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Abstract
We present a scenario for separation in slightly viscous incompressible turbu-

lent flow around a solid body supported by computation, mathematical analysis
and experimental observation, which is fundamentally different from the scenario
for viscous laminar flow by Prandtl based on adverse pressure gradients retarding
the flow to stagnation at separation. We make a distinction betweeen separation
from a laminar boundary layer with no-slip boundary condition and a turbulent
boundary layer with slip. We note that separation occurs if ∂p

∂n
< U2

R
, where ∂p

∂n

is the pressure gradient normal to the boundary into the fluid, U is a flow speed
close to the boundary and R the curvature of the boundary, positive for a convex
body. We note that in a laminar boundary layer ∂p

∂n
> 0 only in contracting flow,

which causes separation as soon as the flow expands after the crest of the body.
We observe that in a turbulent boundary layer with slip, ∂p

∂n
> 0 is possible also

in expanding flow which can delay separation. We present a basic mechanism for
tangential separation with slip based on instability at rear points of stagnation gen-
erating low-pressure rolls of streamwise vorticity reducing ∂p

∂n
. We present new

explanations of the drag-reducing effect of the dimples of a golf ball, the Mag-
nus effect, the reverse Magnus effect and the Coanda