the formalists, the logicists and finally the
intuitionists, also known as the constructivists.

As we explain below, we group both the formalists and the logicists
together under an idealistic tradition and the the constructivists under
a realistic tradition. It is possible to associate the idealistic tradition to an
“aristocratic” standpoint and the realistic tradition to a “democratic” one.
The history of the Western World can largely be be viewed as a battle be-
tween an idealistic/aristochratic and a realistic/democratic tradition. The
Greek philosopher Plato is the portal figure of the idealistic/aristocratic
tradition, while along with the scientific revolution initiated in the 16th
century, the realistic/democratic tradition has taken a leading role in our
society.

The debate between the formalists/logicists and the constructivists cul-
minated in the 1930s, when the program put forward by the formalists and
logicists suffered a strong blow from the logician Kurt Gödel. Gödel showed,
to the surprise of world including great mathematicians like Hilbert, that
in any axiomatic mathematical theory containing the axioms for the natu-
ral numbers, there are true facts which cannot be proved from the axioms.
This is Gödel’s famous incompleteness theorem.

Alan Turing (1912–54, dissertation at Kings College, Cambridge 1935)
took up a similar line of thought in the form of computability of real num-
bers in his famous 1936 article On Computable Numbers, with an appli-
cation to the Entscheidungsproblem. In this paper Turing introduced an
abstract machine, now called a Turing machine, which became the proto-
type of the modern programmable computer. Turing defined a computable
number as real number whose decimal expansion could be produced by
a Turing machine. He showed that π was computable, but claimed that
most real numbers are not computable. He gave gave examples of “unde-
cidable problems” formulated as the problem if the Turing machine would
come to a halt or not, seeTS

c Fig. 17.2. Turing laid out plans for an elec-
tronic computer named Analytical Computing Engine ACE, with reference

TS
c Figure 1 is not referred to in the text.

Editor’s or typesetter’s annotations (will be removed before the final TEX run)
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Fig. 17.1. Kurt Gödel (with Einstein 1950): “Every formal system is incomplete”

Fig. 17.2. Alan Turing: “I wonder if my machine will come to a halt?”

to Babbages’ Analytical Engine, at the same time as the ENIAC was de-
signed in the US.
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Gödel’s and Turing’s work signified a clear defeat for the formalists/
logicists and a corresponding victory for the constructivists. Paradoxically,
soon after the defeat the formalists/logicists gained control of the mathe-
matics departments and the constructivists left to create new departments
of computer science and numerical analysis based on constructive mathe-
matics. It appears that the trauma generated by Gödel’s and Turing’s find-
ings on the incompleteness of axiomatic methods and un-computability,
was so strong that the earlier co-existence of the formalists/logicists and
constructivists was no longer possible. Even today, the world of mathemat-
ics is heavily influenced by this split.

We will come back to the dispute between the formalists/logicists and
constructivists below, and use it to illustrate fundamental aspects of math-
ematics which hopefully can help us to understand our subject better.

17.2 The Formalists

The formalist school says that it does not matter what the basic concepts
actually mean, because in mathematics we are just concerned with relations
between the basic concepts whatever the meaning may be. Thus, we do
not have to (and cannot) explain or define the basic concepts and can view
mathematics as some kind of “game”. However, a formalist would be very
anxious to demonstrate that in his formal system it would not be possible
to arrive at contradictions, in which case his game would be at risk of
breaking down. A formalist would thus like to be absolutely sure about the
consistency of his formal system. Further, a formalist would like to know
that, at least in principle, he would be able to understand his own game
fully, that is that he would in principle be able to give a mathematical
explanation or proof of any true property of his game. The mathematician
Hilbert was the leader of the formalist school. Hilbert was shocked by the
results by Gödel.

17.3 The Logicists and Set Theory

The logicists try to base mathematics on logic and set theory. Set theory
was developed during the second half of the 19th century and the language
of set theory has become a part of our every day language and is very
much appreciated by both the formalist and logicist schools, while the
constructivists have a more reserved attitude. A set is a collection of items,
which are the elements of the set. An element of the set is said to belong to
the set. For example, a dinner may be viewed as a set consisting of various
dishes (entree, main course, dessert, coffee). A family (the Wilsons) may be
viewed as a set consisting of a father (Mr. Wilson), a mother (Mrs. Wilson)
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and two kids (Tom and Mary). A soccer team (IFK Göteborg for example)
consists of the set of players of the team. Humanity may be said to be set
of all human beings.

Set theory makes it possible to speak about collections of objects as
if they were single objects. This is very attractive in both science and
politics, since it gives the possibility of forming new concepts and groups
in hierarchical structures. Out of old sets, one may form new sets whose
elements are the old sets. Mathematicians like to speak about the set of all
real numbers, denoted by R, the set of all positive real numbers, the set of all
prime numbers, et cetera, and a politician planning a campaign may think
of the set of democratic voters, the set of auto workers, the set of female
first time voters, or the set of all poor, jobless, male criminals. Further,
a workers union may be thought of as a set of workers in a particular
factory or field, and workers unions may come together into unions or sets
of workers unions.

A set may be described by listing all the elements of the set. This may
be very demanding if the set contains many elements (for example if the
set is humanity). An alternative is to describe the set through a property
shared by all the elements of the set, e.g. the set of all people who have the
properties of being poor, jobless, male, and criminal at the same time. To
describe humanity as the set of beings which share the property of being
human, however seems to more of a play with words than something very
useful.

The leader of the logicist school was the philosopher and peace activist
Bertrand Russell (1872–1970). Russell discovered that building sets freely
can lead into contradictions that threaten the credibility of the whole

Fig. 17.3. Bertrand Russell: “I am protesting”
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logicist system. Russell created variants of the old liars paradox and barbers
paradox, which we now recall. Gödel’s theorem may be viewed to a variant
of this paradox.

The Liars Paradox

The liars paradox goes as follows: A person says “I am lying”. How should
you interpret this sentence? If you assume that what the person says is
indeed true, then it means that he is lying and then what he says is not
true. On the other hand, if you assume that what he says is not true, this
means that he is not lying and thus telling the truth, which means that
what he says is true. In either case, you seem to be led to a contradiction,
right? Compare Fig. 17.4.

Fig. 17.4. “I am (not) lying”

The Barbers Paradox

The barbers paradox goes as follows: The barber in the village has decided
to cut the hair of everyone in the village who does not cut his own hair.
What shall the barber do himself? If he decides to cut his own hair, he will
belong to the group of people who cut their own hair and then according to
his decision, he should not cut his own hair, which leads to a contradiction.
On the other hand, if he decides not to cut his own hair, then he would
belong to the group of people not cutting their own hair and then accord-
ing to his decision, he should cut his hair, which is again a contradiction.
Compare Fig. 17.5.
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Fig. 17.5. Attitudes to the “barbers paradox”: one relaxed and one very con-
cerned

17.4 The Constructivists

The intuitionist/constructivist view is to consider the basic concepts to
have a meaning which may be directly “intuitively” understood by our
brains and bodies through experience, without any further explanation.
Furthermore, the intuitionists would like to use as concrete or “construc-
tive” arguments as possible, in order for their mathematics always to have
an intuitive “real” meaning and not just be a formality like a game.

An intuitionist may say that the natural numbers 1, 2, 3, . . ., are obtained
by repeatedly adding 1 starting at 1. We took this standpoint when intro-
ducing the natural numbers. We know that from the constructivist point
of view, the natural numbers are something in the state of being created in
a process without end. Given a natural number n, there is always a next
natural number n+ 1 and the process never stops. A constructivist would
not speak of the set of all natural numbers as something having been com-
pleted and constituting an entity in itself, like the set of all natural numbers
as a formalist or logicist would be willing to do. Gauss pointed out that
“the set of natural numbers” rather would reflect a “mode of speaking”
than existence as a set.

An intuitionist would not feel a need of “justification” or a proof of con-
sistency through some extra arguments, but would say that the justification
is built into the very process of developing mathematics using constructive
processes. A constructivist would so to speak build a machine that could
fly (an airplane) and that very constructive process would itself be a proof
of the claim that building an airplane would be possible. A constructivist is
thus in spirit close to a practicing engineer. A formalist would not actually
build an airplane, rather make some model of an airplane, and would then
need some type of argument to convince investors and passengers that his
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airplane would actually be able to fly, at least in principle. The leader of the
intuitionist school was Brouwer (1881–1967), see Fig. 17.6. Hard-core con-
structivism makes life very difficult (like strong vegetarianism), and because
the Brouwer school of constructivists were rather fundamentalist in their
spirit, they were quickly marginalized and lost influence in the 1930s. The
quote by Courant given above shows the strong feelings involved related to
the fact that very fundamental dogmas were at stake, and the general lack
of rational arguments to meet the criticism from the intuitionists, which
was often replaced by ridicule and oppression.

Fig. 17.6. Luitzen Egbertus Jan Brouwer 1881–1966: “One cannot inquire into
the foundations and nature of mathematics without delving into the question of
the operations by which mathematical activity of the mind is conducted. If one
failed to take that into account, then one would be left studying only the language
in which mathematics is represented rather than the essence of mathematics”

Van der Waerden, mathematician who studied at Amsterdam from 1919
to 1923 wrote: “Brouwer came [to the university] to give his courses but
lived in Laren. He came only once a week. In general that would have
not been permitted – he should have lived in Amsterdam – but for him
an exception was made.. . . I once interrupted him during a lecture to ask
a question. Before the next week’s lesson, his assistant came to me to say
that Brouwer did not want questions put to him in class. He just did not
want them, he was always looking at the blackboard, never towards the
students. . . . Even though his most important research contributions were
in topology, Brouwer never gave courses on topology, but always on – and
only on – the foundations of intuitionism. It seemed that he was no longer
convinced of his results in topology because they were not correct from
the point of view of intuitionism, and he judged everything he had done
before, his greatest output, false according to his philosophy. He was a very
strange person, crazy in love with his philosophy”.
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17.5 The Peano Axiom System for Natural
Numbers

The Italian mathematician Peano (1858–1932) set up an axiom system
for the natural numbers using as undefined concepts “natural number”,
“successor”, “belong to”, “set” and “equal to”. His five axioms are

1. 1 is a natural number

2. 1 is not the successor of any other natural number

3. Each natural number n has a successor

4. If the successors of n and m are equal then so are n and m

There is a fifth axiom which is the axiom of mathematical induction stating
that if a property holds for any natural number n, whenever it holds for
the natural number preceding n and it holds for n = 1, then it holds for
all natural numbers. Starting with these five axioms, one can derive all the
basic properties of real numbers indicated above.

We see that the Peano axiom system tries to catch the essence of our
intuitive feeling of natural numbers as resulting from successively adding
1 without ever stopping. The question is if we get a more clear idea of the
natural numbers from the Peano axiom system than from our intuitive feel-
ing. Maybe the Peano axiom system helps to identify the basic properties
of natural numbers, but it is not so clear what the improved insight really
consists of.

The logicist Russell proposed in Principia Mathematica to define the
natural numbers using set theory and logic. For instance, the number 1
would be defined roughly speaking as the set of all singletons, the number
two the set of all dyads or pairs, the number three as the set of all triples,
et cetera. Again the question is if this adds insight to our conception of
natural numbers?

17.6 Real Numbers

Many textbooks in calculus start with the assumption that the reader is
already familiar with real numbers and quickly introduce the notation R

to denote the set of all real numbers. The reader is usually reminded that
the real numbers may be represented as points on the real line depicted
as a horizontal (thin straight black) line with marks indicating 1, 2, and
maybe numbers like 1.1, 1.2,

√
2, π et cetera. This idea of basing arith-

metic, that is numbers, on geometry goes back to Euclid, who took this
route to get around the difficulties of irrational numbers discovered by the
Pythagoreans. However, relying solely on arguments from geometry is very
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impractical and Descartes turned the picture around in the 17th century by
basing geometry on arithmetic, which opened the way to the revolution of
Calculus. The difficulties related to the evasive nature of irrational numbers
encountered by the Pythagoreans, then of course reappeared, and the re-
lated questions concerning the very foundations of mathematics gradually
developed into a quarrel with fierce participation of many of the greatest
mathematicians which culminated in the 1930s, and which has shaped the
mathematical world of today.

We have come to the standpoint above that a real number may be de-
fined through its decimal expansion. A rational real number has a decimal
expansion that eventually becomes periodic. An irrational real number has
an expansion which is infinite and is not periodic. We have defined R as
the set of all possible infinite decimal expansions, with the agreement that
this definition is a bit vague because the meaning of “possible” is vague.
We may say that we use a constructivist/intuitionist definition of R.

The formalist/logicist would rather like to define R as the set of all infinite
decimal expansions, or set of all Cauchy sequences of rational numbers, in
what we called a universal Big Brother style above.

The set of real numbers is often referred to as the “continuum” of real
numbers. The idea of a “continuum” is basic in classical mechanics where
both space and time is supposed to be “continuous” rather than “discrete”.
On the other hand, in quantum mechanics, which is the modern version
of mechanics on the scales of atoms and molecules, matter starts to show
features of being discrete rather than continuous. This reflects the famous
particle-wave duality in quantum mechanics with the particle being dis-
crete and the wave being continuous. Depending on what glasses we use,
phenomena may appear to be more or less discrete or continuous and no
single mode of description seems to suffice. The discussions on the nature of
real numbers may be rooted in this dilemma, which may never be resolved.

17.7 Cantor Versus Kronecker

Let us give a glimpse of the discussion on the nature of real numbers
through two of the key personalities, namely Cantor (1845–1918) in the for-
malist corner and Kronecker (1823–91), in the constructivist corner. These
two mathematicians were during the late half of the 19th century involved
in a bitter academic fight through their professional lives (which eventually
led Cantor into a tragic mental disorder). Cantor created set theory and in
particular a theory about sets with infinitely many elements, such as the set
of natural numbers or the set of real numbers. Cantors theory was criticized
by Kronecker, and many others, who simply could not believe in Cantors
mental constructions or consider them to be really interesting. Kronecker
took a down-to-earth approach and said that only sets with finitely many
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elements can be properly understood by human brains (“God created the
integers, all else is the work of man”). Alternatively, Kronecker said that
only mathematical objects that can be “constructed” in a finite number of
steps actually “exist”, while Cantor allowed infinitely many steps in a “con-
struction”. Cantor would say that the set of all natural numbers that is the
set with the elements 1, 2, 3, 4, . . ., would “exist” as an object in itself as the
set of all natural numbers which could be grasped by human brains, while
Kronecker would deny such a possibility and reserve it to a higher being. Of
course, Kronecker did not claim that there are only finitely many natural
numbers or that there is a largest natural number, but he would (following
Aristotle) say that the existence of arbitrarily large natural numbers is like
a “potential” rather than an actual reality.

Fig. 17.7. Cantor (left): “I realize that in this undertaking I place myself in
a certain opposition to views widely held concerning the mathematical infinite
and to opinions frequently defended on the nature of numbers”. Kronecker (right):
“God created the integers, all else is the work of man”

In the first round, Kronecker won since Cantor’s theories about the infi-
nite was rejected by many mathematicians in the late 19th and beginning
20th century. But in the next round, the influential mathematician Hilbert,
the leader of the formalist school, joined on the side of Cantor. Bertrand
Russell and Norbert Whitehead tried to give mathematics a foundation
based on logic and set theory in their monumental Principia Mathematica
(1910–13) and may also be viewed as supporters of Cantor. Thus, despite
the strong blow from Gödel in the 1930’s, the formalist/logicist schools
took over the scene and have been dominating mathematics education into
our time. Today, the development of the computer as is again starting to
shift the weight to the side of the constructivists, simply because no com-
puter is able to perform infinitely many operations nor store infinitely many
numbers, and so the old battle may come alive again.

Cantor’s theories about infinite numbers have mostly been forgotten, but
there is one reminiscence in most presentations of the basics of Calculus,
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namely Cantors’s argument that the degree of infinity of the real numbers
is strictly larger than that of the rational or natural numbers. Cantor ar-
gued as follows: suppose we try to enumerate the real numbers in a list
with a first real number r1, a second real number r2 and so on. Cantor
claimed that in any such list there must be some real numbers missing, for
example any real number that differs from r1 in the first decimal, from r2
in the second decimal and so on. Right? Kronecker would argue against
this construction simply by asking full information about for example r1,
that is, full information about all the digits of r1. OK, if r1 was rational
then this could be given, but if r1 was irrational, then the mere listing of all
the decimals of r1 would never come to an end, and so the idea of a list of
real numbers would not be very convincing. So what do you think? Cantor
or Kronecker?

Cantor not only speculated about different degrees of infinities, but also
cleared out more concrete questions about e.g. convergence of trigonometric
series viewing real numbers as limits of of Cauchy sequences of rational
numbers in pretty much the same we have presented.

17.8 Deciding Whether a Number is Rational
or Irrational

We dwell a bit more on the nature of real numbers. Suppose x is a real num-
ber, the decimals of which can be determined one by one by using a certain
algorithm. How can we tell if x is rational or irrational? Theoretically, if the
decimal expansion is periodic then x is rational otherwise it is irrational.
There is a practical problem with this answer however because we can only
compute a finite number of digits, say never more than 10100. How can we
be sure that the decimal expansion does not start repeating after that? To
be honest, this question seems very difficult to answer. Indeed it appears
to be impossible to tell what happens in the complete decimal expansion
by looking at a finite number of decimals. The only way to decide if a num-
ber x is rational or irrational is figure out a clever argument like the one
the Pythagoreans used to show that

√
2 is irrational. Figuring out such

arguments for different specific numbers like π and e is an activity that has
interested a lot of mathematicians over the years.

On the other hand, the computer can only compute rational numbers and
moreover only rational numbers with finite decimal expansions. If irrational
numbers do not exist in practical computations, it is reasonable to wonder if
they truly exist. Constructive mathematicians like Kronecker and Brouwer
would not claim that irrational numbers really exist.



17.9 The Set of All Possible Books 233

17.9 The Set of All Possible Books

We suggest it is reasonable to define the set of all real numbers R as the
set of all possible decimal expansions or equivalently the set of all pos-
sible Cauchy sequences of rational numbers. Periodic decimal expansions
correspond to rational numbers and non-periodic expansions to irrational
numbers. The set R thus consists of the set of all rational numbers together
with the set of all irrational numbers. We know that it is common to omit
the word “possible” in the suggested definition of R and define R as “the
set of all real numbers”, or “the set of all infinite decimal expansions”.

Let’s see if this hides some tricky point by way of an analogy. Suppose
we define a “book” to be any finite sequence of letters. There are specific
books such as “The Old Man and the Sea” by Hemingway, “The Author
as a Young Dog” by Thomas, “Alice in Wonderland” by Lewis Carrol, and
“1984” by Orwell, that we could talk about. We could then introduce B as
“the set of all possible books”, which would consist of all the books that
have been and will be written purposely, together with many more “books”
that consist of random sequences of letters. These would include those fa-
mous books that are written or could be written by chimpanzees playing
with typewriters. We could probably handle this kind of terminology with-
out too much difficulty, and we would agree that 1984 is an element of B.
More generally, we would be able to say that any given book is a member
of B. Although this statement is difficult to deny, it is also hard to say that
this ability is very useful.

Suppose now we omit the word possible and start to speak of B as “the
set of all books”. This could give the impression that in some sense B is an
existing reality, rather than some kind of potential as when we speak about
“possible books”. The set B could then be viewed as a library containing
all books. This library would have to be enormously large and most of the
“books” would be of no interest to anyone. Believing that the set of all
books “exists” as a reality would not be very natural for most people.

The set of real numbers R has the same flavor as the set of all books B.
It must be a very large set of numbers of which only a relative few, such
as the rational numbers and a few specific irrational numbers, are ever
encountered in practice. Yet, it is traditional to define R as the set of real
numbers, rather than as “set of all possible real numbers”. The reader may
choose the interpretation of R according to his own taste. A true idealist
would claim that the set of all real numbers “exists”, while a down-to-earth
person would more likely speak about the set of possible real numbers.
Eventually, this may come down a personal religious feeling; some people
appear to believe that Heaven actually exists, and while others might view
as a potential or as a poetic way of describing something which is difficult
to grasp.

Whatever interpretation you choose, you will certainly agree that some
real numbers are more clearly specified than others, and that to specify
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a real number, you need to give some algorithm allowing you to determine
as many digits of the real number as would be possible (or reasonable) to
ask for.

17.10 Recipes and Good Food

Using the Bisection algorithm, we can compute any number of decimals of√
2 if we have enough computational power. Using an algorithm to specify

a number is analogous to using a recipe to specify for example Grandpa’s
Chocolate Cake. By following the recipe, we can bake a cake that is a more
or less accurate approximation of the ideal cake (which only Grandpa can
make) depending on our skill, energy, equipment and ingredients. There is
a clear difference between the recipe and cakes made from the recipe, since
after all we can eat a cake with pleasure but not a recipe. The recipe is like
an algorithm or scheme telling us how to proceed, how many eggs to use
for example, while cakes are the result of actually applying the algorithm
with real eggs.

Of course, there are people who seem to enjoy reading recipes, or even
just looking at pictures of food in magazines and talking about it. But if
they never actually do cook anything, their friends are likely to lose interest
in this activity. Similarly, you may enjoy looking at the symbols π,

√
2 et

cetera, and talking about them, or writing them on pieces of paper, but if
you you never actually compute them, you may come to wonder what you
are actually doing.

In this book, we will see that there are many mathematical quantities
that can only be determined approximately using a computational algo-
rithm. Examples of such quantities are

√
2, π, and the base e of the natural

logarithm. Later we will find that there are also functions, even elementary
functions like sin(x) and exp(x) that need to be computed for different
values of x. Just as we first need to bake a cake in order to enjoy it, we
may need to compute such ideal mathematical quantities using certain al-
gorithms before using them for other purposes.

17.11 The “New Math” in Elementary Education

After the defeat of formalists in the 1930s by the arguments of Gödel, para-
doxically the formalist school took over and set theory got a new chance.
A wave generated by this development struck the elementary mathematics
education in the 1960s in the form of the “new math”. The idea was to
explain numbers using set theory, just as Russell and Whitehead had tried
to do 60 years earlier in their Principia. Thus a kid would learn that a set
consisting of one cow, two cups, a piece of chocolate and an orange, would
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have five elements. The idea was to explain the nature of the number 5
this way rather than counting to five on the fingers or pick out 5 oranges
from a heap of oranges. This type of “new math” confused the kids, and
the parents and teachers even more, and was abandoned after some years
of turbulence.

17.12 The Search for Rigor in Mathematics

The formalists tried to give mathematics a rigorous basis. The search for
rigor was started by Cauchy and Weierstrass who tried to give precise def-
initions of the concepts of limit, derivative and integral, and was continued
by Cantor and Dedekind who tried to clarify the precise meaning of con-
cepts such as continuum, real number, the set of real numbers et cetera.
Eventually this effort of giving mathematics a fully rational basis collapsed,
as we have indicated above.

We may identify two types of rigor:

� constructive rigor

� formal rigor.

Constructive rigor is necessary to accomplish difficult tasks like carrying
out a heart operation, sending a man to the moon, building a tall sus-
pension bridge, climbing Mount Everest, or writing a long computer pro-
gram that works properly. In each case, every little detail may count and
if the whole enterprize is not characterized by extreme rigor, it will most
likely fail. Eventually this is a rigor that concerns material things, or real
events.

Formal rigor is of a different nature and does not have a direct con-
crete objective like the ones suggested above. Formal rigor may be ex-
ercised at a royal court or in diplomacy, for example. It is a rigor that
concerns language (words), or manners. The Scholastic philosophers dur-
ing the Medieval time, were formalists who loved formal rigor and could
discuss through very complicated arguments for example the question how
many Angels could fit onto the edge of a knife. Some people use a very ed-
ucated formally correct language which may be viewed as expressing a for-
mal rigor. Authors pay a lot of attention to the formalities of language, and
may spend hour after hour polishing on just one sentence until it gets just
the right form. More generally, formal aspects may be very important in
Arts and Aesthetics. Formal rigor may be thus very important, but serves
a different purpose than constructive rigor. Constructive rigor is there to
guarantee that something will actually function as desired. Formal rigor
may serve the purpose of controlling people or impressing people, or just
make people feel good, or to carry out a diplomatic negotiation. Formal
rigor may be exercised in a game or play with certain very specific rules,
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that may be very strict, but do not serve a direct practical purpose outside
the game.

Also in mathematics, one may distinguish between concrete and formal
error. A computation, like multiplication of two natural numbers, is a con-
crete task and rigor simply means that the computation is carried out in
a correct way. This may be very important in economics or engineering. It
is not difficult to explain the usefulness of this type of constructive rigor,
and the student has no difficulty in formulating himself what the criteria
of constructive rigor might be in different contexts.

Formal rigor in calculus was promoted by Weierstrass with the objective
of making basic concepts and arguments like the continuum of real num-
bers or limit processes more “formally correct”. The idea of formal rigor is
still alive very much in mathematics education dominated by the formalist
school. Usually, students cannot understand the meaning of this type of
“formally rigorous reasoning”, and very seldom can exercise this type of
rigor without much direction from the teacher.

We shall follow an approach where we try to reach constructive rigor to
a degree which can be clearly motivated, and we shall seek to make the
concept of formal rigor somewhat understandable and explain some of its
virtues.

17.13 A Non-Constructive Proof

We now give an example of a proof with non-constructive aspects that
plays an important role in many Calculus books. Although because of the
non-constructive aspects, the proof is considered to be so difficult that it
can only by appreciated by selected math majors.

The setting is the following: We consider a bounded increasing sequence
{an}∞1 of real numbers, that is an ≤ an+1 for n = 1, 2, . . ., and there is sTS

d

constantC such that an ≤ C for n = 1, 2, . . .. The claim is that the sequence
{an}∞1 converges to a limit A. The proof goes as follows: all the numbers
an clearly belong to the interval I = [a1, C]. For simplicity suppose a1 = 0
and C = 1. Divide now the interval [0, 1] into the two intervals [0, 1/2] and
[1/2, 1]. and make the following choice: if there is a real number an such
that an ∈ [1/2, 1], then choose the right interval [1/2, 1] and if not choose
the left interval [0, 1/2]. Then repeat the subdivision into a left and a right
interval, choose one of the intervals following the same principle: if there is
a real number an in the right interval, then choose this interval, and if not
choose the left interval. We then get a nested sequence of intervals with
length tending to zero defining a unique real number that is easily seen to
be the limit of the sequence {an}∞1 . Are you convinced? If not, you must
be a constructivist.

TS
d Please check “s”.

Editor’s or typesetter’s annotations (will be removed before the final TEX run)
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So where is the hook of non-constructiveness in this proof? Of course,
it concerns the choice of interval: in order to choose the correct interval
you must be able to check if there is some an that belongs to the right
interval, that is you must check if an belongs to the right interval for all
sufficiently large n. The question from a constructivist point of view is
if we can perform each check in a finite number of steps. Well, this may
depend on the particular sequence an ≤ an+1 under consideration. Let’s
first consider a sequence which is so simple that we may say that we know
everything of interest: for example the sequence {an}∞1 with an = 1 −
2−n, that is the sequence 1/2, 3/4, 7/8, 15/16, 31/32, . . ., which is a bounded
increasing sequence clearly converging to 1. For this sequence, we would be
able to always choose the correct interval (the right one) because of its
simplicity.

We now consider the sequence {an}∞1 with an =
∑n

1
1
k2 , which is clearly

an increasing sequence, and one can also quite easily show that the se-
quence is bounded. In this case the choice of interval is much more tricky,
and it is not clear how to make the choice constructively without actually
constructing the limit. So there we stand, and we may question the value
of the non-constructive proof of existence of a limit, if we anyway have to
construct the limit.

At any rate we sum up in the following result that we will use a a couple
of times below.

Theorem 17.1 (non-constructive!) A bounded increasing sequence con-
verges.

17.14 Summary

The viewpoint of Plato was to say that ideal points and lines exist in some
Heaven above, while the points and lines which we as human beings can
deal with, are some more or less incomplete copies or shades or images
of the ideals. This is Plato’s idealistic approach, which is related to the
formalistic school. An intuitionist would say that we can never be sure of
the existence of the ideals, and that we should concentrate on the more
or less incomplete copies we can construct ourselves as human beings. The
question of the actual existence of the ideals thus becomes a question of
metaphysics or religion, to which there probably is no definite answer. Fol-
lowing our own feelings, we may choose to be either a idealist/formalist or
an intuitionist/contructivist, or something in between.

The authors of this book have chosen such a middle way between the
constructivist and formalist schools, trying always to be as constructive as is
possible from a practical point of view, but often using a formalist language
for reasons of convenience. The constructive approach puts emphasis on the
concrete aspects of mathematics and brings it close to engineering and
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“body”. This reduces the mystical character of mathematics and helps
understanding. On the other hand, mathematics is not equal to engineering
or only “body”, and also the less concrete aspects or “soul” are useful for
our thinking and in modeling the world around us. We thus seek a good
synthesis of constructive and formalistic mathematics, or a synthesis of
Body & Soul.

Going back to the start of our little discussion, we thus associate the logi-
cist and formalistic schools with the idealistic/aristochratic tradition and
the constructivists with the constructive/democratic tradition. As students,
we would probably appreciate a constructive/democratic approach, since it
aids the understanding and gives the student an active role. On the other
hand, certain things indeed are very difficult to understand or construct,
and then the idealistic/arisochratic approach opens a possible attitude to
handle this dilemma.

The constructivist approach, whenever feasible, is appealing from educa-
tional point of view, since it gives the student an active role. The student
is invited to construct himself, and not just watch an omnipotent teacher
pick ready-made examples from Heaven.

Of course, the development of the modern computer has meant a tremen-
dous boost of constructive mathematics, because what the computer does
is constructive. Mathematics education is still dominated by the formalist
school, and the most of the problems today afflicting mathematics educa-
tion can be related to the over-emphasis of the idealistic school in times
when constructive mathematics is dominating in applications.

Turing’s principle of a “universal computing machine” directly connects
the work on the foundations of mathematics in the 1930s (with Computable
numbers as a key article), with the development of the modern computer in
the 1940s (with ACE as a key example), and thus very concretely illustrates
the power of (constructive!) mathematics.



Chapter 17 Problems 239

Chapter 17 Problems

17.1. Can you figure out how the barber’s paradox is constructed? Suppose the
barber comes from another village. Does this resolve the paradox?

17.2. Another paradox of a similar kind goes as follows: Consider all the natural
numbers which you can describe using at most 100 words or letters. For instance,
you can describe the number 10 000 by the words “ten thousand” or “a one
followed by four zeros”. Describe now a number by specifying it as the smallest
natural number which can not be described in at most one hundred words. But
the sentence “the smallest natural number which can not be described in at most
one hundred words” is a description of a certain number with fewer than 100
words (15 to be exact), which contradicts the very definition of the number as
the number which could not be described with less than 100 words. Can you
figure out how the paradox arises?

17.3. Describe as closely as you can what you mean by a point or line. Ask
a friend to do the same, and try to figure out if your concepts are the same.

17.4. Study how the concept of real numbers is introduced by browsing through
the first pages of some calculus books in your nearest library or on your book
shelf.

17.5. Define the number ω ∈ (0, 1) as follows: let the first digit of ω be equal to
one if there are exactly 10 digits in a row equal to one in the decimal expansion
of

√
2 and zero else, let the second be equal to one if there are exactly 20 digits in

a row equal to one in the decimal expansion of
√

2 and zero else, and so on. Is ω
a well defined real number? How many digits of ω could you think to be possible
to compute?

17.6. Make a poll about what people think a real number is, from friends,
relatives, politicians, rock musicians, to physics and mathematics professors.

Some distinguished mathematicians have recently advocated the more
or less complete banishment from mathematics of all non-constructive
proofs. Even if such a program were desirable, it would involve tremen-
dous complications and even the partial destruction of the body of
living mathematics. For this reason it is no wonder that the school of
“intuitionism”, which has adopted this program, has met with strong
resistance, and that even the most thoroughgoing intuitionists can-
not always live up to their convictions. (Courant)

The composition of vast books is a laborious and impoverishing
extravagance. To go on for five hundred pages developing an idea
whose perfect oral exposition is possible in a few minutes! A better
course of procedure is to pretend that these books already exist, and
then to offer a resume, a commentary. . .More reasonable, more in-
ept, more indolent, I have preferred to write notes upon imaginary
books. (Borges, 1941)
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I have always imagined that Paradise will be kind of a library.
(Borges)

My prize book at Sherbourne School (von Neumann’s Mathematische
Grundlagen der Quantenmechanik) is turning out very interesting,
and not at all difficult reading, although the applied mathematicians
seem to find it rather strong. (Turing, age 21)

Fig. 17.8. View of the river Cam at Cambridge 2003 with ACE in the fore-ground
(and “UNTHINKABLE” in the background to the right)



18
The Function y = xr

With equal passion I have sought knowledge. I have wished to un-
derstand the secrets of men. I have wished to know why the stars
shine. And I have tried to apprehend the Pythagorean power by
which numbers hold sway about the flux. A little of this, but not
much, I have achieved. (Bertrand Russell 1872–1970).

18.1 The Function
√

x

We showed above that we can solve the equation x2 = a for any positive
rational number a using the Bisection algorithm. The unique positive so-
lution is a real number denoted by

√
a. We can view

√
a as a function of

a defined for a ∈ Q+. Of course, we can extend the function
√
a to [0,∞)

since 02 = 0 or
√

0 = 0.
Changing names from a to x, we now consider the function f(x) =

√
x

with D(f) = Q+ and f : Q+ → R+. As explained in the Chapter Real
numbers, we can extend this into a function f : R+ → R+ with f(x) =

√
x,

using the Lipschitz continuity of
√
x on intervals (δ,∞) with δ > 0 as

discussed below. Since by definition
√
x is the solution to the equation

y2 = x with y as unknown, we have for x ∈ R
+,

(
√
x)2 = x. (18.1)

We plot the function
√
x in Fig. 18.1.

The function y =
√
x is increasing: if x > x̄, then

√
x >

√
x̄. Further,

if {xi} is a sequence of positive real numbers with limi→∞ xi = 0, then
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Fig. 18.1. The function
√
x of x

obviously limi→∞
√
xi = 0, that is

lim
x→0+

√
x = 0. (18.2)

18.2 Computing with the Function
√

x

If x2 = a and y2 = b, then (xy)2 = ab. This gives the following property of
the square root function, √

a
√
b =

√
ab. (18.3)

We find similarly that √
a√
b

=
√
a

b
. (18.4)

18.3 Is
√

x Lipschitz Continuous on R
+?

To check if the function f(x) =
√
x is Lipschitz continuous on R+, we note

that since (
√
x−

√
x̄)(

√
x+

√
x̄) = x− x̄, we have

f(x) − f(x̄) =
√
x−

√
x̄ =

1
√
x+

√
x̄

(x − x̄).

Since
1√

x+
√
x̄
,
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can be arbitrarily large by making x and x̄ small positive, the function
f(x) =

√
x does not have a bounded Lipschitz constant on R+ and f(x) =√

x is not Lipschitz continuous on R+. This reflects the observation that
the “slope” of

√
x seems to increase without bound as x approaches zero.

However, f(x) =
√
x is Lipschitz continuous on any interval (δ,∞) where

δ is a fixed positive number, since we may then choose the Lipschitz con-
stant Lf equal to 1

2δ .

18.4 The Function xr for Rational r = p
q

Consider the equation yq = xp in the unknown y, where p and q are given
integers and x is a given positive real number. Using the Bisection algo-
rithm, we can prove that this equation has a unique solution y for any given
positive x. We call the solution y = x

p
q = xr, where r = p

q . In this way, we
define a function f(x) = xr on R

+ known as “x to the power r”. Unique-
ness follows from realizing that y = xr is increasing with x. Apparently,√
x = x

1
2 .

18.5 Computing with the Function xr

Using the defining equation yq = xp as above, we find that for x ∈ R+ and
r, s ∈ Q,

xrxs = xr+s,
xr

xs
= xr−s. (18.5)

18.6 Generalizing the Concept
of Lipschitz Continuity

There is a natural generalization of the concept of Lipschitz continuity that
goes as follows. Let 0 < θ ≤ 1 be a given number and L a positive constant,
and suppose the function f : R → R satisfies

|f(x) − f(y)| ≤ L|x− y|θ for all x, y ∈ R.

We say that f : R → R is Lipschitz continuous with exponent θ and
Lipschitz constant L (or Hölder continuous with exponent θ and constant L
with a common terminology).

This generalizes the previous notion of Lipschitz continuity that corre-
sponds to θ = 1. Since θ can be smaller than one, we thus consider a larger
class of functions. For example, we show that the function f(x) =

√
x is
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Lipschitz continuous on (0,∞) with exponent θ = 1/2 and Lipschitz con-
stant L = 1, that is

|
√
x−

√
x̄| ≤ |x− x̄|1/2. (18.6)

To prove this estimate, we assume that x > x̄ and compute backwards,
starting with x̄ ≤

√
x
√
x̄ to get x+ x̄− 2

√
x
√
x̄ ≤ x− x̄ = |x − x̄| , which

can be written
(
√
x−

√
x̄)2 ≤ (|x− x̄|1/2)2

from which the desired estimate follows by taking the square root. The case
x̄ > x is the same.

Functions that are Lipschitz continuous with Lipschitz exponent θ < 1
may be quite “wild”. In the “worst case”, they may behave “everywhere” as
“badly” as

√
x does at x = 0. An example is given by Weierstrass function

presented in the Chapter Fourier series. Take a look!

18.7 Turbulent Flow is Hölder (Lipschitz)
Continuous with Exponent 1

3

In Chapter Navier-Stokes, Quick and Easy we give an argument indicating
that turbulent flow is Hölder (Lipschitz) continuous with exponent 1

3 so
that a turbulent velocity u(x) would satisfy

|u(x) − u(y)| ∼ L|x− y| 13 .

Such a turbulent velocity is a quite “wild” function which varies very
quickly. Thus, Nature is not unfamiliar with Hölder (Lipschitz) continu-
ity with exponent θ < 1.

Chapter 18 Problems

18.1. Let x, y ∈ R and r, s ∈ Q. Verify the following computing rules: (a)
xr+s = xrxs (b) xr−s = xr/xs (c) xrs = (xr)s (d) (xy)r = xrys

18.2. Is f(x) = 3
√
x, Lipschitz continuous on (0,∞) in the generalized sense? If

yes give then the Lipschitz constant and exponent.

18.3. A Lipschitz continuous function with a Lipschitz constant L with 0 ≤
L < 1 is also called a contraction mapping. Which of the following functions
are contraction mappings on R? (a) f(x) = sin x (b) f(x) = 1

1+x2 (c)

f(x) = (1 + x2)−1/2 (d) f(x) = x3

18.4. Let f(x) = 1, for x ≤ 0, and f(x) =
√

1 + x2, for x > 0. Is f a contraction
mapping?



19
Fixed Points and Contraction
Mappings

Give me one fixed point on which to stand, and I will move the Earth.
(Archimedes)

19.1 Introduction

A special case of the basic problem of solving an algebraic equation f(x) = 0
takes the form: find x̄ such that

x̄ = g(x̄), (19.1)

where g : R → R is a given Lipschitz continuous function. The equation
(19.1) says that x̄ is a fixed point of the function y = g(x), that is the
output value g(x̄) is the same as the input value x̄. Graphically, we seek
the intersection of the graphs of the line y = x and the curve y = g(x), see
Fig. 19.1.

To solve the equation x = g(x), we could rewrite it as f(x) = 0 with
(for example) f(x) = x − g(x) and then apply the Bisection (or Deca-
section) algorithm to f(x) = 0. Note that the two equations f(x) = 0 with
f(x) = x − g(x) and x = g(x) have exactly the same solutions, that is the
two equations are equivalent.

In this chapter we consider a different algorithm for solving the equation
(19.1) that is of central importance in mathematics. This is the Fixed Point
Iteration algorithm, which takes the following form: Starting with some x0,
for i = 1, 2, . . . , compute

xi = g(xi−1) for i = 1, 2, 3, . . . . (19.2)
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y = x

y = g(x)

x

x = g(x)

Fig. 19.1. Illustration of a fixed point problem g(x̄) = x̄

In words, we start with an initial approximation x0 then compute x1 =
g(x0), x2 = g(x1), x3 = g(x2), and so on. Stepwise, given a current value
xi−1, we compute the corresponding output g(xi−1), and then choose as
new input xi = g(xi−1). Repeating this procedure, we will generate a se-
quence {xi}∞i=1.

We shall below study the following basic questions related to the sequence
{xi}∞i=1 generated by Fixed Point Iteration:

� Does {xi}∞i=1 converge, that is does x̄ = limi→∞ xi exist?

� Is x̄ = limi→∞ xi a fixed point of y = g(x), that is x̄ = g(x̄)?

We shall also investigate whether or not a fixed point x̄ is uniquely deter-
mined.

19.2 Contraction Mappings

We shall prove in this chapter that both the above questions have affirma-
tive answers if g(x) is Lipschitz continuous with Lipschitz constant L < 1,
i.e.

|g(x) − g(y)| ≤ L|x− y| for all x, y ∈ R, (19.3)

with L < 1. We shall also see that the smaller L is, the quicker the con-
vergence of the sequence {xi} to a fixed point, and the happier we will
be.

A function g : R → R satisfying (19.3) with L < 1 is said to be a con-
traction mapping. We may summarize the basic result of this chapter as
follows: A contraction mapping has a unique fixed point that is the limit of
a sequence generated by Fixed Point Iteration. This is a most fundamental
result of mathematics with a large number of applications. Sometimes it



19.3 Rewriting f(x) = 0 as x = g(x) 247

is referred to as Banach’s contraction mapping theorem. Banach was a fa-
mous Polish mathematician, who created much of the field of Functional
Analysis, which is a generalization of Calculus and Linear Algebra.

19.3 Rewriting f(x) = 0 as x = g(x)

Fixed Point Iteration is an algorithm for computing roots of equations of
the form x = g(x). If we are given an equation of the form f(x) = 0, we
may want to rewrite this equation in the form of a fixed point equation
x = g(x). This can be done in many ways, for example by setting

g(x) = x+ αf(x),

where α is a nonzero real number to be chosen. Clearly, we have x̄ = g(x̄)
if and only if f(x̄) = 0. To obtain quick convergence, one would try to
choose α so that the Lipschitz constant of the corresponding function g(x)
is small. We shall see that trying to find such values of α leads to the
wonderful world of Newton methods for solving equations, which is a very
important part of mathematics.

A preliminary computation to find a good value of α to make g(x) =
x + αf(x) have a small Lipschitz constant could go as follows. Assuming
x > y,

g(x) − g(y) = x+ αf(x) − (y + αf(y)) = x− y + α(f(x) − f(y))

=
(

1 + α
f(x) − f(y)

x− y

)

|x− y|,

which suggests choosing α to satisfy

− 1
α

=
f(x) − f(y)

x− y
.

We arrive at the same formula for x < y. We will return to this formula
below. We note in particular the appearance of the quotient

f(x) − f(y)
x− y

,

which represents the slope of the corda or secant connecting the points
(x, f(x)) and (y, f(y)) in R

2, see Fig. 19.2.
We now consider two models from everyday life leading to fixed point

problems and apply the Fixed Point Iteration to solve them. In each case,
the fixed point represents a balance or break-even of income and spend-
ing, with input equal to output. We then prove the contraction mapping
theorem.
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(x, f(x))

(y, f(y))

Fig. 19.2. Corda connecting the points (x, f(x)) and (y, f(y)) in R
2

19.4 Card Sales Model

A door-to-door salesman selling greeting cards has a franchise with a greet-
ing card company with the following price arrangement. For each shipment
of cards, she pays a flat delivery fee of $25 dollars and on top of this for
sales of x, where x is measured in units of a hundred dollars, she pays an
additional fee of 25% to the company. In mathematical terms, for sales of
x hundreds of dollars, she pays

g(x) =
1
4

+
1
4
x (19.4)

where g is also given in units of a hundred dollars. The problem is to find
the “break-even point”, i.e. the amount of sales x̄ where the money that
she takes in (= x̄) exactly balances the money she has to pay out (g(x̄)),
that is, her problem is to find the fixed point x̄ satisfying x̄ = g(x̄). Of
course, she hopes to see that she clears a profit with each additional sale
after this point.

We display the problem graphically in Fig. 19.3 in terms of two lines.
The first line y = x represents the amount of money collected for sales of
x. In this problem, we measure sales in units of dollars, rather than say
in numbers of cards sold, so we just get y = x for this curve. The second
line y = g(x) = 1

4x + 1
4 represents the amount of money that has to be

paid to the greeting card company. Because of the initial flat fee of $25,
the salesman starts with a loss. Then as sales increase, she reaches the
break-even point x̄ and finally begins to see a profit.

In this problem, it is easy to analytically compute the break-even point,
that is, the fixed point x̄ because we can solve the equation

x̄ = g(x̄) =
1
4
x̄+

1
4

to get x̄ = 1/3.

TS
e Figures 19.3 and 19.4 differ from printout, is this ok?

Editor’s or typesetter’s annotations (will be removed before the final TEX run)
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money collected

money paid 
to company

x

profitloss

sales

y = ¼ x + ¼

y = x

¼

Fig. 19.3. Illustration of the problem of determining the break-even point for sell-
ing greeting cards door-to-door. Sales above the break-even point x̄ give a profit
to the salesman, but sales below this point mean a lossTS

e

19.5 Private Economy Model

Your roommate has formulated the following model for her/his private
economy: denote the net income by x that is variable including contri-
butions from family, fellowship and a temporary job at McDonalds. The
spending consists a fixed amount of 1 unit (of say 500 dollars per month) for
rent and insurance, the variable amount of x/2 units for good food, good
books and intellectual movies, and a variable amount of 1/x units for junk
food, cigarettes and bad movies. This model is based on the observation
that the more money your roommate has, the more educated a life she/he
will live. The total spending is thus

g(x) =
x

2
+ 1 +

1
x

and the pertinent question is to find a balance of income and spending,
that is to find the income x̄ such that x̄ = g(x̄) where the spending is the
same as the income. If the income is bigger than x̄, then your roommate
will not use up all the money, which is against her/his nature, and if the
income is less than x̄, then your roommate’s father will get upset, because
he will have to pay the resulting debt.

Also in this case, we can directly find the fixed point x̄ by solving the
equation

x̄ =
x̄

2
+ 1 +

1
x̄

analytically and we then find that x̄ = 1 +
√

3 ≈ 2.73.
If we don’t have enough motivation to go through the details of this

calculation, we could instead try the Fixed Point Iteration. We would then
start with an income x0 = 1 say and compute the spending g(1) = 2.5,



250 19. Fixed Points and Contraction Mappings

then choose the new income x1 = 2.5, and compute the spending g(x1) =
g(2.5) = 2.65, and then set x2 = 2.65 and compute the spending g(x2) = . . .
and so on. Of course, we expect that limi xi = x̄ = 1 +

√
3. Below, we will

prove that this is indeed true!

19.6 Fixed Point Iteration in the Card Sales Model

We now apply Fixed Point Iteration to the Card Sales Model. In Fig. 19.4,
we plot the function g(x) = 1

4x + 1
4 along with y = x and the fixed point

x̄. We also plot the value of x1 = g(x0) for some initial approximation x0.

xx

g(x)

x

x

y=x

y=g(x)

Fig. 19.4. The first step of Fixed Point Iteration in Card Sales model: g(x) is
closer to x̄ than xTS

e

We choose x0 < x̄ because the sales start at zero and then increase. From
the plot, we can see that x1 = g(x0) is closer to x̄ than x0, i.e.

|g(x0) − x̄| < |x0 − x̄|.

In fact, we can compute the difference exactly since x̄ = 1/3,

|g(x0) − x̄| =
∣
∣
∣
∣
1
4
x0 +

1
4
− 1

3

∣
∣
∣
∣ =

∣
∣
∣
∣
1
4

(

x0 −
1
3

)∣
∣
∣
∣ =

1
4
|x0 − x̄|.

So the distance from x1 = g(x0) to x̄ is exactly 1/4 times the distance from
x0 to x̄. The same argument shows that the distance from x2 = g(x1) to x̄
will be 1/4 of the distance from x1 to x̄ and thus 1/16 of the distance from
x0 to x̄. In other words,

|x2 − x̄| =
1
4
|x1 − x̄| =

1
16

|x0 − x̄|

We illustrate this in Fig. 19.5. Generally, we have
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xx

g(x)

g(x)
g(g(x))

x
g(g(x))

y=x

y=g(x)

Fig. 19.5. Two steps of the contraction map algorithm applied to the fixed point
problem in Model 19.4. The distance of g(g(x)) to x̄ is 1/4 the distance from g(x)
to x̄ and 1/16 the distance from x to x̄

|xi − x̄| =
1
4
|xi−1 − x̄|,

and thus for i = 1, 2, . . . ,

|xi − x̄| = 4−i|x0 − x̄|.

Since 4−i gets as small as we please if i is sufficiently large, this estimate
shows that Fixed Point Iteration applied to the Card Sales model converges,
that is limi→∞ xi = x̄.

We consider some more examples before getting into the question of
convergence of Fixed Point Iteration in a more general case.

Example 19.1. For the sake of comparison, we show the results for the
fixed point problem in Model 19.4 computed by applying the fixed point
iteration to g(x) = 1

4x + 1
4 and the bisection algorithm to the equivalent

root problem for f(x) = − 3
4x + 1

4 . To make the comparison fair, we use
the initial value x0 = 1 for the fixed point iteration and x0 = 0 and
X0 = 1 for the bisection algorithm and compare the values of Xi from
the bisection algorithm to xi from the fixed point iteration in Fig. 19.6.
The error of the fixed point iteration decreases by a factor of 1/4 for each
iteration as opposed to the error of the bisection algorithm which decreases
by a factor of 1/2. This is clear in the table of results. Moreover, since both
methods require one function evaluation and one storage per iteration but
the bisection algorithm requires an additional sign check, the fixed point
iteration costs less per iteration. We conclude that the fixed point iteration
is truly “faster” than the bisection algorithm for this problem.
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Bisection Algorithm Fixed Point Iteration
i Xi xi

0 1.00000000000000 1.00000000000000
1 0.50000000000000 0.50000000000000
2 0.50000000000000 0.37500000000000
3 0.37500000000000 0.34375000000000
4 0.37500000000000 0.33593750000000
5 0.34375000000000 0.33398437500000
6 0.34375000000000 0.33349609375000
7 0.33593750000000 0.33337402343750
8 0.33593750000000
9 0.33398437500000
10 0.33398437500000
11 0.33349609375000
12 0.33349609375000
13 0.33337402343750

Fig. 19.6. Results of the bisection algorithm and the fixed point iteration used to
solve the fixed point problem in Model 19.4. The error of the fixed point iteration
decreases more for each iteration

Example 19.2. In solving for the solubility of Ba(IO 3 ) 2 in Model 7.10, we
solved the root problem (16.3)

x(20 + 2x)2 − 1.57 = 0

using the bisection algorithm. The results are in Fig. 16.4. In this example,
we use the fixed point iteration to solve the equivalent fixed point problem

g(x) =
1.57

(20 + 2x)2
= x. (19.5)

We know that g is Lipschitz continuous on any interval that avoids x = 10
(and we also know that the fixed point/root is close to 0). We start off the
iteration with x0 = 1 and show the results in Fig. 19.7.

i xi

0 1.00000000000000
1 0.00484567901235
2 0.00392880662465
3 0.00392808593169
4 0.00392808536527
5 0.00392808536483

Fig. 19.7. Results of the fixed point iteration applied to (19.5)
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Example 19.3. In the case of the fixed point iteration applied to the Card
Sales model, we can compute the iterates explicitly:

x1 =
1
4
x0 +

1
4

and

x2 =
1
4
x1 +

1
4

=
1
4

(
1
4
x0 +

1
4

)

+
1
4

=
1
42
x0 +

1
42

+
1
4

Likewise, we find

x3 =
1
43
x0 +

1
43

+
1
42

+
1
4

and after n steps

xn =
1
4n
x0 +

n∑

i=1

1
4i
. (19.6)

The first term on the right-hand side of (19.6), 1
4n x0 converges to 0 as n

increases to infinity. The second term is equal to

n∑

i=1

1
4i

=
1
4
×

n−1∑

i=0

1
4i

=
1
4
×

1 − 1
4n

1 − 1
4

=
1 − 1

4n

3

using the formula for the geometric sum. The second term therefore con-
verges to 1/3, which is precisely the fixed point for (19.4), as n increases
to infinity.

An important observation about the last example is that the iteration
converges because the slope of g(x) = 1

4x + 1
4 is 1/4 < 1. This produces

a factor of 1/4 for each iteration, forcing the right-hand side of (19.6)
to have a limit as n tends to infinity. Recalling that the slope of a linear
function is the same thing as its Lipschitz constant, we can say this example
worked because the Lipschitz constant of g is L = 1/4 < 1.

In contrast if the Lipschitz constant, or slope, of g is larger than 1 then
the analog of (19.6) will not converge. We demonstrate this graphically in
Fig. 19.8 using the function g(x) = 2x+ 1

4 . The difference between successive
iterates increases with each iteration and the fixed point iteration does not
converge. It is clear from the plot that there is no positive fixed point. On
the other hand, the fixed point iteration will converge when applied to any
linear function with Lipschitz constant L < 1. We illustrate the convergence
for g(x) = 3

4x+ 1
4 in Fig. 19.8. Thinking about (19.6), the reason is simply

that the geometric series with factor L converges when L < 1.
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y = x

y = x

x1x0 x2 x3

g(x) = 2 x + ¼

g(x) = ¾ x + ¼

x0 x1 x2 x3 x

Fig. 19.8. On the left, we plot the first three fixed point iterates for g(x) = 2x+ 1
4
.

The iterates increase without bound as the iteration proceeds. On the right, we
plot the first three fixed point iterates for g(x) = 3

4
x+ 1

4
. The iteration converges

to the fixed point in this case

19.7 A Contraction Mapping Has
a Unique Fixed Point

We now go back to the general case presented in the introductory overview.
We shall prove that a contraction mapping g : R → R has a unique fixed
point x̄ ∈ R given as the limit of a sequence generated by Fixed Point
Iteration. We recall that a contraction mapping g : R → R is a Lipschitz
continuous function on R with Lipschitz constant L < 1. We organize the
proof as follows:

1. Proof that {xi}∞i=1 is a Cauchy sequence.

2. Proof that x̄ = limi→∞ xi is a fixed point.

3. Proof that x̄ is unique.

Proof that {xi}∞i=1 is a Cauchy Sequence

To estimate |xi − xj | for j > i, we shall first prove an estimate for two
consecutive indices, that is an estimate for |xk+1 − xk|. To this end, we
subtract the equation xk = g(xk−1) from xk+1 = g(xk) to get

xk+1 − xk = g(xk) − g(xk−1).

Using the Lipschitz continuity of g(x), we thus have

|xk+1 − xk| ≤ L|xk − xk−1|. (19.7)

Similarly,
|xk − xk−1| ≤ L|xk−1 − xk−2|,



19.7 A Contraction Mapping Has a Unique Fixed Point 255

and thus
|xk+1 − xk| ≤ L2|xk−1 − xk−2|.

Repeating the argument, we find that

|xk+1 − xk| ≤ Lk|x1 − x0|. (19.8)

We now proceed to use this estimate to estimate |xi − xj | for j > i. We
have

|xi − xj | = |xi − xi+1 + xi+1 − xi+2 + xi+2 − · · · + xj−1 − xj |,

so that by the triangle inequality,

|xi − xj | ≤ |xi − xi+1|+ |xi+1 − xi+2|+ · · ·+ |xj−1 − xj | =
j−1∑

k=i

|xk − xk+1|.

We now use (19.8) on each term |xk − xk+1| in the sum to get

|xi − xj | ≤
j−1∑

k=i

Lk |x1 − x0| = |x1 − x0|
j−1∑

k=i

Lk.

We compute

j−1∑

k=i

Lk = Li
(
1 + L+ L2 + · · · + Lj−i−1

)
= Li 1 − Lj−i

1 − L
,

using the formula for the sum of a geometric series. We now use the as-
sumption that L < 1, to conclude that 0 ≤ 1 − Lj−i ≤ 1 and therefore for
j > i,

|xi − xj | ≤
Li

1 − L
|x1 − x0|.

Since L < 1, the factor Li can be made as small as we please by tak-
ing i large enough, and thus {xi}∞i=1 is a Cauchy sequence and therefore
converges to a limit x̄ = limi→∞ xi.

Note that the idea of estimating |xi − xj | for j > i by estimating |xk −
xk+1| and using the formula for a geometric sum is fundamental and will
be used repeatedly below.

Proof that x̄ = limi xi is a Fixed Point

Since g(x) is Lipschitz continuous, we have

g (x̄) = g
(

lim
i→∞

xi

)
= lim

i→∞
g (xi) .
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By the nature of the Fixed Point Iteration with xi = g(xi−1), we have

lim
i→∞

g(xi−1) = lim
i→∞

xi = x̄.

Since of course

lim
i→∞

g(xi−1) = lim
i→∞

g(xi),

we thus see that g(x̄) = x̄ as desired. We conclude that the limit limi xi = x̄
is a fixed point.

Proof of Uniqueness

Suppose that x and y are two fixed points, that is x = g(x) and y = g(y).
Since g : R → R is a contraction mapping,

|x− y| = |g(x) − g(y)| ≤ L|x− y|

which is possible only if x = y since L < 1. This completes the proof.
We have now proved that a contraction mapping g : R → R has a unique

fixed point given by Fixed Point Iteration. We summarize in the following
basic theorem.

Theorem 19.1 A contraction mapping g : R → R has a unique fixed
point x̄ ∈ R, and any sequence {xi}∞i=1 generated by Fixed Point Iteration
converges to x̄.

19.8 Generalization to g : [a, b] → [a, b]

We may directly generalize this result by replacing R by any closed interval
[a, b] of R. Taking the interval [a, b] to be closed guarantees that limi xi ∈
[a, b] if xi ∈ [a, b]. It is critical that g maps the interval [a, b] into itself.

Theorem 19.2 A contraction mapping g : [a, b] → [a, b] has a unique fixed
point x̄ ∈ [a, b] and a sequence {xi}∞i=1 generated by Fixed Point Iteration
starting with a point x0 in [a, b] converges to x̄.

Example 19.4. We apply this theorem to g(x) = x4/(10−x)2. We can show
that g is Lipschitz continuous on [−1, 1] with L = .053 and the fixed point
iteration started with any x0 in [−1, 1] converges rapidly to the fixed point
x̄ = 0. However, the Lipschitz constant of g on [−9.9, 9.9] is about 20× 106

and the fixed point iteration diverges rapidly if x0 = 9.9.
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19.9 Linear Convergence in Fixed Point Iteration

Let x̄ = g(x̄) be the fixed point of a contraction mapping g : R → R and
{xi}∞i=1 a sequence generated by Fixed Point Iteration. We can easily get an
estimate on howquickly the error of the fixed point iteratexi decreases as i in-
creases, that is the speed of convergence, as follows. Since x̄ = g(x̄), we have

|xi − x̄| = |g(xi−1) − g(x̄)| ≤ L|xi−1 − x̄|, (19.9)

which shows that the error decreases by at least a factor of L < 1 during
each iteration. The smaller L is the faster the convergence!

The error may actually decrease by exactly a factor of L, as in the Card
Sales model with g(x) = 1

4x + 1
4 , where the error decreases by exactly

a factor of L = 1/4 in each iteration.
When the error decreases by (at least) a constant factor θ < 1 in each

step, we say that the convergence is linear with convergence factor θ. The
Fixed Point Iteration applied to a contraction mapping g(x) with Lipschitz
constant L < 1 converges linearly with convergence factor L.

We compare in Fig. 19.9. the speed of convergence of Fixed Point Itera-
tion applied to g(x) = 1

9x+ 3
4 and g(x) = 1

5x+ 2. The iteration for 1
9x+ 3

4

i xi for 1
9x+ 3

4 xi for 1
5x+ 2

0 1.00000000000000 1.00000000000000
1 0.86111111111111 2.20000000000000
2 0.84567901234568 2.44000000000000
3 0.84396433470508 2.48800000000000
4 0.84377381496723 2.49760000000000
5 0.84375264610747 2.49952000000000
6 0.84375029401194 2.49990400000000
7 0.84375003266799 2.49998080000000
8 0.84375000362978 2.49999616000000
9 0.84375000040331 2.49999923200000
10 0.84375000004481 2.49999984640000
11 0.84375000000498 2.49999996928000
12 0.84375000000055 2.49999999385600
13 0.84375000000006 2.49999999877120
14 0.84375000000001 2.49999999975424
15 0.84375000000000 2.49999999995085
16 0.84375000000000 2.49999999999017
17 0.84375000000000 2.49999999999803
18 0.84375000000000 2.49999999999961
19 0.84375000000000 2.49999999999992
20 0.84375000000000 2.49999999999998

Fig. 19.9. Results of the fixed point iterations for 1
9
x+ 3

4
and 1

5
x+ 2
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reaches 15 places of accuracy within 15 iterations while the iteration for
1
5x+ 2 has only 14 places of accuracy after 20 iterations.

19.10 Quicker Convergence

The functions 1
2x and 1

2x
2 are both Lipschitz continuous on [−1/2, 1/2]

with Lipschitz constant L = 1/2, and have a unique fixed point x̄ = 0. The
estimate (19.9) suggests the fixed point iteration for both should converge
to x̄ = 0 at the same rate. We show the results of the fixed point iteration
applied to both in Fig. 19.10. We see that Fixed Point Iteration converges

i xi for 1
2x xi for 1

2x
2

0 0.50000000000000 0.50000000000000
1 0.25000000000000 0.25000000000000
2 0.12500000000000 0.06250000000000
3 0.06250000000000 0.00390625000000
4 0.03125000000000 0.00001525878906
5 0.01562500000000 0.00000000023283
6 0.00781250000000 0.00000000000000

Fig. 19.10. Results of the fixed point iterations for 1
2
x and 1

2
x2

much more quickly for 1
2x

2, reaching 15 places of accuracy after 7 iterations.
The estimate (19.9) thus does not give the full picture.

We now take a closer look into the argument behind (19.9) for the par-
ticular function g(x) = 1

2x
2. As above we have with x̄ = 0,

xi − 0 =
1
2
x2

i−1 −
1
2
02 =

1
2
(xi−1 + 0)(xi−1 − 0),

and thus
|xi − 0| =

1
2
|xi−1| |xi−1 − 0|.

We conclude that the error of Fixed Point Iteration for 1
2x

2 decreases by
a factor of 1

2 |xi−1| during the i’th iteration. In other words,

for i = 1 the factor is 1
2 |x0|,

for i = 2 the factor is 1
2 |x1|,

for i = 3 the factor is 1
2 |x2|,

and so on. We see that the reduction factor depends on the value of the
current iterate.

Now consider what happens as the iteration proceeds and the iterates
xi−1 become closer to zero. The factor by which the error in each step
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decreases becomes smaller as i increases! In other words, the closer the it-
erates get to zero, the faster they get close to zero. The estimate in (19.9)
significantly overestimates the error of the fixed point iteration for 1

2x
2 be-

cause it treats the error as if it decreases by a fixed factor each time. Thus
it cannot be used to predict the rapid convergence for this function. For
a function g, the first part of (19.9) tells the same story:

|xi − x̄| = |g(xi−1) − g(x̄)|.

The error of xi is determined by the change in g in going from x̄ to the
previous iterate xi−1. This change can depend on xi−1 and when it does,
the fixed point iteration does not converge linearly.

19.11 Quadratic Convergence

We now consider a second basic example, where we establish quadratic
convergence. We know that the Bisection algorithm for computing the root
of f(x) = x2 − 2 converges linearly with convergence factor 1/2: the error
gets reduced by the factor 1

2 after each step. We can write the equation
x2 − 2 = 0 as the following fixed point equation

x = g(x) =
1
x

+
x

2
. (19.10)

To see this, it suffices to multiply the equation (19.10) by x. We now apply
Fixed Point Iteration to (19.10) to compute

√
2 and show the result in

Fig. 19.11. We note that it only takes 5 iterations to reach 15 places of
accuracy. The convergence appears to be very quick.

i xi

0 1.00000000000000
1 1.50000000000000
2 1.41666666666667
3 1.41421568627451
4 1.41421356237469
5 1.41421356237310
6 1.41421356237310

Fig. 19.11. The fixed point iteration for (19.10)
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To see how quick the convergence in fact is, we seek a relation between
the error in two consecutive steps. Computing as in (19.9), we find that

∣
∣
∣xi −

√
2
∣
∣
∣ =

∣
∣
∣g (xi−1) − g

(√
2
)∣
∣
∣

=

∣
∣
∣
∣
∣

xi−1

2
+

1
xi−1

−
(√

2
2

+
1√
2

)∣
∣
∣
∣
∣

=
∣
∣
∣
∣
x2

i−1 + 2
2xi−1

−
√

2
∣
∣
∣
∣ .

Now we find a common denominator for the fractions on the right and then
use the fact that

(
xi−1 −

√
2
)2

= x2
i−1 − 2

√
2xi−1 + 2

to get

∣
∣
∣xi −

√
2
∣
∣
∣ =

(
xi−1 −

√
2
)2

2xi−1
≈ 1

2
√

2

(
xi−1 −

√
2
)2

. (19.11)

We conclude that the error in xi is the square of the error of xi−1 up to
the factor 1

2
√

2
. This is quadratic convergence, which is very quick. In each

step of the iteration, the number of correct decimals doubles!

Fig. 19.12. Archimedes moving the Earth with a lever and a fixed point
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Chapter 19 Problems

19.1. A salesman selling vacuum cleaners door-to-door has a franchise with the
following payment scheme. For each delivery of vacuum cleaners, the salesman
pays a fee of $100 and then a percentage of the sales, measured in units of
hundreds of dollars, that increases as the sales increases. For sales of x, the
percentage is 20x%. Show that this model gives a fixed point problem and make
a plot of the fixed point problem that shows the location of the fixed point.

19.2. Rewrite the following fixed point problems as root problems three different
ways each.

(a)
x3 − 1

x+ 2
= x (b) x5 − x3 + 4 = x

19.3. Rewrite the following root problems as fixed point problems three different
ways each.

(a) 7x5 − 4x3 + 2 = 0 (b) x3 − 2

x
= 0

19.4. (a) Draw a Lipschitz continuous function g on the interval [0, 1] that
has three fixed points such that g(0) > 0 and g(1) < 1. (b) Draw a Lipschitz
continuous function g on the interval [0, 1] that has three fixed points such that
g(0) > 0 and g(1) > 1.

19.5. Write a program that implements Algorithm 19.2. The program should
employ two methods for stopping the iteration: (1) when the number of iterations
is larger than a user-input number and (2) when the difference between successive
iterates |xi − xi−1| is smaller than a user-input tolerance. Test the program by
reproducing the results in Fig. 19.9 that were computed using MATLAB�.

19.6. In Section 7.10, suppose that Ksp for Ba(IO 3 ) 2 is 1.8 × 10−5. Find the
solubility S to 10 decimal places using the program from Proposition 19.5 after
writing the problem as a suitable fixed point problem. Hint: 1.8×10−5 = 18×10−6

and 10−6 = 10−2 × 10−4.

19.7. In Section 7.10, determine the solubility of Ba(IO 3 ) 2 in a .037 mole/liter
solution of KIO 3 to 10 decimal places using the program from Proposition 19.5
after writing the problem as a suitable fixed point problem.

19.8. The power P delivered into a load R of a simple class A amplifier of output
resistance Q and output voltage E is

P =
E2R

(Q+R)2
.

Find all possible solutions R for P = 1, Q = 3, and E = 4 to 10 decimal places
using the program from Proposition 19.5 after writing the problem as a fixed
point problem.
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19.9. Van der Waal’s model for one mole of an ideal gas including the effects of
the size of the molecules and the mutual attractive forces is

(
P +

a

V 2

)
(V − b) = RT,

where P is the pressure, V is the volume of the gas, T is the temperature, R is the
ideal gas constant, a is a constant depending on the size of the molecules and the at-
tractive forces, and b is a constant depending on the volume of all the molecules in
one mole. Find all possible volumes V of the gas corresponding to P = 2, T = 15,
R = 3, a = 50, and b = .011 to 10 decimal places using the program from Proposi-
tion 19.5 after writing the problem as a fixed point problem.

19.10. Verify that (19.6) is true.

19.11. (a) Find an explicit formula (similar to (19.6)) for the n’th fixed point
iterate xn for the function g(x) = 2x + 1

4
. (b) Prove that xn diverges to ∞ as n

increases to ∞.

19.12. (a) Find an explicit formula (similar to (19.6)) for the n’th fixed point
iterate xn for the function g(x) = 3

4
x + 1

4
. (b) Prove that xn converges as n

increases to ∞ and compute the limit.

19.13. (a) Find an explicit formula (similar to (19.6)) for the n’th fixed point
iterate xn for the function g(x) = mx + b. (b) Prove that xn converges as n
increases to ∞ provided that L = |m| < 1 and compute the limit.

19.14. Draw a Lipschitz continuous function g that does not have the property
that x in [0, 1] means that g(x) is in [0, 1].

19.15. (a) If possible, find intervals suitable for application of the fixed point
iteration to each of the three fixed point problems found in Problem 19.3(a). (b)
If possible, find intervals suitable for application of the fixed point iteration to
each of the three fixed point problems found in Problem 19.3(b). In each case,
a suitable interval is one on which the function is a contraction map.

19.16. Harder Apply Theorem 19.2 to the function g(x) = 1/(1 + x2) to show
that the fixed point iteration converges on any interval [a, b].

19.17. Given the following results of the fixed point iteration applied to a func-
tion g(x),

i xi

0 14.00000000000000
1 14.25000000000000
2 14.46875000000000
3 14.66015625000000
4 14.82763671875000
5 14.97418212890625

compute the Lipschitz constant L for g. Hint: consider (19.8).
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19.18. Verify the details of Example 19.4.

19.19. (a) Show that g(x) = 2
3
x3 is Lipschitz continuous on [−1/2, 1/2] with

Lipschitz constant L = 1/2. (b) Use the program from Problem 19.5 to compute
6 fixed point iterations starting with x0 = .5 and compare to the results in
Fig. 19.10. (c) Show that the error of xi is approximately the cube of the error
of xi−1 for any i.

19.20. Verify that (19.11) is true.

19.21. (a) Show the root problem f(x) = x2 + x− 6 can be written as the fixed
point problem g(x) = x with g(x) = 6

x+1
. Show that the error of xi decreases at

a linear rate to the fixed point x̄ = 2 when the fixed point iteration converges
to 2 and estimate the convergence factor for xi close to 2. (b) Show the root
problem f(x) = x2 + x − 6 can be written as the fixed point problem g(x) = x

with g(x) = x2+6
2x+1

. Show that the error of xi decreases at a quadratic rate to the
fixed point x̄ = 2 when the fixed point iteration converges to 2.

19.22. Given the following results of the fixed point iteration applied to a func-
tion g(x),

i xi

0 0.50000000000000
1 0.70710678118655
2 0.84089641525371
3 0.91700404320467
4 0.95760328069857
5 0.97857206208770

decide if the convergence rate is linear or not.

19.23. The Regula Falsi Method is a variation of the bisection method for com-
puting a root of f(x) = 0. For i ≥ 1, assuming f(xi−1) and f(xi) have the oppo-
site signs, define xi+1 as the point where the straight line through (xi−1, f(xi−1))
and (xi, f(xi)) intersects the x-axis. Write this method as fixed point iteration by
giving an appropriate g(x) and estimate the corresponding convergence factor.





20
Analytic Geometry in R

2

Philosophy is written in the great book (by which I mean the Uni-
verse) which stands always open to our view, but it cannot be under-
stood unless one first learns how to comprehend the language and
interpret the symbols in which it is written, and its symbols are tri-
angles, circles, and other geometric figures, without which it is not
humanly possible to comprehend even one word of it; without these
one wanders in a dark labyrinth. (Galileo)

20.1 Introduction

We give a brief introduction to analytic geometry in two dimensions, that
is the linear algebra of the Euclidean plane. Our common school experience
has given us an intuitive geometric idea of the Euclidean plane as an infinite
flat surface without borders consisting of points, and we also have an in-
tuitive geometric idea of geometric objects like straight lines, triangles and
circles in the plane. We brushed up our knowledge and intuition in geometry
somewhat in Chapter Pythagoras and Euclid. We also presented the idea
of using a coordinate system in the Euclidean plane consisting of two per-
pendicular copies of Q, where each point in the plane has two coordinates
(a1, a2) and we view Q

2 as the set of ordered pairs of rational numbers. With
only the rational numbers Q at our disposal, we quickly run into trouble
because we cannot compute distances between points in Q

2. For example,
the distance between the points (0, 0) and (1, 1), the length of the diago-
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nal of a unit square, is equal to
√

2, which is not a rational number. The
troubles are resolved by using real numbers, that is by extending Q

2 to R
2.

In this chapter, we present basic aspects of analytic geometry in the
Euclidean plane using a coordinate system identified with R

2, following
the fundamental idea of Descartes to describe geometry in terms of num-
bers. Below, we extend to analytic geometry in three-dimensional Euclidean
space identified with R

3 and we finally generalize to analytic geometry in
R

n, where the dimension n can be any natural number. Considering R
n with

n ≥ 4 leads to linear algebra with a wealth of applications outside Euclidean
geometry, which we will meet below. The concepts and tools we develop in
this chapter focussed on Euclidean geometry in R

2 will be of fundamental
use in the generalizations to geometry in R

3 and R
n and linear algebra.

The tools of the geometry of Euclid is the ruler and the compasses, while
the tool of analytic geometry is a calculator for computing with numbers.
Thus we may say that Euclid represents a form of analog technique, while
analytic geometry is a digital technique based on numbers. Today, the use
of digital techniques is exploding in communication and music and all sorts
of virtual reality.

20.2 Descartes, Inventor of Analytic Geometry

The foundation of modern science was laid by René Descartes (1596–1650)
in Discours de la méthode pour bien conduire sa raison et chercher la vérité
dans les sciences from 1637. The Method contained as an appendix La
Géometrie with the first treatment of Analytic Geometry. Descartes be-
lieved that only mathematics may be certain, so all must be based on
mathematics, the foundation of the Cartesian view of the World.

In 1649 Queen Christina of Sweden persuaded Descartes to go to Stock-
holm to teach her mathematics. However the Queen wanted to draw tan-
gents at 5 a.m. and Descartes broke the habit of his lifetime of getting up
at 11 o’clock, c.f. Fig. 20.1. After only a few months in the cold North-
ern climate, walking to the palace at 5 o’clock every morning, he died of
pneumonia.

20.3 Descartes: Dualism of Body and Soul

Descartes set the standard for studies of Body and Soul for a long time with
his De homine completed in 1633, where Descartes proposed a mechanism
for automatic reaction in response to external events through nerve fibrils,
see Fig. 20.2. In Descartes’ conception, the rational Soul, an entity distinct
from the Body and making contact with the body at the pineal gland,
might or might not become aware of the differential outflow of animal
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Fig. 20.1. Descartes: “The Principle which I have always observed in my studies
and which I believe has helped me the most to gain what knowledge I have,
has been never to spend beyond a few hours daily in thoughts which occupy the
imagination, and a few hours yearly in those which occupy the understanding,
and to give all the rest of my time to the relaxation of the senses and the repose
of the mind”

spirits brought about though the nerve fibrils. When such awareness did
occur, the result was conscious sensation – Body affecting Soul. In turn,
in voluntary action, the Soul might itself initiate a differential outflow of
animal spirits. Soul, in other words, could also affect Body.

In 1649 Descartes completed Les passions de l’ame, with an account of
causal Soul/Body interaction and the conjecture of the localization of the
Soul’s contact with the Body to the pineal gland. Descartes chose the pineal
gland because it appeared to him to be the only organ in the brain that
was not bilaterally duplicated and because he believed, erroneously, that
it was uniquely human; Descartes considered animals as purely physical
automata devoid of mental states.

20.4 The Euclidean Plane R
2

We choose a coordinate system for the Euclidean plane consisting of two
straight lines intersecting at a 90◦ angle at a point referred to as the origin.
One of the lines is called the x1-axis and the other the x2-axis, and each
line is a copy of the real line R. The coordinates of a given point a in the
plane is the ordered pair of real numbers (a1, a2), where a1 corresponds to
the intersection of the x1-axis with a line through a parallel to the x2-axis,
and a2 corresponds to the intersection of the x2-axis with a line through a
parallel to the x1-axis, see Fig. 20.3. The coordinates of the origin are (0, 0).

In this way, we identify each point a in the plane with its coordinates
(a1, a2), and we may thus represent the Euclidean plane as R

2, where R
2
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Fig. 20.2. Automatic reaction in response to external stimulation from Descartes
De homine 1662

is the set of ordered pairs (a1, a2) of real numbers a1 and a2. That is

R
2 = {(a1, a2) : a1, a2 ∈ R}.

We have already used R
2 as a coordinate system above when plotting

a function f : R → R, where pairs of real numbers (x, f(x)) are represented
as geometrical points in a Euclidean plane on a book-page.

x1

x2

a1

a2
(a1, a2)

Fig. 20.3. Coordinate system for R
2

To be more precise, we can identify the Euclidean plane with R
2, once

we have chosen the (i) origin, and the (ii) direction (iii) scaling of the co-
ordinate axes. There are many possible coordinate systems with different
origins and orientations/scalings of the coordinate axes, and the coordi-
nates of a geometrical point depend on the choice of coordinate system.
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The need to change coordinates from one system to another thus quickly
arises, and will be an important topic below.

Often, we orient the axes so that the x1-axis is horizontal and increas-
ing to the right, and the x2-axis is obtained rotating the x1 axis by 90◦,
or a quarter of a complete revolution counter-clockwise, see Fig. 20.3 or
Fig. 20.4 displaying MATLAB’s view of a coordinate system. The posi-
tive direction of each coordinate axis may be indicated by an arrow in the
direction of increasing coordinates.

However, this is just one possibility. For example, to describe the position
of points on a computer screen or a window on such a screen, it is not
uncommon to use coordinate systems with the origin at the upper left
corner and counting the a2 coordinate positive down, negative up.

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x1

x
1

(.5, .2)

Fig. 20.4. Matlabs way of visualizing a coordinate system for a plane

20.5 Surveyors and Navigators

Recall our friends the Surveyor in charge of dividing land into properties,
and the Navigator in charge of steering a ship. In both cases we assume that
the distances involved are sufficiently small to make the curvature of the
Earth negligible, so that we may view the world as R

2. Basic problems faced
by a Surveyor are (s1) to locate points in Nature with given coordinates
on a map and (s2) to compute the area of a property knowing its corners.
Basic problems of a Navigator are (n1) to find the coordinates on a map of
his present position in Nature and (n2) to determine the present direction
to follow to reach a point of destiny.

We know from Chapter 2 that problem (n1) may be solved using a GPS
navigator, which gives the coordinates (a1, a2) of the current position of
the GPS-navigator at a press of a button. Also problem (s1) may be solved
using a GPS-navigator iteratively in an ‘inverse” manner: press the button
and check where we are and move appropriately if our coordinates are not
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the desired ones. In practice, the precision of the GPS-system determines
its usefulness and increasing the precision normally opens a new area of
application. The standard GPS with a precision of 10 meters may be OK
for a navigator, but not for a surveyor, who would like to get down to
meters or centimeters depending on the scale of the property. Scientists
measuring continental drift or beginning landslides, use an advanced form
of GPS with a precision of millimeters.

Having solved the problems (s1) and (n1) of finding the coordinates of
a given point in Nature or vice versa, there are many related problems of
type (s2) or (n2) that can be solved using mathematics, such as computing
the area of pieces of land with given coordinates or computing the direction
of a piece of a straight line with given start and end points. These are
examples of basic problems of geometry, which we now approach to solve
using tools of analytic geometry or linear algebra.

20.6 A First Glimpse of Vectors

Before entering into analytic geometry, we observe that R
2, viewed as the

set of ordered pairs of real numbers, can be used for other purposes than
representing positions of geometric points. For example to describe the
current weather, we could agree to write (27, 1013) to describe that the
temperature is 27 C ◦ and the air pressure 1013 millibar. We then de-
scribe a certain weather situation as an ordered pair of numbers, such
as (27, 1013). Of course the order of the two numbers is critical for the
interpretation. A weather situation described by the pair (1013, 27) with
temperature 1013 and pressure 27, is certainly very different from that
described by (27, 1013) with temperature 27 and pressure 1013.

Having liberated ourselves from the idea that a pair of numbers must
represent the coordinates of a point in a Euclidean plane, there are end-
less possibilities of forming pairs of numbers with the numbers representing
different things. Each new interpretation may be viewed as a new interpre-
tation of R

2.
In another example related to the weather, we could agree to write

(8, NNE) to describe that the current wind is 8 m/s and headed North-
North-East (and coming from South-South-East. Now, NNE is not a real
number, so in order to couple to R

2, we replace NNE by the corresponding
angle, that is by 22.5◦ counted positive clockwise starting from the North
direction. We could thus indicate a particular wind speed and direction
by the ordered pair (8, 22.5). You are no doubt familiar with the weather
man’s way of visualizing such a wind on the weather map using an arrow.

The wind arrow could also be described in terms of another pair of
parameters, namely by how much it extends to the East and to the North
respectively, that is by the pair (8 sin(22.5◦), 8 cos(22.5◦)) ≈ (3.06, 7.39).
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We could say that 3.06 is the “amount of East”, and 7.39 is the “amount
of North” of the wind velocity, while we may say that the wind speed is 8,
where we think of the speed as the “absolute value” of the wind velocity
(3.06, 7.39). We thus think of the wind velocity as having both a direction,
and an “absolute value” or “length”. In this case, we view an ordered pair
(a1, a2) as a vector, rather than as a point, and we can then represent the
vector by an arrow.

We will soon see that ordered pairs viewed as vectors may be scaled
through multiplication by a real number and two vectors may also be added.

Addition of velocity vectors can be experienced on a bike where the wind
velocity and our own velocity relative to the ground add together to form
the total velocity relative to the surrounding atmosphere, which is reflected
in the air resistance we feel. To compute the total flight time across the
Atlantic, the airplane pilot adds the velocity vector of the airplane versus
the atmosphere and the velocity of the jet-stream together to obtain the
velocity of the airplane vs the ground. We will return below to applications
of analytic geometry to mechanics, including these examples.

20.7 Ordered Pairs as Points or Vectors/Arrows

We have seen that we may interpret an ordered pair of real numbers (a1, a2)
as a point a in R

2 with coordinates a1 and a2. We may write a = (a1, a2)
for short, and say that a1 is the first coordinate of the point a and a2 the
second coordinate of a.

We shall also interpret an ordered pair (a1, a2) ∈ R
2 in a alternative

way, namely as an arrow with tail at the origin and the head at the point
a = (a1, a2), see Fig. 20.5. With the arrow interpretation of (a1, a2), we
refer to (a1, a2) as a vector. Again, we agree to write a = (a1, a2), and we
say that a1 and a2 are the components of the arrow/vector a = (a1, a2).
We say that a1 is the first component, occurring in the first place and a2

the second component occurring in the second place.
We thus may interpret an ordered pair (a1, a2) in R

2 in two ways: as
a point with coordinates (a1, a2), or as an arrow/vector with components
(a1, a2) starting at the origin and ending at the point (a1, a2). Evidently,
there is a very strong connection between the point and arrow interpreta-
tions, since the head of the arrow is located at the point (and assuming that
the arrow tail is at the origin). In applications, positions will be connected
to the point interpretation and velocities and forces will be connected to
the arrow/vector interpretation. We will below generalize the arrow/vector
interpretation to include arrows with tails also at other points than the
origin. The context will indicate which interpretation is most appropriate
for a given situation. Often the interpretation of a = (a1, a2) as a point
or as an arrow, changes without notice. So we have to be flexible and use
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x1

x2

a1

a2

a

(a1, a2)

Fig. 20.5. A vector with tail at the origin and the head at the point a = (a1, a2)

whatever interpretation is most convenient or appropriate. We will need
even more fantasy when we go into applications to mechanics below.

Sometimes vectors like a = (a1, a2) are marked by boldface or an arrow,
like a or 
a or a, or double script or some other notation. We prefer not
to use this more elaborate notation, which makes the writing simpler, but
requires fantasy from the user to make the proper interpretation of for
example the letter a as a scalar number or vector a = (a1, a2) or something
else.

20.8 Vector Addition

We now proceed to define addition of vectors in R
2, and multiplication of

vectors in R
2 by real numbers. In this context, we interpret R

2 as a set of
vectors represented by arrows with tail at the origin.

Given two vectors a = (a1, a2) and b = (b1, b2) in R
2, we use a + b to

denote the vector (a1+b1, a2+b2) in R
2 obtained by adding the components

separately. We call a+b the sum of a and b obtained through vector addition.
Thus if a = (a1, a2) and b = (b1, b2) are given vectors in R

2, then

(a1, a2) + (b1, b2) = (a1 + b1, a2 + b2), (20.1)

which says that vector addition is carried out by adding components sepa-
rately. We note that a+b = b+a since a1+b1 = b1+a1 and a2+b2 = b2+a2.
We say that 0 = (0, 0) is the zero vector since a + 0 = 0 + a = a for any
vector a. Note the difference between the vector zero and its two zero com-
ponents, which are usually scalars.

Example 20.1. We have (2, 5) + (7, 1) = (9, 6) and (2.1, 5.3) + (7.6, 1.9) =
(9.7, 7.2).
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20.9 Vector Addition and the Parallelogram Law

We may represent vector addition geometrically using the Parallelogram
Law as follows. The vector a+b corresponds to the arrow along the diagonal
in the parallelogram with two sides formed by the arrows a and b displayed
in Fig. 20.6. This follows by noting that the coordinates of the head of a+b
is obtained by adding the coordinates of the points a and b separately. This
is illustrated in Fig. 20.6.

This definition of vector addition implies that we may reach the point
(a1 + b1, a2 + b2) by walking along arrows in two different ways. First,
we simply follow the arrow (a1 + b1, a2 + b2) to its head, corresponding
to walking along the diagonal of the parallelogram formed by a and b.
Secondly, we could follow the arrow a from the origin to its head at the
point (a1, a2) and then continue to the head of the arrow b̄ parallel to b and
of equal length as b with tail at (a1, a2). Alternative, we may follow the
arrow b from the origin to its head at the point (b1, b2) and then continue
to the head of the arrow ā parallel to a and of equal length as a with tail
at (b1, b2). The three different routes to the point (a1 + b1, a2 + b2) are
displayed in Fig. 20.6.

a1 b1

a

b

ā

b̄

a+b

Fig. 20.6. Vector addition using the Parallelogram Law

We sum up in the following theorem:

Theorem 20.1 Adding two vectors a = (a1, a2) and b = (b1, b2) in R
2 to

get the sum a + b = (a1 + b1, a2 + b2) corresponds to adding the arrows a
and b using the Parallelogram Law.

In particular, we can write a vector as the sum of its components in the
coordinate directions as follows, see Fig. 20.7.

(a1, a2) = (a1, 0) + (0, a2). (20.2)
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a

(a1, 0)

(0, a2)

Fig. 20.7. A vector a represented as the sum of two vectors parallel with the
coordinate axes

20.10 Multiplication of a Vector by a Real Number

Given a real number λ and a vector a = (a1, a2) ∈ R
2, we define a new

vector λa ∈ R
2 by

λa = λ(a1, a2) = (λa1, λa2). (20.3)

For example, 3 (1.1, 2.3) = (3.3, 6.9). We say that λa is obtained by multi-
plying the vector a = (a1, a2) by the real number λ and call this operation
multiplication of a vector by a scalar. Below we will meet other types of
multiplication connected with scalar product of vectors and vector product
of vectors, both being different from multiplication of a vector by a scalar.

We define −a = (−1)a = (−a1,−a2) and a− b = a+(−b). We note that
a− a = a+ (−a) = (a1 − a1, a2 − a2) = (0, 0) = 0. We give an example in
Fig. 20.8.

a

b

−b

0.7a− b

Fig. 20.8. The sum 0.7a − b of the multiples 0.7a and (−1)b of a and b
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20.11 The Norm of a Vector

We define the Euclidean norm |a| of a vector a = (a1, a2) ∈ R
2 as

|a| =
(
a2
1 + a2

2

)1/2
. (20.4)

By Pythagoras theorem and Fig. 20.9, the Euclidean norm |a| of the vector
a = (a1, a2) is equal to the length of the hypothenuse of the right angled
triangle with sides a1 and a2. In other words, the Euclidean norm of the
vector a = (a1, a2) is equal to the distance from the origin to the point
a = (a1, a2), or simply the length of the arrow (a1, a2). We have |λa| = |λ||a|
if λ ∈ R and a ∈ R

2; multiplying a vector by the real number λ changes the
norm of the vector by the factor |λ|. The zero vector (0, 0) has Euclidean
norm 0 and if a vector has Euclidean norm 0 then it must be the zero
vector.

a

a1

a2
(a1, a2)

|a| = (a2
1 + a2

2)
1/2

Fig. 20.9. The norm |a| of a vector a = (a1, a2) is |a| = (a2
1 + a2

2)
1/2

The Euclidean norm of a vector measures the “length” or “size” of the
vector. There are many possible ways to measure the “size” of a vector
corresponding to using different norms. We will meet several alternative
norms of a vector a = (a1, a2) below, such as |a1| + |a2| or max(|a1|, |a2|).
We used |a1| + |a2| in the definition of Lipschitz continuity of f : R

2 → R

above.

Example 20.2. If a = (3, 4) then |a| =
√

9 + 16 = 5, and |2a| = 10.

20.12 Polar Representation of a Vector

The points a = (a1, a2) in R
2 with |a| = 1, corresponding to the vectors a

of Euclidean norm equal to 1, form a circle with radius equal to 1 centered
at the origin which we call the unit circle, see Fig. 20.10.
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Each point a on the unit circle can be written a = (cos(θ), sin(θ)) for
some angle θ, which we refer to as the angle of direction or direction of the
vector a. This follows from the definition of cos(θ) and sin(θ) in Chapter
Pythagoras and Euclid, see Fig. 20.10

1

1

a

x1

x2

a1

a2

θ

|a| = 1
a1 = cos(θ)
a2 = sin(θ)

Fig. 20.10. Vectors of length one are given by (cos(θ), sin(θ))

Any vector a = (a1, a2) �= (0, 0) can be expressed as

a = |a|â = r(cos(θ), sin(θ)), (20.5)

where r = |a| is the norm of a, â = (a1/|a|, a2/|a|) is a vector of length one,
and θ is the angle of direction of â, see Fig. 20.11. We call (20.5) the polar
representation of a. We call θ the direction of a and r the length of a, see
Fig. 20.11.

r

r

a

x1

x2

a1

a2

θ

|a| = r
a1 = r cos(θ)
a2 = r sin(θ)

Fig. 20.11. Vectors of length r are given by a = r(cos(θ), sin(θ)) =
(r cos(θ), r sin(θ)) where r = |a|
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We see that if b = λa, where λ > 0 and a �= 0, then b has the same
direction as a. If λ < 0 then b has the opposite direction. In both cases,
the norms change with the factor |λ|; we have |b| = |λ||a|.

If b = λa, where λ �= 0 and a �= 0, then we say that the vector b is parallel
to a. Two parallel vectors have the same or opposite directions.

Example 20.3. We have

(1, 1) =
√

2(cos(45◦), sin(45◦)) and (−1, 1) =
√

2(cos(135◦), sin(135◦)).

20.13 Standard Basis Vectors

We refer to the vectors e1 = (1, 0) and e2 = (0, 1) as the standard basis
vectors in R

2. A vector a = (a1, a2) can be expressed in term of the basis
vectors e1 and e2 as

a = a1e1 + a2e2,

since

a1e1 + a2e2 = a1(1, 0) + a2(0, 1) = (a1, 0) + (0, a2) = (a1, a2) = a.

a

e1

e2

(a1, a2)

a = a1e1 + a2e2

Fig. 20.12. The standard basis vectors e1 and e2 and a linear combination
a = (a1, a2) = a1e1 + a2e2 of e1 and e2

We say that a1e1 + a2e2 is a linear combination of e1 and e2 with coef-
ficients a1 and a2. Any vector a = (a1, a2) in R

2 can thus be expressed as
a linear combination of the basis vectors e1 and e2 with the coordinates a1

and a2 as coefficients, see Fig. 20.12.

Example 20.4. We have (3, 7) = 3 (1, 0) + 7 (0, 1) = 3e1 + 7e2.
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20.14 Scalar Product

While adding vectors to each other and scaling a vector by a real number
multiplication have natural interpretations, we shall now introduce a (first)
product of two vectors that is less motivated at first sight.

Given two vectors a = (a1, a2) and b = (b1, b2) in R
2, we define their

scalar product a · b by

a · b = a1b1 + a2b2. (20.6)

We note, as the terminology suggests, that the scalar product a · b of two
vectors a and b in R

2 is a scalar, that is a number in R, while the factors a
and b are vectors in R

2. Note also that forming the scalar product of two
vectors involves not only multiplication, but also a summation!

We note the following connection between the scalar product and the
norm:

|a| = (a · a) 1
2 . (20.7)

Below we shall define another type of product of vectors where also the
product is a vector. We shall thus consider two different types of products
of two vectors, which we will refer to as the scalar product and the vector
product respectively. At first when limiting our study to vectors in R

2, we
may also view the vector product to be a single real number. However,
the vector product in R

3 is indeed a vector in R
3. (Of course, there is also

the (trivial) “componentwise” vector product like MATLAB�’s a. ∗ b =
(a1b1, a2b2).)

We may view the scalar product as a function f : R
2 × R

2 → R where
f(a, b) = a · b. To each pair of vectors a ∈ R

2 and b ∈ R
2, we associate

the number f(a, b) = a · b ∈ R. Similarly we may view summation of two
vectors as a function f : R

2×R
2 → R

2. Here, R
2×R

2 denotes the set of all
ordered pairs (a, b) of vectors a = (a1, a2) and b = (b1, b2) in R

2 of course.

Example 20.5. We have (3, 7) · (5, 2) = 15 + 14 = 29, and (3, 7) · (3, 7) =
9 + 49 = 58 so that |(3, 7)| =

√
58.

20.15 Properties of the Scalar Product

The scalar product a · b in R
2 is linear in each of the arguments a and b,

that is

a · (b+ c) = a · b+ a · c,
(a+ b) · c = a · c+ b · c,

(λa) · b = λ a · b, a · (λb) = λ a · b,
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for all a, b ∈ R
2 and λ ∈ R. This follows directly from the definition (20.6).

For example, we have

a · (b+ c) = a1(b1 + c1) + a2(b2 + c2)
= a1b1 + a2b2 + a1c1 + a2c2 = a · b+ a · c.

Using the notation f(a, b) = a · b, the linearity properties may be written
as

f(a, b+ c) = f(a, b) + f(a, c), f(a+ b, c) = f(a, c) + f(b, c),
f(λa, b) = λf(a, b) f(a, λb) = λf(a, b).

We also say that the scalar product a · b = f(a, b) is a bilinear form on
R

2 ×R
2, that is a function from R

2 ×R
2 to R, since a · b = f(a, b) is a real

number for each pair of vectors a and b in R
2 and a · b = f(a, b) is linear

both in the variable (or argument) a and the variable b. Furthermore, the
scalar product a · b = f(a, b) is symmetric in the sense that

a · b = b · a or f(a, b) = f(b, a),

and positive definite, that is

a · a = |a|2 > 0 for a �= 0 = (0, 0).

We may summarize by saying that the scalar product a · b = f(a, b) is
a bilinear symmetric positive definite form on R

2 × R
2.

We notice that for the basis vectors e1 = (1, 0) and e2 = (0, 1), we have

e1 · e2 = 0, e1 · e1 = 1, e2 · e2 = 1.

Using these relations, we can compute the scalar product of two arbitrary
vectors a = (a1, a2) and b = (b1, b2) in R

2 using the linearity as follows:

a · b = (a1e1 + a2e2) · (b1e1 + b2e2)
= a1b1 e1 · e1 + a1b2 e1 · e2 + a2b1 e2 · e1 + a2b2 e2 · e2 = a1b1 + a2b2.

We may thus define the scalar product by its action on the basis vectors
and then extend it to arbitrary vectors using the linearity in each variable.

20.16 Geometric Interpretation
of the Scalar Product

We shall now prove that the scalar product a · b of two vectors a and b in
R

2 can be expressed as
a · b = |a||b| cos(θ), (20.8)
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where θ is the angle between the vectors a and b, see Fig. 20.13. This formula
has a geometric interpretation. Assuming that |θ| ≤ 90◦ so that cos(θ) is
positive, consider the right-angled triangle OAC shown in Fig. 20.13. The
length of the side OC is |a| cos(θ) and thus a·b is equal to the product of the
lengths of sides OC and OB. We will refer to OC as the projection of OA
onto OB, considered as vectors, and thus we may say that a · b is equal to
the product of the length of the projection of OA onto OB and the length
of OB. Because of the symmetry, we may also relate a · b to the projection
of OB onto OA, and conclude that a · b is also equal to the product of the
length of the projection of OB onto OA and the length of OA.

a
b

O

A
B

C
θ

Fig. 20.13. a · b = |a| |b| cos(θ)

To prove (20.8), we write using the polar representation

a = (a1, a2) = |a|(cos(α), sin(α)), b = (b1, b2) = |b|(cos(β), sin(β)),

where α is the angle of the direction of a and β is the angle of direction of b.
Using a basic trigonometric formula from Chapter Pythagoras and Euclid,
we see that

a · b = a1b1 + a2b2 = |a||b|(cos(α) cos(β) + sin(α) sin(β))
= |a||b| cos(α − β) = |a||b| cos(θ),

where θ = α − β is the angle between a and b. Note that since cos(θ) =
cos(−θ), we may compute the angle between a and b as α− β or β − α.

20.17 Orthogonality and Scalar Product

We say that two non-zero vectors a and b in R
2 are geometrically orthogonal,

which we write as a ⊥ b, if the angle between the vectors is 90◦ or 270◦,
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a

b

Fig. 20.14. Orthogonal vectors a and b

see Fig. 20.14. The basis vectors e1 and e2 are examples of geometrically
orthogonal vectors, see Fig. 20.12.

Let a and b be two non-zero vectors making an angle θ. From (20.8), we
have a · b = |a||b| cos(θ) and thus a · b = 0 if and only if cos(θ) = 0, that is,
if and only if θ = 90◦ or θ = 270◦. We have now proved the following basic
result, which we state as a theorem.

Theorem 20.2 Two non-zero vectors a and b are geometrically orthogonal
if and only if a · b = 0.

This result fits our experience in the chapter Pythagoras and Euclid,
where we saw that the angle OAB formed by two line segments extend-
ing from the origin O out to the points A = (a1, a2) and B = (b1, b2)
respectively is a right angle if and only if

a1b1 + a2b2 = 0.

Summing up, we have translated the geometric condition of two vectors
a = (a1, a2) and b = (b1, b2) being geometrically orthogonal to the algebraic
condition a · b = a1b1 + a2b2 = 0.

Below, in a more general context we will turn this around and define two
vectors a and b to be orthogonal if a · b = 0, where a · b is the scalar product
of a and b. We have just seen that this algebraic definition of orthogo-
nality may be viewed as an extension of our intuitive idea of geometric
orthogonality in R

2. This follows the basic principle of analytic geometry
of expressing geometrical relations in algebraic terms.

20.18 Projection of a Vector onto a Vector

The concept of projection is basic in linear algebra. We will now meet this
concept for the first time and will use it in many different contexts below.
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a
b

c

d

Fig. 20.15. Orthogonal decomposition of b

Let a = (a1, a2) and b = (b1, b2) be two non-zero vectors and consider
the following fundamental problem: Find vectors c and d such that c is
parallel to a, d is orthogonal to a, and c+d = b, see Fig. 20.15. We refer to
b = c + d as an orthogonal decomposition of b. We refer to the vector c as
the projection of b in the direction of a, or the projection of b onto a, and
we use the notation Pa(b) = c. We can then express the decomposition of b
as b = Pa(b)+ (b−Pa(b)), with c = Pa(b) and d = b−Pa(b). The following
properties of the decomposition are immediate:

Pa(b) = λa for some λ ∈ R,

(b − Pa(b)) · a = 0.

Inserting the first equation into the second, we get the equation (b − λa)·
a = 0 in λ, which we solve to get

λ =
b · a
a · a =

b · a
|a|2 ,

and conclude that the projection Pa(b) of b onto a is given by

Pa(b) =
b · a
|a|2 a. (20.9)

We compute the length of Pa(b) as

|Pa(b)| =
|a · b|
|a|2 |a| =

|a| |b| | cos(θ)|
|a| = |b|| cos(θ)|, (20.10)

where θ is the angle between a and b, and we use (20.8). We note that

|a · b| = |a| |Pb|, (20.11)

which conforms with our experience with the scalar product in Sect. 20.16,
see also Fig. 20.15.
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a
b

θ Pa(b)

|Pa(b)| = |b| | cos(θ)| = |b · a|/|a|

Fig. 20.16. The projection Pa(b) of b onto a

We can view the projection Pa(b) of the vector b onto the vector a as
a transformation of R

2 into R
2: given the vector b ∈ R

2, we define the
vector Pa(b) ∈ R

2 by the formula

Pa(b) =
b · a
|a|2 a. (20.12)

We write for short Pb = Pa(b), suppressing the dependence on a and the
parenthesis, and note that the mapping P : R

2 → R
2 defined by x → Px

is linear. We have

P (x+ y) = Px+ Py, P (λx) = λPx, (20.13)

for all x and y in R
2 and λ ∈ R (where we changed name of the independent

variable from b to x or y), see Fig. 20.17.
We note that P (Px) = Px for all x ∈ R

2. This could also be expressed
as P 2 = P , which is a characteristic property of a projection. Projecting
a second time doesn’t change anything!

We sum up:

Theorem 20.3 The projection x → Px = Pa(x) onto a given nonzero
vector a ∈ R

2 is a linear mapping P : R
2 → R

2 with the property that
PP = P .

Example 20.6. If a = (1, 3) and b = (5, 2), then Pa(b) = (1,3)·(5,2)
1+32 (1, 3) =

(1.1, 3.3).

20.19 Rotation by 90◦

We saw above that to find the orthogonal decomposition b = c+ d with c
parallel to a given vector a, it suffices to find c because d = b− c. Alterna-
tively, we could seek to first compute d from the requirement that it should
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a

x

λx

Px

P (λx) = λPx

Fig. 20.17. P (λx) = λPx

be orthogonal to a. We are thus led to the problem of finding a direction
orthogonal to a given direction, that is the problem of rotating a given
vector by 90◦, which we now address.

Given a vector a = (a1, a2) in R
2, a quick computation shows that the

vector (−a2, a1) has the desired property, because computing its scalar
product with a = (a1, a2) gives

(−a2, a1) · (a1, a2) = (−a2)a1 + a1a2 = 0,

and thus (−a2, a1) is orthogonal to (a1, a2). Further, it follows directly that
the vector (−a2, a1) has the same length as a.

Assuming that a = |a|(cos(α), sin(α)) and using the facts that − sin(α) =
cos(α+ 90◦) and cos(α) = sin(α+ 90◦), we see that the vector (−a2, a1) =
|a|(cos(α + 90◦), sin(α + 90◦)) is obtained by rotating the vector (a1, a2)
counter-clockwise 90◦, see Fig. 20.18. Similarly, the vector (a2,−a1) =
−(−a2, a1) is obtained by clockwise rotation of (a1, a2) by 90◦.

(a1, a2)

(−a2, a1)

Fig. 20.18. Counter-clockwise rotation of a = (a1, a2) by 90◦
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We may view the counter clockwise rotation of a vector by 90◦ as a trans-
formation of vectors: given a vector a = (a1, a2), we obtain another vector
a⊥ = f(a) through the formula

a⊥ = f(a) = (−a2, a1),

where we denoted the image of the vector a by both a⊥ and f(a). The
transformation a→ a⊥ = f(a) defines a linear function f : R

2 → R
2 since

f(a+ b) = (−(a2 + b2), a1 + b1) = (−a2, a1) + (−b2, b1) = f(a) + f(b),
f(λa) = (−λa2, λa1) = λ(−a2, a1) = λf(a).

To specify the action of a→ a⊥ = f(a) on an arbitrary vector a, it suffices
to specify the action on the basis vectors e1 and e2:

e⊥1 = f(e1) = (0, 1) = e2, e⊥2 = f(e2) = (−1, 0) = −e1,

since by linearity, we may compute

a⊥ = f(a) = f(a1e1 + a2e2) = a1f(e1) + a2f(e2)
= a1(0, 1) + a2(−1, 0) = (−a2, a1).

Example 20.7. Rotating the vector (1, 2) the angle 90◦ counter-clockwise,
we get the vector (−2, 1).

20.20 Rotation by an Arbitrary Angle θ

We now generalize to counter-clockwise rotation by an arbitrary angle θ.
Let a = |a|(cos(α), sin(α)) in R

2 be a given vector. We seek a vector Rθ(a)
in R

2 of equal length obtained by rotating a the angle θ counter-clockwise.
By the definition of the vector Rθ(a) as the vector a = |a|(cos(α), sin(α))
rotated by θ, we have

Rθ(a) = |a|(cos(α + θ), sin(α+ θ)).

Using the standard trigonometric formulas from Chapter Pythagoras and
Euclid,

cos(α+ θ) = cos(α) cos(θ) − sin(α) sin(θ),
sin(α+ θ) = sin(α) cos(θ) + cos(α) sin(θ),

we can write the formula for the rotated vector Rθ(a) as

Rθ(a) = (a1 cos(θ) − a2 sin(θ), a1 sin(θ) + a2 cos(θ)). (20.14)

We may view the counter-clockwise rotation of a vector by the angle θ as
a transformation of vectors: given a vector a = (a1, a2), we obtain another
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vector Rθ(a) by rotation by θ according to the above formula. Of course,
we may view this transformation as a function Rθ : R

2 → R
2. It is easy

to verify that this function is linear. To specify the action of Rθ on an
arbitrary vector a, it suffices to specify the action on the basis vectors e1
and e2,

Rθ(e1) = (cos(θ), sin(θ)), Rθ(e2) = (− sin(θ), cos(θ)).

The formula (20.14) may then be obtained using linearity,

Rθ(a) = Rθ(a1e1 + a2e2) = a1Rθ(e1) + a2Rθ(e2)
= a1(cos(θ), sin(θ)) + a2(− sin(θ), cos(θ))
= (a1 cos(θ) − a2 sin(θ), a1 sin(θ) + a2 cos(θ)).

Example 20.8. Rotating the vector (1, 2) the angle 30◦, we obtain the
vector (cos(30◦) − 2 sin(30◦), sin(30◦) + 2 cos(30◦)) = (

√
3

2 − 1, 1
2 +

√
3).

20.21 Rotation by θ Again!

We present yet another way to arrive at (20.14) based on the idea that the
transformation Rθ : R

2 → R
2 of counter-clockwise rotation by θ is defined

by the following properties,

(i) |Rθ(a)| = |a|, and (ii) Rθ(a) · a = cos(θ)|a|2. (20.15)

Property (i) says that rotation preserves the length and (ii) connects the
change of direction to the scalar product. We now seek to determine Rθ(a)
from (i) and (ii). Given a ∈ R

2, we set a⊥ = (−a2, a1) and express Rθ(a) as
Rθ(a) = αa+βa⊥ with appropriate real numbers α and β. Taking the scalar
product with a and using a · a⊥ = 0, we find from (ii) that α = cos(θ).
Next, (i) states that |a|2 = |Rθ(a)|2 = (α2 + β2)|a|2, and we conclude
that β = ± sin(θ) and thus finally β = sin(θ) using the counter-clockwise
orientation. We conclude that

Rθ(a) = cos(θ)a+ sin(θ)a⊥ = (a1 cos(θ) − a2 sin(θ), a1 sin(θ) + a2 cos(θ)),

and we have recovered (20.14).

20.22 Rotating a Coordinate System

Suppose we rotate the standard basis vectors e1 = (1, 0) and e2 = (0, 1)
counter-clockwise the angle θ to get the new vectors ê1 = cos(θ)e1+sin(θ)e2
and ê2 = − sin(θ)e1 +cos(θ)e2. We may use ê1 and ê2 as an alternative co-
ordinate system, and we may seek the connection between the coordinates
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of a given vector (or point) in the old and new coordinate system. Letting
(a1, a2) be the coordinates in the standard basis e1 and e2, and (â1, â2) the
coordinates in the new basis ê1 and ê2, we have

a1e1 + a2e2 = â1ê1 + â2ê2

= â1(cos(θ)e1 + sin(θ)e2) + â2(− sin(θ)e1 + cos(θ)e2)
= (â1 cos(θ) − â2 sin(θ))e1 + (â1 sin(θ) + â2 cos(θ))e2,

so the uniqueness of coordinates with respect to e1 and e2 implies

a1 = cos(θ)â1 − sin(θ)â2,

a2 = sin(θ)â1 + cos(θ)â2.
(20.16)

Since e1 and e2 are obtained by rotating ê1 and ê2 clockwise by the angle θ,

â1 = cos(θ)a1 + sin(θ)a2,

â2 = − sin(θ)a1 + cos(θ)a2.
(20.17)

The connection between the coordinates with respect to the two coordinate
systems is thus given by (20.16) and (20.17).

Example 20.9. Rotating 45◦ counter-clockwise gives the following relation
between new and old coordinates

â1 =
1√
2
(a1 + a2), â2 =

1√
2
(−a1 + a2).

20.23 Vector Product

We now define the vector product a × b of two vectors a = (a1, a2) and
b = (b1, b2) in R

2 by the formula

a× b = a1b2 − a2b1. (20.18)

The vector product a× b is also referred to as the cross product because of
the notation used (don’t mix up with the “×” in the “product set” R

2×R
2

which has a different meaning). The vector product or cross product may
be viewed as a function R

2 × R
2 → R. This function is bilinear as is easy

to verify, and anti-symmetric, that is

a× b = −b× a, (20.19)

which is a surprising property for a product.
Since the vector product is bilinear, we can specify the action of the

vector product on two arbitrary vectors a and b by specifying the action
on the basis vectors,

e1 × e1 = 0, e2 × e2 = 0, e1 × e2 = 1, e2 × e1 = −1. (20.20)
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Using these relations,

a× b = (a1e1 + a2e2) × (b1e1 + b2e2) = a1b2e1 × e2 + a2b1e2 × e1

= a1b2 − a2b1e2.

We next show that the properties of bilinearity and anti-symmetry in
fact determine the vector product in R

2 up to a constant. First note that
anti-symmetry and bilinearity imply

e1 × e1 + e1 × e2 = e1 × (e1 + e2) = −(e1 + e2) × e1

= −e1 × e1 − e2 × e1.

Since e1 × e2 = −e2 × e1, we have e1 × e1 = 0. Similarly, we see that
e2× e2 = 0. We conclude that the action of the vector product on the basis
vectors is indeed specified according to (20.20) up to a constant.

We next observe that

a× b = (−a2, a1) · (b1, b2) = a1b2 − a2b1,

which gives a connection between the vector product a× b and the scalar
product a⊥ ·b with the 90◦ counter-clockwise rotated vector a⊥ = (−a2, a1).
We conclude that the vector product a × b of two nonzero vectors a and
b is zero if and only if a and b are parallel. We state this basic result as
a theorem.

Theorem 20.4 Two nonzero vectors a and b are parallel if and only if
a× b = 0.

We can thus check if two non-zero vectors a and b are parallel by check-
ing if a× b = 0. This is another example of translating a geometric condi-
tion (two vectors a and b being parallel) into an algebraic condition
(a× b = 0).

We now squeeze more information from the relation a×b = a⊥·b assuming
that the angle between a and b is θ and thus the angle between a⊥ and b
is θ + 90◦:

|a× b| =
∣
∣a⊥ · b

∣
∣ =

∣
∣a⊥

∣
∣ |b|

∣
∣
∣cos

(
θ +

π

2

)∣
∣
∣

= |a| |b| | sin(θ)|,

where we use |a⊥| = |a| and | cos(θ ± π/2)| = | sin(θ)|. Therefore,
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|a× b| = |a||b|| sin(θ)|, (20.21)

where θ = α− β is the angle between a and b, see Fig. 20.19.

a

b
θ

(−a2, a1)

Fig. 20.19. Why |a× b| = |a| |b| | sin(θ)|

We can make the formula (20.21) more precise by removing the absolute
values around a×b and the sine factor if we adopt a suitable sign convention.
This leads to the following more developed version of (20.21), which we
state as a theorem, see Fig. 20.20.

a

b
θ

Fig. 20.20. a× b = |a| |b| sin(θ) is negative here because the angle θ is negative

Theorem 20.5 For two non-zero vectors a and b,

a× b = |a||b| sin(θ), (20.22)

where θ is the angle between a and b counted positive counter-clockwise and
negative clockwise starting from a.
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20.24 The Area of a Triangle with a Corner
at the Origin

Consider a triangle OAB with corners at the origin O and the points A =
(a1, a2) and B = (b1, b2) formed by the vectors a = (a1, a2) and b = (b1, b2),
see Fig. 20.21. We say that the triangle OAB is spanned by the vectors a
and b. We are familiar with the formula that states that the area of this
triangle can be computed as the base |a| times the height |b|| sin(θ)| times
the factor 1

2 , where θ is the angle between a and b, see Fig. 20.21. Recalling
(20.21), we conclude

Theorem 20.6

Area(OAB) =
1
2
|a| |b| | sin(θ)| =

1
2
|a× b|.

θ
a

b

A

B

O

|b| sin(θ)

Fig. 20.21. The vectors a and b span a triangle with area 1
2
|a× b|

The area of the triangle OAB can be computed using the vector product
in R

2.

20.25 The Area of a General Triangle

Consider a triangle CAB with corners at the points C = (c1, c2), A =
(a1, a2) and B = (b1, b2). We consider the problem of computing the area
of the triangle CAB. We solved this problem above in the case C = O
where O is the origin. We may reduce the present case to that case by
changing coordinate system as follows. Consider a new coordinate system
with origin at C = (c1, c2) and with a x̂1-axis parallel to the x1-axis and a
x̂2-axis parallel to the x2-axis, see Fig. 20.22.
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O
x1

x2

x̂1

x̂2

a−c

b−c

C = (c1, c2)

A = (a1, a2)

B = (b1, b2)

θ

Fig. 20.22. Vectors a− c and b− c span triangle with area 1
2
|(a− c) × (b− c)|

Letting (â1, â2) denote the coordinates with respect to the new coordi-
nate system, the new are related to the old coordinates by

â1 = a1 − c1, â2 = a2 − c2.

The coordinates of the points A, B and C in the new coordinate system
are thus (a1 − c1, a2− c2) = a− c, (b1− c1, b2− c2) = b− c and (0, 0). Using
the result from the previous section, we find the area of the triangle CAB
by the formula

Area(CAB) =
1
2
|(a− c) × (b − c)| . (20.23)

Example 20.10. The area of the triangle with coordinates at A = (2, 3),
B = (−2, 2) and C = (1, 1), is given by Area(CAB) = 1

2 |(1, 2)× (−3, 1)| =
7
2 .

20.26 The Area of a Parallelogram Spanned
by Two Vectors

The area of the parallelogram spanned by a and b, as shown in Fig. 20.23,
is equal to |a × b| since the area of the parallelogram is twice the area of
the triangle spanned by a and b. Denoting the area of the parallelogram
spanned by the vectors a and b by V (a, b), we thus have the formula

V (a, b) = |a× b|. (20.24)

This is a fundamental formula which has important generalizations to R
3

and R
n.
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a

b

θ

|b| sin(θ)

Fig. 20.23. The vectors a and b span a rectangle with area |a×b| = |a| |b| sin(θ)|

20.27 Straight Lines

The points x = (x1, x2) in the plane R
2 satisfying a relation of the form

n1x1 + n2x2 = n · x = 0, (20.25)

where n = (n1, n2) ∈ R
2 is a given non-zero vector, form a straight line

through the origin that is orthogonal to (n1, n2), see Fig. 20.24. We say
that (n1, n2) is a normal to the line. We can represent the points x ∈ R

2

on the line in the form
x = sn⊥, s ∈ R,

where n⊥ = (−n2, n1) is orthogonal to n, see Fig. 20.24. We state this
insight as a theorem because of its importance.

x

n n

x1 x2

x2x2

n⊥ x = sn⊥

Fig. 20.24. Vectors x = sa with b orthogonal to a given vector n generate a line
through the origin with normal a
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Theorem 20.7 A line in R
2 passing through the origin with normal n ∈

R
2, may be expressed as either the points x ∈ R

2 satisfying n · x = 0, or
the set of points of the form x = sn⊥ with n⊥ ∈ R

2 orthogonal to n and
s ∈ R.

Similarly, the set of points (x1, x2) in R
2 such that

n1x1 + n2x2 = d, (20.26)

where n = (n1, n2) ∈ R
2 is a given non-zero vector and d is a given constant,

represents a straight line that does not pass through the origin if d �= 0.
We see that n is a normal to the line, since if x and x̂ are two points on the
line then (x− x̂) · n = d− d = 0, see Fig. 20.25. We may define the line as
the points x = (x1, x2) in R

2, such that the projection n·x
|n|2n of the vector

x = (x1, x2) in the direction of n is equal to d
|n|2n. To see this, we use the

definition of the projection and the fact n · x = d.

O x1

x2

n

n⊥

x̂

x = (x1, x2)

Fig. 20.25. The line through the point x̂ with normal n generated by directional
vector a

The line in Fig. 20.24 can also be represented as the set of points

x = x̂+ sn⊥ s ∈ R,

where x̂ is any point on the line (thus satisfying n · x̂ = d). This is because
any point x of the form x = sn⊥ + x̂ evidently satisfies n · x = n · x̂ = d.
We sum up in the following theorem.

Theorem 20.8 The set of points x ∈ R
2 such that n ·x = d, where n ∈ R

2

is a given non-zero vector and d is given constant, represents a straight line
in R

2. The line can also be expressed in the form x = x̂ + sn⊥ for s ∈ R,
where x̂ ∈ R

2 is a point on the line.

Example 20.11. The line x1 + 2x2 = 3 can alternatively be expressed as
the set of points x = (1, 1) + s(−2, 1) with s ∈ R.
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20.28 Projection of a Point onto a Line

Let n · x = d represent a line in R
2 and let b be a point in R

2 that does
not lie on the line. We consider the problem of finding the point Pb on the
line which is closest to b, see Fig. 20.27. This is called the projection of the
point b onto the line. Equivalently, we seek a point Pb on the line such that
b− Pb is orthogonal to the line, that is we seek a point Pb such that

n · Pb = d (Pb is a point on the line),
b− Pb is parallel to the normal n, (b − Pb = λn, for some λ ∈ R).

We conclude that Pb = b − λn and the equation n · Pb = d thus gives
n · (b− λn) = d, that is λ = b·n−d

|n|2 and so

Pb = b− b · n− d

|n|2 n. (20.27)

If d = 0, that is the line n · x = d = 0 passes through the origin, then (see
Problem 20.26)

Pb = b− b · n
|n|2 n. (20.28)

20.29 When Are Two Lines Parallel?

Let
a11x1 + a12x2 = b1,
a21x1 + a22x2 = b2,

be two straight lines in R
2 with normals (a11, a12) and (a21, a22). How do

we know if the lines are parallel? Of course, the lines are parallel if and
only if their normals are parallel. From above, we know the normals are
parallel if and only if

(a11, a12) × (a21, a22) = a11a22 − a12a21 = 0,

and consequently non-parallel (and consequently intersecting at some
point) if and only if

(a11, a12) × (a21, a22) = a11a22 − a12a21 �= 0, (20.29)

Example 20.12. The two lines 2x1 + 3x2 = 1 and 3x1 + 4x2 = 1 are
non-parallel because 2 · 4 − 3 · 3 = 8 − 9 = −1 �= 0.
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20.30 A System of Two Linear Equations
in Two Unknowns

If a11x1 + a12x2 = b1 and a21x1 + a22x2 = b2 are two straight lines in R
2

with normals (a11, a12) and (a21, a22), then their intersection is determined
by the system of linear equations

a11x1 + a12x2 = b1,
a21x1 + a22x2 = b2,

(20.30)

which says that we seek a point (x1, x2) ∈ R
2 that lies on both lines. This

is a system of two linear equations in two unknowns x1 and x2, or a 2× 2-
system. The numbers aij , i, j = 1, 2 are the coefficients of the system and
the numbers bi, i = 1, 2, represent the given right hand side.

If the normals (a11, a12) and (a21, a22) are not parallel or by (20.29),
a11a22 − a12a21 �= 0, then the lines must intersect and thus the system
(20.30) should have a unique solution (x1, x2). To determine x1, we multiply
the first equation by a22 to get

a11a22x1 + a12a22x2 = b1a22.

We then multiply the second equation by a12, to get

a21a12x1 + a22a12x2 = b2a12.

Subtracting the two equations the x2-terms cancel and we get the following
equation containing only the unknown x1,

a11a22x1 − a21a12x1 = b1a22 − b2a12.

Solving for x1, we get

x1 = (a22b1 − a12b2)(a11a22 − a12a21)−1.

Similarly to determine x2, we multiply the first equation by a21 and sub-
tract the second equation multiplied by a11, which eliminates a1. Alto-
gether, we obtain the solution formula

x1 = (a22b1 − a12b2)(a11a22 − a12a21)−1, (20.31a)

x2 = (a11b2 − a21b1)(a11a22 − a12a21)−1. (20.31b)

This formula gives the unique solution of (20.30) under the condition
a11a22 − a12a21 �= 0.

We can derive the solution formula (20.31) in a different way, still assum-
ing that a11a22 − a12a21 �= 0. We define a1 = (a11, a21) and a2 = (a12, a22),
noting carefully that here a1 and a2 denote vectors and that a1 × a2 =
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a11a22 − a12a21 �= 0, and rewrite the two equations of the system (20.30)
in vector form as

x1a1 + x2a2 = b. (20.32)

Taking the vector product of this equation with a2 and a1 and using a2 ×
a2 = a1 × a1 = 0,

x1a1 × a2 = b× a2, x2a2 × a1 = b× a1.

Since a1 × a2 �= 0,

x1 =
b× a2

a1 × a2
, x2 =

b× a1

a2 × a1
= − b× a1

a1 × a2
, (20.33)

which agrees with the formula (20.31) derived above.
We conclude this section by discussing the case when a1 × a2 = a11a22 −

a12a21 = 0, that is the case when a1 and a2 are parallel or equivalently the
two lines are parallel. In this case, a2 = λa1 for some λ ∈ R and the system
(20.30) has a solution if and only if b2 = λb1, since then the second equation
results from multiplying the first by λ. In this case there are infinitely many
solutions since the two lines coincide. In particular if we choose b1 = b2 = 0,
then the solutions consist of all (x1, x2) such that a11x1 +a12x2 = 0, which
defines a straight line through the origin. On the other hand if b2 �= λb1,
then the two equations represent two different parallel lines that do not
intersect and there is no solution to the system (20.30).

We summarize our experience from this section on systems of 2 linear
equations in 2 unknowns as follows:

Theorem 20.9 The system of linear equations x1a1 + x2a2 = b, where
a1, a2 and b are given vectors in R

2, has a unique solution (x1, x2) given by
(20.33) if a1 × a2 �= 0. In the case a1 × a2 = 0, the system has no solution
or infinitely many solutions, depending on b.

Below we shall generalize this result to systems of n linear equations in n
unknowns, which represents one of the most basic results of linear algebra.

Example 20.13. The solution to the system

x1 + 2x2 = 3,
4x1 + 5x2 = 6,

is given by

x1 =
(3, 6) × (2, 5)
(1, 4) × (2, 5)

=
3
−3

= −1, x2 = − (3, 6) × (1, 4)
(1, 4) × (2, 5)

= − 6
−3

= 2.
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20.31 Linear Independence and Basis

We saw above that the system (20.30) can be written in vector form as

x1a1 + x2a2 = b,

where b = (b1, b2), a1 = (a11, a21) and a2 = (a12, a22) are all vectors in R
2,

and x1 and x2 real numbers. We say that

x1a1 + x2a2,

is a linear combination of the vectors a1 and a2, or a linear combination
of the set of vectors {a1, a2}, with the coefficients x1 and x2 being real
numbers. The system of equations (20.30) expresses the right hand side
vector b as a linear combination of the set of vectors {a1, a2} with the
coefficients x1 and x2. We refer to x1 and x2 as the coordinates of b with
respect to the set of vectors {a1, a2}, which we may write as an ordered
pair (x1, x2).

The solution formula (20.33) thus states that if a1 × a2 �= 0, then an
arbitrary vector b in R

2 can be expressed as a linear combination of the
set of vectors {a1, a2} with the coefficients x1 and x2 being uniquely deter-
mined. This means that if a1 × a2 �= 0, then the the set of vectors {a1, a2}
may serve as a basis for R

2, in the sense that each vector b in R
2 may be

uniquely expressed as a linear combination b = x1a1+x2a2 of the set of vec-
tors {a1, a2}. We say that the ordered pair (x1, x2) are the coordinates of b
with respect to the basis {a1, a2}. The system of equations b = x1a1 +x2a2

thus give the coupling between the coordinates (b1, b2) of the vector b in
the standard basis, and the coordinates (x1, x2) with respect to the basis
{a1, a2}. In particular, if b = 0 then x1 = 0 and x2 = 0.

Conversely if a1×a2 = 0, that is a1 and a2 are parallel, then any nonzero
vector b orthogonal to a1 is also orthogonal to a2 and b cannot be expressed
as b = x1a1+x2a2. Thus, if a1×a2 = 0 then {a1, a2} cannot serve as a basis.
We have now proved the following basic theorem:

Theorem 20.10 A set {a1, a2} of two non-zero vectors a1 and a2 may
serve as a basis for R

2 if and only if if a1 × a2 �= 0. The coordinates
(b1, b2) of a vector b in the standard basis and the coordinates (x1, x2) of b
with respect to a basis {a1, a2} are related by the system of linear equations
b = x1a1 + x2a2.

Example 20.14. The two vectors a1 = (1, 2) and a2 = (2, 1) (expressed in
the standard basis) form a basis for R

2 since a1 × a2 = 1 − 4 = −3. Let
b = (5, 4) in the standard basis. To express b in the basis {a1, a2}, we seek
real numbers x1 and x2 such that b = x1a1 + x2a2, and using the solution
formula (20.33) we find that x1 = 1 and x2 = 2. The coordinates of b with
respect to the basis {a1, a2} are thus (1, 2), while the coordinates of b with
respect to the standard basis are (5, 4).
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We next introduce the concept of linear independence, which will play
an important role below. We say that a set {a1, a2} of two non-zero vectors
a1 and a2 two non-zero vectors a1 and a2 in R

2 is linearly independent if
the system of equations

x1a1 + x2a2 = 0

has the unique solution x1 = x2 = 0. We just saw that if a1 × a2 �= 0, then
a1 and a2 are linearly independent (because b = (0, 0) implies x1 = x2 = 0).
Conversely if a1 × a2 = 0, then a1 and a2 are parallel so that a1 = λa2 for
some λ �= 0, and then there are many possible choices of x1 and x2, not
both equal to zero, such that x1a1 + x2a2 = 0, for example x1 = −1 and
x2 = λ. We have thus proved:

Theorem 20.11 The set {a1, a2} of non-zero vectors a1 and a2 is linearly
independent if and only if a1 × a2 �= 0.

x1

x2

c1
c2

c = 0.73c1 + 1.7c2

Fig. 20.26. Linear combination c of two linearly independent vectors c1 and c2

20.32 The Connection to Calculus in One Variable

We have discussed Calculus of real-valued functions y = f(x) of one real
variable x ∈ R, and we have used a coordinate system in R

2 to plot graphs
of functions y = f(x) with x and y representing the two coordinate axis.
Alternatively, we may specify the graph as the set of points (x1, x2) ∈ R

2,
consisting of pairs (x1, x2) of real numbers x1 and x2, such that x2 = f(x1)
or x2 − f(x1) = 0 with x1 representing x and x2 representing y. We refer
to the ordered pair (x1, x2) ∈ R

2 as a vector x = (x1, x2) with components
x1 and x2.

We have also discussed properties of linear functions f(x) = ax + b,
where a and b are real constants, the graphs of which are straight lines
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x2 = ax1 + b in R
2. More generally, a straight line in R

2 is the set of points
(x1, x2) ∈ R

2 such that x1a1 + x2a2 = b, where the a1, a2 and b are real
constants, with a1 �= 0 and/or a2 �= 0. We have noticed that (a1, a2) may
be viewed as a direction in R

2 that is perpendicular or normal to the line
a1x1 + a2x2 = b, and that (b/a1, 0) or (0, b/a2) are the points where the
line intersects the x1-axis and the x2-axis respectively.

20.33 Linear Mappings f : R
2 → R

A function f : R
2 → R is linear if for any x = (x1, x2) and y = (y1, y2) in

R
2 and any λ in R,

f(x+ y) = f(x) + f(y) and f(λx) = λf(x). (20.34)

Setting c1 = f(e1) ∈ R and c2 = f(e2) ∈ R, where e1 = (1, 0) and e2 =
(0, 1) are the standard basis vectors in R

2, we can represent f : R
2 → R as

follows:
f(x) = x1c1 + x2c2 = c1x1 + c2x2,

where x = (x1, x2) ∈ R
2. We also refer to a linear function as a linear

mapping.

Example 20.15. The function f(x1, x2) = x1+3x2 defines a linear mapping
f : R

2 → R.

20.34 Linear Mappings f : R
2 → R

2

A function f : R
2 → R

2 taking values f(x) = (f1(x), f2(x)) ∈ R
2 is linear

if the component functions f1 : R
2 → R and f2 : R

2 → R are linear. Setting
a11 = f1(e1), a12 = f1(e2), a21 = f2(e1), a22 = f2(e2), we can represent
f : R

2 → R
2 as f(x) = (f1(x), f2(x)), where

f1(x) = a11x1 + a12x2, (20.35a)
f2(x) = a21x1 + a22x2, (20.35b)

and the aij are real numbers.
A linear mapping f : R

2 → R
2 maps (parallel) lines onto (parallel) lines

since for x = x̂+ sb and f linear, we have f(x) = f(x̂+ sb) = f(x̂)+ sf(b),
see Fig. 20.27.

Example 20.16. The function f(x1, x2) = (x1 + 3x2, 2x1 − x3) defines
a linear mapping R

2 → R
2.
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x1

x2

y1

y2

x = s b

x = x̂+ s b

y = sf(b)

y = f(x̂) + sf(b)

Fig. 20.27. A linear mapping f : R
2 → R

2 maps (parallel) lines to (parallel)
lines, and consequently parallelograms to parallelograms

20.35 Linear Mappings and Linear Systems
of Equations

Let a linear mapping f : R
2 → R

2 and a vector b ∈ R
2 be given. We

consider the problem of finding x ∈ R
2 such that

f(x) = b.

Assuming f(x) is represented by (20.35), we seek x ∈ R
2 satisfying the

2 × 2 linear system of equations

a11x1 + a12x2 = b1, (20.36a)
a21x1 + a22x2 = b2, (20.36b)

where the coefficients aij and the coordinates bi of the right hand side are
given.

20.36 A First Encounter with Matrices

We write the left hand side of (20.36) as follows:
(
a11 a12

a21 a22

)(
x1

x2

)

=
(
a11x1 + a12x2

a21x1 + a22x2

)

. (20.37)

The quadratic array (
a11 a12

a21 a22

)

is called a 2 × 2 matrix. We can view this matrix to consist of two rows
(
a11 a12

)
and

(
a21 a22,

)
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or two columns (
a11

a21

)

and
(
a12

a22

)

.

Each row may be viewed as a 1 × 2 matrix with 1 horizontal array with 2
elements and each column may be viewed as a 2× 1 matrix with 1 vertical
array with 2 elements. In particular, the array

(
x1

x2

)

may be viewed as a 2×1 matrix. We also refer to a 2×1 matrix as a 2-column
vector, and a 1 × 2 matrix as a 2-row vector. Writing x = (x1, x2) we may
view x as a 1× 2 matrix or 2-row vector. Using matrix notation, it is most
natural to view x = (x1, x2) as a 2-column vector.

The expression (20.37) defines the product of a 2× 2 matrix and a 2× 1
matrix or a 2-column vector. The product can be interpreted as

(
a11 a12

a21 a22

)(
x1

x2

)

=
(
c1 · x
c2 · x

)

(20.38)

where we interpret r1 = (a11, a12) and r2 = (a21, a22) as the two ordered
pairs corresponding to the two rows of the matrix and x is the ordered pair
(x1, x2). The matrix-vector product is given by

(
a11 a12

a21 a22

)(
x1

x2

)

(20.39)

i.e. by taking the scalar product of the ordered pairs r1 and r2 corresponding
to the 2-row vectors of the matrix with the order pair corresponding to the

2-column vector x =
(
x1

x2

)

.

Writing

A =
(
a11 a12

a21 a22

)

and x =
(
x1

x2

)

and b =
(
b1
b2

)

, (20.40)

we can phrase the system of equations (20.36) in condensed form as the
following matrix equation:

Ax = b, or
(
a11 a12

a21 a22

)(
x1

x2

)

=
(
b1
b2

)

.

We have now got a first glimpse of matrices including the basic operation
of multiplication of a 2× 2-matrix with a 2× 1 matrix or 2-column vector.
Below we will generalize to a calculus for matrices including addition of
matrices, multiplication of matrices with a real number, and multiplication
of matrices. We will also discover a form of matrix division referred to
as inversion of matrices allowing us to express the solution of the system
Ax = b as x = A−1b, under the condition that the columns (or equivalently,
the rows) of A are linearly independent.
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20.37 First Applications of Matrix Notation

To show the usefulness of the matrix notation just introduced, we rewrite
some of the linear systems of equations and transformations which we have
met above.

Rotation by θ

The mapping Rθ : R
2 → R

2 corresponding to rotation of a vector by an
angle θ is given by (20.14), that is

Rθ(x) = (x1 cos(θ) − x2 sin(θ), x1 sin(θ) + x2 cos(θ)). (20.41)

Using matrix notation, we can write Rθ(x) as follows

Rθ(x) = Ax =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
x1

x2

)

,

where A thus is the 2 × 2 matrix

A =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)

. (20.42)

Projection Onto a Vector a

The projection Pa(x) = x·a
|a|2 a given by (20.9) of a vector x ∈ R

2 onto
a given vector a ∈ R

2 can be expressed in matrix form as follows:

Pa(x) = Ax =
(
a11 a12

a21 a22

)(
x1

x2

)

,

where A is the 2 × 2 matrix

A =

(
a2
1

|a|2
a1a2
|a|2

a1a2
|a|2

a2
2

|a|2

)

. (20.43)

Change of Basis

The linear system (20.17) describing a change of basis can be written in
matrix form as

(
x̂1

x̂2

)

=
(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)(
x1

x2

)

,

or in condensed from as x̂ = Ax, where A is the matrix

A =
(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)

and x and x̂ are 2-column vectors.
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20.38 Addition of Matrices

Let A be a given 2 × 2 matrix with elements aij , i, j = 1, 2, that is

A =
(
a11 a12

a21 a22

)

.

We write A = (aij). Let B = (bij) be another 2 × 2 matrix. We define the
sum C = A + B to be the matrix C = (cij) with elements cij = aij + bij
for i, j = 1, 2. In other words, we add two matrices element by element:

A+B =
(
a11 a12

a21 a22

)

+
(
b11 b12
b21 b22

)

=
(
a11 + b11 a12 + b12
a21 + b21 a22 + b22

)

= C.

20.39 Multiplication of a Matrix by a Real Number

Given a 2× 2 matrix A with elements aij , i, j = 1, 2, and a real number λ,
we define the matrix C = λA as the matrix with elements cij = λaij . In
other words, all elements aij are multiplied by λ:

λA = λ

(
a11 a12

a21 a22

)

=
(
λa11 λa12

λa21 λa22

)

= C.

20.40 Multiplication of Two Matrices

Given two 2× 2 matrices A = (aij) and B = (bij) with elements, we define
the product C = AB as the matrix with elements cij given by

cij =
2∑

k=1

aikbkj .

Writing out the sum, we have

AB =
(
a11 a12

a21 a22

)(
b11 b12
b21 b22

)

=
(
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

)

= C.

In other words, to get the element cij of the product C = AB, we take the
scalar product of row i of A with column j of B.

The matrix product is generally non-commutative so that AB �= BA
most of the time.
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We say that in the product AB the matrix A multiplies the matrix B
from the left and that B multiplies the matrix A from the right. Non-
commutativity of matrix multiplication means that multiplication from
right or left may give different results.

Example 20.17. We have
(

1 2
1 1

)(
1 3
1 1

)

=
(

3 5
2 4

)

, while
(

1 3
1 1

)(
1 2
1 1

)

=
(

4 5
2 3

)

.

Example 20.18. We compute BB = B2, where B is the projection matrix
given by (20.43), that is

B =

(
a2
1

|a|2
a1a2
|a|2

a1a2
|a|2

a2
2

|a|2

)

=
1

|a|2

(
a2
1 a1a2

a1a2 a2
2

)

.

We have

BB =
1

|a|4

(
a2
1 a1a2

a1a2 a2
2

)(
a2
1 a1a2

a1a2 a2
2

)

=
1

|a|4

(
a2
1(a

2
1 + a2

2) a1a2(a2
1 + a2

2)
a1a2(a2

1 + a2
2) a2

2(a
2
1 + a2

2)

)

=
1

|a|2

(
a2
1 a1a2

a1a2 a2
2

)

= B,

and see as expected that BB = B.

Example 20.19. As another application we compute the product of two
matrices corresponding to two rotations with angles α and β:

A =
(

cos(α) − sin(α)
sin(α) cos(α)

)

and B =
(

cos(β) − sin(β)
sin(β) cos(β)

)

. (20.44)

We compute

AB =
(

cos(α) − sin(α)
sin(α) cos(α)

)(
cos(β) − sin(β)
sin(β) cos(β)

)

(
cos(α) cos(β) − sin(α) sin(β) − cos(α) sin(β) − sin(α) cos(β)
cos(α) sin(β) + sin(α) cos(β) cos(α) cos(β) − sin(α) sin(β)

)

=
(

cos(α+ β) − sin(α+ β)
sin(α+ β) cos(α+ β)

)

,

where again we have used the formulas for cos(α + β) and sin(α + β)
from Chapter Pythagoras and Euclid. We conclude as expected that two
successive rotations of angles α and β corresponds to a rotation of angle
α+ β.
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20.41 The Transpose of a Matrix

Given a 2 × 2 matrix A with elements aij , we define the transpose of A
denoted by A	 as the matrix C = A	 with elements c11 = a11, c12 = a21,
c21 = a12, c22 = a22. In other words, the rows of A are the columns of A	

and vice versa. For example

if A =
(

1 2
3 4

)

then A	 =
(

1 3
2 4

)

.

Of course (A	)	 = A. Transposing twice brings back the original matrix.
We can directly check the validity of the following rules for computing with
the transpose:

(A+B)	 = A	 +B	, (λA)	 = λA	,

(AB)	 = B	A	.

20.42 The Transpose of a 2-Column Vector

The transpose of a 2-column vector is the row vector with the same ele-
ments:

if x =
(
x1

x2

)

, then x	 =
(
x1 x2

)
.

We may define the product of a 1×2 matrix (2-row vector) x	 with a 2×1
matrix (2-column vector) y in the natural way as follows:

x	y =
(
x1 x2

)
(
y1
y2

)

= x1y1 + x2y2.

In particular, we may write

|x|2 = x · x = x	x,

where we interpret x as an ordered pair and as a 2-column vector.

20.43 The Identity Matrix

The 2 × 2 matrix (
1 0
0 1

)

is called the identity matrix and is denoted by I. We have IA = A and
AI = A for any 2 × 2 matrix A.
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20.44 The Inverse of a Matrix

Let A be a 2 × 2 matrix with elements aij with a11a22 − a12a21 �= 0. We
define the inverse matrix A−1 by

A−1 =
1

a11a22 − a12a21

(
a22 −a12

−a21 a11

)

. (20.45)

We check by direct computation that A−1A = I and that AA−1 = I, which
is the property we ask an “inverse” to satisfy. We get the first column of
A−1 by using the solution formula (20.31) with b = (1, 0) and the second
column choosing b = (0, 1).

The solution to the system of equations Ax = b can be written as x =
A−1b, which we obtain by multiplying Ax = b from the left by A−1.

We can directly check the validity of the following rules for computing
with the inverse:

(λA)−1 = λA−1

(AB)−1 = B−1A−1.

20.45 Rotation in Matrix Form Again!

We have seen that a rotation of a vector x by an angle θ into a vector y
can be expressed as y = Rθx with Rθ being the rotation matrix:

Rθ =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)

(20.46)

We have also seen that two successive rotations by angles α and β can be
written as

y = RβRαx, (20.47)

and we have also shown that RβRα = Rα+β . This states the obvious fact
that two successive rotations α and β can be performed as one rotation
with angle α+ β.

We now compute the inverse R−1
θ of a rotation Rθ using (20.45),

R−1
θ =

1
cos(θ)2 + sin(θ)2

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)

=
(

cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

)

(20.48)

where we use cos(α) = cos(−α), sin(α) = − sin(−α). We see that R−1
θ =

R−θ, which is one way of expressing the (obvious) fact that the inverse of
a rotation by θ is a rotation by −θ.
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We observe that R−1
θ = R	

θ with R	
θ the transpose of Rθ, so that in

particular
RθR

	
θ = I. (20.49)

We use this fact to prove that the length of a vector is not changed by
rotation. If y = Rθx, then

|y|2 = yT y = (Rθx)	(Rθx) = x	R	
θ Rθx = x	x = |x|2. (20.50)

More generally, the scalar product is preserved after the rotation. If y =
Rθx and ŷ = Rθx̂, then

y · ŷ = (Rθx)	(Rθx̂) = x	R	
θ Rθx̂ = x · x̂. (20.51)

The relation (20.49) says that the matrix Rθ is orthogonal. Orthogonal
matrices play an important role, and we will return to this topic below.

20.46 A Mirror in Matrix Form

Consider the linear transformation 2P − I, where Px = a·x
|a|2 a is the projec-

tion onto the non-zero vector a ∈ R
2, that is onto the line x = sa through

the origin. In matrix form, this can be expressed as

2P − I =
2

|a|2

(
a2
1 − 1 a1a2

a2a1 a2
2 − 1

)

.

After some reflection(!), looking at Fig. 20.28, we understand that the trans-
formation I + 2(P − I) = 2P − I maps a point x into its mirror image in
the line through the origin with direction a.

a

x Px−x

Fig. 20.28. The mapping 2P − I maps points to its mirror point relative to the
given line
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To see if 2P − I preserves scalar products, we assume that y = (2P − I)x
and ŷ = (2P − I)x̂ and compute:

y · ŷ = ((2P − I)x)	(2P − I)x̂ = x	(2P	 − I)(2P − I)x̂ = (20.52)
x	(4P	P − 2P	I − 2PI + I)x̂ = x	(4P − 4P + I)x̂ = x · x̂, (20.53)

where we used the fact that P = P	 and PP = P , and we thus find an
affirmative answer.

20.47 Change of Basis Again!

Let {a1, a2} and {â1, â2} be two different bases in R
2. We then express any

given b ∈ R
2 as

b = x1a1 + x2a2 = x̂1â1 + x̂2â2, (20.54)

with certain coordinates (x1, x2) with respect to {a1, a2} and some other
coordinates (x̂1, x̂2) with respect {â1, â2}.

To connect (x1, x2) to (x̂1, x̂2), we express the basis vectors {â1, â2} in
terms of the basis {a1, a2}:

c11a1 + c21a2 = â1,

c12a1 + c22a2 = â2,

with certain coefficients cij . Inserting this into (20.54), we get

x̂1(c11a1 + c21a2) + x̂2(c12a1 + c22a2) = b.

Reordering terms,

(c11x̂1 + c12x̂2)a1 + (c21x̂1 + c22x̂2)a2 = b.

x1

x2

b b

a1

a2

b2

b2

b̂1 b̂1

â1

â2

Fig. 20.29. A vector b may be expressed in terms of the basis {a1, a2} or the
basis {â1, â2}
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We conclude by uniqueness that

x1 = c11x̂1 + c12x̂2, (20.55)
x2 = c21x̂1 + c22x̂2, (20.56)

which gives the connection between the coordinates (x1, x2) and (x̂1, x̂2).
Using matrix notation, we can write this relation as x = Cx̂ with

C =
(
c11 c12
c21 c22

)

.

20.48 Queen Christina

Queen Christina of Sweden (1626–1689), daughter of Gustaf Vasa King
of Sweden 1611–1632, crowned to Queen at the age 5, officially coronated
1644, abdicated 1652, converted to Catholicism and moved to Rome 1655.

Throughout her life, Christina had a passion for the arts and for learning,
and surrounded herself with musicians, writers, artists and also philoso-

Fig. 20.30. Queen Christina to Descartes: “If we conceive the world in that vast
extension you give it, it is impossible that man conserve himself therein in this
honorable rank, on the contrary, he shall consider himself along with the entire
earth he inhabits as in but a small, tiny and in no proportion to the enormous
size of the rest. He will very likely judge that these stars have inhabitants, or even
that the earths surrounding them are all filled with creatures more intelligent and
better than he, certainly, he will lose the opinion that this infinite extent of the
world is made for him or can serve him in any way”
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phers, theologians, scientists and mathematicians. Christina had an im-
pressive collection of sculpture and paintings, and was highly respected for
both her artistic and literary tastes. She also wrote several books, includ-
ing her Letters to Descartes and Maxims. Her home, the Palace Farnese,
was the active center of cultural and intellectual life in Rome for several
decades.

Duc de Guise quoted in Georgina Masson’s Queen Christina biography
describes Queen Chistina as follows: “She isn’t tall, but has a well-filled
figure and a large behind, beautiful arms, white hands. One shoulder is
higher than another, but she hides this defect so well by her bizarre dress,
walk and movements. . . . The shape of her face is fair but framed by the
most extraordinary coiffure. It’s a man’s wig, very heavy and piled high
in front, hanging thick at the sides, and at the back there is some slight
resemblance to a woman’s coiffure. . . . She is always very heavily powdered
over a lot of face cream”.

Chapter 20 Problems

20.1. Given the vectors a, b and c in R
2 and the scalars λ, µ ∈ R, prove the

following statements

a+ b = b+ a, (a+ b) + c = a+ (b+ c), a+ (−a) = 0

a+ 0 = a, 3a = a+ a+ a, λ(µa) = (λµ)a,

(λ+ µ)a = λa+ µa, λ(a+ b) = λa+ λb, |λa| = |λ||a|.

Try to give both analytical and geometrical proofs.

20.2. Give a formula for the transformation f : R
2 → R

2 corresponding to
reflection through the direction of a given vector a ∈ R

2. Find the corresponding
matrix.

20.3. Given a = (3, 2) and b = (1, 4), compute (i) |a|, (ii) |b|, (iii) |a + b|, (iv))
|a− b|, (v) a/|a|, (vi) b/|b|.

20.4. Show that the norm of a/|a| with a ∈ R
2, a �= 0, is equal to 1.

20.5. Given a, b ∈ R
2 prove the following inequalities a) |a + b| ≤ |a| + |b|, b)

a · b ≤ |a||b|.

20.6. Compute a · b with

(i) a = (1, 2), b = (3, 2) (ii) a = (10, 27), b = (14,−5)

20.7. Given a, b, c ∈ R
2, determine which of the following statements make sense:

(i) a · b, (ii) a · (b · c), (iii) (a · b) + |c|, (iv) (a · b) + c, (v) |a · b|.

20.8. What is the angle between a = (1, 1) and b = (3, 7)?
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20.9. Given b = (2, 1) construct the set of all vectors a ∈ R
2 such that a · b = 2.

Give a geometrical interpretation of this result.

20.10. Find the projection of a onto b onto (1, 2) with (i) a = (1, 2), (ii) a =
(−2, 1), (iii) a = (2, 2), (iv) a = (

√
2,
√

2).

20.11. Decompose the vector b = (3, 5) into one component parallel to a and
one component orthogonal to a for all vectors a in the previous exercise.

20.12. Let a, b and c = a− b in R
2 be given, and let the angle between a and b

be ϕ. Show that:
|c|2 = |a|2 + |b|2 − 2|a||b| cosϕ.

Give an interpretation of the result.

20.13. Prove the law of cosines for a triangle with sidelengths a, b and c:

c2 = a2 + b2 − 2ab cos(θ),

where θ is the angle between the sides a and b.

20.14. Given the 2 by 2 matrix:

A =

(
1 2
3 4

)

compute Ax and ATx for the following choice of x ∈ R
2:

(i) xT = (1, 2) (ii) xT = (1, 1)

20.15. Given the 2 × 2-matrices:

A =

(
1 2
3 4

)

, B =

(
5 6
7 8

)

,

compute (i) AB, (ii) BA, (iii) ATB, (iv) ABT , (v) BTAT , (vi) (AB)T , (vii) A−1,
(viii) B−1, (ix) (AB)−1, (x) A−1A.

20.16. Show that (AB)T = BTAT and that (Ax)T = xTAT .

20.17. What can be said about A if: a) A = AT b) AB = I?

20.18. Show that the projection:

Pa(b) =
b · a
|a|2 a

can be written in the form Pb, where P is a 2 × 2 matrix. Show that PP = P
and P = P T .

20.19. Compute the mirror image of a point with respect to a straight line in
R

2 which does not pass through the origin. Express the mapping in matrix form.

20.20. Express the linear transformation of rotating a vector a certain given
angle as a matrix vector product.
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20.21. Given a, b ∈ R
2, show that the “mirror vector” b̄ obtained by reflecting

b in a can be expressed as:
b̄ = 2Pb − b

where P is a certain projection Show that the scalar product between two vectors
is invariant under a reflection, that is

c · d = c̄ · d̄.

20.22. Compute a× b and b× a with (i) a = (1, 2), b = (3, 2), (ii) a = (1, 2), b =
(3, 6), (iii) a = (2,−1), b = (2, 4).

20.23. Extend the Matlab functions for vectors in R
2 by writing functions for

vector product (x = vecProd(a, b)) and rotation (b = vecRotate(a, angle)) of
vectors.

20.24. Check the answers to the above problems using Matlab.

20.25. Verify that the projection Px = Pa(x) is linear in x. Is it linear also in
a? Illustrate, as in Fig. 20.17, that Pa(x+ y) = Pa(x) + Pa(y).

20.26. Prove that the formula (21.29) for the projection of a point onto a line
through the origin, coincides with the formula (20.9) for the projection of the
vector b on the direction of the line.

20.27. Show that if â = λa, where a is a nonzero vector R
2 and λ �= 0, then

for any b ∈ R
2 we have Pâ(b) = Pa(b), where Pa(b) is the projection of b onto a.

Conclude that the projection onto a non-zero vector a ∈ R
2 only depends on the

direction of a and not the norm of a.



21
Analytic Geometry in R

3

We must confess that in all humility that, while number is a product
of our mind alone, space has a reality beyond the mind whose rules
we cannot completely prescribe. (Gauss 1830)

You can’t help respecting anybody who can spell TUESDAY, even
if he doesn’t spell it right. (The House at Pooh Corner, Milne)

21.1 Introduction

We now extend the discussion of analytic geometry to Euclidean three di-
mensional space or Euclidean 3d space for short. We imagine this space
arises when we draw a normal through the origin to a Euclidean two di-
mensional plane spanned by orthogonal x1 and x2 axes, and call the normal
the x3-axis. We then obtain an orthogonal coordinate system consisting of
three coordinate x1, x2 and x3 axes that intersect at the origin, with each
axis being a copy of R, see Fig. 21.1.

In daily life, we may imagine a room where we live as a portion of R
3,

with the horizontal floor being a piece of R
2 with two coordinates (x1, x2)

and with the vertical direction as the third coordinate x3. On a larger
scale, we may imagine our neighborhood in terms of three orthogonal di-
rections West-East, South-North, and Down-Up, which may be viewed to
be a portion of R

3, if we neglect the curvature of the Earth.
The coordinate system can be oriented two ways, right or left. The coor-

dinate system is said to be right-oriented, which is the standard, if turning



314 21. Analytic Geometry in R
3

x1x1

x2x2

x3x3

(a1, a2, a3)

(a1, a2, a3)

Fig. 21.1. Coordinate system for R
3

a standard screw into the direction of the positive x3-axis will turn the
x1-axis the shortest route to the x2-axis, see Fig. 21.2. Alternatively, we
can visualize holding our flattened right hand out with the fingers aligned
along the x1 axis so that when we curl our fingers inward, they move to-
wards the positive x2 axis, and then our extended thumb will point along
the positive x3 axis.

x1

x1

x1

x2x2

x2 x3

x3

x3

Fig. 21.2. Two “right” coordinate systems and one “left”, where the vertical
coordinate of the view point is assumed positive, that is, the horizontal plane is
seen from above. What happens if the vertical coordinate of the view point is
assumed negative?

Having now chosen a right-oriented orthogonal coordinate system, we
can assign three coordinates (a1, a2, a3) to each point a in space using the
same principle as in the case of the Euclidean plane, see Fig. 21.1. This
way we can represent Euclidean 3d space as the set of all ordered 3-tuples
a = (a1, a2, a3), where ai ∈ R for i = 1, 2, 3, or as R

3. Of course, we
can choose different coordinate systems with different origin, coordinate
directions and scaling of the coordinate axes. Below, we will come back to
the topic of changing from one coordinate system to another.
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21.2 Vector Addition and Multiplication
by a Scalar

Most of the notions and concepts of analytic geometry of the Euclidean
plane represented by R

2 extend naturally to Euclidean 3d space represented
by R

3.
In particular, we can view an ordered 3-tuple a = (a1, a2, a3) either as

a point in three dimensional space with coordinates a1, a2 and a3 or as
a vector/arrow with tail at the origin and head at the point (a1, a2, a3), as
illustrated in Fig. 21.1.

We define the sum a+b of two vectors a = (a1, a2, a3) and b = (b1, b2, b3)
in R

3 by componentwise addition,

a+ b = (a1 + b1, a2 + b2, a3 + b3),

and multiplication of a vector a = (a1, a2, a3) by a real number λ by

λa = (λa1, λa2, λa3).

The zero vector is the vector 0 = (0, 0, 0). We also write −a = (−1)a and
a − b = a + (−1)b. The geometric interpretation of these definitions is
analogous to that in R

2. For example, two non-zero vectors a and b in R
3

are parallel if b = λa for some non-zero real number λ. The usual rules
hold, so vector addition is commutative, a + b = b + a, and associative,
(a + b) + c = a + (b + c). Further, λ(a + b) = λa + λb and κ(λa) = (κλ)a
for vectors a and b and real numbers λ and κ.

The standard basis vectors in R
3 are e1 = (1, 0, 0), e2 = (0, 1, 0) and

e3 = (0, 0, 1).

21.3 Scalar Product and Norm

The standard scalar product a · b of two vectors a = (a1, a2, a3) and b =
(b1, b2, b3) in R

3 is defined by

a · b =
3∑

i=1

aibi = a1b1 + a2b2 + a3b3. (21.1)

The scalar product in R
3 has the same properties as its cousin in R

2, so it
is bilinear, symmetric, and positive definite.= We say that two vectors a
and b are orthogonal if a · b = 0.

The Euclidean length or norm |a| of a vector a = (a1, a2, a3) is defined
by

|a| = (a · a) 1
2 =

(
3∑

i=1

a2
i

) 1
2

, (21.2)
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which expresses Pythagoras theorem in 3d, and which we may obtain by
using the usual 2d Pythagoras theorem twice. The distance |a− b| between
two points a = (a1, a2, a3) and b = (b1, b2, b3) is equal to

|a− b| =

(
3∑

i=1

(ai − bi)2
)1/2

.

Cauchy’s inequality states that for any vectors a and b in R
3,

|a · b| ≤ |a| |b|. (21.3)

We give a proof of Cauchy’s inequality in Chapter Analytic Geometry in
R

n below. We note that Cauchy’s inequality in R
2 follows directly from the

fact that a · b = |a| |b| cos(θ), where θ is the angle between a and b.

21.4 Projection of a Vector onto a Vector

Let a be a given non-zero vector in R
3. We define the projection Pb = Pa(b)

of a vector b in R
3 onto the vector a by the formula

Pb = Pa(b) =
a · b
a · a a =

a · b
|a|2 a. (21.4)

This is a direct generalization of the corresponding formula in R
2 based

on the principles that Pb is parallel to a and b − Pb is orthogonal to a as
illustrated in Fig. 21.3, that is

Pb = λa for some λ ∈ R and (b− Pb) · a = 0.

This gives the formula (21.4) with λ = a·b
|a|2 .

The transformation P : R
3 → R

3 is linear, that is for any b and c ∈ R
3

and λ ∈ R,
P (b+ c) = Pb+ Pc, P (λb) = λPb,

and PP = P .

21.5 The Angle Between Two Vectors

We define the angle θ between non-zero vectors a and b in R
3 by

cos(θ) =
a · b
|a| |b| , (21.5)
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where we may assume that 0 ≤ θ ≤ 180◦. By Cauchy’s inequality (21.3),
|a · b| ≤ |a| |b|. Thus, there is an angle θ satisfying (21.5) that is uniquely
defined if we require 0 ≤ θ ≤ 180◦. We may write (21.5) in the form

a · b = |a||b| cos(θ), (21.6)

where θ is the angle between a and b. This evidently extends the corre-
sponding result in R

2.
We define the angle θ between two vectors a and b via the scalar product

a · b in (21.5), which we may view as an algebraic definition. Of course,
we would like to see that this definition coincides with a usual geometric
definition. If a and b both lie in the x1 − x2-plane, then we know from
the Chapter Analytic geometry in R

2 that the two definitions coincide. We
shall see below that the scalar product a · b is invariant (does not change)
under rotation of the coordinate system, which means that given any two
vectors a and b, we can rotate the coordinate system so make a and b lie
in the x1 − x2-plane. We conclude that the algebraic definition (21.5) of
angle between two vectors and the usual geometric definition coincide. In
particular, two non-zero vectors are geometrically orthogonal in the sense
that the geometric angle θ between the vectors satisfies cos(θ) = 0 if and
only if a · b = |a||b| cos(θ) = 0.

x1x1

x2x2

x3x3

aa

bb

Pb

Pb θθ

Fig. 21.3. Projection Pb of a vector b onto a vector a

21.6 Vector Product

We now define the vector product a× b of two vectors a = (a1, a2, a3) and
b = (b1, b2, b3) in R

3 by the formula

a× b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1) . (21.7)
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We note that the vector product a× b of two vectors a and b in R
3 is itself

a vector in R
3. In other words, with f(a, b) = a× b, f : R

3 → R
3. We also

refer to the vector product as the cross product, because of the notation.

Example 21.1. If a = (3, 2, 1) and b = (4, 5, 6), then a × b = (12 − 5, 4 −
18, 15− 8) = (7,−14, 7).

Note that there is also the trivial, componentwise “vector product” de-
fined by (using MATLAB�’s notation) a.∗b = (a1b1, a2b2, a3b3). The vector
product defined above, however, is something quite different!

The formula for the vector product may seem a bit strange (and com-
plicated), and we shall now see how it arises. We start by noting that the
expression a1b2 − a2b1 appearing in (21.7) is the vector product of the
vectors (a1, a2) and (b1, b2) in R

2, so there appears to be some pattern at
least.

We may directly check that the vector product a× b is linear in both a
and b, that is

a× (b + c) = a× b+ a× c, (a+ b) × c = a× c+ b× c, (21.8a)
(λa) × b = λa× b, a× (λb) = λa× b, (21.8b)

where the products × should be computed first unless something else is
indicated by parentheses. This follows directly from the fact that the com-
ponents of a× b depend linearly on the components of a and b.

Since the vector product a× b is linear in both a and b, we say that a× b
is bilinear. We also see that the vector product a × b is anti-symmetric in
the sense that

a× b = − b× a. (21.9)

Thus, the vector product a× b is bilinear and antisymmetric and moreover
it turns out that these two properties determine the vector product up to
a constant just as in in R

2.
For the vector products of the basis vectors ei, we have (check this!)

ei × ei = 0, i = 1, 2, 3, (21.10a)
e1 × e2 = e3, e2 × e3 = e1, e3 × e1 = e2, (21.10b)

e2 × e1 = −e3, e3 × e2 = −e1, e1 × e3 = −e2. (21.10c)

We see that e1×e2 = e3 is orthogonal to both e1 and e2. Similarly, e2×e3 =
e1 is orthogonal to both e2 and e3, and e1×e3 = −e2 is orthogonal to both
e1 and e3.

This pattern generalizes. In fact, for any two non-zero vectors a and b,
the vector a× b is orthogonal to both a and b since

a ·(a×b) = a1(a2b3−a3b2)+a2(a3b1−a1b3)+a3(a1b2−a2b1) = 0, (21.11)

and similarly b · (a× b) = 0.
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We may compute the vector product of two arbitrary vectors a = (a1, a2,
a3) and b = (b1, b2, b3) by using linearity combined with (21.10) as follows,

a× b = (a1e1 + a2e2 + a3e3) × (b1e1 + b2e2 + b3e3)
= a1b2 e1 × e2 + a2b1 e2 × e1

+ a1b3 e1 × e3 + a3b1 e3 × e1

+ a2b3 e2 × e3 + a3b2 e3 × e2

= (a1b2 − a2b1)e3 + (a3b1 − a1b3)e2 + (a2b3 − a3b2)e1
= (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1),

which conforms with (21.7).

21.7 Geometric Interpretation
of the Vector Product

We shall now make a geometric interpretation of the vector product a× b
of two vectors a and b in R

3.
We start by assuming that a = (a1, a2, 0) and b = (b1, b2, 0) are two

non-zero vectors in the plane defined by the x1 and x2 axes. The vector
a×b = (0, 0, a1b2−a2b1) is clearly orthogonal to both a and b, and recalling
the basic result (20.21) for the vector product in R

2, we have

|a× b| = |a||b|| sin(θ)|, (21.12)

where θ is the angle between a and b.
We shall now prove that this result generalizes to arbitrary vectors a =

(a1, a2, a3) and b = (b1, b2, b3) in R
3. First, the fact that a× b is orthogonal

to both a and b was proved in the previous section. Secondly, we note that
multiplying the trigonometric identity sin2(θ) = 1− cos2(θ) by |a|2 |b|2 and
using (21.6), we obtain

|a|2|b|2 sin2(θ) = |a|2|b|2 − (a · b)2. (21.13)

Finally, a direct (but somewhat lengthy) computation shows that

|a× b|2 = |a|2|b|2 − (a · b)2,

which proves (21.12). We summarize in the following theorem.

Theorem 21.1 The vector product a× b of two non-zero vectors a and b
in R

3 is orthogonal to both a and b and |a × b| = |a||b|| sin(θ)|, where θ is
the angle between a and b. In particular, a and b are parallel if and only if
a× b = 0.

We can make the theorem more precise by adding the following sign rule:
The vector a × b is pointing in the direction of a standard screw turning
the vector a into the vector b the shortest route.



320 21. Analytic Geometry in R
3

x1

x2

x3

a

b

θ

a×b

|a×b| = A(a, b) = |a| |b| | sin(θ)|

Fig. 21.4. Geometric interpretation of the vector product

21.8 Connection Between Vector Products
in R

2 and R
3

We note that if a = (a1, a2, 0) and b = (b1, b2, 0), then

a× b = (0, 0, a1b2 − a2b1). (21.14)

The previous formula a×b = a1b2−a2b1 for a = (a1, a2) and b = (b1, b2) in
R

2 may thus be viewed as a short-hand for the formula a× b = (0, 0, a1b2−
a2b1) for a = (a1, a2, 0) and b = (b1, b2, 0), with a1b2 − a2b1 being the third
coordinate of a × b in R

3. We note the relation of the sign conventions
in R

2 and R
3: If a1b2 − a2b1 ≥ 0, then turning a screw into the positive

x3-direction should turn a into b the shortest route. This corresponds to
turning a into b counter-clockwise and to the angle θ between a and b
satisfying sin(θ) ≥ 0.

21.9 Volume of a Parallelepiped Spanned
by Three Vectors

Consider the parallelepiped spanned by three vectors a, b and c, according
to Fig. 21.5.

We seek a formula for the volume V (a, b, c) of the parallelepiped. We
recall that the volume V (a, b, c) is equal to the area A(a, b) of the base
spanned by the vectors a and b times the height h, which is the length of
the projection of c onto a vector that is orthogonal to the plane formed by
a and b. Since a× b is orthogonal to both a and b, the height h is equal to
the length of the projection of c onto a × b. From (21.12) and (21.4), we
know that

A(a, b) = |a× b|, h =
|c · (a× b)|
|a× b| ,
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x1

x2

x3

a

bc

θ

a×b

Fig. 21.5. Parallelepiped spanned by three vectors

and thus
V (a, b, c) = |c · (a× b)|. (21.15)

Clearly, we may also compute the volume V (a, b, c) by considering b and c
as forming the base, or likewise the vectors a and c forming the base. Thus,

V (a, b, c) = |a · (b× c)| = |b · (a× c)| = |c · (a× b)|. (21.16)

Example 21.2. The volume V (a, b, c) of the parallelepiped spanned by
a = (1, 2, 3), b = (3, 2, 1) and c = (1, 3, 2) is equal to a · (b × c) = (1, 2, 3) ·
(1,−5, 7) = 12.

21.10 The Triple Product a · b × c

The expression a · (b × c) occurs in the formulas (21.15) and (21.16). This
is called the triple product of the three vectors a, b and c. We usually write
the triple product without the parenthesis following the convention that the
vector product × is performed first. In fact, the alternative interpretation
(a · b)× c does not make sense since a · b is a scalar and the vector product
× requires vector factors!

The following properties of the triple product can be readily verified by
direct application of the definition of the scalar and vector products,

a · b× c = c · a× b = b · c× a,

a · b× c = −a · c× b = −b · a× c = −c · b× a.

To remember these formulas, we note that if two of the vectors change place
then the sign changes, while if all three vectors are cyclically permuted (for
example the order a, b, c is replaced by c, a, b or b, c, a), then the sign is
unchanged.
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Using the triple product a · b× c, we can express the geometric quantity
of the volume V (a, b, c) of the parallelepiped spanned by a, b and c in the
concise algebraic form,

V (a, b, c) = |a · b× c|. (21.17)

We shall use this formula many times below. Note, we later prove that the
volume of a parallelepiped can be computed as the area of the base times
the height using Calculus below.

21.11 A Formula for the Volume Spanned by
Three Vectors

Let a1 = (a11, a12, a13), a2 = (a21, a22, a23) and a3 = (a31, a32, a33) be three
vectors in R

3. Note that here a1 is a vector in R
3 with a1 = (a11, a12, a13),

et cetera. We may think of forming the 3 × 3 matrix A = (aij) with the
rows corresponding to the coordinates of a1, a2 and a3,

A =




a11 a12 a13

a21 a22 a23

a31 a32 a33





We will come back to 3 × 3 matrices below. Here, we just use the matrix
to express the coordinates of the vectors a1, a2 and a3 in handy form.

We give an explicit formula for the volume V (a1, a2, a3) spanned by three
vectors a1, a2 and a3. By direct computation starting with (21.17),

±V (a1, a2, a3) = a1 · a2 × a3

= a11(a22a33 − a23a32) − a12(a21a33 − a23a31)
+ a13(a21a32 − a22a31).

(21.18)

We note that V (a1, a2, a3) is a sum of terms, each term consisting of the
product of three factors aijaklamn with certain indices ij, kl and mn. If we
examine the indices occurring in each term, we see that the sequence of row
indices ikm (first indices) is always {1, 2, 3}, while the sequence of column
indices jln (second indices) corresponds to a permutation of the sequence
{1, 2, 3}, that is the numbers 1, 2 and 3 occur in some order. Thus, all
terms have the form

a1j1a2j2a3j3 (21.19)

with {j1, j2, j3} being a permutation of {1, 2, 3}. The sign of the terms
change with the permutation. By inspection we can detect the following
pattern: if the permutation can be brought to the order {1, 2, 3} with an
even number of transpositions, each transposition consisting of interchang-
ing two indices, then the sign is +, and with an uneven number of transpo-
sitions the sign is −. For example, the permutation of second indices in the
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term a11a23a32 is {1, 3, 2}, which is uneven since one transposition brings it
back to {1, 2, 3}, and thus this term has a negative sign. Another example:
the permutation in the term a12a23a31 is {2, 3, 1} is even since it results
from the following two transpositions {2, 1, 3} and {1, 2, 3}.

We have now developed a technique for computing volumes that we will
generalize to R

n below. This will lead to determinants. We will see that
the formula (21.18) states that the signed volume ±V (a1, a2, a3) is equal
to the determinant of the 3 × 3 matrix A = (aij).

21.12 Lines

Let a be a given non-zero vector in R
3 and let x̂ be a given point in R

3.
The points x in R

3 of the form

x = x̂+ sa,

where s varies over R, form a line in R
3 through the point x̂ with direction

a, see Fig. 21.6. If x̂ = 0, then the line passes through the origin.

x1

x2

x3

a

s a

x̂

x = x̂+ s a

Fig. 21.6. Line in R
3 of the form x = x̂+ s a

Example 21.3. The line through (1, 2, 3) in the direction (4, 5, 6) is given
by

x = (1, 2, 3) + s(4, 5, 6) = (1 + 4s, 2 + 5s, 3 + 6s) s ∈ R.

The line through (1, 2, 3) and (3, 1, 2) has the direction (3, 1, 2) − (1, 2, 3)
= (2,−1,−1), and is thus given by x = (1, 2, 3) + s(2,−1,−1).
Note that by choosing other vectors to represent the direction of the line,
it may also be represented, for example, as x = (1, 2, 3) + ŝ(−2, 1, 1) or
x = (1, 2, 3) + s̃(6,−3,−3). Also, the “point of departure” on the line,
corresponding to s = 0, can be chosen arbitrarily on the line of course. For
example, the point (1, 2, 3) could be replaced by (−1, 3, 4) which is another
point on the line.
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21.13 Projection of a Point onto a Line

Let x = x̂ + sa be a line in R
3 through x̂ with direction a ∈ R

3. We seek
the projection Pb of a given point b ∈ R

3 onto the line, that is we seek
Pb ∈ R

3 with the property that (i) Pb = x̂ + sa for some s ∈ R, and (ii)
(b−Pb) ·a = 0. Note that we here view b to be a point rather than a vector.
Inserting (i) into (ii) gives the following equation in s: (b− x̂− sa) · a = 0,
from which we conclude that s = b·a−x̂·a

|a|2 , and thus

Pb = x̂+
b · a− x̂ · a

|a|2 a . (21.20)

If x̂ = 0, that is the line passes through the origin, then Pb = b·a
|a|2a in

conformity with the corresponding formula (20.9) in R
2.

21.14 Planes

Let a1 and a2 be two given non-zero non-parallel vectors in R
3, that is

a1 × a2 �= 0. The points x in R
3 that can be expressed as

x = s1a1 + s2a2, (21.21)

where s1 and s2 vary over R, form a plane in R
3 through the origin that

is spanned by the two vectors a1 and a2. The points x in the plane are
all the linear combinations x = s1a1 + s2a2 of the vectors a1 and a2 with
coefficients s1 and s2 varying over R, see Fig. 21.7. The vector a1 × a2 is
orthogonal to both a1 and a2 and therefore to all vectors x in the plane.
Thus, the non-zero vector n = a1 × a2 is a normal to the plane. The points
x in the plane are characterized by the orthogonality relation

n · x = 0. (21.22)

We may thus describe the points x in the plane by the representation
(21.21) or the equation (21.22). Note that (21.21) is a vector equation
corresponding to 3 scalar equations, while (21.22) is a scalar equation.
Eliminating the parameters s1 and s2 in the system (21.21), we obtain the
scalar equation (21.22).

Let x̂ be a given point in R
3. The points x in R

3 that can be expressed as

x = x̂+ s1a1 + s2a2, (21.23)

where s1 and s2 vary over R, form a plane in R
3 through the point x̂ that

is parallel to the corresponding plane through the origin considered above,
see Fig. 21.8.

If x = x̂+s1a1 +s2a2 then n ·x = n · x̂, because n ·ai = 0, i = 1, 2. Thus,
we can describe the points x of the form x = x̂+ s1a1 + s2a2 alternatively
as the vectors x satisfying

n · x = n · x̂. (21.24)
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x1

x2

x3

a1

a2

n = a1×a2

x = s1a1 + s2a2

Fig. 21.7. Plane through the origin spanned by a1 and a2, and with normal
n = a1 × a2

Again, we obtain the scalar equation (21.24) if we eliminate the parameters
s1 and s2 in the system (21.23).

We summarize:

Theorem 21.2 A plane in R
3 through a point x̂ ∈ R

3 with normal n
can be expressed as the set of x ∈ R

3 of the form x = x̂ + s1a1 + s2a2

with s1 and s2 varying over R, where a1 and a2 are two vectors satisfying
n = a1 × a2 �= 0. Alternatively, the plane can be described as the set of
x ∈ R such that n · x = d, where d = n · x̂.

Example 21.4. Consider the plane x1 + 2x2 + 3x3 = 4, that is the plane
(1, 2, 3) · (x1, x2, x3) = 4 with normal n = (1, 2, 3). To write the points x
in this plane on the form x = x̂+ s1a1 + s2a2, we first choose a point x̂ in
the plane, for example, x̂ = (2, 1, 0) noting that n · x̂ = 4. We next choose

x1

x2

x3

a1

a2

n = a1×a2

x = s1a1 + s2a2

x̂ x = x̂+ s1a1 + s2a2

Fig. 21.8. Plane through x̂ with normal n defined by n · x = d = n · x̂
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two non-parallel vectors a1 and a2 such that n · a1 = 0 and n · a2 = 0,
for example a1 = (−2, 1, 0) and a2 = (−3, 0, 1). Alternatively, we choose
one vector a1 satisfying n · a1 = 0 and set a2 = n × a1, which is a vector
orthogonal to both n and a1. To find a vector a1 satisfying a1 · n = 0,
we may choose an arbitrary non-zero vector m non-parallel to n and set
a1 = m× n, for example m = (0, 0, 1) giving a1 = (−2, 1, 0).

Conversely, given the plane x = (2, 1, 0)+ s1(−2, 1, 0)+ s2(−3, 0, 1), that is
x = x̂+s1a1+s2a2 with x̂ = (2, 1, 0), a1 = (−2, 1, 0) and a2 = (−3, 0, 1), we
obtain the equation x1 +2x2 +3x3 = 4 simply by computing n = a1×a2 =
(1, 2, 3) and n·x̂ = (1, 2, 3)·(2, 1, 0) = 4, from which we obtain the following
equation for the plane: n · x = (1, 2, 3) · (x1, x2, x3) = x1 + 2x2 + 3x3 =
n · x̂ = 4.

Example 21.5. Consider the real-valued function z = f(x, y) = ax+ by+ c
of two real variables x and y, where a, b and c are real numbers. Setting
x1 = x, x2 = y and x3 = z, we can express the graph of z = f(x, y) as the
plane ax1 + bx2 − x3 = −c in R

3 with normal (a, b,−1).

21.15 The Intersection of a Line and a Plane

We seek the intersection of a line x = x̂+sa and a plane n ·x = d that is the
set of points x belonging to both the line and the plane, where x̂, a, n and
d are given. Inserting x = x̂+ sa into n · x = d, we obtain n · (x̂+ sa) = d,
that is n · x̂+ s n · a = d. This yields s = (d− n · x̂)/(n · a) if n · a �= 0, and
we find a unique point of intersection

x = x̂+ (d− n · x̂)/(n · a) a. (21.25)

This formula has no meaning if n · a = 0, that is if the line is parallel to
the plane. In this case, there is no intersection point unless x̂ happens to
be a point in the plane and then the whole line is part of the plane.

Example 21.6. The intersection of the plane x1 +2x2 +x3 = 5 and the line
x = (1, 0, 0) + s(1, 1, 1) is found by solving the equation 1 + s+ 2s+ s = 5
giving s = 1 and thus the point of intersection is (2, 1, 1).The plane x1 +
2x2 + x3 = 5 and the line x = (1, 0, 0) + s(2,−1, 0) has no point of inter-
section, because the equation 1 + 2s − 2s = 5 has no solution. If instead
we consider the plane x1 + 2x2 + x3 = 1, we find that the entire line
x = (1, 0, 0) + s(2,−1, 0) lies in the plane, because 1 + 2s− 2s = 1 for all
real s.
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21.16 Two Intersecting Planes Determine a Line

Let n1 = (n11, n12, n13) and n2 = (n21, n22, n23) be two vectors in R
3 and

d1 and d2 two real numbers. The set of points x ∈ R
3 that lie in both the

plane n1 · x = d1 and n2 · x = d2 satisfy the system of two equations

n1 · x = d1,

n2 · x = d2.
(21.26)

Intuition indicates that generally the points of intersection of the two planes
should form a line in R

3. Can we determine the formula of this line in the
form x = x̂+ sa with suitable vectors a and x̂ in R

3 and s varying over R?
Assuming first that d1 = d2 = 0, we seek a formula for the set of x such
that n1 · x = 0 and n2 · x = 0, that is the set of x that are orthogonal to
both n1 and n2. This leads to a = n1 × n2 and expressing the solution x
of the equations n1 · x = 0 and n2 · x = 0 as x = s n1 × n2 with s ∈ R. Of
course it is natural to add in the assumption that n1 ×n2 �= 0, that is that
the two normals n1 and n2 are not parallel so that the two planes are not
parallel.

Next, suppose that (d1, d2) �= (0, 0). We see that if we can find one
vector x̂ such that n1 · x̂ = d1 and n2 · x̂ = d2, then we can write the
solution x of (21.26) as

x = x̂+ s n1 × n2, s ∈ R. (21.27)

We now need to verify that we can indeed find x̂ satisfying n1 · x̂ = d1 and
n2 · x̂ = d2. That is, we need to find x̂ ∈ R

3 satisfying the following system
of two equations,

n11x̂1 + n12x̂2 + n13x̂3 = d1,

n21x̂1 + n22x̂2 + n23x̂3 = d2.

Since n1 × n2 �= 0, some component of n1 × n2 must be nonzero. If for
example n11n22 − n12n21 �= 0, corresponding to the third component of
n1 × n2 being non-zero, then we may choose x̂3 = 0. Then recalling the
role of the condition n11n22 − n12n21 �= 0 for a 2 × 2-system, we may
solve uniquely for x̂1 and x̂2 in terms of d1 and d2 to get a desired x̂. The
argument is similar in case the second or first component of n1×n2 happens
to be non-zero.

We summarize:

Theorem 21.3 Two non-parallel planes n1 · x = d1 and n2 · x = d2 with
normals n1 and n2 satisfying n1 × n2 �= 0, intersect along a straight line
with direction n1 × n2.

Example 21.7. The intersection of the two planes x1 + x2 + x3 = 2 and
3x1 + 2x2 − x3 = 1 is given by x = x̂ + sa with a = (1, 1, 1) × (3, 2,−1) =
(−3, 4,−1) and x̂ = (0, 1, 1).
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21.17 Projection of a Point onto a Plane

Let n · x = d be a plane in R
3 with normal n and b a point in R

3. We seek
the projection Pb of b onto the plane n · x = d. It is natural to ask Pb to
satisfy the following two conditions, see Fig. 21.9,

n · Pb = d, that is Pb is a point in the plane,
b− Pb is parallel to the normal n, that is b− Pb = λn for some λ ∈ R.

We conclude that Pb = b − λn and the equation n · Pb = d thus gives
n · (b− λn) = d. So, λ = b·n−d

|n|2 and thus

Pb = b− b · n− d

|n|2 n. (21.28)

If d = 0 so the plane n · x = d = 0 passes through the origin, then

Pb = b− b · n
|n|2 n. (21.29)

If the plane is given in the form x = x̂+ s1a1 + s2a2 with a1 and a2 two
given non-parallel vectors in R

3, then we may alternatively compute the
projection Pb of a point b onto the plane by seeking real numbers x1 and
x2 so that Pb = x̂+ x1a1 + x2a2 and (b−Pb) · a1 = (b−Pb) · a2 = 0. This
gives the system of equations

x1a1 · a1 + x2a2 · a1 = b · a1 − x̂ · a1,

x1a1 · a2 + x2a2 · a2 = b · a2 − x̂ · a2

(21.30)

in the two unknowns x1 and x2. To see that this system has a unique
solution, we need to verify that â11â22 − â12â21 �= 0, where â11 = a1 · a1,
â22 = a2 ·a2, â21 = a2 ·a1 and â12 = a1 ·a2. This follows from the fact that
a1 and a2 are non-parallel, see Problem 21.24.

Example 21.8. The projection Pb of the point b = (2, 2, 3) onto the plane
defined by x1+x2+x3 = 1 is given by Pb = (2, 2, 3)− 7−1

3 (1, 1, 1) = (0, 0, 1).

Example 21.9. The projection Pb of the point b = (2, 2, 3) onto the plane
x = (1, 0, 0) + s1(1, 1, 1) + s2(1, 2, 3) with normal n = (1, 1, 1) × (1, 2, 3) =
(1,−2, 1) is given by Pb = (2, 2, 3) − (2,2,3)·(1,−2,1)

6 (1,−2, 1) = (2, 2, 3) −
1
6 (1,−2, 1) = 1

6 (11, 14, 17).

21.18 Distance from a Point to a Plane

We say that the distance from a point b to a plane n · x = d is equal to
|b − Pb|, where Pb is the projection of b onto the plane. According to the
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previous section, we have

|b− Pb| =
|b · n− d|

|n| .

Note that this distance is equal to the shortest distance between b and any
point in the plane, see Fig. 21.9 and Problem 21.22.

x1

x2

x3

n

b

Pb

b−Pb

Fig. 21.9. Projection of a point/vector onto a plane

Example 21.10. The distance from the point (2, 2, 3) to the plane x1 +x2 +
x3 = 1 is equal to |(2,2,3)·(1,1,1)−1|√

3
= 2

√
3.

21.19 Rotation Around a Given Vector

We now consider a more difficult problem. Let a ∈ R
3 be a given vector

and θ ∈ R a given angle. We seek the transformation R : R
3 → R

3 corre-
sponding to rotation of an angle θ around the vector a. Recalling Section
20.21, the result Rx = R(x) should satisfy the following properties,

(i) |Rx−Px| = |x−Px|, (ii) (Rx−Px) · (x−Px) = cos(θ)|x−Px|2.

where Px = Pa(x) is the projection of x onto a, see Fig. 21.10. We write
Rx−Px as Rx−Px = α(x−Px)+β a× (x−Px) for real numbers α and
β, noting that Rx− Px is orthogonal to a and a× (x− Px) is orthogonal
to both a and (x− Px). Taking the scalar product with (x − Px), we use
(ii) to get α = cos(θ) and then use (i) to find β = sin(θ)

|a| with a suitable
orientation. Thus, we may express Rx in terms of the projection Px as

Rx = Px+ cos(θ)(x − Px) +
sin(θ)
|a| a× (x− Px). (21.31)
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x1

x2

x3

x Px
Rx

θ

Fig. 21.10. Rotation around a = (0, 0, 1) a given angle θ

21.20 Lines and Planes Through the Origin Are
Subspaces

Lines and planes in R
3 through the origin are examples of subspaces of R

3.
The characteristic feature of a subspace is that the operations of vector
addition and scalar multiplication does not lead outside the subspace. For
example if x and y are two vectors in the plane through the origin with
normal n satisfying n·x = 0 and n·y = 0, then n·(x+y) = 0 and n·(λx) = 0
for any λ ∈ R, so the vectors x+ y and λx also belong to the plane. On the
other hand, if x and y belong to a plane not passing through the origin with
normal n, so that n · x = d and n · y = d with d a nonzero constant, then
n · (x+ y) = 2d �= d, and thus x+ y does not lie in the plane. We conclude
that lines and planes through the origin are subspaces of R

3, but lines and
planes not passing through the origin are not subspaces. The concept of
subspace is very basic and we will meet this concept many times below.

We note that the equation n · x = 0 defines a line in R
2 and a plane

in R
3. The equation n · x = 0 imposes a constraint on x that reduces the

dimension by one, so in R
2 we get a line and in R

3 we get a plane.

21.21 Systems of 3 Linear Equations
in 3 Unknowns

Consider now the following system of 3 linear equations in 3 unknowns x1,
x2 and x3 (as did Leibniz already 1683):

a11x1 + a12x2 + a13x3 = b1,
a21x1 + a22x2 + a23x3 = b2,
a31x1 + a32x2 + a33x3 = b3,

(21.32)
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with coefficients aij and right hand side bi, i, j = 1, 2, 3. We can write this
system as the following vector equation in R

3:

x1a1 + x2a2 + x3a3 = b, (21.33)

where a1 = (a11, a21, a31), a2 = (a12, a22, a32), a3 = (a13, a23, a33) and
b = (b1, b2, b3) are vectors in R

3, representing the given coefficients and the
right hand side.

When is the system (21.32) uniquely solvable in x = (x1, x2, x3) for
a given right hand side b? We shall see that the condition to guarantee
unique solvability is

V (a1, a2, a3) = |a1 · a2 × a3| �= 0, (21.34)

stating that the volume spanned by a1, a2 and a3 is not zero.
We now argue that the condition a1 ·a2×a3 �= 0 is the right condition to

guarantee the unique solvability of (21.32). We can do this by mimicking
what we did in the case of a 2×2 system: Taking the scalar product of both
sides of the vector equation x1a1 +x2a2 +x3a3 = b by successively a2 ×a3,
a3 × a1, and a2 × a3, we get the following solution formula (recalling that
a1 · a2 × a3 = a2 · a3 × a1 = a3 · a1 × a2):

x1 =
b · a2 × a3

a1 · a2 × a3
,

x2 =
b · a3 × a1

a2 · a3 × a1
=

a1 · b× a3

a1 · a2 × a3
,

x3 =
b · a1 × a2

a3 · a1 × a2
=

a1 · a2 × b

a1 · a2 × a3
,

(21.35)

where we used the facts that ai · aj × ak = 0 if any two of the indices
i, j and k are equal. The solution formula (21.35) shows that the system
(21.32) has a unique solution if a1 · a2 × a3 �= 0.

Note the pattern of the solution formula (21.35), involving the common
denominator a1 · a2 × a3 and the numerator for xi is obtained by replacing
ai by b. The solution formula (21.35) is also called Cramer’s rule. We have
proved the following basic result:

Theorem 21.4 If a1 · a2 × a3 �= 0, then the system of equations (21.32)
or the equivalent vector-equation (21.33) has a unique solution given by
Cramer’s rule (21.35).

We repeat: V (a1, a2, a3) = a1 · a2 × a3 �= 0 means that the three vectors
a1, a2 and a3 span a non-zero volume and thus point in three different
directions (such that the plane spanned by any two of the vectors does not
contain the third vector). If V (a1, a2, a3) �= 0, then we say that the set of
three vectors {a,a2, a3} is linearly independent, or that the three vectors
a1, a2 and a3 are linearly independent.
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21.22 Solving a 3 × 3-System by Gaussian
Elimination

We now describe an alternative to Cramer’s rule for computing the solu-
tion to the 3 × 3-system of equations (21.32), using the famous method of
Gaussian elimination. Assuming a11 �= 0, we subtract the first equation
multiplied by a21 from the second equation multiplied by a11, and likewise
subtract the first equation multiplied by by a31 from the third equation
multiplied by a11, to rewrite the system (21.32) in the form

a11x1 + a12x2 + a13x3 = b1,
(a22a11 − a21a12)x2 + (a23a11 − a21a13)x3 = a11b2 − a21b1,
(a32a11 − a31a12)x2 + (a33a11 − a31a13)x3 = a11b3 − a31b1,

(21.36)

where the unknown x1 has been eliminiated in the second and third equa-
tions. This system has the form

a11x1+ a12x2 + a13x3 = b1,

â22x2 + â23x3 = b̂2,

â32x2 + â33x3 = b̂3,

(21.37)

with modified coefficients âij and b̂i. We now proceed in the same way
considering the 2 × 2-system in (x2, x3), and bring the system to the final
triangular form

a11x1+ a12x2 + a13x3 = b1,

â22x2 + â23x3 = b̂2,

ã33x3 = b̃3,

(21.38)

with modified coefficients in the last equation. We can now solve the third
equation for x3, then insert the resulting value of x3 into the second equa-
tion and solve for x2 and finally insert x3 and x2 into the first equation to
solve for x1.

Example 21.11. We give an example of Gaussian elimination: Consider the
system

x1 +2x2 + 3x3 = 6,
2x1 +3x2 + 4x3 = 9,
3x1 +4x2 + 6x3 = 13.

Subtracting the first equation multiplied by 2 from the second and the first
equation multiplied by 3 from the third equation, we get the system

x1 +2x2 + 3x3 = 6,
−x2 − 2x3 = −3,
−2x2 − 3x3 = −5.
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Subtracting now the second equation multiplied by 2 from the third equa-
tion, we get

x1 + 2x2+ 3x3 = 6,
−x2− 2x3 = −3,

x3 = 1,

from which we find x3 = 1 and then from the second equation x2 = 1 and
finally from the first equation x1 = 1.

21.23 3 × 3 Matrices: Sum, Product and Transpose

We can directly generalize the notion of a 2 × 2 matrix as follows: We say
that the quadratic array




a11 a12 a13

a21 a22 a23

a31 a32 a33





is a 3×3 matrix A = (aij) with elements aij , i, j = 1, 2, 3, and with i being
the row index and j the column index.

Of course, we can also generalize the notion of a 2-row (or 1× 2 matrix)
and a 2-column vector (or 2×1 matrix). Each row of A, the first row being
(a11 a12 a13), can thus be viewed as a 3-row vector (or 1 × 3 matrix), and
each column of A, the first column being




a11

a21

a31





as a 3-column vector (or 3 × 1 matrix). We can thus view a 3 × 3 matrix
to consist of three 3-row vectors or three 3-column vectors.

Let A = (aij) and B = (bij) be two 3 × 3 matrices. We define the sum
C = A + B to be the matrix C = (cij) with elements cij = aij + bij for
i, j = 1, 2, 3. In other words, we add two matrices element by element.

Given a 3 × 3 matrix A = (aij) and a real number λ, we define the
matrix C = λA as the matrix with elements cij = λaij . In other words, all
elements aij are multiplied by λ.

Given two 3× 3 matrices A = (aij) and B = (bij), we define the product
C = AB as the 3 × 3 matrix with elements cij given by

cij =
3∑

k=1

aikbkj i, j = 1, 2, 3. (21.39)

Matrix multiplication is associative so that (AB)C = A(BC) for matrices
A, B and C, see Problem 21.10. The matrix product is however not commu-
tative in general, that is there are matrices A and B such that AB �= BA,
see Problem 21.11.
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Given a 3× 3 matrix A = (aij), we define the transpose of A denoted by
A	 as the matrix C = A	 with elements cij = aji, i, j = 1, 2, 3. In other
words, the rows of A are the columns of A	 and vice versa. By definition
(A	)	 = A. Transposing twice brings back the original matrix.

We can directly check the validity of the following rules for computing
with the transpose:

(A+B)	 = A	 +B	, (λA)	 = λA	,

(AB)	 = B	A	.

Similarly, the transpose of a 3-column vector is the 3-row vector with the
same elements. Vice versa, if we consider the 3 × 1 matrix

x =




x1

x2

x3





to be a 3-column vector, then the transpose x	 is the corresponding 3-row
vector (x1 x2 x3). We define the product of a 1 × 3 matrix (3-row vector)
x	 with a 3 × 1 matrix (3-column vector) y in the natural way as follows:

x	y =
(
x1 x2 x3

)



y1
y2
y3



 = x1y1 + x2y2 + x3y3 = x · y,

where we noted the connection to the scalar product of 3-vectors. We thus
make the fundamental observation that multiplication of a 1 × 3 matrix
(3-row vector) with a 3× 1 matrix (3-column vector) is the same as scalar
multiplication of the corresponding 3-vectors. We can then express the
element cij of the product C = AB according to (21.39) as the scalar
product of row i of A with column j of B,

cij =
(
ai1 ai2 ai3

)



b1j

b2j

b3j



 =
3∑

k=1

aikbkj .

We note that
|x|2 = x · x = x	x,

where we interpret x both as an ordered triple and as a 3-column vector.
The 3 × 3 matrix 


1 0 0
0 1 0
0 0 1





is called the 3 × 3 identity matrix and is denoted by I. We have IA = A
and AI = A for any 3 × 3 matrix A.
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If A = (aij) is a 3×3 matrix and x = (xi) is a 3×1 matrix with elements
xi, then the product Ax is the 3 × 1 matrix with elements

3∑

k=1

aikxk i = 1, 2, 3.

The linear system of equations

a11x1 + a12x2 + a13x3 = b1,
a21x1 + a22x2 + a23x3 = b2,
a31x1 + a32x2 + a33x3 = b3,

can be written in matrix form as



a11 a12 a13

a21 a22 a23

a31 a32 a33








x1

x2

x3



 =




b1
b2
b3



 ,

that is
Ax = b,

with A = (aij) and x = (xi) and b = (bi).

21.24 Ways of Viewing a System
of Linear Equations

We may view a 3 × 3 matrix A = (aij)



a11 a12 a13

a21 a22 a23

a31 a32 a33





as being formed by three column-vectors a1 = (a11, a21, a31), a2 = (a12, a22,
a32), a3 = (a13, a23, a33), or by three row-vectors â1 = (a11, a12, a13), â2 =
(a21, a22, a23), â3 = (a31, a32, a33). Accordingly, we may view the system of
equations 


a11 a12 a13

a21 a22 a23

a31 a32 a33








x1

x2

x3



 =




b1
b2
b3



 ,

as a vector equation in the column vectors:

x1a1 + x2a2 + x3a3 = b, (21.40)

or as a system of 3 scalar equations:

â1 · x = b1
â2 · x = b2
â3 · x = b3,

(21.41)
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where the rows âi may be interpreted as normals to planes. We know
from the discussion following (21.34) that (21.40) can be uniquely solved if
±V (a1, a2, a3) = a1 · a2 × a3 �= 0.

We also know from Theorem 21.3 that if â2 × â3 �= 0, then the set
of x ∈ R

3 satisfying the two last equations of (21.41) forms a line with
direction â2× â3. If â1 is not orthogonal to â2× â3 then we expect this line
to meet the plane given by the first equation of (21.41) at one point. Thus,
if â1 · â2× â3 �= 0 then (21.41) should be uniquely solvable. This leads to the
conjecture that V (a1, a2, a3) �= 0 if and only if V (â1, â2, â3) �= 0. In fact,
direct inspection from the formula (21.18) gives the more precise result,

Theorem 21.5 If a1, a2 and a3 are the vectors formed by the columns of
a 3 × 3 matrix A, and â1, â2 and â3 are the vectors formed by the rows of
A, then V (a1, a2, a3) = V (â1, â2, â3).

21.25 Non-Singular Matrices

Let A be a 3×3 matrix formed by three 3-column vectors a1, a2, and a3. If
V (a1, a2, a3) �= 0 then we say that A is non-singular, and if V (a1, a2, a3) = 0
then we say that A is singular. From Section 21.21, we know that if A is
non-singular then the matrix equation Ax = b has a unique solution x for
each b ∈ R

3. Further, if A is singular then the three vectors a1, a2 and a3

lie in the same plane and thus we can express one of the vectors as a linear
combination of the other two. This implies that there is a non-zero vector
x = (x1, x2, x3) such that Ax = 0. We sum up:

Theorem 21.6 If A is a non-singular 3 × 3 matrix then the system of
equations Ax = b is uniquely solvable for any b ∈ R

3. If A is singular then
the system Ax = 0 has a non-zero solution x.

21.26 The Inverse of a Matrix

Let A be a non-singular 3 × 3 matrix. Let ci ∈ R
3 be the solution to the

equation Aci = ei for i = 1, 2, 3, where the ei denote the standard basis
vectors here interpreted as 3-column vectors. Let C = (cij) be the matrix
with columns consisting of the vectors ci. We then have AC = I, where I
is the 3 × 3 identity matrix, because Aci = ei. We call C the inverse of A
and write C = A−1 and note that A−1 is a 3 × 3 matrix such that

AA−1 = I, (21.42)

that is multiplication of A by A−1 from the right gives the identity. We now
want to prove that also A−1A = I, that is that we get the identity also by
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multiplying A from the left by A−1. To see this, we first note that A−1 must
be non-singular, since if A−1 was singular then there would exist a non-zero
vector x such that A−1x = 0 and multiplying by A from the left would give
AA−1x = 0, contradicting the fact that by (21.42) AA−1x = Ix = x �= 0.
Multiplying AA−1 = I with A−1 from the left, we get A−1AA−1 = A−1,
from which we conclude that A−1A = I by multiplying from the right with
the inverse of A−1, which we know exists since A−1 is non-singular.

We note that (A−1)−1 = A, which is a restatement of A−1A = I, and
that

(AB)−1 = B−1A−1

since B−1A−1AB = B−1B = I. We summarize:

Theorem 21.7 If A is a 3× 3 non-singular matrix, then the inverse 3× 3
matrix A−1 exists, and AA−1 = A−1A = I. Further, (AB)−1 = B−1A−1.

21.27 Different Bases

Let {a1, a2, a3} be a linearly independent set of three vectors in R
3, that is

assume that V (a1, a2, a3) �= 0. Theorem 21.4 implies that any given b ∈ R
3

can be uniquely expressed as a linear combination of {a1, a2, a3},

b = x1a1 + x2a2 + x3a3, (21.43)

or in matrix language



b1
b2
b3



 =




a11 a12 a13

a21 a22 a23

a31 a32 a33








x1

x2

x3



 or b = Ax,

where the columns of the matrix A = (aij) are formed by the vectors a1 =
(a11, a21, a31), a2 = (a12, a22, a32), a3 = (a13, a23, a33). Since V (a1, a2, a3) �=
0, the system of equations Ax = b has a unique solution x ∈ R

3 for any
given b ∈ R

3, and thus any b ∈ R
3 can be expressed uniquely as a linear

combination b = x1a1 + x2a2 + x3a3 of the set of vectors {a1, a2, a3} with
the coefficients (x1, x2, x3). This means that {a1, a2, a3} is a basis for R

3

and we say that (x1, x2, x3) are the coordinates of b with respect to the
basis {a1, a2, a3}. The connection between the coordinates (b1, b2, b3) of b
in the standard basis and the coordinates x of b in the basis {a1, a2, a3} is
given by Ax = b or x = A−1b.

21.28 Linearly Independent Set of Vectors

We say that a set of three vectors {a1, a2, a3} in R
3 is linearly independent

if V (a1, a2, a3) �= 0. We just saw that a linearly independent set {a1, a2, a3}
of three vectors can be used as a basis in R

3.
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If the set {a1, a2, a3} is linearly independent then the system Ax = 0 in
which the columns of the 3× 3 matrix are formed by the coefficients of a1,
a2 and a3 has no other solution than x = 0.

Conversely, as a test of linear dependence we can use the following crite-
rion: if Ax = 0 implies that x = 0, then {a1, a2, a3} is linearly independent
and thus V (a1, a2, a3) �= 0.

We summarize:

Theorem 21.8 A set {a1, a2, a3} of 3 vectors in R
3 is linearly independent

and can be used as a basis for R
3 if ±V (a1, a2, a3) = a1 ·a2× a3 �= 0. A set

{a1, a2, a3} of 3 vectors in R
3 is linearly independent if and only if Ax = 0

implies that x = 0.

21.29 Orthogonal Matrices

A 3 × 3 matrixQ satisfyingQ	Q = I is called an orthogonal matrix. An or-
thogonal matrix is non-singular withQ−1 = Q	 and thus alsoQQ	 = I. An
orthogonal matrix is thus characterized by the relationQ	Q = QQ	 = I.

Let qi = (q1i, q2i, q3i) for i = 1, 2, 3, be the column vectors of Q, that is
the row vectors of Q	. Stating that Q	Q = I is the same as stating that

qi · qj = 0 for i �= j, and |qi| = 1,

that is the columns of an orthogonal matrix Q are pairwise orthogonal and
have length one.

Example 21.12. The matrix

Q =




cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1



 , (21.44)

is orthogonal and corresponds to rotation of an angle θ around the x3 axis.

21.30 Linear Transformations Versus Matrices

Let A = (aij) be a 3×3 matrix. The mapping x→ Ax, that is the function
y = f(x) = Ax, is a transformation from R

3 to R
3. This transformation is

linear since A(x+y) = Ax+Ay and A(λx) = λAx for λ ∈ R. Thus, a 3×3
matrix A generates a linear transformation f : R

3 → R
3 with f(x) = Ax.

Conversely to each linear transformation f : R
3 → R

3, we can associate
a matrix A with coefficients given by

aij = fi(ej)
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where f(x) = (f1(x), f2(x), f3(x)). The linearity of f(x) implies

f(x) =



f1




3∑

j=1

xjej



 , f2




3∑

j=1

xjej



 , f3




3∑

j=1

xjej









	

=




3∑

j=1

f1(ej)xj ,
3∑

j=1

f2(ej)xj ,
3∑

j=1

f3(ej)xj





	

=




3∑

j=1

a1jxj ,
3∑

j=1

a2jxj ,
3∑

j=1

a3jxj





	

= Ax,

which shows that a linear transformation f : R
3 → R

3 can be represented
as f(x) = Ax with the matrix A = (aij) with coefficients aij = fi(ej).

Example 21.13. The projection Px = x·a
|a|2 a onto a non-zero vector a ∈ R

3

takes the matrix form

Px =







a2
1

|a|2
a1a2
|a|2

a1a3
|a|2

a2a1
|a|2

a2
2

|a|2
a2a3
|a|2

a3a1
|a|2

a3a2
|a|2

a2
3

|a|2










x1

x2

x3





Example 21.14. The projection Px = x − x·n
|n|2n onto a plane n · x = 0

through the origin takes the matrix form

Px =







1 − n2
1

|n|2 −n1n2
|n|2 −n1n3

|n|2

−n2n1
|n|2 1 − n2

2
|n|2 −n2n3

|n|2

−n3n1
|n|2 −n3n2

|n|2 1 − n2
3

|n|2










x1

x2

x3





Example 21.15. The mirror image of a point x with respect to a plane
through the origin given by (2P −I)x, where Px is the projection of x onto
the plane, takes the matrix form

(2P − I)x =







2 a2
1

|a|2 − 1 2a1a2
|a|2 2a1a3

|a|2

2a2a1
|a|2 2 a2

2
|a|2 − 1 2a2a3

|a|2

2a3a1
|a|2 2a3a2

|a|2 2 a2
3

|a|2 − 1










x1

x2

x3





21.31 The Scalar Product Is Invariant
Under Orthogonal Transformations

Let Q be the matrix {q1, q2, q2} formed by taking the columns to be the
basis vectors qj . We assume that Q is orthogonal, which is the same as as-
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suming that {q1, q2, q2} is an orthogonal basis, that is the qj are pairwise or-
thogonal and have length 1. The coordinates x̂ of a vector x in the standard
basis with respect to the basis {q1, q2, q2} are given by x̂ = Q−1x = Q	x.
We shall now prove that if ŷ = Q	y, then

x̂ · ŷ = x · y,

which states that the scalar product is invariant under orthogonal coordi-
nate changes. We compute

x̂ · ŷ =
(
Q	x

)
·
(
Q	y

)
= x ·

(
Q	)	Q	y = x · y,

where we used that for any 3 × 3 matrix A = (aij) and x, y ∈ R
3

(Ax) · y =
3∑

i=1




3∑

j=1

aijxj



 yi =
3∑

j=1

(
3∑

i=1

aijyi

)

xj

=
(
A	y

)
· x = x ·

(
A	y

)
,

(21.45)

with A = Q	, and the facts that (Q	)	 = Q and QQ	 = I.
We can now complete the argument about the geometric interpretation

of the scalar product from the beginning of this chapter. Given two non-
parallel vectors a and b, we may assume by an orthogonal coordinate trans-
formation that a and b belong to the x1 − x2-plane and the geometric
interpretation from Chapter Analytic geometry in R

2 carries over.

21.32 Looking Ahead to Functions f : R
3 → R

3

We have met linear transformations f : R
3 → R

3 of the form f(x) = Ax,
where A is a 3 × 3 matrix. Below we shall meet more general (non-linear)
transformations f : R

3 → R
3 that assign a vector f(x) = (f1(x), f2(x),

f3(x)) ∈ R
3 to each x = (x1, x2, x3) ∈ R

3. For example,

f(x) = f (x1, x2, x3) =
(
x2x3, x

2
1 + x3, x

4
3 + 5

)

with f1(x) = x2x3, f2(x) = x2
1+x3, f3(x) = x4

3+5. We shall see that we may
naturally extend the concepts of Lipschitz continuity and differentiability
for functions f : R → R to functions f : R

3 → R
3. For example, we say

that f : R
3 → R

3 is Lipschitz continuous on R
3 if there is a constant Lf

such that
|f(x) − f(y)| ≤ Lf |x− y| for all x, y ∈ R

3.
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Chapter 21 Problems

21.1. Show that the norm |a| of the vector a = (a1, a2, a3) is equal to the distance
from the origin 0 = (0, 0, 0) to the point (a1, a2, a3). Hint: apply Pythagoras
Theorem twice.

21.2. Which of the following coordinate systems are righthanded?

x1

x1

x1

x2

x2

x2 x3x3

x3

21.3. Indicate the direction of a × b and b × a in Fig. 21.1 if b points in the
direction of the x1-axis. Consider also the same question in Fig. 21.2.

21.4. Given a = (1, 2, 3) and b = (1, 3, 1), compute a× b.

21.5. Compute the volume of the parallelepiped spanned by the three vectors
(1, 0, 0), (1, 1, 1) and (−1,−1, 1).

21.6. What is the area of the triangle formed by the three points: (1, 1, 0),
(2, 3,−1) and (0, 5, 1)?

21.7. Given b = (1, 3, 1) and a = (1, 1, 1), compute a) the angle between a and
b, b) the projection of b onto a, c) a unit vector orthogonal to both a and b.

21.8. Consider a plane passing through the origin with normal n = (1, 1, 1) and
a vector a = (1, 2, 3). Which point p in the plane has the shortest distance to a?

21.9. Is it true or not that for any 3 × 3 matrices A, B, and C and number λ
(a) A+B = B +A, (b) (A+B) +C = A+ (B +C), (c) λ(A+B) = λA+ λB?

21.10. Prove that for 3 × 3 matrices A, B and C: (AB)C = A(BC). Hint:
Use that D = (AB)C has the elements dij =

∑3
k=1(

∑3
l=1 ailblk)ckj , and do the

summation in a different order.

21.11. Give examples of 3×3-matrices A and B such that AB �= BA. Is it difficult
to find such examples, that is, is it exceptional or “normal” that AB �= BA.

21.12. Prove Theorem 21.5.
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21.13. Write down the three matrices corresponding to rotations around the x1,
x2 and x3 axis.

21.14. Find the matrix corresponding to a rotation by the angle θ around a given
vector b in R

3.

21.15. Give the matrix corresponding to be mirroring a vector through the
x1 − x2-plane.

21.16. Consider a linear transformation that maps two points p1 and p2 in R
3

into the points p̂1, p̂2, respectively. Show that all points lying on a straight line
between p1, p2 will be transformed onto a straight line between p̂1 and p̂2.

21.17. Consider two straight lines in R
3 given by: a + λb and c + µd where

a, b, c, d ∈ R
3, λ, µ ∈ R. What is the shortest distance between the two lines?

21.18. Compute the intersection of the two lines given by: (1, 1, 0) + λ(1, 2,−3)
and (2, 0,−3) + µ(1, 1,−3). Is it a rule or an exception that such an intersection
can be found?

21.19. Compute the intersection between two planes passing through the origin
with normals n1 = (1, 1, 1), n2 = (2, 3, 1). Compute the intersection of these two
planes and the x1 − x2 plane.

21.20. Prove that (21.42) implies that the inverse of A−1 exists.

21.21. Consider a plane through a point r with normal n. Determine the re-
flection in the plane at r of a light ray entering in a direction parallel to a given
vector a.

x1

x2

x3

r

a

n

b
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21.22. Show that the distance between a point b and its projection onto a plane
n · x = d is equal to the shortest distance between b and any point in the plane.
Give both a geometric proof based on Pythagoras’ theorem, and an analytical
proof. Hint: For x in the plane write |b− x|2 = |b− Pb+ (Pb− x)|2 = (b− Pb+
(Pb− x), b− Pb+ (Pb− x)) and expand using that (b− Pb, P b− x) = 0).

21.23. Express (21.31) i matrix form.

21.24. Complete the proof of the claim that (21.30) is uniquely solvable.

21.34 Gösta Mittag-LefflerTS
f

The Swedish mentor of Sonya Kovalevskayawas Gösta Mittag-Leffler (1846–
1927), famous Swedish mathematician and founder of the prestigous jour-
nal Acta Mathematica, see Fig. 21.34. The huge mansion of Mittag-Leffler,
beautifully situated in in Djursholm, just outside Stockholm, with an im-
pressive library, now houses Institut Mittag-Leffler bringing mathemati-
cians from all over the world together for work-shops on different themes
of mathematics and its applications. Mittag-Leffler made important con-
tributions to the theory of functions of a complex variable, see Chapter
Analytic functions below.

Fig. 21.11. Gösta Mittag-Leffler, Swedish mathematician and founder of Acta
Mathematica: “The mathematician’s best work is art, a high perfect art, as daring
as the most secret dreams of imagination, clear and limpid. Mathematical genius
and artistic genius touch one another”

TS
f Please confirm position of Sect. 21.34 only after Problems.

Editor’s or typesetter’s annotations (will be removed before the final TEX run)





22
Complex Numbers

The imaginary number is a fine and wonderful recourse of the divine
spirit, almost an amphibian between being and not being. (Leibniz)

The composition of vast books is a laborious and impoverishing ex-
travagance. To go on for five hundred pages developing an idea whose
perfect oral exposition is possible in a few minutes! A better course
of procedure is to pretend that these books already exist, and then
to offer a resume, a commentary. . . More reasonable, more inept,
more indolent, I have preferred to write notes upon imaginary books.
(Borges, 1941)

22.1 Introduction

In this chapter, we introduce the set of complex numbers C. A complex
number, typically denoted by z, is an ordered pair z = (x, y) of real numbers
x and y, where x represents the real part of z and y the imaginary part of z.
We may thus identify C with R

2 and we often refer to C as the complex
plane. We further identify the set of complex numbers with zero imaginary
part with the set of real numbers and write (x, 0) = x, viewing the real
line R as the x-axis in the complex plane C. We may thus view C as an
extension of R. Similarly, we identify the set of complex numbers with
zero real part with the y-axis, which we also refer to as the set of purely
imaginary numbers. The complex number (0, 1) is given a special name
i = (0, 1), and we refer to i as the imaginary unit.
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i = (0, 1)

1 = (1, 0)

z = (x, y)

x = Re z

y = Im z

Fig. 22.1. The complex plane C = R
2

The operation of addition in C coincides with the operation of vector
addition in R

2. The new aspect of C is the operation of multiplication
of complex numbers, which differs from scalar and vector multiplication
in R

2.
The motivation to introduce complex numbers comes from considering

for example the polynomial equation x2 = −1, which has no root if x is
restricted to be a real number. There is no real number x such that x2 = −1
since x2 ≥ 0 for x ∈ R. We shall see that if we allow x to be a complex
number, the equation x2 = −1 becomes solvable and the two roots are
x = ±i. More generally, the Fundamental Theorem of Algebra states that
any polynomial equation with real or complex coefficients has a root in the
set of complex numbers. In fact, it follows that a polynomial equation of
degree n has exactly n roots.

Introducing the complex numbers finishes the extension process from nat-
ural numbers over integers and rational numbers to real numbers, where
in each case a new class of polynomial equations could be solved. Further
extensions beyond complex numbers to for example quarternions consisting
of quadruples of real numbers were made in the 19th century by Hamilton,
but the initial enthusiasm over these constructs faded since no fully con-
vincing applications were found. The complex numbers, on the other hand,
have turned out to be very useful.

22.2 Addition and Multiplication

We define the sum (a, b) + (c, d) of two complex numbers (a, b) and (c, d),
obtained through the operation of addition denoted by +, as follows:

(a, b) + (c, d) = (a+ c, b+ d), (22.1)
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that is we add the real parts and imaginary parts separately. We see that
addition of two complex numbers corresponds to vector addition of the cor-
responding ordered pairs or vectors in R

2. Of course, we define subtraction
similarly: (a, b) − (c, d) = (a− c, b− d).

We define the product (a, b)(c, d) of two complex numbers (a, b) and (c, d),
obtained through the operation of multiplication, as follows:

(a, b)(c, d) = (ac− bd, ad+ bc). (22.2)

We can readily check using rules for operating with real numbers that the
operations of addition and multiplication of complex numbers obey the
commutative, associative and distributive rules valid for real numbers.

If z = (x, y) is a complex number, we can write

z = (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x+ iy, (22.3)

referring to the identification of complex numbers of the form (x, 0) with x,
(and similarly (y, 0) with y of course) and the notation i = (0, 1) introduced
above. We refer to x is the real part of z and y as the imaginary part of z,
writing x = Re z and y = Im z, that is

z = Re z + i Im z = (Re z, Im z). (22.4)

We note in particular that

i2 = i i = (0, 1)(0, 1) = (−1, 0) = −(1, 0) = −1, (22.5)

and thus z = i solves the equation z2 + 1 = 0. Similarly, (−i)2 = −1, and
thus the equation z2 + 1 = 0 has the two roots z = ±i.

The rule (22.2) for multiplication of two complex numbers (a, b) and
(c, d), can be retrieved using that i2 = −1 (and taking the distributive law
for granted):

(a, b)(c, d) = (a+ ib)(c+ id) = ac+ i2bd+ i(ad+ bc) = (ac− bd, ad+ bc).

We define the modulus or absolute value |z| of a complex number z =
(x, y) = x+ iy, by

|z| = (x2 + y2)1/2, (22.6)
that is, |z| is simply the length or norm of the corresponding vector (x, y) ∈
R

2. We note that if z = x+ iy, then in particular

|x| = |Re z| ≤ |z|, |y| = |Im z| ≤ |z|. (22.7)

22.3 The Triangle Inequality

If z1 and z2 are two complex numbers, then

|z1 + z2| ≤ |z1| + |z2|. (22.8)

This is the triangle inequality for complex numbers, which follows directly
from the triangle inequality in R

2.
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22.4 Open Domains

We extend the notion of an open domain in R
2 to C in the natural way.

We say that a domain Ω in C is open if the corresponding domain in R
2 is

open, that is for each z0 ∈ Ω there is a positive number r0 such that the
complex numbers z with |z − z0| < r also belong to Ω. For example, the
set Ω = {z ∈ C : |z| < 1}, is open.

22.5 Polar Representation of Complex Numbers

Using polar coordinates in R
2, we can express a complex number as follows

z = (x, y) = r(cos(θ), sin(θ)) = r(cos(θ) + i sin(θ)), (22.9)

where r = |z| is the modulus of z and θ = arg z is the argument of z, and
we also used (22.3). We usually assume that θ ∈ [0, 2π), but by periodicity
we may replace θ by θ + 2πn with n = ±1,±2, . . . ,. Choosing θ ∈ [0, 2π),
we obtain the principal argument of z, which we denote by Arg z.

x = Re z

y = Im z

θ

r

x = r cos(θ)

y = r sin(θ)
z = (x, y) = r (cos(θ), sin(θ))

Fig. 22.2. Polar representation of a complex number

Example 22.1. The polar representation of the complex number z =
(1,

√
3) = 1 + i

√
3 is z = 2(cos(π

3 ), sin(π
3 )), or z = 2(cos(60◦), sin(60◦)).

22.6 Geometrical Interpretation of Multiplication

To find the operation on vectors in R
2 corresponding to multiplication of

complex numbers, it is convenient to use polar coordinates,

z = (x, y) = r(cos(θ), sin(θ)),
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where r = |z| and θ = Arg z. Letting ζ = (ξ, η) = ρ(cos(ϕ), sin(ϕ)) be an-
other complex number expressed using polar coordinates, the basic trigono-
metric formulas from the Chapter Pythagoras and Euclid imply

zζ = r(cos(θ), sin(θ)) ρ(cos(ϕ), sin(ϕ))
= rρ(cos(θ) cos(ϕ) − sin(θ) sin(ϕ), cos(θ) sin(ϕ) + sin(θ) cos(ϕ))
= rρ(cos(θ + ϕ), sin(θ + ϕ)).

We conclude that multiplying z = r(cos(θ), sin(θ)) by ζ = ρ(cos(ϕ), sin(ϕ))
corresponds to rotating the vector z the angle ϕ = Arg ζ, and changing its
modulus by the factor ρ = |ζ|. In other words, we have

arg zζ = Arg z + Arg ζ, |zζ| = |z||ζ|. (22.10)

1
x = Re z

y = Im z

z

ζ

z ζ

|z ζ| = |z| |ζ|
Arg z ζ = Arg z + Arg ζ

Fig. 22.3. Geometrical interpretation of multiplication of a complex numbers

Example 22.2. Multiplication by i corresponds to rotation counter-clock-
wise π

2 , or 90◦.

22.7 Complex Conjugation

If z = x+ iy is a complex number with x and y real, we define the complex
conjugate z̄ of z as

z̄ = x− iy.

We see that z is real if and only if z̄ = z and that z is purely imaginary,
that is Re z = 0, if and only z = −z̄.

Identifying C with R
2, we see that complex conjugation corresponds

to reflection in the real axis. We also note the following relations, easily
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verified,

|z|2 = zz̄, Re z =
1
2
(z + z̄), Im z =

1
2i

(z − z̄). (22.11)

22.8 Division

We extend the operation of division (denoted by /) of real numbers to
division of complex numbers by defining for w, u ∈ C with u �= 0,

z = w/u =
w

u
if and only if uz = w.

To compute w/u for given w, u ∈ C with u �= 0, we proceed as follows:

w/u =
w

u
=
wū

uū
=
wū

|u|2 .

Example 22.3. We have

1 + i

2 + i
=

(1 + i)(2 − i)
5

=
3
5

+ i
1
5
.

Note that we consider complex numbers as scalars although they have
a lot in common with vectors in R

2. The main reason for this is that . . . .

22.9 The Fundamental Theorem of Algebra

Consider a polynomial equation p(z) = 0, where p(z) = a0+a1z+. . .+anz
n

is a polynomial in z of degree n with complex coefficients a0, . . . , an. The
Fundamental Theorem of Algebra states that the equation p(z) has at least
one complex root z1 satisfying p(z1) = 0. By the factorization algorithm,
it follows that p(z) can be factored into

p(z) = (z − z1)p1(z),

where p1(z) is a polynomial of degree at most n−1. Indeed, the factorization
algorithm from the Chapter Combinations of functions (Section 11.4) shows
that

p(z) = (z − z1)p1(z) + c,

where c is a constant. Setting z = z1, it follows that c = 0. Repeating the
argument, we find that p(z) can be factored into

p(z) = c(z − z1) . . . (z − zn),

where z1, . . . , zn are the (complex valued in general) roots of p(z) = 0.
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22.10 Roots

Consider the equation in w ∈ C

wn = z,

where n = 1, 2, . . . is a natural number and z ∈ C is given. Using polar co-
ordinates with z = |z|(cos(θ), sin(θ)) ∈ C and w = |w|(cos(ϕ), sin(ϕ)) ∈ C,
the equation wn = z takes the form

|w|n(cos(nϕ), sin(nϕ)) = |z|(cos(θ), sin(θ))

from which it follows that

|w| = |z| 1
n , ϕ =

θ

n
+ 2π

k

n
,

where k = 0, . . . , n − 1. We conclude that the equation wn = z has n
distinct roots on the circle |w| = |z| 1

n . In particular, the equation w2 = −1
has the two roots w = ±i. The n roots of the equation wn = 1 are called
the n roots of unity.

11

z z
w1

w1

w2

w2

w3

x = Re zx = Re z

y = Im zy = Im z

θ/2 θ/2 θ/3

Fig. 22.4. The “square” and “cubic” roots of z

22.11 Solving a Quadratic Equation
w2 + 2bw + c = 0

Consider the quadratic equation for w ∈ C,

w2 + 2bw + c = 0,

where b, c ∈ C. Completing the square, we get

(w + b)2 = b2 − c.
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If b2 − c ≥ 0 then
w = −b±

√
b2 − c,

while if b2 − c < 0 then

w = −b± i
√
c− b2.

Chapter 22 Problems

22.1. Show that (a) 1
i

= −i, (b) i4 = 1.

22.2. Find (a) Re 1
1+i

, (b) Im 3+4i
7−i , (c) Im z

z̄
.

22.3. Let z1 = 4 − 5i and z2 = 2 + 3i. Find in the form z = x+ iy (a) z1z2, (b)
z1
z2

, (c) z1
z1+z2

.

22.4. Show that the set of complex numbers z satisfying an equation of the form
|z − z0| = r, where z0 ∈ C is given and r > 0, is a circle in the complex plane
with center z0 and radius r.

22.5. Represent in polar form (a) 1 + i, (b) 1+i
1−i , (c) 2+3i

5+4i
.

22.6. Solve the equations (a) z2 = i, (b) z8 = 1, (c) z2 + z + 1 = −i, (d)
z4 − 3(1 + 2i)z2 + 6i = 0.

22.7. Determine the sets in the complex plane represented by (a) | z+i
z−i | = 1, (b)

Im z2 = 2, (c) |Arg z| ≤ π
4
.

22.8. Express z/w in polar coordinates in terms of the polar coordinates of z
and w.

22.9. Describe in geometrical terms the mappings f : C → C given by (a)

f(z) = az + b, with a, b ∈ C, (b) f(z) = z2, (c) f(z) = z
1
2 .
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The Derivative

I’ll teach you differences. (Shakespeare: King Lear)

An object with zero velocity will not change position. (Einstein)

. . . and therefore I offer this work as the mathematical principles
of philosophy, for the whole burden in philosophy seems to consist
in this: from the phenomena of motions to investigate the forces of
nature, and then from these forces to demonstrate the other phe-
nomena. . . (Galileo)

23.1 Rates of Change

Life is change. The newborn changes every day and acquires new skills,
the teen-ager develops into an adult in a couple of years, the middle-aged
wants to see the family, the house and career expand every year. Only the
retired wants to stop the world and play golf for ever, but realizes that this
is impossible and understands that there is an end, after which there is no
change at all any more.

When something changes, we may speak of the total change and we may
speak of the change per unit or the rate of change. If our salary increases, we
expect an increase in tax and we may speak of the total change in tax (for
one year). We may also speak of the change in tax per extra dollar we earn,
which is a rate of change of tax commonly referred to as marginal income
tax. The marginal income tax usually changes with our total income, so
that we pay a higher marginal tax if we have a higher income. If our total
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income is 10 000 dollars, then we may have to pay 30 cents tax out of an
extra dollar we earn, and if our total income is 50 000 dollars, we may have
to pay 50 cents tax out of an extra dollar. The marginal tax, or rate of
change of tax, in this example is 0.3 if our income is 10 000 dollars and 0.5
if our income is 50 000 dollars.

Business people speak of marginal cost of a certain item, which is the
increase in total cost if we buy one more item, that is the cost increase per
item or rate of change of total cost. Normally the marginal cost depends
on the the total amount and in fact normally the marginal cost decreases
with the total amount of items we buy. The marginal cost of producing
some item also varies with the total amount produced. At a certain pro-
duction level, the cost of producing one more item may be very small, while
if we have to build a whole new factory to produce that single additional
item, the marginal cost would be very large. Thus the marginal cost in
production may vary with the total production.

The concept of a function f : D(f) → R(f) is also intimately connected
to change. For each x ∈ D(f) there is a f(x) ∈ R(f), and usually f(x)
changes with x. If f(x) is the same for all x, then the function f(x) is
a constant function, which is easy to grasp and does not require much
further study. If f(x) does vary with x, then it is natural to seek ways of
describing qualitatively and quantitatively how f(x) varies with x. The rate
of change enters again if we seek to describe how f(x) changes per unit of x.

The derivative of a function f(x) with respect to x measures the rate of
change of f(x) as x varies. The derivative of our tax with respect to income
is the marginal tax. The derivative of the total production cost with respect
to total production is the marginal cost.

The basic modeling tool in Calculus is the derivative. Indeed, the start
of the modern scientific age coincides with the invention of the concept of
derivative. The derivative is a measure of rate of change.

In this chapter, we introduce the wonderful mathematical concept of the
derivative, figure out some of its properties, and start to use derivatives in
mathematical modeling.

23.2 Paying Taxes

We return to the above example of describing our income tax as a function
of income. Suppose we let x denote our total income next year and let f(x)
be the corresponding total income tax we would have to pay. The function
f(x) describes how our total income tax changes with our income x. For
each given income x, there is a corresponding income tax f(x) to pay. We
plot a possible function f(x) in the following figure:



23.2 Paying Taxes 355

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

income

ta
x

Fig. 23.1. Income tax f(x) varying with income x

The function f(x) in this example is piecewise linear and Lipschitz con-
tinuous. The slope of f(x) is zero up to the total income 5, the slope is 0.2
in the interval [5 000, 10 000], 0.3 in [10 000, 20 000], 0.4 in [20 000, 30 000]
and 0.5 in [30 000,∞).

For a given x̄, the slope of the straight line representing f(x) close to x̄, is
the marginal tax. We denote the slope of f(x) at x̄ bym(x̄). We see that the
slope m(x̄) varies with x̄. For example, m(x̄) = 0.3 for x̄ ∈ (10 000, 20 000).
If we add one extra dollar at the income x̄ ∈ (10 000, 20 000), then our
income tax will increase by 0.3 dollars.

The marginal tax is the same as the slope of the straight line representing
the income tax f(x) as a function of income x. Thus the marginal tax is
m(x̄) at the income x̄. The marginal income tax is zero up to the total
income 5 000, the marginal tax is 0.2 in the income bracket [5 000, 10 000],
0.3 in the bracket [10 000, 20 000], 0.4 in the bracket [20 000, 30 000] and 0.5
for incomes in the bracket [30 000,∞).

We can describe how f(x) varies in each income tax bracket through the
following formula

f(x) = 0 for x ∈ [0, 5 000]
f(x) = 0.2(x− 5 000) for x ∈ [5 000, 10 000]
f(x) = f(10 000) + 0.3(x− 10 000) for x ∈ [10 000, 20 000]
f(x) = f(20 000) + 0.4(x− 20 000) for x ∈ [20 000, 30 000]
f(x) = f(30 000) + 0.5(x− 30 000) for x ∈ [30 000,∞)

We can condense these formulas into

f(x) = f(x̄) +m(x̄)(x− x̄), (23.1)
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where x̄ represents a given income with corresponding tax f(x̄), and we are
interested in the tax f(x) for an income x in some interval containing x̄.
For example, the formula

f(x) = f(15 000) +m(15 000)(x− 15 000) for x ∈ [10 000, 20 000]

where m(15 000) = 0.3 is the marginal tax, describes how the tax varies
with the income x around the income x̄ = 15 000, see Fig. 23.2.
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Fig. 23.2. Income tax f(x) for income x in the interval [10 000, 20 000]

The derivative of the function f(x) = f(x̄) +m(x̄)(x − x̄) for x = x̄, is
the marginal tax m(x̄). The formula f(x) = f(x̄) +m(x̄)(x − x̄) describes
how f(x) varies if x varies in an interval around x̄. The formula states that
f(x) is a straight line with slope m(x̄) close to x̄.

More generally, if f(x) = mx+ b is a linear function, then we can write

f(x) = f(x̄) +m (x− x̄),

since f(x̄) = b + mx̄. The coefficient m multiplying the change x − x̄ is
equal to the derivative of f(x) at x̄. In this case, the derivative is constant
equal to m for all x̄. The change in f(x) is proportional to the change in x
with factor of proportionality equal to m:

f(x) − f(x̄) = m (x− x̄), (23.2)

that is if x �= x̄, then the slope m is given by

m =
f(x) − f(x̄)

x− x̄
(23.3)

We may view the slope m as the change of f(x) per unit change of x, or as
the rate of change of f(x) with respect to x.
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23.3 Hiking

We now give the above example a different interpretation. Suppose now that
x represents time in seconds and f(x) is the distance in meters travelled
by a hiker along a hiking path measured from the start at time x = 0.
According to the above formula, we have f(x) = 0 for x ∈ [0, 5 000], which
means that the trip starts with the hiker at rest at x = 0 for 5 000 seconds
(maybe to fix some malfunctioning equipment). For x ∈ [5 000, 10 000], we
have f(x) = 0.2(x − 5 000) which means that the hiker advances with 0.2
meter per second, that is with the velocity 0.2 meters per second. In the time
interval [10 000, 20 000], we have f(x) = f(10 000)+ 0.3(x− 10 000), which
means that the hiker’s velocity is now 0.3 meters per second, and so on.

We note that the slopem(x̄) of the straight line f(x) = f(x̄)+m(x̄)(x−x̄)
represents the velocity at x̄. We may thus say that the derivative of the
distance f(x) with respect to time x, which is the slope m(x̄), is equal to
the velocity. We will meet the interpretation of the derivative as a velocity
again below.

23.4 Definition of the Derivative

We shall now seek to define the derivative of a given function f : R → R at
a given point x̄. We shall then follow the idea that if f(x) is particularly
well approximated by the linear function f(x̄) + m (x − x̄) for x close to
x̄, then the derivative of f(x) at x̄ will be equal to m. In other words, the
derivative of f(x) at x̄ will be equal to the slope m of the approximating
linear function f(x̄) + m (x − x̄). Of course, a key point is to describe
how to interpret that the linear function f(x̄) + m (x − x̄) approximates
f(x) “particularly well”. We shall see that the natural requirement is to
ask that the error is proportional to |x − x̄|2, that is that the error is
quadratic in the difference x − x̄. Geometrically, this will be the same
as asking the straight line y = f(x̄) + m (x − x̄) to be tangent to the
graph of y = f(x) at (x̄, f(x̄)). We will see that asking the error to be
quadratic in x− x̄ is just about right. In particular, asking the error to be
even smaller, for example proportional to |x− x̄|3, would be to ask for too
much.

Before defining the derivative, we back off a little to prepare ourselves
and consider different linear approximations b+m (x− x̄) of the given func-
tion f(x) for x close to x̄. There are many straight lines that approximate
f(x) close to x̄. We show some bad approximations and a number of good
approximations in Fig. 23.3. On the left, we show some bad linear “approx-
imations” to the function f(x) near x̄. On the right, we show some better
linear approximations.

The question is whether one of the many possible approximate lines is
a particularly good choice or not.
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x̄x̄

y = f(x)y = f(x)

Fig. 23.3. Linear approximations of f(x) close to x̄

We have one piece of information we should use, namely, we know that
the value of f(x) at x = x̄ is f(x̄). So first of all, we only consider lines
b + m (x − x̄) that take on the value f(x̄) for x = x̄, that is we choose
b = f(x̄). Such lines are said to interpolate f(x) at x̄ and thus have an
equation of the form

y = f(x̄) +m(x− x̄). (23.4)

We started this section considering approximations of f(x) of this form.
We plot several examples in Fig. 23.4 with different slopes m.

x̄

f(x̄)

y = f(x)

Fig. 23.4. Linear approximations to a function that pass through the point
(x̄, f(x̄)). The region near (x̄, f(x̄)) has been blown-up on the right

We now would like to choose the slope m so that f(x) is particularly well
approximated by the linear function f(x̄) +m (x− x̄) for x close to x̄. We
expect the slope m to depend on x̄ and thus we will have m = m(x̄).

Out of the three lines plotted in Fig. 23.4 near (x̄, f(x̄)), the line in the
middle seems to be the best by far. This line is tangent to the graph of f(x)
at the point x̄. The slope of the tangent is characterized by the fact that
the error between f(x) and the approximation f(x̄) +m(x̄)(x− x̄), that is
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the quantity

Ef (x, x̄) = f(x) −
(
f(x̄) +m(x̄)(x− x̄)

)
, (23.5)

is particularly small. Since f(x̄) +m(x̄)(x− x̄) interpolates f(x) at x = x̄,
we have E(x̄, x̄) = 0. Rewriting (23.5) as

f(x) = f(x̄) +m(x̄)(x − x̄) + Ef (x, x̄),

we may view Ef (x, x̄) as a correction to the linear approximation f(x̄) +
m(x̄)(x − x̄) of f(x), see Fig. 23.5. It is natural to say that the correction
Ef (x, x̄) is particularly small if it is much smaller than the term m(x− x̄),
which represents a linear correction of the constant value f(x̄). Thus, f(x̄)+
m(x̄)(x− x̄) is a linear approximation of f(x) close to x̄ with zero error for
x = x̄, and we seek m(x̄) so that the correction Ef (x, x̄) is small compared
to m(x− x̄) for x close to x̄.

x̄ x

y = f(x)

y = f(x̄) +m(x̄)(x− x̄)
Ef (x, x̄)

Fig. 23.5. Graph y = f(x), tangent y = f(x̄) +m(x̄)(x− x̄) and error Ef (x, x̄)

The natural requirement is then to ask that Ef (x, x̄) can be bounded by
a term which is quadratic in x− x̄, that is

|Ef (x, x̄)| ≤ Kf(x̄)|x− x̄|2 for x close to x̄, (23.6)

where Kf(x̄) is a constant. The term Kf(x̄)|x − x̄|2 is much smaller than
m(x̄)|x − x̄|, if x is sufficiently close to x̄, that is, if the factor |x − x̄| is
small enough.

We will say, for short, that an error term Ef (x, x̄) is quadratic in x − x̄
if Ef (x, x̄) satisfies the estimate (23.6) for some constant Kf (x̄) for x close
to x̄. We thus seek to choose the slope m = m(x̄) so that the error Ef (x, x̄)
is quadratic in x− x̄. The linear function f(x̄) +m(x̄)(x− x̄) will then be
tangent to f(x) at x̄. We expect the slope of the tangent at x̄ to depend on
x̄, which we indicate by denoting the slope by m(x̄).
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Now we are in position to define the derivative of f(x) at x̄. The function
f(x) is said to be differentiable at x̄ if there are constants m(x̄) and Kf (x̄)
such that for x close to x̄,

f(x) = f(x̄) +m(x̄)(x− x̄) + Ef (x, x̄),

with |Ef (x, x̄)| ≤ Kf (x̄)|x − x̄|2. (23.7)

We then say that the derivative of f(x) at x̄ is equal to m(x̄), and we denote
the derivative by f ′(x̄) = m(x̄). The derivative f ′(x̄) of f(x) at x̄ is equal
to the slope m(x̄) of the tangent y = f(x̄) +m(x̄)(x− x̄) to f(x) at x̄. The
dependence of x̄ is kept in f ′(x̄).

Recapping our discussion, the equation (23.7) defining the derivative of
f at x̄ can be thought of as defining a linear approximation

f(x̄) + f ′(x̄)(x− x̄) ≈ f(x)

for x close to x̄ with an error Ef (x, x̄) which is quadratic in x−x̄. The linear
approximation f(x̄) + f ′(x̄)(x− x̄) of f(x) with quadratic error in x− x̄, is
called the linearization of f(x) at x̄, and the corresponding Ef (x, x̄) is the
linearization error.

We now compute the derivative of some basic polynomial functions f(x)
from the definition of the derivative.

23.5 The Derivative of a Linear Function Is
Constant

If f(x) = b+mx is a linear function with b and m real constants, then

f(x) = b+mx = b+mx̄+m(x− x̄) = f(x̄) +m(x− x̄),

with the corresponding error function Ef (x, x̄) = 0 for all x. We conclude
that if f(x) = b + mx, then f ′(x̄) = m. Thus the derivative of a linear
function b +mx is constant equal to the slope m. We note that if m > 0,
then f(x) = b +mx is increasing (with increasing x), that is f(x) > f(x̄)
if x > x̄ and f(x) < f(x̄) if x < x̄. Conversely, if m < 0, then f(x) is
decreasing (with increasing x), that is f(x) < f(x̄) if x > x̄ and f(x) > f(x̄)
if x < x̄. In particular, for b = 0 and m = 1 we have

if f(x) = x, then f ′(x) = 1. (23.8)

23.6 The Derivative of x2 Is 2x

We now compute the derivative of the quadratic function f(x) = x2 at
a point x̄. The strategy is to first “extract” the constant value f(x̄) from
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f(x), and a factor x− x̄ from the reminder term, to obtain f(x) = f(x̄) +
g(x, x̄)(x − x̄) for some quantity g(x, x̄), then to replace g(x, x̄) by g(x̄, x̄)
and verify that the resulting error term E = (g(x, x̄) − g(x̄, x̄))(x − x̄) has
the desired property |E| ≤ K|x− x̄|2. In the considered case of f(x) = x2

we have

x2 = x̄2 + (x2 − x̄2) = x̄2 + (x+ x̄)(x− x̄) = x̄2 + 2x̄(x− x̄) + (x− x̄)2,

that is,
f(x) = f(x̄) + 2x̄(x− x̄) + Ef (x, x̄),

where Ef (x, x̄) = (x− x̄)2, which shows that f(x) = x2 is differentiable for
all x̄ with f ′(x̄) = 2x̄, that is, f ′(x) = 2x for x ∈ R. We conclude that, see
Fig. 23.6,

if f(x) = x2, then f ′(x) = 2x. (23.9)

An alternative, shorter route to the linearization formula (23.6) in this
case is

x2 = (x̄+ (x− x̄))2 = x̄2 + 2x̄(x− x̄) + (x− x̄)2,

−2−2 22

−4−4

44

f(x) f ′(x)

Fig. 23.6. f(x) = x2 and f ′(x) = 2x

We see that x2 is decreasing for x < 0 and increasing for x > 0 following
the sign of the derivative f ′(x) = 2x.

Repeating the above calculation with the particular value x̄ = 1, to get
familiar with the argument, we get

x2 = 1 + 2(x− 1) + (x− 1)2,

and thus the derivative of f(x) = x2 at x̄ = 1 is f ′(1) = 2. We plot x2 and
1 + 2(x− 1) in Fig. 23.7. We compare some values of the given function x2

to the linear approximation 1 + 2(x − 1) along with the error (x − 1)2 in
Fig. 23.8
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Fig. 23.7. The linearization 1 + 2(x− 1) of x2 at x̄ = 1

x f(x) f(1) + f ′(2)(x − 1) Ef (x, 1)

.7 .49 .4 .09
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.9 .81 .8 .01
1.0 1.0 1.0 0.0
1.1 1.21 1.2 .01
1.2 1.44 1.4 .04
1.3 1.69 1.6 .09

Fig. 23.8. Some values of f(x) = x2, f(1) + f ′(1)(x − 1) = 1 + 2(x − 1), and
Ef (x, 1) = (x− 1)2

23.7 The Derivative of xn Is nxn−1

We now compute the derivative of the monomial f(x) = xn at a point x̄,
where n ≥ 2 is a natural number. By the Binomial Theorem, generalizing
(23.6), we have

xn = (x̄+ x− x̄)n = x̄n + nx̄n−1 (x− x̄) + Ef (x, x̄) ,

where all the terms of the error

Ef (x, x̄) =
n(n− 1)

2
x̄n−2 (x− x̄)2 + · · · + (x− x̄)n ,

contain at least two factors of (x− x̄), and thus

|Ef (x, x̄)| ≤ Kf (x̄)(x − x̄)2,

with Kf(x̄) depending on x̄, x and n. Clearly, Kf(x̄) is bounded by some
constant if x and x̄ belong to some bounded interval. We conclude that
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f ′(x̄) = nx̄n−1 for all x̄, that is, f ′(x) = nx̄n−1 for all x. We summarize:

if f(x) = xn, then f ′(x) = nxn−1. (23.10)

For n = 2, we recover the formula f ′(x) = 2x if f(x) = x2.

23.8 The Derivative of 1
x Is − 1

x2 for x �= 0

We now compute the derivative of the function f(x) = 1
x for x �= 0. We

have for x close to x̄ �= 0,

1
x

=
1
x̄

+
(

1
x
− 1
x̄

)

=
1
x̄

+
(

− 1
xx̄

)

(x− x̄) =
1
x̄

+
(

− 1
x̄2

)

(x− x̄) + E

where

E =
(

1
x̄2

− 1
xx̄

)

(x− x̄) =
1
xx̄2

(x− x̄)2 ,

and thus |E| ≤ K|x− x̄|2 as desired. We conclude that f(x) = 1
x is differ-

entiable at x̄ with derivative f ′(x̄) = − 1
x̄2 for x̄ �= 0, that is

if f(x) =
1
x
, then f ′(x̄) = − 1

x̄2
for x̄ �= 0. (23.11)

23.9 The Derivative as a Function

If a function f(x) is differentiable for all points x̄ in an open interval I, then
f(x) is said to be differentiable on I. The derivative f ′(x̄) in general varies
with x̄. We may thus view the derivative f ′(x̄) of a function f(x), which
is differentiable on some interval I, as a function of x̄ for x̄ ∈ I. We may
change the name of the variable x̄ and speak about the derivative f ′(x) as
a function of x. We already took this step above. To a function f(x) that is
differentiable on an interval I, we may thus associate the function f ′(x) for
x ∈ I that gives the derivative of f(x). We may thus speak of the derivative
f ′(x) of a differentiable function f(x). For example, the derivative of x2 is
2x and the derivative of x3 is 3x2.

23.10 Denoting the Derivative of f(x) by Df(x)

We also denote the derivative f ′(x) of f(x) by Df(x), that is

f ′(x) = Df(x).
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Fig. 23.9. The function f(x) = 1/x and its derivative f ′(x) = −1/x2 for x > 0

Observe that D(f) denotes the domain of f , while Df(x) denotes the
derivative of f(x) at x.

We may write the basic formula (23.10) as

if f(x) = xn, then f ′(x) = Df(x) = nxn−1, (23.12)

or
Dxn = nxn−1 for n = 1, 2, . . . (23.13)

This is one of the most important results of Calculus. We here assume that
n is a natural number (including the particular case n = 0 if we agree to
define x0 = 1 for all x). Below we will extend this formula to n rational
(and finally to n real). We recall that we proved above that for x �= 0

if f(x) =
1
x
, then f ′(x) = Df(x) = − 1

x2
,

corresponding to setting n = −1 in (23.12).

Example 23.1. Suppose you drive a car along the x-axis and your position
at time t measured from the starting point at t = 0 is s(t) = 3 × (2t− t2)
miles, where t is measured in hours and the positive direction for s is to
the right. Your speed is s′(t) = 6−6t = 6(1− t) miles/hour at time t. Since
the derivative is positive for 0 ≤ t < 1, which means that the tangent lines
to s(t) have positive slope for 0 ≤ t < 1, the car moves to the right up to
t = 1. At exactly t = 1, you stop the car. If t > 1, then the car moves to
the left again, because the slopes of the tangents are negative.



23.11 Denoting the Derivative of f(x) by df
dx

365

23.11 Denoting the Derivative of f(x) by df
dx

We will also denote the derivative f ′(x) of a differentiable function f(x) by

df

dx
= f ′(x) (23.14)

We here usually omit the variable x using the notation df
dx and thus write

df
dx instead of df

dx (x). Of course the notation df
dx is inspired from (23.22)

below, with df corresponding to the f -difference f(xi)− f(x̄) in f(x), and
dx corresponding to the x-difference xi − x̄ in x. One may also denote
the differentiation operator D in Df(x) alternatively by d

dx , and write for
example

d

dx
(xn) = nxn−1 (23.15)

We now have three ways of denoting the derivative of a function f(x) with
respect to x, namely f ′(x), Df(x), and df

dx .
Note that using the notation f ′(x) andDf(x) for the derivative of a func-

tion f(x), it is understood that the derivative is taken with respect to the
independent variable x occurring in f(x). This convention is made explicit
in the notation df

dx . Thus if f = f(y), that is f is a function of the variable y,
then Df = df

dy , while if f = f(x) then Df = df
dx .

23.12 The Derivative as a Limit of Difference
Quotients

We recall that the function f(x) is differentiable at x̄ with derivative f ′(x̄),
if for x in some open interval I containing x̄,

f(x) = f(x̄) + f ′(x̄)(x − x̄) + Ef (x, x̄), (23.16)

where
|Ef (x, x̄)| ≤ Kf (x̄)|x− x̄|2, (23.17)

and Kf(x̄) is a constant. Dividing by x − x̄ assuming x �= x̄, we get for
x ∈ I,

f(x) − f(x̄)
x− x̄

= f ′(x̄) +Rf (x, x̄), (23.18)

where

Rf (x, x̄) =
Ef (x, x̄)
x− x̄

, (23.19)

satisfies
|Rf (x, x̄)| ≤ Kf(x̄)|x− x̄| for x ∈ I. (23.20)
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Let now {xi}∞i=1 be a sequence with limi→∞ xi = x̄ with xi ∈ I and xi �= x̄
for all i. There are many such sequences. For example, we may choose
xi = x̄+ i−1, or xi = x̄+ 10−i. From (23.20) it follows that

lim
i→∞

Rf (xi, x̄) = 0, (23.21)

and thus by (23.18) we have

f ′(x̄) = lim
i→∞

mi(x̄), (23.22)

where

mi(x̄) =
f(xi) − f(x̄)

xi − x̄
(23.23)

is the difference quotient based on the two distinct points x̄ and xi. The
difference quotient mi(x̄) defined by (23.23) is the slope of the secant line
connecting the points (x̄, f(x̄)) and (xi, f(xi)), see Fig. 23.10, and can be
viewed as the average rate of change of f(x) between the points x̄ and xi.

x̄ x

f(x̄)

f(x)

Fig. 23.10. The secant line joining (x̄, f(x̄)) and (xi, f(xi))

The formula
f ′(x̄) = lim

i→∞

f(xi) − f(x̄)
xi − x̄

, (23.24)

expresses the derivative f ′(x̄) as the limit of the average rate of change of
f(x) over intervals xi − x̄, the length of which tend to zero as i tends to
infinity. We may thus view f ′(x̄) as the local rate of change of f(x) at x̄.
If f(x) is tax at income x, then f ′(x̄) is the marginal tax at x̄. If f(x) is
a distance and x time, then f ′(x̄) is the instantaneous velocity at time x̄.

Alternatively, we may view f ′(x̄) being the slope of the tangent to f(x) at
x = x̄ as the limit of the sequence {mi(x̄)} of slopes of secants through the
points (x̄, f(x̄)) and (xi, f(xi)), where {xi}∞i=1 is a sequence with limit x̄.
We illustrate in Fig. 23.11.



23.13 How to Compute a Derivative? 367

x̄ x1x2x3x4

y = f(x)

tangent line

secant lines

Fig. 23.11. A sequence of secant lines approaching the tangent line at x̄

Example 23.2. Let us now compute the derivative of f(x) = x2 at x̄ by
using (23.22). Let xi = x̄+1/i. The slope of the secant line through (x̄, x̄2)
and (xi, f(xi)) = (xi, x

2
i ) is

mi(x̄) =
x2

i − x̄2

xi − x̄
=

(xi − x̄)(xi + x̄)
xi − x̄

= (xi + x̄).

By (23.22), we have

f ′(x̄) = lim
i→∞

mi(x̄) = lim
i→∞

(

2x̄+
1
i

)

= 2x̄,

and we recover the well known formula Dx2 = 2x.

23.13 How to Compute a Derivative?

Suppose f(x) is a given function for which we are not able to analytically
compute the derivative f ′(x̄) for a given x̄. Note that we were able to
carry out the analytical computation above for polynomials, but we gave
no strategy to determine the derivative f ′(x̄) for more general functions
f(x). The function f(x) may not be given by any formula at all, and could
just be given as a value f(x) for each x determined in some way.

The same problem arises if we want to determine a physical velocity by
doing some measurement. For example, if the speed meter of our car is
out of function, how can we measure the velocity of the car at some given
time x̄? Of course the natural thing would be to measure the increment of
distance f(x)− f(x̄) over some time interval x− x̄, where f(x) is the total
distance, and then use the quotient f(x)−f(x̄)

x−x̄ , the average velocity over
the time interval (x̄, x), as an approximation of the momentary velocity
at time x̄. But how to choose the length of the time interval x − x̄? If we
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choose x− x̄ way too small, then we will not be able to measure any change
in position at all, that is we will have f(x) = f(x̄), and then conclude zero
velocity, while if we take x − x̄ too large, the computed average velocity
may differ very much from the desired momentary velocity at x̄.

We now use analysis to find the right increment x − x̄ to use to deter-
mine the derivative f ′(x̄) of a given function f(x) at x̄, assuming that the
function values f(x) are given with a certain precision. From the definition
of f ′(x̄), we have for x close to x̄, x �= x̄,

f ′(x̄) =
f(x) − f(x̄)

x− x̄
− Ef (x, x̄)

x− x̄
,

where ∣
∣
∣
∣
Ef (x, x̄)
x− x̄

∣
∣
∣
∣ ≤ Kf (x̄)|x− x̄|.

The difference quotient
f(x) − f(x̄)

x− x̄
,

may thus be used as an approximation of f ′(x̄) up to a linearization error
of size Kf(x̄)|x− x̄|.

Suppose now that we know the quantity f(x) − f(x̄) up to an error
of size δf . We thus assume that we know x and x̄ exactly, but there is
an error of size δf in the quantity f(x) − f(x̄) resulting from errors in the
function values f(x) and f(x̄) from computation or measurement. We know
that frequently the value f(x) for a given x, is known only approximately
through computation.

The error δf in f(x)−f(x̄) causes an error of size | δf
x−x̄ | in the difference

quotient f(x)−f(x̄)
x−x̄ . We thus have a total error in f ′(x̄) of size

∣
∣
∣
∣
δf

x− x̄

∣
∣
∣
∣ +Kf(x̄)|x− x̄|, (23.25)

resulting from the error in f(x)− f(x̄) and the linearization error. Making
the two error contributions equal, which should give the right balance, we
get the equation ∣

∣
∣
∣
δf

x− x̄

∣
∣
∣
∣ = Kf |x− x̄|,

where we write Kf = Kf(x̄), from which we compute the “optimal incre-
ment”

|x− x̄| =

√
δf

Kf
. (23.26)

If we take |x− x̄| smaller, then the error contribution | δf
x−x̄ | will dominate

and we take |x − x̄| bigger, then the linearization error Kf(x̄)|x − x̄| will
dominate.
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Inserting the optimal increment into (23.25), we get a corresponding
“best” error estimate

∣
∣
∣
∣f

′ (x̄) − f(x) − f (x̄)
x− x̄

∣
∣
∣
∣ ≤ 2

√
δf

√
Kf . (23.27)

Contemplating the two resulting formulas (23.26) and (23.27) for the
optimal increment and corresponding minimal error in f ′(x̄), we see that
some a priori knowledge of δf and Kf is needed here. If we have no idea of
the size of these quantities, we will not know how to choose the increment
x − x̄ and we will not know anything about the error in the computed
derivative. Of course it is in many cases realistic to have an idea of the
size of δf , being an error from computation or measurement, but it may
be less obvious how to get an idea of the size of Kf . We will return to this
question below.

We sum up: Computing an approximation of f ′(x̄) by using the difference
quotient f(x)−f(x̄)

x−x̄ , we should not choose x− x̄ too small if there is an error
in the quantity f(x) − f(x̄). The formula

f ′(x̄) = lim
i→∞

f(xi) − f(x̄)
xi − x̄

,

where {xi}∞i=1 is a sequence with limit x̄ and xi �= x̄, thus must be used
with caution. If we examine the cases above where we could compute the
derivative analytically, like the case f(x) = x2, we will see that in fact we
could divide through by xi − x̄ in the quotient f(xi)−f(x̄)

xi−x̄ and avoid the
dangerous appearance of xi − x̄ in the denominator. For example, when
computing Dx2 analytically, we used that

x2
i − x̄2

xi − x̄
=

(xi + x̄)(xi − x̄)
(xi − x̄)

= xi + x̄,

from which we could conclude that Dx2 = 2x.

23.14 Uniform Differentiability on an Interval

We say that the function f(x) is differentiable on the interval I if f(x) is
differentiable for each x̄ ∈ I, that is for x̄ ∈ I there are constants m(x̄) and
Kf(x̄) such that for x close to x̄,

f(x) = (f(x̄) +m(x̄)(x− x̄)) + Ef (x, x̄)

|Ef (x, x̄)| ≤ Kf (x̄)|x− x̄|2.

In many cases we can choose one and the same constantKf (x̄) = Kf for all
x̄ ∈ I. We may express this by saying the f(x) is uniformly differentiable
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on I. Allowing also x to vary in I we are led to the following definition,
which we will find very useful below: We say that the function f : I → R

is uniformly differentiable on the interval I with derivative f ′(x̄) at x̄, if
there is a constant Kf such that for x, x̄ ∈ I,

f(x) = (f(x̄) + f ′(x̄)(x− x̄)) + Ef (x, x̄)

|Ef (x, x̄)| ≤ Kf |x− x̄|2.

Observe that the important thing is that Kf here does not depend on x̄,
but may of course depend on the function f and the interval I.

23.15 A Bounded Derivative Implies Lipschitz
Continuity

Suppose that f(x) is uniformly differentiable on the interval I = (a, b) and
suppose there is a constant L such that for x ∈ I,

|f ′(x)| ≤ L. (23.28)

We shall now show that f(x) is Lipschitz continuous on I with Lipschitz
constant L, that is we shall show that

|f(x) − f(y)| ≤ L|x− y| for x, y ∈ I. (23.29)

This result states something completely obvious: if the absolute value of
the maximal rate of change of a function f(x) is bounded by L, then the
absolute value of the total change |f(x) − f(y)| is bounded by L|x− y|.

If f(x) represents distance, and thus f ′(x) velocity, the statement is that
if the absolute value of the instantaneous velocity is bounded by L then
the absolute value of the change of distance |f(x)− f(y)| is bounded by L
times the total time change |x− y|. Elementary, my dear Watson!

We shall give a short proof of this result below, when we have some
additional machinery available (the Mean Value theorem). We present here
a somewhat longer proof.

By assumption we have for x, y ∈ I

f(x) = f(y) + f ′(y)(x − y) + Ef (x, y),

where
|Ef (x, y)| ≤ Kf |x− y|2,

with Kf a certain constant. We conclude that for x, y ∈ I

|f(x) − f(y)| ≤ (L+Kf |x− y|)|x− y|,
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so that for x, y ∈ I,

|f(x) − f(y)| ≤ L̄|x− y|,

where L̄ = L + K(b − a). This is almost what we want; the difference is
that L is replaced with the somewhat larger Lipschitz constant L̄.

If we restrict x and y to a subinterval Iδ of I of length δ, we have

|f(x) − f(y)| ≤ (L+Kδ)|x− y|

By making δ small enough, we can get L +Kδ as close to L as we would
like. Let now x and y in I be given and let x = x0 < x1 < · · · < xN = y,
where xi − xi−1 ≤ δ, see Fig. 23.12.

x y

x0 x1 x2 xi−1 xi xN

δ

Fig. 23.12. Subdivision of interval [x, y] into subintervals of length < δ

We have by the triangle inequality

|f(x) − f(y)| =

∣
∣
∣
∣
∣

N∑

i=1

(TS
gf(xi) − f(xi−1)

∣
∣
∣
∣
∣

≤
N∑

i=1

|f(xi) − f(xi−1)| ≤ (L+Kδ)
N∑

i=1

|xi − xi−1|

= (L+Kδ)|x− y|.

Since this inequality holds for any δ > 0, we conclude that indeed

|f(x) − f(y)| ≤ L|x− y|, for x, y ∈ I,

which proves the desired result. We summarize in the following theorem
which we will use extensively below:

Theorem 23.1 Suppose that f(x) is uniformly differentiable on the inter-
val I = (a, b) and suppose there is a constant L such that

|f ′(x)| ≤ L, for x ∈ I.

Then f(x) is Lipschitz continuous on I with Lipschitz constant L.

TS
g Please check this opening parenthesis.

Editor’s or typesetter’s annotations (will be removed before the final TEX run)
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23.16 A Slightly Different Viewpoint

In many Calculus books the derivative of a function f : R → R at a point x̄
is defined as follows. If the limit

lim
i→∞

f(xi) − f(x̄)
xi − x̄

, (23.30)

does exist for any sequence {xi} with limi→∞ xi = x̄ (assuming xi �= x),
then we call the (unique) limit the derivative of f(x) at x = x̄ and we denote
it by f ′(x̄). We proved in (23.22) that if f(x) is differentiable according to
our definition with derivative f ′(x̄), then

f ′(x̄) = lim
i→∞

f(xi) − f(x̄)
xi − x̄

,

because we assume that
∣
∣
∣
∣f

′(x̄) − f(xi) − f(x̄)
xi − x̄

∣
∣
∣
∣ ≤ Kf(x̄)|xi − x̄|. (23.31)

This means that our definition of derivative is somewhat more demand-
ing than that used in many Calculus books. We assume that the limiting
process occurs at a linear rate expressed by (23.31), whereas the definition
(23.30) just asks the limit to exist with no rate required (which pleases
many mathematicians because of its maximal generality). In most cases,
the two concepts agree, but in some very special cases the derivative would
exist according to the standard Calculus book definition, but not according
to the definition we use. We could naturally relax our definition by relaxing
the right hand side bound in (23.31) to Kf (x̄)|xi − x̄|θ, with some posi-
tive constant θ < 1, but the corresponding definition would still be a little
stronger than just asking the limit to exist. Using a more demanding defi-
nition we focus on normality rather than the extreme or degenerate, which
we believe will help the student to approach the new topic. Once the normal
situation is understood it may be easier to come to grips with extreme cases.

23.17 Swedenborg

A Swedish counterpart of the Universal Genius Leibniz, together with New-
ton the Inventor of Calculus, was Emanuel Swedenborg (1688–1772). Swe-
denborg introduced Calculus to Sweden with independent contributions.
Swedenborg produced 150 works on seventeen sciences, was a musician,
mining engineer, member of the Swedish parliament, invented a glider, an
undersea boat, an ear trumpet for the deaf, a mathematician who wrote the
first books in Swedish on algebra and calculus, a physiologist who discov-
ered the function of several areas of the brain and ductless glands, creator
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Fig. 23.13. Emanuel Swedenborg, Swedish Universal Genius, as a young man:
“The Intercourse of Soul and Body is thus not effected by any physica influx or
by any action of the Body upon the Mind or Soul; for the lower cannot affect
the higher, and the nature cannot inflow into the spiritual. Yet the Soul can
accomodate itself to the changes of the sensories of the brain and form mental
percepts and concepts. It can also time the release of the energy there stored and
from an intelligent conatus direct it into motivated or living actions”

of the (at the time) world’s largest dry-dock, and suggested the nebula
theory of the formation of the planets.

Chapter 23 Problems

23.1. Prove directly from the definition that the derivative of x3 is 3x2, and
that the derivative of x4 is 4x3.

23.2. Prove directly from the definition that the derivative of the function f(x) =√
x = x

1
2 is equal to f ′(x) = 1

2
x− 1

2 for x > 0. Hint: use that (
√
x −

√
x̄)(

√
x +√

x̄) = x− x̄.

23.3. Compute the derivative of
√
x numerically for different values of x and

study how the error depends on the increment used, and the precision of the
computation of

√
x.
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23.4. Study the symmetric difference quotient approximation

f ′(x̄) ≈ f(x̄+ h) − f(x̄− h)

h
h > 0.

What is an optimal choice of the increment h, assuming f(x̄ ± h) is not known
exactly. Hint: You may find it useful to look ahead into the next chapter (Taylor’s
formula of order 2).

23.5. Compute the derivative of xn numerically for different values of x and n
and study how the error depends on the increment used.

23.6. Can you compute the derivative of sin(x) and cos(x) from the definition?

23.7. Determine the smallest possible Lipschitz constant for the function f(x) =
x3 with D(f) = [1, 4].

23.8. (l’Hopitals rule). Let f : R → R and g : R → R be differentiable on an
open interval I containing 0, and suppose f(0) = g(0) = 0. Prove that

lim
i→∞

f(xi)

g(xi)
=
f ′(0)
g′(0)

if g′(0) �= 0, where {xi}∞i=1 is a sequence with limi→∞ xi = 0 and xi �= 0 for
all i. This is the famous l’Hopitals rule, presented in l’Hopitals book Analyse de
infiment petit (1713), the first Calculus book! Note that f(0)

g(0)
= 0

0
is not well

defined. Hint: Write f(xi) = f(0) + f ′(xi)xi +Ef (xi, 0) et cet.

23.9. Determine limi→∞
f(xi)
g(xi)

, where f(x) =
√
x − 1 and g(x) = x − 1, and

{xi}∞i=1 is a sequence with limi→∞ xi = 1 and xi �= 1 for all i. Extend to the case
f(x) = xr − 1 with r rational.



24
Differentiation Rules

Calculemus. (Leibniz)

When I have followed a line of thought to the end, it often seems
so simple that I start to wonder if I have stolen it from someone.
(Horace Engdahl)

24.1 Introduction

We now state and prove some rules for computing derivatives of combi-
nations of functions in terms of the derivatives of the functions in the
combination. These rules of differentiation form a part of Calculus that
can be automated in terms of symbolic manipulation software. In contrast,
we will see below that integration, the other basic operation of Calculus,
is not open to automatic symbolic manipulation to the same extent. It
makes sense that a popular software for symbolic manipulation in Calculus
is called Derive and not Integrate.

The following rules of differentiation are of basic importance and will be
used frequently below. They form the very back-bone of symbolic Calculus.
Plunging into the proofs we get familiar with different basic aspects of the
concept of derivative, and prepare ourselves to write our own version of
Derive.
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24.2 The Linear Combination Rule

Suppose that f(x) and g(x) are two functions that are differentiable on
an open interval I and let x̄ ∈ I. By definition, there are error functions
Ef (x, x̄) and Eg(x, x̄) satisfying for x close to x̄,

f(x) = f(x̄) + f ′(x̄)(x − x̄) + Ef (x, x̄),
g(x) = g(x̄) + g′(x̄)(x − x̄) + Eg(x, x̄),

(24.1)

and
|Ef (x, x̄)| ≤ Kf |x− x̄|2, |Eg(x, x̄)| ≤ Kg|x− x̄|2, (24.2)

where Kf and Kg are constants. Addition gives

f(x) + g(x) = f(x̄) + g(x̄) + (f ′(x̄) + g′(x̄))(x − x̄)
+Ef (x, x̄) + Eg(x, x̄),

which can be written

(f + g)(x) = (f + g)(x̄) + (f ′(x̄) + g′(x̄))(x − x̄) + Ef+g(x, x̄) (24.3)

where
Ef+g(x, x̄) = Ef (x, x̄) + Eg(x, x̄).

By (24.2), we have

|Ef+g(x, x̄)| ≤ (Kf +Kg)|x− x̄|2.

The formula (24.3) shows that (f + g)(x) is differentiable at x̄ and

(f + g)′(x̄) = f ′(x̄) + g′(x̄). (24.4)

Next, multiplying the first line in (24.1) by a constant c, we get

(cf)(x) = (cf)(x̄) + cf ′(x̄)(x − x̄) + cEf (x, x̄) (24.5)

This proves that if f(x) is differentiable at x̄, then (cf)(x) is differentiable
at x̄ and

(cf)′(x̄) = cf ′(x̄). (24.6)

We summarize in

Theorem 24.1 (The Linear Combination rule) If f(x) and g(x) are
differentiable functions on an open interval I and c is a constant, then
(f + g)(x) and (cf)(x) are differentiable on I, and for x ∈ I,

(f + g)′(x) = f ′(x) + g′(x), or D(f + g)(x) = Df(x) +Dg(x), (24.7)

and
(cf)′(x) = cf ′(x), or D(cf)(x) = cDf(x). (24.8)
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Example 24.1.

D
(
2x3 + 4x5 +

7
x

)
= 6x2 + 20x4 − 7

x2
.

Example 24.2. Using the above theorem and the fact that Dxi = ixi−1,
we find that the derivative of

f(x) = a0 + a1x+ a2x
2 + · · · + anx

n =
n∑

i=0

aix
i

is

f ′(x) = a1 + 2a2x
2 + · · · + nanx

n−1 =
n∑

i=1

iaix
i−1.

24.3 The Product Rule

Multiplying the left and right-hand sides, respectively, of the two equations
in (24.1), we obtain

(fg)(x) = f(x)g(x) = f(x̄)g(x̄)

+ f ′(x̄)g(x̄)(x− x̄) + f(x̄)g′(x̄)(x − x̄) + f ′(x̄)g′(x̄)(x− x̄)2

+ (g(x̄) + g′(x̄)(x − x̄))Ef (x, x̄) + (f(x̄)
+ f ′(x̄)(x − x̄))Eg(x, x̄) + Ef (x, x̄)Eg(x, x̄).

We conclude that

(fg)(x) = (fg)(x̄) +
(
f ′(x̄)g(x̄) + f(x̄)g′(x̄)

)
(x − x̄) + Efg(x, x̄),

where Efg(x, x̄) is quadratic in x− x̄. We have now proved:

Theorem 24.2 (The Product rule) If f(x) and g(x) are differentiable
on I, then (fg)(x) is differentiable on I and

(fg)′(x) = f(x)g′(x) + f ′(x)g(x), (24.9)

that is,
D(fg)(x) = Df(x)g(x) + f(x)Dg(x), (24.10)

Example 24.3.

D
(
(10 + 3x2 − x6)(x− 7x4)

)

= (6x− 6x5)(x − 7x4) + (10 + 3x2 − x6)(1 − 28x3).
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24.4 The Chain Rule

We shall now compute the derivative of the composite function (f ◦g)(x) =
f(g(x)) in terms of the derivatives f ′(y) = df

dy and g′(x) = dg
dx . Suppose then

that g(x) is uniformly differentiable on an open interval I, and suppose
further that g(x) is Lipschitz continuous on I with Lipschitz constant Lg.
Let x̄ ∈ I. Suppose next that f(y) is uniformly differentiable on an open
interval J containing ȳ = g(x̄). By definition, there are error functions
Ef (y, ȳ) and Eg(x, x̄) satisfying for y close to ȳ and x close to x̄,

f(y) = f(ȳ) + f ′(ȳ)(y − ȳ) + Ef (y, ȳ),
g(x) = g(x̄) + g′(x̄)(x− x̄) + Eg(x, x̄),

(24.11)

and
|Ef (y, ȳ)| ≤ Kf |y − ȳ|2, |Eg(x, x̄)| ≤ Kg|x− x̄|2, (24.12)

where Kf and Kg are certain constants, independent of y and x, respec-
tively. Further, by assumption

|g(x) − g(x̄)| ≤ Lg|x− x̄|. (24.13)

Setting y = g(x) and recalling that ȳ = g(x̄), we have

f(g(x)) = f(y) = f(ȳ) + f ′(ȳ)(y − ȳ) + Ef (y, ȳ)
= f(g(x̄)) + f ′(g(x̄))(g(x) − g(x̄)) + Ef (g(x), g(x̄)).

Substituting g(x) − g(x̄) = g′(x̄)(x − x̄) + Eg(x, x̄), we thus have

f(g(x)) = f(g(x̄)) + f ′(g(x̄)) g′(x̄)(x− x̄)
+ f ′(g(x̄))Eg(x, x̄) + Ef (g(x), g(x̄)).

Since (24.12) and (24.13) imply

|Ef (g(x), g(x̄))| ≤ Kf |g(x) − g(x̄)|2 ≤ KfL
2
g|x− x̄|2,

|f ′(g(x̄))Eg(x, x̄)| ≤ |f ′(g(x̄))|Kg|x− x̄|2,

we see that

(f ◦ g)(x) = (f ◦ g)(x̄) + f ′(g(x̄))g′(x̄)(x − x̄) + Ef◦g(x, x̄),

where Ef◦g(x, x̄) is quadratic in x− x̄. We have now proved:

Theorem 24.3 (The Chain rule) Assume that g(x) is uniformly dif-
ferentiable in an open interval I and g(x) is Lipschitz continuous on I.
Suppose further that f is uniformly differentiable in an open interval J
containing g(x) for x in I. Then the composite function f(g(x)) is differ-
entiable on I, and

(f ◦ g)′(x) = f ′(g(x))g′(x), for x ∈ I, (24.14)
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or
dh

dx
=
df

dy

dy

dx
, (24.15)

where h(x) = f(y) and y = g(x), that is h(x) = f(g(x)) = (f ◦ g)(x). An
alternative formulation si

D(f(g(x)) = Df(g(x))Dg(x), (24.16)

where Df = df
dy .

Example 24.4. Let f(y) = y5 and y = g(x) = 9 − 8x, so that f(g(x)) =
(f ◦ g)(x) = (9 − 8x)5. We have f ′(y) = 5y4 and g′(x) = −8, and thus

D((9 − 8x)5) = 5y4 g′(x) = 5(9 − 8x)4 (−8) = −40(9 − 8x)4.

Example 24.5.

D
(
7x3 + 4x+ 6

)18 = 18
(
7x3 + 4x+ 6

)17
D(7x3 + 4x+ 6)

= 18
(
7x3 + 4x+ 6

)17(21x2 + 4).

Example 24.6. Consider the composite function f(g(x)) with f(y) = 1/y,
that is the function h(x) = 1

g(x) , where g(x) is a given function with g(x) �=
0. Since Df(y) = − 1

y2 we have using the Chain rule

Dh(x) = D
1

g(x)
=

−1
(g(x))2

g′(x) =
−g′(x)
g(x)2

, (24.17)

as long as g(x) is differentiable and g(x) �= 0.

Example 24.7. Using Example 24.6 and the Chain Rule, we get for n ≥ 1

d

dx
x−n =

d

dx

(
1
xn

)

=
−1

(xn)2
d

dx
xn

=
−1
x2n

× nxn−1 = −nx−n−1.

This extends the formula Dxm = mxm−1 to negative integers m =
−1,−2, . . .

24.5 The Quotient Rule

Let f(x) and g(x) be differentiable on I and consider the problem of com-
puting the derivative of (f

g )(x) = f(x)
g(x) at x̄. Applying the Product rule to

f(x) 1
g(x) = f(x)

g(x) , and using (24.17), we find that
(
f

g

)′
(x̄) = f ′(x̄)

1
g(x̄)

+ f(x̄)
−g′(x̄)
g(x̄)2

=
f ′(x̄)g(x̄) − f(x̄)g′(x̄)

g(x̄)2
,

if g(x̄) �= 0, and we have thus proved:
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Theorem 24.4 (The Quotient rule) Assume that f(x) and g(x) are
differentiable functions on the open interval I. Then for x ∈ I, we have

(
f

g

)′
(x) =

f ′(x)g(x) − f(x)g′(x)
g(x)2

,

provided g(x) �= 0.

Example 24.8.

D

(
3x+ 4
x2 − 1

)

=
3 × (x2 − 1) − (3x+ 4) × 2x

(x2 − 1)2
.

Example 24.9.

d

dx

(
x3 + x

(8 − x)6

)9

= 9
(
x3 + x

(8 − x)6

)8
d

dx

(
x3 + x

(8 − x)6

)

= 9
(
x3 + x

(8 − x)6

)8 (8 − x)6 d
dx(x3 + x) − (x3 + x) d

dx(8 − x)6
(
(8 − x)6

)2

= 9
(
x3 + x

(8 − x)6

)8 (8 − x)6(3x2 + 1) − (x3 + x)6(8 − x)5 ×−1
(8 − x)12

.

Example 24.10. The Chain rule can also be used recursively:

d

dx

(((
(1 − x)2 + 1

)3

+ 2
)4

+ 3

)5

= 5

(((
(1 − x)2 + 1

)3

+ 2
)4

+ 3

)4

× 4
((

(1 − x)2 + 1
)3

+ 2
)3

× 3
(
(1 − x)2 + 1

)2

× 2(1 − x) × (−1).

24.6 Derivatives of Derivatives: f (n) = Dnf = dnf
dxn

Let f(x) be a function with derivative f ′(x). Since f ′(x) is a function,
it may also be differentiable with a derivative which would describe how
quickly the rate of change of f is changing at each point x. The derivative
of the derivative f ′(x) of f(x) is called the second derivative of f(x) and is
denoted by

f ′′(x) = D2f(x) =
d2f

dx2
= (f ′)′(x).
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Example 24.11. For f(x) = x2, f ′(x) = 2x and f ′′(x) = 2.

Example 24.12. For f(x) = 1/x, f ′(x) = −1/x2 = −x−2 and f ′′(x) =
−(−2)x−3 = 2/x3.

We can continue taking the derivative of the second derivative and get
a third derivative:

f ′′′(x) = D3f(x) =
d3f

dx3
= (f ′′)′(x)

as long as the functions are differentiable. We can recursively define the
derivative f (n) = Dnf of f order n by

f (n)(x) = Dnf(x) =
dnf

dxn
= (f (n−1))′(x) = D(Dn−1f)(x),

where f ′(x) = f (1)(x) = Df(x), f ′′(x) = f (2)(x) = D2f(x), and so on.
The derivative of distance with respect to time is velocity. The derivative

of velocity with respect to time is called acceleration. Velocity indicates how
quickly the position of an object is changing with time and acceleration
indicates how quickly the object is speeding up or slowing down (changing
velocity) with respect to time.

Example 24.13. If f(x) = x4, then Df(x) = 4x3, D2f(x) = 12x2,
D3f(x) = 24x, D4f(x) = 24 and D5f(x) ≡ 0.

Example 24.14. The n+1’st derivative of a polynomial of degree n is zero.

Example 24.15. If f(x) = 1/x, then

f(x) = x−1, Df(x) = −1 × x−2, D2f(x) = 2 × x−3, D3f(x) = −6 × x−4

...

Dnf(x) = (−1)n × 1 × 2 × 3 × · · · × nx−n−1 = (−1)nn!x−n−1.

24.7 One-Sided Derivatives

We can also define differentiability from the right at a point x̄ of a function
f(x). The definition is the same as that used above with the restriction
that x ≥ x̄. More precisely, the function f : J → R, where J = [x̄, b) and
b > x̄, is said to be differentiable from the right at x̄ if there are constants
m(x̄) and Kf(x̄) such that for x ∈ [x̄, b)

|f(x) − (f(x̄) +m(x̄)(x − x̄))| ≤ Kf (x̄)|x− x̄|2. (24.18)
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We then say that the right-hand derivative of f(x) at x̄ is equal to m(x̄),
and we denote the right-hand derivative by f ′

+(x̄) = m(x̄).
We define the left-hand derivative f ′

−(x̄) = m(x̄), analogously restricting
x ≤ x̄. In both cases, we are simply requiring that the linearization estimate
holds for x on one side of x̄.

Example 24.16. The function f(x) = |x| is differentiable for x̄ �= 0 with
derivative f ′(x̄) = 1 if x̄ > 0 and f ′(x̄) = −1 if x̄ < 0. The function f(x) =
|x| is differentiable from the right at x̄ = 0 with derivative f ′

+(0) = 1, and
differentiable form the left at x̄ = 0 with derivative f ′

−(0) = −1.

We say that f : [a, b] → R is differentiable on the closed interval [a, b], if
f(x) is differentiable on the open interval (a, b), and is differentiable from
the right at a, and differentiable from the left at b. The definition extends
in the obvious way to half-open/half-closed intervals (a, b] and [a, b). If f
is either differentiable or is differentiable from the right and/or the left at
every point in an interval, then we say that f is piecewise differentiable on
the interval.

Example 24.17. The function |x| is piecewise differentiable on R. The
function 1/x is differentiable on (0,∞) but not differentiable on [0,∞).

24.8 Quadratic Approximation: Taylor’s Formula
of Order Two

For a differentiable function f(x), we figured out how to compute a best
linear approximation for x close to x̄, namely

f(x) ≈ f(x̄) + f ′(x̄)(x − x̄)

with an error quadratic in x − x̄. In some situations, we might require
more accuracy from an approximation than is possible to get using a lin-
ear function. The natural generalization is to look for a “best” quadratic
approximation of the form

f(x) = f(x̄) +m1(x̄)(x − x̄) +m2(x̄)(x− x̄)2 + Ef (x, x̄), (24.19)

for x close to x̄, where m1(x̄) and m2(x̄) are constants and now the error
function Ef (x, x̄) is cubic in x− x̄, that is

|Ef (x, x̄)| ≤ Kf (x̄)|x− x̄|3, (24.20)

with Kf(x̄) a constant. Of course, for |x− x̄| small, Kf(x̄)|x− x̄|3 is much
smaller than both m1(x̄)(x− x̄) or m2(x̄)(x− x̄)2, unless m1(x̄) and m2(x̄)
happen to be zero, of course.
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Now, if (24.19) holds for x close to x̄, then m1(x̄) = f ′(x̄), since m2(x−
x̄)2 + Ef (x, x̄) is quadratic in x− x̄. If (24.19) holds, we thus have

f(x) = f(x̄) + f ′(x̄)(x− x̄) +m2(x̄)(x − x̄)2 + Ef (x, x̄). (24.21)

Let us next try to determine the constant m2(x̄). To this end we differen-
tiate the relation (24.19) with respect to x to get

f ′(x) = f ′(x̄) + 2m2(x̄)(x− x̄) +
d

dx
Ef (x, x̄). (24.22)

Let us now assume that for x close to x̄
∣
∣
∣
∣
d

dx
Ef (x, x̄)

∣
∣
∣
∣ ≤Mf (x̄)|x − x̄|2, (24.23)

for some constant Mf(x̄). The principle is that taking the derivative brings
down the power of |x − x̄| one step from 3 to 2. We shall meet this phe-
nomenon many times below. From (24.23) it would then follow by the
definition of f ′′(x̄), that f ′′(x̄) = (f ′)′(x̄) = 2m2(x̄), that is

m2(x̄) =
1
2
f ′′(x̄).

We would thus arrive at an approximation formula of the form

f(x) = f(x̄) + f ′(x̄)(x − x̄) +
1
2
f ′′(x̄)(x− x̄)2 + Ef (x, x̄), (24.24)

for x close to x̄, where |Ef (x, x̄)| ≤ Kf (x̄)|x− x̄|3 with Kf (x̄) a constant.

Example 24.18. Consider the function f(x) = 1
x for x close to x̄ = 1. We

shall use the fact that if y �= −1, then

1
1 + y

= 1 − y
1

1 + y

which is readily verified by multiplying by 1 + y, and thus

1
1 + y

= 1 − y
1

1 + y
= 1 − y

(

1 − y
1

1 + y

)

= 1 − y + y2 1
1 + y

= 1 − y + y2 − y3 1
1 + y

.

Choosing y = x− 1, we get

1
x

=
1

1 + (x − 1)
= 1 − (x− 1) + (x− 1)2 − (x− 1)3

1 + (x− 1)
, (24.25)
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and we see that the quadratic polynomial

1 − (x− 1) + (x− 1)2,

approximates 1
x for x close to x̄ = 1 with an error, which is cubic in x− x̄.

As a consequence of the expansion, we have that f(1) = 1, f ′(1) = −1 and
f ′′(1) = 2. We plot the approximation in Fig. 24.1 and list some values of
the approximation in Fig. 24.2.

0.5 1.0 1.5 2.0
0

1

2

3

4 y = 1
x

x

y = 1 − (x− 1) + (x− 1)2

Fig. 24.1. The quadratic approximation 1− (x− 1) + (x− 1)2 of 1/x near x̄ = 1

x 1/x 1 − (x− 1) + (x− 1)2 Ef (x, 1)
.7 1.428571 1.39 .038571
.8 1.25 1.22 .03
.9 1.111111 1.11 .00111
1.0 1.0 1.0 0.0
1.1 .909090 .91 .000909
1.2 .833333 .84 .00666
1.3 .769230 .79 .02077

Fig. 24.2. Some values of f(x) = 1/x, the quadratic approximation
1 − (x− 1) + (x− 1)2, and the error Ef (x, 1)

Below we will prove under the name of Taylor’s theorem, that if the
function f(x) is three times differentiable with |f (3)(x)| ≤ 6Kf(x̄) for x
close to x̄, where Kf (x̄) is a constant, then for x close to x̄,

f(x) = f(x̄) + f ′(x̄)(x − x̄) +
1
2
f ′′(x̄)(x− x̄)2 + Ef (x, x̄), (24.26)

where the error function Ef (x, x̄) is cubic in x− x̄, more precisely,

|Ef (x, x̄)| ≤ Kf (x̄)|x− x̄|3, for x close to x̄. (24.27)
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Further, d
dxEf (x, x̄) is quadratic in x − x̄. Taylor’s theorem thus gives an

answer to the problem of quadratic approximation formulated in (24.19).

24.9 The Derivative of an Inverse Function

Let f : (a, b) → R be differentiable at x̄ ∈ (a, b), so that for x close to x̄

f(x) = f(x̄) + f ′(x̄)(x − x̄) + Ef (x, x̄), (24.28)

where |Ef (x, x̄)| ≤ Kf (x̄)(x − x̄)2 with Kf (x̄) a constant. Suppose that
f ′(x̄) �= 0 so that f(x) is strictly increasing or decreasing for x close to
x̄, and thus the equation y = f(x) has a unique solution x for y close to
ȳ = f(x̄). This defines x as a function of y, and this function is said to be
the inverse of the function y = f(x) and is denoted by x = f−1(y), see
Fig. 24.3.

x
x x

y

y

y
y = f(x) y = f(x)

y = f(x)

x = f−1(y)

Fig. 24.3. The function y = f(x) and its inverse x = f−1(y)

Can we compute the derivative of the function x = f−1(y) with respect
to y close to ȳ = f(x̄)? Rewriting (24.28), we have

y = ȳ + f ′(x̄)(f−1(y) − f−1(ȳ)) + Ef (f−1(y), f−1(ȳ)),

that is

f−1(y) = f−1(ȳ) +
1

f ′(x̄)
(y − ȳ) − 1

f ′(x̄)
Ef (f−1(y), f−1(ȳ)), (24.29)

Suppose now that f−1 is Lipschitz continuous in an open interval J around
ȳ, so that

|f−1(y) − f−1(ȳ)| ≤ Lf−1 |y − ȳ| for y ∈ J.

Then for y close to ȳ,

| 1
f ′(x̄)

Ef (f−1(y), f−1(ȳ))| ≤ 1
|f ′(x̄)|Kf (x̄)(Lf−1)2|y − ȳ|2,
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which proves by (24.29) that the derivative Df−1(ȳ) of f−1(y) with respect
to y at ȳ is equal to 1

f ′(x̄) , that is

Df−1(ȳ) =
1

f ′(x̄)
, (24.30)

where ȳ = f(x̄). We summarize:

Theorem 24.5 If y = f(x) is differentiable at x̄ with respect to x with
f ′(x̄) �= 0, then the inverse function x = f−1(y) is differentiable with
respect to y at ȳ = f(x̄) with derivative Df−1(ȳ) = 1

f ′(x̄) .

Example 24.19. The inverse of the function y = f(x) = x2 for x > 0 is
the function x = f−1(y) =

√
y defined for y > 0. It follows that D

√
y =

1
f ′(x) = 1

2x = 1
2
√

y . Changing notation from y to x, we thus have for x > 0,

d

dx

√
x = D

√
x =

1
2
√
x
, or Dx

1
2 =

1
2
x−

1
2 . (24.31)

24.10 Implicit Differentiation

We give an example of a technique called implicit differentiation to compute
the derivative of the function x

p
q , where p and q are integers with q �= 0,

and x > 0. We know that the function y = x
p
q is the unique solution of the

equation yq = xp in y for a given x > 0. We can thus view y as a function
of x and write y(x) = x

p
q , and we have

(y(x))q = xp for x > 0. (24.32)

Assuming y(x) to be differentiable with respect to x with derivative y′(x),
we would get differentiating both sides of (24.32) with respect to x, and
using the Chain Rule on the left hand side:

q(y(x))q−1y′(x) = pxp−1

from which we deduce inserting that y(x) = x
p
q ,

y′(x) =
p

q
x−

p
q (q−1)xp−1 =

p

q
x

p
q −1.

We conclude that

Dxr = rxr−1 for r rational, and x > 0, (24.33)

using the computation as an indication that the derivative indeed exists.
To connect with the previous section, note that if y = f(x) has an inverse

function x = f−1(y), then differentiating both sides of x = f−1(y) with
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respect to x, considering y = y(x) = f(x) as a function of x, we get with
D = d

dy

1 = Df−1(y)f ′(x)

which gives the formula (24.30).

24.11 Partial Derivatives

We now have gained some experience of the concept of derivative of a real-
valued function f : R → R of one real variable x. Below we shall consider
real-valued functions several real variables, and we are then led to the con-
cept of partial derivative. We give here a first glimpse, and consider a real-
valued function f : R×R → R of two real variables, that is for each x1 ∈ R

and x2 ∈ R, we are given a real number f(x1, x2). For example,

f(x1, x2) = 15x1 + 3x2, (24.34)

represents the total cost in the Dinner Soup/Ice Cream model, with x1 rep-
resenting the amount of meat and x2 the amount of ice-cream. To compute
the partial derivative of the function f(x1, x2) = 15x1 + 3x2 with respect
to x1, we keep the variable x2 constant and compute the derivative of the
function f1(x1) = f(x1, x2) as a function of x1, and obtain df1

dx1
= 15, and

we write
∂f

∂x1
= 15

which is the partial derivative of f(x1, x2) with respect to x1. Similarly, to
compute the partial derivative of the function f(x1, x2) = 15x1 + 3x2 with
respect to x2, we keep the variable x1 constant and compute the derivative
of the function f2(x2) = f(x1, x2) as a function of x2, and obtain df2

dx2
= 3,

and we write
∂f

∂x2
= 3.

Obviously, ∂f
∂x1

represents the cost of increasing the amount of meat one
unit, and ∂f

∂x2
= 3 represents the cost of increasing the amount of ice cream

one unit. The marginal cost of meat is thus ∂f
∂x1

= 15 and that of ice cream
∂f
∂x2

= 3.

Example 24.20. Suppose f : R × R → R is given by f(x1, x2) = x2
1 + x3

2 +
x1x2. We compute

∂f

∂x1
(x1, x2) = 2x1 + x2,

∂f

∂x2
(x1, x2) = 3x2

2 + x1,

where we follow the principle just explained: to compute ∂f
∂x1

, keep x2 con-
stant and differentiate with respect to x1, and to compute ∂f

∂x2
, keep x1

constant and differentiate with respect to x2.
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More generally, we may in a natural way extend the concept of differ-
entiability of a real-valued function f(x) of one real variable x to differen-
tiability of a real valued function f(x1, x2) of two real variables x1 and x2

as follows: We say that function f(x1, x2) is differentiable at x̄ = (x̄1, x̄2)
if there are constants m1(x̄1, x̄2), m2(x̄1, x̄2) and Kf (x̄1, x̄2), such that for
(x1, x2) close to (x̄1, x̄2),

f(x1, x2) = f(x̄1, x̄2)+m1(x̄1, x̄2)(x1−x̄1)+m2(x̄1, x̄2)(x2−x̄2)+Ef (x, x̄),

where
|Ef (x, x̄)| ≤ Kf (x̄1, x̄2)((x1 − x̄1)2 + (x2 − x̄2)2).

Note that

f(x̄1, x̄2) +m1(x̄1, x̄2)(x1 − x̄1) +m2(x̄1, x̄2)(x2 − x̄2)

is a linear approximation to f(x) with quadratic error, the graph of which
represents the tangent plane to f(x) at x̄.

Letting x2 be constant equal to x̄2, we see that the partial derivative
of f(x1, x2) at (x̄1, x̄2) with respect to x1 is equal to m1(x̄1, x̄2), and we
denote this derivative by

∂f

∂x1
(x̄1, x̄2) = m1(x̄1, x̄2).

Similarly, we say that the partial derivative of f(x) at x̄ with respect to x2 is
equal to m2(x̄1, x̄2) and denote this derivative by ∂f

∂x2
(x̄1, x̄2) = m2(x̄1, x̄2).

These ideas extend in a natural way to real-valued functions f(x1, . . . , xd)
of d real variables x1, . . . , xd, and we can speak about (and compute) partial
derivatives of f(x1, . . . , xd) with respect to x1, . . . , xd following the same
basic idea. To compute the partial derivative ∂f

∂xj
with respect to xj for

some j = 1, . . . , d, we keep all variables but xj constant and compute the
usual derivative with respect to xj . We shall return below to the concept
of partial derivative below, and through massive experience learn that it
plays a basic role in mathematical modeling.

24.12 A Sum Up So Far

We have proved above that

Dxn =
d

dx
xn = nxn−1 for n integer and x �= 0,

Dxr =
d

dx
xr = rxr−1 for r rational and x > 0.

We have also proved rules for how to differentiate linear combinations,
products, quotients, compositions, and inverses of differentiable functions.
This is just about all so far. We lack in particular answers to the following
questions:
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� What function u(x) satisfies u′(x) = 1
x?

� What is the derivative of the function ax, where a > 0 is a constant?

Chapter 24 Problems

24.1. Construct and differentiate functions obtained by combining functions of
the form xr using linear combinations, products, quotients, compositions, and
taking inverses. For example, functions like

√

x11 +

√
x111

x−1.1 + x1.1
.

24.2. Compute the partial derivatives of the function f : R ×R → R defined by
f(x1, x2) = x2

1 + x4
2.

24.3. We have defined 2x for x rational. Let us try to compute the derivative
D2x = d

dx
2x with respect to x at x = 0. We are then led to study the quotient

qn =
2

1
n − 1

1
n

as n tends to infinity. (a) Do this experimentally using the computer. Note that

2
1
n = 1 + qn

n
, and thus we seek qn so that (1 + qn

n
)n = 2. Compare with the

experience concerning (1 + 1
n
)n in Chapter A Very Short Course in Calculus.

24.4. Suppose you know how to compute the derivative of 2x at x = 0. What is

the derivative then at x �= 0? Hint: 2x+
1
n = 2x2

1
n .

24.5. Consider the function f : (0, 2) → R defined by f(x) = (1 + x4)−1 for
0 < x < 1, f(x) = ax + b for 1 ≤ x < 2, where a, b ∈ R are constants. For
what values of a and b is this function (i) Lipschitz continuous on (0, 2), (ii)
differentiable on (0, 2)?

24.6. Compute the partial derivatives of the function f : R
3 → R given by

f(x1, x2, x3) = 2x2
1x3 + 5x3

2x
4
3.





25
Newton’s Method

Brains first and then Hard Work. (The House at Pooh Corner, Milne)

25.1 Introduction

As a basic application of the derivative, we study Newton’s method for
computing roots of an equation f(x) = 0. Newton’s method is one of the
corner-stones of constructive mathematics. As a preparation we start out
using the concept of derivative to analyze the convergence of Fixed Point
Iteration.

25.2 Convergence of Fixed Point Iteration

Let g : I → I be uniformly differentiable on an interval I = (a, b) with
derivative g′(x) satisfying |g′(x)| ≤ L for x ∈ I, where we assume that
L < 1. By Theorem 23.1 we know that g(x) is Lipschitz continuous on I
with Lipschitz constant L, and since L < 1, the function g(x) has a unique
fixed point x̄ ∈ I satisfying x̄ = g(x̄).

We know that x̄ = limi→∞ xi, where {xi}∞i=1 is a sequence generated
using Fixed Point Iteration: xi+1 = g(xi) for i = 1, 2, . . .. To analyze the
convergence of Fixed Point Iteration, we assume that g(x) admits the fol-
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lowing quadratic approximation close to x̄ following the pattern of (24.26),

g(x) = g(x̄) + g′(x̄)(x− x̄) +
1
2
g′′(x̄)(x− x̄)2 + Eg(x, x̄), (25.1)

where |Eg(x, x̄)| ≤ Kg(x̄)|x− x̄|3. Choosing x = xi, setting ei = xi − x̄ and
using x̄ = g(x̄), we have for i large enough,

ei+1 = xi+1 − x̄ = g(xi) − g(x̄) = g′(x̄)ei +
1
2
g′′(x̄)e2i + Eg(xi, x̄), (25.2)

where |Eg(xi, x̄)| ≤ Kg(x̄)|ei|3. This formula gives an expansion of the error
ei+1 at step i+ 1 in terms of the different powers of ei.

If g′(x̄) �= 0, then the linear term g′(x̄)ei dominates and

|ei+1| ≈ |g′(x̄)||ei|, (25.3)

which says that the error decreases with (approximately) the factor |g′(x̄)|
at each step, and we then say that the convergence is linear. If g′(x̄) = 0.1,
then we gain one decimal of accuracy in each step of Fixed Point Iteration.

As |g′(x̄)| decreases, the convergence becomes faster. An extreme case
arises when g′(x̄) = 0. In this case, (25.2) implies

ei+1 =
1
2
g′′(x̄)e2i + Eg(xi, x̄),

so that neglecting the cubic term Eg(xi, x̄), we have

|ei+1| ≈
1
2
|g′′(x̄)|e2i . (25.4)

In this case the convergence is said to be quadratic, because the error |ei+1|
is, up to the factor |g′′(x̄)/2|, the square of the error |ei|. If the convergence
is quadratic, then the number of correct decimals roughly doubles in each
step.

25.3 Newton’s Method

In Chapter Fixed Point Iteration, we saw that the problem of finding a root
of an equation f(x) = 0, where f(x) is a given function, can be reformulated
as a fixed point equation x = g(x), with g(x) = x − αf(x) and α a non-
zero constant to choose. In fact, one may choose α(x) to depend in x and
reformulate f(x) = 0 as

g(x) = x− α(x)f(x),

if only α(x̄) �= 0, where x̄ is the root being computed. From above, we
understand that a natural strategy is to choose α so as to make g′(x̄) as
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small as possible. The ideal would be g′(x̄) = 0. Differentiating the equation
g(x) = x− α(x)f(x) with respect to x, we get

g′(x) = 1 − α′(x)f(x) − α(x)f ′(x).

Assuming that f ′(x̄) �= 0, and using f(x̄) = 0,

α(x̄) =
1

f ′(x̄)
.

Setting α(x) = 1
f ′(x) leads to Newton’s method for computing a root of

f(x) = 0: for i = 0, 1, 2, . . .

xi+1 = xi −
f(xi)
f ′(xi)

, (25.5)

where x0 is a given initial root approximation. Newton’s method corre-
sponds to Fixed Point Iteration with

g(x) = x− f(x)
f ′(x)

. (25.6)

Using Newton’s method, it is natural to assume that f ′(x̄) �= 0, which
guarantees that f ′(xi) �= 0 for i large if f ′(x) is Lipschitz continuous.

Example 25.1. We apply Newton’s method to compute the roots x̄ =
2, 1, 0,−0.5,−1.5 of the polynomial equation f(x) = (x − 2)(x − 1)x(x +
.5)(x + 1.5) = 0. We have that f ′(x̄) �= 0 for all roots x̄. We compute 21
Newton iterations for f(x) = 0 starting with 400 equally spaced initial
values in [−3, 3] and indicate the corresponding roots that are found in
Fig. 25.1. Each of the roots is contained in an interval in which all ini-
tial values produce convergence to the root. But outside these intervals
the behavior of the iteration is unpredictable with near-by initial values
converging to different roots.

25.4 Newton’s Method Converges Quadratically

We shall now prove that Newton’s method converges quadratically if the
initial approximation is good enough. We do this by computing the deriva-
tive of the corresponding fixed point function defined by (25.6):

g′(x̄) = 1 − f ′(x̄)2 − f(x̄)f ′′(x̄)
f ′(x̄)2

=
f(x̄)f ′′(x̄)
f ′(x̄)2

= 0,

where we used that f(x̄) = 0 and the assumption that f ′(x̄) �= 0. We
conclude that Newton’s method converges quadratically if f ′(x̄) �= 0. This
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-3 1 2 3-1.5 -.5 0

Converges to -1.5

Converges to -.5

Converges to 0

Converges to 2

Converges to 1

Fig. 25.1. This plot shows the roots of f(x) = (x− 2)(x− 1)x(x+ .5)(x + 1.5)
found by Newton’s method for 5000 equally spaced initial guesses in [−3, 3]. The
horizontal position of the points shows the location of the initial guess and the
vertical position indicates the twenty first Newton iterate

result holds if we start sufficiently close to x̄, so that in particular f ′(xi) �= 0
for all i.

A more direct way to see that Newton’s method converges quadratically,
goes as follows. Subtract x̄ from each side of (25.5) and use the fact that
f(xi) = −f ′(xi)(x̄−xi)−Ef(x̄, xi), obtained from the linearization formula
f(x̄) = f(xi) + f ′(xi)(x̄− xi) + Ef (x̄, xi) because f(x̄) = 0, to obtain

xi+1 − x̄ = xi −
f(xi)
f ′(xi)

− x̄ =
Ef (x̄, xi)
f ′(xi)

.

We conclude that

|xi+1 − x̄| = |Ef (x̄, xi

f ′(xi)
| ≤ Kf

|f ′(xi)|
|xi − x̄|2,

which gives quadratic convergence if f ′(x) is bounded away from zero for
x close to x̄.

25.5 A Geometric Interpretation of Newton’s
Method

There is an appealing geometric interpretation of Newton’s method. Let xi

be an approximation of a root x̄ of f(x) = 0 satisfying f(x̄) = 0. Consider
the tangent line to y = f(x) at x = xi,

y = f(xi) + f ′(xi)(x − xi).

Let xi+1 be the x-value where the tangent line crosses the x-axis, see
Fig. 25.2, that is let xi+1 satisfy f(xi) + f ′(xi)(xi+1 − xi) = 0, so that

xi+1 = xi −
f(xi)
f ′(xi)

, (25.7)
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which is Newton’s method. We conclude that the iterate xi+1 in Newton’s
method is the intersection of the tangent line to f(x) at xi with the x-axis.
In words: trying to find x̄, so that f(x̄) = 0, we replace f(x) by the linear
approximation

f̂(x) = f(xi) + f ′(xi)(x − xi),

that is by the tangent line at x = xi, and then compute xi+1 as the solu-
tion of the equation f̂(x) = 0. We shall find that this approach to Newton’s
method is easy to generalize to systems of equations corresponding to find-
ing roots of f(x) where f : R

n → R
n.

xi x̄ xi+1

y = f(x)

y = f(xi) + f ′(xi)(x− xi)

Fig. 25.2. An illustration of one step of Newton’s method from xi to xi+1

25.6 What Is the Error of an Approximate Root?

Suppose xi is an approximation of a root x̄ of a given equation f(x) = 0.
Can we say something about the error xi − x̄ from the knowledge of f(xi)?
We will meet this question over and over again and we will refer to f(xi)
as the residual of the approximation xi. For the exact root x̄, the residual
is zero since f(x̄) = 0, and for the approximation xi, the residual f(xi) is
not zero (unless by some miracle xi = x̄, or xi is some root of f(x) = 0
different from x̄).
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Now, there is a very basic connection between the residual f(xi) and the
error xi − x̄ that may be expressed as follows. Using the fact that f(x̄) = 0
and assuming that f(x) is differentiable at x̄,

f(xi) = f(xi) − f(x̄) = f ′(x̄)(xi − x̄) + Ef (xi, x̄),

where |Ef (xi, x̄)| ≤ Kf(x̄)|xi − x̄|2. Assuming that f ′(x̄) �= 0, we conclude
that

xi − x̄ ≈ f(xi)
f ′(x̄)

, (25.8)

up to the error term (f ′(x̄))−1Ef (xi, x̄), which is quadratic in xi − x̄ and
thus much smaller than |xi − x̄| if xi is close to x̄, see Fig. 25.3.

x

y

x̄ xi

y = f(x)

y = f(xi)

root error

residual
f ′(x̄)(xi − x̄)

Fig. 25.3. The root error and the residual

The relation (25.8) shows that the root error x̄i − x̄ is roughly propor-
tional to the residual with the proportionality factor (f ′(x̄))−1, if xi is close
to x̄ and f ′(x) is Lipschitz continuous near x = x̄. We summarize in the
following basic theorem (the full proof of which will be given below using
the Mean Value theorem).

Theorem 25.1 If f(x) is differentiable in an interval I containing a root
x̄ of f(x) = 0, and |f ′(x)|−1 ≤ M for x ∈ I, then an approximate root
xi ∈ I, satisfies |xi − x̄| ≤M |f(xi)|.

In particular, if f ′(x̄) is very small, then the root error may be large
although the residual is very small. In this case the process of computing
the root x̄ is said to be ill-conditioned.

Example 25.2. We apply Newton’s method to f(x) = (x−1)2−10−15x with
root x̄≈1.00000003162278. Here f ′(1)=−10−15 and f ′(x̄)≈0.0000000316,



25.6 What Is the Error of an Approximate Root? 397

0 5 10 15 20 25
10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

|xn − x̄|

|f(xn)|

Fig. 25.4. Plots of the residuals • and errors � versus iteration number for
Newton’s method applied to f(x) = (x − 1)2 − 10−15x with initial value
x0 = 1

so that f ′(xn) is very small for all xn close to x̄, and the problem seems to
be very ill-conditioned. We plot the errors and residuals versus iteration in
Fig. 25.4. We see that the residuals become small quite a bit faster than
the errors.

Introducing the approximation (25.8) into the definition of Newton’s
method,

xi+1 = xi − f(xi)/f ′(xi),

we get the relation
|xi − x̄| ≈ |xi+1 − xi|. (25.9)

In other words, as an estimate of the error of xi − x̄, we can compute an
extra step of Newton’s method to get xi+1 and then use |xi+1 − xi| as an
estimate of |xi − x̄|. This is an alternative way of estimating the root error
xi − x̄, where the derivative f ′(x) does not enter explicitly.

i |xi − x̄| |xi+1 − xi|
0 .586 .5
1 .086 .083
2 2.453 × 10−3 2.451× 10−3

3 2.124 × 10−6 2.124× 10−6

4 1.595× 10−12 1.595 × 10−12

5 0 0

Fig. 25.5. The error and error estimate for Newton’s method for f(x) = x2 − 2
with x0 = 2
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Example 25.3. We apply Newton’s method to f(x) = x2 − 2 and show
the error and error estimate (25.9) in Fig. 25.5. The error estimate does
a pretty good job.

25.7 Stopping Criterion

Suppose we want to compute an approximation of a root x̄ of a given
equation f(x) = 0 with a certain accuracy, or error tolerance TOL > 0. In
other words, suppose we want to guarantee that

|xi − x̄| ≤ TOL, (25.10)

where xi is a computed approximation of the root x̄. For example, we may
choose TOL = 10−m corresponding to seeking an approximate root xi with
m correct decimals. Can we find some stopping criterion that tells us when
to stop an iterative process with an approximation x̄i satisfying (25.10)?
The following criteria based on (25.8) presents itself: stop the iterative
process at step i if

|(f ′(x̄i))−1f(x̄i)| ≤ TOL. (25.11)

Up to the change of argument from x̄ to x̄i, this criterion guarantees the
desired error control (25.10).

As an alternative stopping criterion for Newton’s method, we may use
(25.9), that is accept the approximation xi with tolerance TOL if

|xi+1 − xi| ≤ TOL. (25.12)

25.8 Globally Convergent Newton Methods

In this chapter, we have proved quadratic convergence of Newton’s method
under the assumption that we start close enough to the root of interest,
that is we have prove local convergence of Newton’s method. To get a suf-
ficiently good initial approximation we may use the Bisection algorithm.
Thus, by using the Bisection algorithm in an initial search of roots and then
Newton’s method for each individual root, we may obtain a globally conver-
gent method combining efficiency (quadratic convergence) with reliability
(guaranteed convergence).
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Chapter 25 Problems

25.1. (a) Verify theoretically that the fixed point iteration for

g(x) =
1

2

(
x+

a

x

)

with x̄ =
√
a converges quadratically. (b) Try to say something about which

initial values guarantee convergence for a = 3 by computing some fixed point
iterations.

25.2. (a) Show analytically that Fixed Point Iteration for

g(x) =
x(x2 + 3a)

3x2 + a

is third order convergent for computing x̄ =
√
a. (b) Compute a few iterations for

a = 2 and x0 = 1. How many digits of accuracy are gained with each iteration?

25.3. (a) Consider Newton’s method applied to a differentiable function f(x)
with f(x̄) = f ′(x̄) = 0, but f ′′(x̄) �= 0, that is x̄ is a double-root of f(x) = 0. Prove
that Newton’s method in this case converges linearly, by proving that g′(x̄) = 1/2,
where g(x) = x−f(x)/f ′(x). (b) What is the rate of convergence of the following
variant of Newton’s method in the case of a double root: g(x) = x−2f(x)/f ′(x)?
Hint: you may find it convenient to use l’Hopital’s rule.

25.4. Use Newton’s method to compute all the roots of f(x) = x5 + 3x4 − 3x3 −
5x2 + 5x− 1.

25.5. Use Newton’s method to compute the smallest positive root of f(x) =
cos(x) + sin(x)2(50x).

25.6. Use Newton’s method to compute the root x̄ = 0 of the function

f(x) =

{√
x x ≥ 0

−
√
−x x < 0

Does the method converge? If so, is it converging at second order? Explain your
answer.

25.7. Apply Newton’s method to f(x) = x3 − x starting with x0 = 1/
√

5. Is the
method converging? Explain your answer using a plot of f(x).

25.8. (a) Derive an approximate relation between the residual g(x)−x of a fixed
point problem for g and the error of the fixed point iterate xn − x̄. (b) Devise
two stopping criteria for a fixed point iteration. (c) Revise your fixed point code
to make use of (a) and (b).

25.9. Use Newton’s method to compute the root x̄ = 1 of f(x) = x4 − 3x2 +
2x. Is the method converging quadratically? Hint: you can test this by plotting
|xn − 1|/|xn−1 − 1| for n = 1, 2, · · · .

25.10. Assume that f(x) has the form f(x) = (x − x̄)2h(x) where h is a dif-
ferentiable function with h(x̄) �= 0. (a) Verify that f ′(x̄) = 0 but f ′′(x̄) �= 0. (b)
Show that Newton’s method applied to f(x) converges to x̄ at a linear rate and
compute the convergence factor.





26
Galileo, Newton, Hooke, Malthus
and Fourier

In a medium totally devoid of all resistance, all bodies would fall
with the same speed. (Galileo)

Everything that Galileo says about bodies falling in empty space
is built without foundation; he ought first to have determined the
nature of weight. (Descartes)

When we have the decrees of Nature, authority goes for nothing.
(Aristotle)

Galileo has been the first to open the door to us to the whole realm
of physics. (Hobbes)

Provando e riprovando (Verify one and disprove the other). (Galileo)

Measure what is measurable, and make measurable what is not so.
(Galileo)

26.1 Introduction

In this chapter, we describe some basic models of physical phenomena that
involve the derivatives of some function(s) and which therefore are called
differential equations. The derivative is the fundamental tool for modeling
in science and engineering. To formulate and solve differential equations
has been a basic part of science since the days when Newton’s Law of
Motion was formulated. Today, the computer is opening new possibilities of
modeling through differential equations, which Newton and all his scientific
followers through the centuries, could never even dream of.
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We thus formulate a couple of very basic differential models in this chap-
ter, and we will spend a large part of the rest of this book to solve these
equations or related generalizations using analytical or numerical tech-
niques.

26.2 Newton’s Law of Motion

Newton’s Law of motion is one of the cornerstones of the Newtonian physics
that serves to describe much of the world that we live in. Newton’s law
states that the derivative with respect to time t of the momentum m(t)v(t)
of a body, which is the product of the mass m(t) and the velocity v(t) of
the body, is equal to the force f(t) acting on the body, that is,

(mv)′(t) = f(t). (26.1)

If m(t) = m is independent of time, then we can write Newton’s Law as

mv′(t) = f(t), (26.2)

or in its most familiar form:

ma(t) = f(t), (26.3)

where
a(t) = v′(t),

is the acceleration.
Since the velocity is the derivative with respect to time of the position

s(t), that is, v(t) = s′(t), we can write Newton’s Law (26.2) in the case of
constant mass, as follows:

ms′′(t) = f(t). (26.4)

If we think of the force f(t) as a given function of time t, then (26.2) and
(26.4) represent differential equations for the velocity v(t) or the position
s(t). The differential equation thus involves some known function (f(t)),
and the unknown is again a function (v(t) or s(t)). The differential equation
thus typically involves the derivative of an unknown function, and other
given functions act as data. Note that typically we seek a function s(t)
satisfying the differential equation (26.4) not just at a particular instant of
time t, but for all t in some interval.

26.3 Galileo’s Law of Motion

Galileo (1564–1642), mathematician, astronomer, philosopher, co-founder
of the Scientific Revolution, performed his famous experiments dropping



26.3 Galileo’s Law of Motion 403

objects form the Tower of Pisa and counting the time for the objects to
hit the ground, or using an inclining plane, see Fig. 26.1, to demonstrate
his Laws of Motion. Galileo, condemned 1632 by the Catholic Church for
questioning the idea that the Earth is the center of Universe, tried through
these experiments to understand the nature of motion, a topic that already
the Greeks were obsessed by.

Fig. 26.1. Galileo demonstrating Laws of Motion

Galileo found that that an object close to the surface of the earth, that
is acted upon only by the vertical gravity force, has a constant vertical
acceleration independent of the mass or position of the body. This fact
may be viewed as a special case of Newton’s Law ma(t) = f(t), where m
is the mass of the body and a(t) its vertical acceleration, and the gravity
force f(t) is given by f(t) = mg, where g ≈ 9.81 (meter/sec2), is the famous
physical constant referred to as the acceleration of gravity at the surface of
the Earth. Both Galileo and Newton would conclude that the acceleration
a(t) = g is independent of m and the position of the body as long as the
body is not far from the surface of the Earth.

We now study the motion of one of the objects dropped vertically by
Galileo from the Tower. Assuming that the mass of the object is m, and
letting s(t) denote the height above ground of the object at time t, with
thus the positive direction upwards, see Fig. 26.2. In this coordinate system,
a positive velocity v(t) = s′(t) corresponds to the object moving upwards
while a negative velocity means that the object is moving downwards. New-
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s = 0

s(t)

s(0) = s0

the ground

initial height

Fig. 26.2. The coordinate system describing the position of a free falling object
with the initial height s(0) = s0 at time t = 0

ton’s Law states that

ms′′ = −mg, or mv′(t) = −mg

where a minus sign enters, because the gravity force is direct downwards.
We thus have, dividing out the common factor of the mass m in the spirit
of Galileo,

s′′(t) = v′(t) = −g. (26.5)

We conclude, using the fact f ′(t) = c for f(t) = ct and c a constant, that

v(t) = −gt+ c, (26.6)

where c is a constant to determine. We check that d
dt (−gt + c) = −g for

all t. To pick out the one line that gives the velocity of the falling object in
a concrete case, it is sufficient to know the velocity at some specific time.
For example, if we suppose that the initial speed v(0) at time t = 0 is
known, v(0) = v0, then we get the solution

v(t) = −gt+ v0, for t > 0. (26.7)

For example, if v0 = 0, then the upward velocity is v(t) = −gt, and thus
the downward velocity gt increases linearly with time. This is what Galileo
observed (to his surprise).

Having now solved for the velocity v(t) according to (26.7), we can now
seek to find the position s(t) by solving the differential equation s′(t) = v(t),
that is

s′(t) = −gt+ v0 for t > 0. (26.8)
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Recalling that (t2)′ = 2t, and that (cf(t))′ = cf ′(t), it is natural to believe
that the solution of (26.8) would be the quadratic function

s(t) = −g
2
t2 + v0t+ d,

where d is a constant, since this function satisfies (26.8). To determine s(t)
we need to determine the constant d. Typically, we can do this if we know
s(t) for some specific value of t, for example, if we know the initial position
s(0) = s0 at time t = 0. In this case we conclude that d = s0, and thus we
have the solution formulas

s(t) = −g
2
t2 + v0t+ s0, v(t) = −gt+ v0 for t > 0, (26.9)

giving the position s(t) and velocity v(t) as functions of time t for t > 0,
if the initial position s(0) = s0 and velocity v(0) = v0 are given. We
summarize (the uniqueness of the solution will be settled below).

Theorem 26.1 (Galileo) Let s(t) and v(t) denote the vertical position and
vertical velocity of an object subject to free fall at time t ≥ 0 with constant
acceleration of gravity g, with the upward direction being positive. Then
s(t) = − g

2 t
2 + v0t+ s0 and v(t) = −gt+ v0, where s(0) = s0 and v(0) = v0

are given initial position and velocity.

Example 26.1. If the initial height of the object is 15 meter and it is
dropped from rest, what is the height at t = .5 sec? We have

s(.5) = −9.8
2

(.5)2 + 0 × .5 + 15 = 13.775 meter

If initially it is thrown upwards at 2 meter/sec, the height at t = .5 sec is

s(.5) = −9.8
2

(.5)2 + 2 × .5 + 15 = 14.775 meter

If initially it is thrown downwards at 2 meter/sec, the height at t = .5 sec
is

s(.5) = −9.8
2

(.5)2 − 2 × .5 + 15 = 12.775 meter

Example 26.2. An object starting from rest is dropped and hits the ground
at t = 5 sec. What was its initial height? We have s(5) = 0 = − 9.8

2 52 +0×
5 + s0, and so s0 = 122.5 meter.

26.4 Hooke’s Law

Consider a spring of length L hanging vertically in equilibrium from the
ceiling. Fix a coordinate system with x-axis directed downwards with the
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origin at the ceiling, and let f(x) be the weight per unit length of the spring
as a function of distance x to the ceiling. Imagine that the spring first is
weightless (turn off gravity for a while) with corresponding zero tension
force. Imagine then that you gradually turn on the gravity force and watch
how the spring stretches under its increasing own weight. Let u(x) be the
corresponding displacement of a point in position x in the un-stretched
initial position. Can we determine the displacement u(x) of the spring and
the tension force σ(x) in the spring as a function of x at full power of the
gravity?

Hooke’s Law for a linear (ideal) spring states that the tension force σ(x)
is proportional to the deformation u′(x),

σ(x) = Eu′(x) (26.10)

where E > 0 is a spring constant which we may refer to as the modulus of
elasticity of the spring. Note that u′(x) measures change of displacement
u(x) per unit of x, which is deformation.

The weight of the spring from position x to position x + h for h > 0
is approximately equal to f(x)h, since f(x) is weight per unit length, and
this weight should be balanced by the difference of tension force:

−σ(x+ h) + σ(x) ≈ f(x)h, that is − σ(x+ h) − σ(x)
h

≈ f(x),

which gives the equilibrium equation −σ′(x) = f(x). Altogether, we get the
following differential equation, since E is assumed constant independent of
x,

−Eu′′(x) = f(x), for 0 < x < L. (26.11)

Here f(x) is a given function, and we seek the displacement u(x) satisfying
the differential equation (26.11). To determine u(x) we need to specify that,
for example, u(0) = 0, expressing that the spring is attached to the ceiling,
and u′(L) = 0, expressing that the tension force is zero at the free end of the
spring. If f(x) = 1 corresponding to a homogenous spring, and assuming
E = 1 and L = 1, then we get the displacement u(x) = x − x2

2 , and the
tension σ(x) = 1 − x.

Hooke (1635–1703) was A Curator at the Royal Society in London. Ev-
ery week, except during the Summer vacation, Hooke had to demonstrate
three or four experiments proving new laws of nature. Among other things,
Hooke discovered the cellular structure of plants, the wave nature of light,
Jupiter’s red spots, and (probably before Newton!) the inverse square law
of gravitation.

26.5 Newton’s Law plus Hooke’s Law

Consider a mass on a frictionless table connected to a spring attached to
a wall. Hooke’s Law for a spring states that the spring force arising when
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stretching or compressing the spring is proportional to the change of length
of the spring from its rest state with zero force. We choose a horizontal x-
axis in the direction of the spring so that the mass is located at x = 0
when the spring is at its rest state, and x > 0 corresponds to stretching
the spring to the right, see Fig. 26.3. Let now u(t) be the position of the
mass at time t > 0. Hooke’s Law states that the force f(t) acting on the
mass is given by

f(t) = −ku(t), (26.12)

where the constant of proportionality k = E/L > 0 is the spring constant,
with L the (natural) length of the spring. On the other hand, Newton’s
Law, states that mu′′(t) = f(t), and thus we get the following differential
equation for the mass-spring system:

mu′′(t) = −ku(t), or mu′′(t) + ku(t) = 0, for t > 0. (26.13)

We will see that solving this differential equation specifying the initial po-
sition u(0) and the initial velocity u′(0), will lead us into the world of the

trigonometric functions sin(ωx) and cos(ωx) with ω =
√

k
m .

u=0 u > 0

Fig. 26.3. Illustration of the coordinate system used to describe a spring-mass
system. The mass is allowed to slide freely back and forth with no friction

26.6 Fourier’s Law for Heat Flow

Fourier was one of the first mathematicians to study the process of con-
duction of heat. Fourier developed a mathematical technique for this pur-
pose using Fourier series, where “general functions” are expressed as lin-
ear combinations of the trigonometric functions sin(nx) and cos(nx) with
n = 1, 2, . . ., see the Chapter Fourier series. Fourier created the simplest
model of heat conduction stating that the heat flow is proportional to the
temperature difference, or more generally temperature gradient, that is rate
of change of temperature.
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We now seek a simple model of the following situation: You live your
life in Northern Scandinavia and need to electrically heat your car engine
before being able to start the car in the morning. You may ask the question,
when you should start the heating and what effect you should then turn
on. Short time, high effect or long time small effect, depending on price of
electric power which may vary over day and night.

A simple model could be as follows: let u(t) be the temperature of the
car engine at time t, let q+(t) be the flow of heat per unit time from the
electrical heater to the engine, and let q−(t) be the heat loss from the engine
to the environment (the garage). We then have

λu′(t) = q+(t) − q−(t),

where λ > 0 is a constant which is referred to as the heat capacity. The
heat capacity measures the rise of temperature of unit added heat.

Fourier’s Law states that

q−(t) = k(u(t) − u0),

where u0 is the temperature of the garage. Assuming that u0 = 0 for sim-
plicity, we thus get the following differential equation for the temperature
u(t):

λu′(t) + ku(t) = q+(t), for t > 0, u(0) = 0, (26.14)

where we added the initial condition u(0) = 0 stating that the engine
has the temperature of the garage when the heater is turned on at time
t = 0. We may now regard q+(t) as a given function, and λ and k as given
functions, and seek the temperature u(t) as a function of time.

26.7 Newton and Rocket Propulsion

Let’s try to model the flight of a rocket far out in space away from any
gravitational forces. When the rocket’s engine is fired, the exhaust gases
from the burnt fuel shoot backwards at high speed and the rocket moves
forward so as to preserve the total momentum of the exhaust plus rocket,
see Fig. 26.4. Assume the rocket moves to the right along a straight line
which we identify with an x-axis. We let s(t) denote the position of the
rocket at time t and v(t) = s′(t) its velocity and we let m(t) denote the
mass of the rocket at time t. We assume that the exhaust gases are ejected
at a constant velocity u > 0 relative to the rocket in the direction of the
negative x-axis. The total mass me(t) of the exhaust at time t is me(t) =
m(0)−m(t), where m(0) is the total mass of the rocket with fuel at initial
time t = 0.

Let ∆me be the exhaust released from the rocket during a time interval
(t, t + ∆t). Conservation of total momentum of rocket plus exhaust over
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t = t0

Fig. 26.4. A model of rocket propulsion

the time interval (t, t+ ∆t), implies that

(m(t) − ∆me)(v(t) + ∆v) + ∆me(v(t) − u) = m(t)v(t),

where ∆v is the increase in speed of the rocket and ∆me(v(t)−u) the mo-
mentum of the exhaust released over (t, t+∆t). Recall that the momentum
is the product of mass and velocity. This leads, using that ∆me = −∆m
with ∆m the change of rocket mass, to the relation

m(t)∆v = −u∆m.

Dividing by ∆t, we are led to the differential equation

m(t)v′(t) = −um′(t) for t > 0. (26.15)

We shall show below that the solution can be expressed as (anticipating
the use of the logarithm function log(x)), assuming v(0) = 0,

v(t) = u log
(
m(0)
m(t)

)

, (26.16)

connecting the velocity v(t) to the mass m(t). Typically, we may know
m(t) corresponding to firing the rocket in a specific way, and we may then
determine the corresponding velocity v(t) from (26.16). For example, we
see that, when half the initial mass has been ejected at speed u relative
to the rocket, then the speed of the rocket is equal to u log(2) ≈ 0.6931 u.
Note that this speed is less than u, because the speed of the exhaust ejected
at time t varies from −u for t = 0 to v(t) − u for t > 0.

If the rocket engine would be fired so that the absolute speed of the ex-
haust was always −u (that is at an increasing speed relative to the rocket),
then conservation of momentum would state that

m(t)v(t) = (m(0) −m(t))u, that is v(t) = u

(
m(0)
m(t)

− 1
)

.

In this case, the speed of the rocket would be equal to u when m(t) =
1
2m(0).
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26.8 Malthus and Population Growth

Thomas Malthus (1766–1834), English priest and economist, developed
a model for population growth in his treatise An Essay on the Theory
of Population, Fig. 26.5. His study made him worried: the model indicated
that the population would grow quicker than available resources. As a cure
Malthus suggested late marriages. Malthus model was the following: Sup-
pose the size of a population at time t is measured by a function u(t), which
is Lipschitz continuous in t. This means that we consider a quite large pop-
ulation and normalize so that the total number of individuals P (t) of the
population is set equal to u(t)P0, where P0 is the number of individuals at
time t = 0, say, so that u(0) = 1. Malthus model for population growth is
then

u′(t) = λu(t), for t > 0, u(0) = 1, (26.17)

where λ is a positive constant. Malthus thus assumes that the rate of growth
u′(t) is proportional to the population u(t) at each given instant with a rate
of growth factor λ, which may be the difference between the rates of birth
and death (considering other factors such as migration negligible).

Fig. 26.5. Thomas Malthus:“I think I may fairly make two postulata. First, That
food is necessary to the existence of man. Secondly, That the passion between
the sexes is necessary and will remain nearly in its present state”

Letting tn = kn, n = 0, 1, 2, . . . be sequence of discrete time steps with
constant time step k > 0, we can compare the differential equation (26.17),
to the following discrete model

Un = Un−1 + kλUn−1, for n = 1, 2, 3 . . . , U0 = 1. (26.18)

Formally, (26.18) arises form u(tn) ≈ u(tn−1) + ku′(tn−1) inserting that
u′(tn−1) = λu(tn−1) and viewing Un as an approximation of u(tn). We are
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familiar with the model (26.18), and we know that the solution is given by
the formula

Un = (1 + kλ)n, for n = 0, 1, 2, . . . (26.19)

We expect thus that

u(kn) ≈ (1 + kλ)n, for n = 0, 1, 2, . . . (26.20)

or

u(t) ≈
(

1 +
t

n
λ

)n

, for n = 0, 1, 2, . . . (26.21)

We shall below prove that the differential equation (26.17) has a unique
solution u(t), which we will write as

u(t) = exp(λt) = eλt, (26.22)

where exp(λt) = eλt is the famous exponential function. We will prove that

exp(λt) = eλt = lim
n→∞

(

1 +
λt

n

)n

, (26.23)

corresponding to the fact that Un will be an increasingly good approxima-
tion of u(t) for a given t = nk, as n tends infinity and thus the time step
k = t

n tends to zero.
In particular, we have setting λ = 1, that u(t) = exp(t) is the solution

of the differential equation

u′(t) = u(t), for t > 0, u(0) = 1. (26.24)

We plotted the function exp(t) in Fig. 4.4, from which the worries of
Malthus become understandable. The exponential function grows really
quickly after some time!

Many physical situations are modeled by (26.17) with a ∈ R, such as
earnings from compound interest (a > 0), and radioactive decay (a < 0).

26.9 Einstein’s Law of Motion

Einstein’s version of Newton’s Law (m0v(t))′(t) = f(t), modeling the mo-
tion of a particle of mass m0 moving in a straight line with velocity v(t)
under the influence of a force f(t), is

d

dt

(
m0

√
1 − v2(t)/c2

v(t)

)

= f(t), (26.25)
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where m0 is the mass of the particle at zero speed and c ≈ 3 × 108 m/s is
the speed of light in a vacuum. Setting

w(t) =
v(t

√
1 − v2(t)/c2

,

we can write Einstein’s equation

w′(t) =
f(t)
m0

,

and assuming f(t) = F is constant, and v(0) = 0, we obtain w(t) = F
m0
t,

which gives the following equation for v(t)

v(t)
√

1 − v2(t)/c2
=

F

m0
t.

Squaring both sides, we get

v2(t)
1 − v2(t)/c2

=
F 2

m2
0

t2.

and solving for v(t), we get

v2(t) = c2
F 2t2

m2
0c

2 + F 2t2
. (26.26)

We conclude that v2(t) < c2 for all t: Einstein says that no object can be
accelerated to a velocity bigger or equal to the velocity of light!

To determine the position of the particle, we therefore have to solve the
differential equation

s′(t) = v(t) =
cF t

√
m2

0c
2 + F 2t2

. (26.27)

We will return to this task below.

26.10 Summary

We have above derived differential equation models of the following basic
forms:

u′(x) = f(x) for x > 0, u(0) = u0, (26.28)

u′(x) = u(x) for x > 0, u(0) = u0, (26.29)

u′′(x) + u(x) = 0 for x > 0, u(0) = u0, u
′(0) = u1, (26.30)

−u′′(x) = f(x) for 0 < x < 1, u(0) = 0, u′(1) = 0. (26.31)
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Here we view the function f(x), and the constants u0 and u1 as given, and
we seek the unknown function u(x) satisfying the differential equation for
x > 0.

We shall see in Chapter The Fundamental Theorem of Calculus that the
solution u(x) to (26.28) is given by

u(x) =
∫ x

0

f(y) dy + u0.

Integrating twice, we can the write the solution u(x) of (26.31) in terms
of the data f(x) as

u(x) =
∫ x

0

g(y) dy, u′(y) = g(y) = −
∫ y

1

f(z) dz, for 0 < x < 1.

We shall see in Chapter The exponential function exp(x) that the solution
to (26.29) is u(x) = u0 exp(x). We shall see in Chapter Trigonometric
functions that the solution u(x) to (26.30) is sin(x) if u0 = 0 and u1 = 1,
and cos(x) if u0 = 1 and u1 = 0.

We conclude that the basic elementary functions exp(x), sin(x) and
cos(x) are solutions to basic differential equations. We shall see that it
is fruitful to define these elementary functions as the solutions of the cor-
responding differential equations, and that the basic properties of the the
functions can easily be derived using the differential equations. For ex-
ample, the fact that D exp(x) = exp(x) follows from the defining differ-
ential equation Du(x) = u(x). Further, the fact that D sin(x) = cos(x)
follows by differentiating D2 sin(x) + sin(x) = 0 with respect to x to
get D2(D sin(x)) + D sin(x) = 0, which expresses that D sin(x) solves
u′′(x) + u(x) = 0 with initial conditions u0 = 1 and u1 = Du(0) =
D2 sin(0) = − sin(0) = 0, that is D sin(x) = cos(x)!

Chapter 26 Problems

26.1. An object is dropped from height s0 = 15 m. After how long time does
it hit the ground? How much does an initial velocity v0 = −2 delay the time
of hitting the ground? Use the (crude) approximation g ≈ 10 to simplify the
analysis. Which initial velocity v0 is required to double the time of the fall?

26.2. Find the displacement of a hanging spring of length L = 1 and E = 1
with a non-uniform weight given by f(x) = x.

26.3. (Tricky!) Find the displacement of a hanging spring of length L = 2 which
have been tied together of two springs of length L = 1 with (a) E = 1 and E = 2,
respectively, assuming the weight of the springs to be uniform with f(x) = 1, (b)
both with E = 1 but with weights f = 1 and f = 2 per unit length, respectively.
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26.4. Derive (26.12) from (26.10). Hint: u as in (26.12) corresponds to the
displacement in (26.10) at x = L being L+ u, and the displacement being linear
in x.

26.5. Develop more complicated population models in the form of systems of
differential equations.

26.6. Derive differential equation models for systems of springs coupled in series
or in parallel.

26.7. Derive a differential equation model for a “bungee jump” of a body hooked
up to a fixed support with a rubber band and attracted by gravity.

26.8. You leave a hot cup of coffee on the table in a room with temperature
20o Celsius. Put up an equation for the rate of change of the temperature of the
coffee with time.

Show that the median, hce che ech, interecting at royde angles the
parilegs of a given obtuse one biscuts both the arcs that are in
curveachord behind. Brickbaths. The family umbroglia. A Tullagrove
pole to the Heigt of County Fearmanagh has a septain inclininaison
and the graphplot for all the functions in Lower County Monachan,
whereat samething is rivisible by nighttim. may be involted into the
zerois couplet, palls pell inhis heventh glike noughty times ∞, find,
if you are literally cooefficient, how minney combinaisies and permu-
tandis can be played on the international surd! pthwndxrclzp!, hids
cubid rute being extructed, takin anan illitterettes, ifif at a tom.
Answers, (for teasers only). (Finnegans Wake, James Joyce)
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Gauss’ theorem, 943, 946, 953, 955
Gauss-Seidel method, 666
geometrically orthogonal, 280
global basis function, 1037
global stiffness matrix, 1054
GPS, 11, 94
GPS navigator, 269
gradient, 791, 880, 883
gradient field, 898
Gram-Schmidt procedure, 629
gravitational field, 1007
greatest lower bound, 874
Green’s formula, 943, 946, 953, 955
Gulf Stream, 891
Gustafsson, Lars, 195

hanging chain, 510
hat function, 743
heat

capacity coefficient, 988
conduction, 987
conductivity, 989
flux, 988
source, 988

heat equation, 990
Hilbert, 1011
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Hooke, 405
Hooke’s law, 405

identity matrix, 305
ill-conditioned matrix, 660
implicit differentiation, 386
Implicit Function theorem, 804, 811,

813
income tax, 354
incompressible, 999
independent variable, 105
induction, 728

mutual, 728
inductor, 725
infinite decimal expansion, 195, 582
initial value problem

general, 571
scalar autonomous, 555
second order, 577
separable scalar, 563

integer, 47
computer representation of, 59
division with remainder, 57

integral
additivity over subintervals,

450
change of variables, 455
linearity, 452
monotonicity, 453

integral equation, 1011
integration by parts, 457, 946
interior minimum point, 869
intermediate value theorem, 216
intuitionist, 227
invariance

orthogonal transformation, 340
inverse

of matrix, 336
Inverse Function theorem, 804
inverse matrix, 625
inversion, 1112
irrotational, 968
irrotational flow, 1131
isobars, 887
isotropic, 883
isotropy, 1032
iterated integration, 934
iterated one-dimensional integra-

tion, 911

iteration matrix, 664
iterative method, 657

Jacobi method, 666
Jacobian, 788, 1025
Jacquard, 4

Kirchhoff’s laws, 727
Kronecker, 230

Lagrange, 693
Lagrangian description, 998
Laplace, 1007
Laplacian, 879, 881, 884

polar coordinates, 881, 1028
spherical coordinates, 885

Laurent series, 1124
LCR-circuit, 725
least squares method, 634
Leibniz, 104, 428
Leibniz’ teen-age dream, 41
level curve, 658, 809
level surface, 812
liars paradox, 226
limit, 177

computation of, 177
line, 323
line integral, 893, 898
linear combination, 277, 599
linear convergence, 661
linear function, 611
linear independence, 297, 601, 682
linear mapping, 299
linear oscillator, 712

damped, 713
linear transformation, 338, 612
linearization, 791
linearly independent, 337
Lipschitz continuity, 149, 205

boundedness, 159
composition of functions, 161
generalization, 243
linear combinations, 157
linear function, 150
monomials, 156
product of functions, 160
quotient of functions, 160

Lipschitz continuous, 786, 1025
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Lipschitz continuous function
converging sequence, 175

load vector, 759, 1048, 1052
logarithm, 469
logicists, 224
logistic equation, 558
long division, 77
Lorenz, 843
Lorenz system, 844
lower triangular matrix, 648
lumped mass quadrature, 1043

Möbius transformation, 1112
magnetic field, 885, 1003, 1099
magnetic flux, 1003, 1099
magnetic permeability, 1003, 1099
magnetostatics, 1006
Malthus, 410
marginal cost, 354
mass conservation, 998
mass-spring system, 695
mass-spring-dashpot systems, 709
matrix, 300, 333, 612

factorization, 649
ill-conditioned, 660
multiplication, 613, 683

matrix addition, 303
matrix multiplication, 303
Maxwell, 1003
Maxwell’s equations, 1003
Mean Value theorem, 793
medical tomography, 12
mesh, 743

isotropy, 1032
mesh function, 483, 743, 1032
mesh modification criterion, 768
minimization method, 658
minimization problem, 658, 1055
minimum point, 866
minimum value, 866
model

crash, 718
infection, 568
marriage crisis, 722
national economy, 569
population, 722
spread of infection, 722
stock market, 722
symbiosis, 722

transition to turbulence, 722
moment of inertia, 929, 940
muddy yard model, 28
multi-grid method, 1055
multiplication by scalar, 599

N-body system, 705
natural boundary condition, 763,

1065
natural logarithm, 469
natural number, 47
Navier-Stokes equations, 1002
navigator, 269
Newton, 981
Newton’s Inverse Square Law, 981
Newton’s Law of gravitation, 1009
Newton’s Law of motion, 402
Newton’s method, 391, 805
nightmare, 981
nodal basis function, 743
non-Euclidean geometry, 101
non-periodic decimal expansion, 196
norm, 275

energy, 1056
norm of a symmetric matrix, 616,

644
numerical quadrature, 476

Ohm’s law, 1003
optimal mesh, 1060
optimization, 865
ordered n-tuples, 596, 682
ordered pair, 271
orthogonal, 315
orthogonal complement, 628
orthogonal decomposition, 282, 628
orthogonal matrix, 338, 630
orthogonal projection, 746
orthogonalization, 629

parallel
lines, 294

parallelogram law, 273
parametrization, 785
parents, 1033
partial derivative, 388
partial derivatives of second order,

798
partial fractions, 523
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partial pivoting, 653
particle paths, 999
partition, 743
Peano axiom system, 229
pendulum

double, 699
fixed support, 696
moving support, 697

periodic decimal expansion, 196
permutation, 617
pivoting, 652
plane, 324
Poincaré inequality, 1018
point mass, 1008
Poisson’s equation, 991, 1046, 1062

minimization problem, 1055
variational formulation, 1047

Poisson’s equation on a square, 1049
polar coordinates, 919
polar representation, 276
polynomial, 119

coefficients, 119
positive series, 545
positive-definite, 760
potential, 898
potential field, 967
potential flow, 999, 1131
potential theory, 1130
power series, 1123
precision, 1043
prime number, 58
principle of equidistribution, 1060
principle of least action, 693
projection, 281, 302, 316

onto a subspace, 626
point onto a line, 294
point onto a plane, 328

Pythagoras, 87
Pythagoras’ theorem, 87

QR-decomposition, 631
quadrature, 429

adaptive, 482
endpoint rule, 480
lumped mass, 1043
midpoint rule, 480
trapezoidal rule, 480

quadrature error, 478
quarternions, 346

radius of curvature, 901
range, 104
rate of change, 353
rate of convergence, 661
rational number, 71
Rayleigh quotient, 1012
Reagan, 943
real number, 197

absolute value, 200
addition, 197
Cauchy sequence, 203, 582
comparison, 201
division, 200
multiplication, 200

reference triangle, 1050
refinement strategy, 1060
residual error, 668, 767, 1058
residue calculus, 1126
Residue Theorem, 1127
resistor, 725
Riemann sum, 916, 936
rigid transformations, 883
Robin boundary conditions, 763
rocket propulsion, 408
rotation, 285, 879, 881

scalar product, 315, 597
search direction, 658
separable scalar initial value prob-

lem, 563
sequence, 165

limit of, 165
series, 544
Slide Rule, 4
socket wrench, 167
solid of revolution, 939
sorting, 866
space capsule, 977
sparse matrix, 657, 760
sparsity pattern of a matrix, 1052
spectral radius, 664
spectral theorem for symmetric ma-

trices, 639
spherical coordinates, 885, 937
spinning tennis ball, 1132
splitting a matrix, 663
square domain, 1049
squareroot of two, 185
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stability
of motion, 701

stability factor, 825
stability of floating body, 977
standard basis, 600
steepest ascent, 795
steepest descent, 795, 872
steepest descent method, 658
step length, 658
stiffness matrix, 759, 1048, 1052
Stoke’s theorem, 959, 964
Stokes, 961
stopping criterion, 398, 768
straight line, 292
streamlines, 999, 1131
string theory, 731
strong boundary condition, 763
subtractive cancellation, 670
support, 1038
surface, 786
surface area, 923
surface integral, 923, 928, 1029
surface of revolution, 926
surveyor, 269
Svensson’s formula, 996, 1095
symmetric matrix, 760
system of linear equations, 295, 330

tangent plane, 791
Taylor’s formula, 1118, 1122
Taylor’s theorem, 461, 800
temperature, 988
tent functions, 1037
test of linear independence, 622
total energy, 1055
transpose, 615
transpose of a matrix, 305

triangular domain, 1070
triangulation, 1032

boundary nodes, 1062
internal nodes, 1032, 1062

trigonometric functions, 502
triple integral, 933
triple product, 321
Turing, 222
two-body, 700
two-point boundary value problem,

755

union jack triangulation, 1070
upper triangular matrix, 648

variable, 104
variation of constants, 530
Vasa, 971
vector, 271
vector addition, 272
vector product, 287, 317
vector space R

n, 596
Verhulst, 558
voltage, 725
Volterra-Lotka’s predator-prey

model, 566
volume, 935

parallelepiped, 320
volume under graph, 912

wave equation, 1012
weather prediction, 13
weight, 765
weighted L2 norm, 765
weighted Cauchy’s inequality, 765
Winnie-the-Pooh, 165

zero pivoting, 652




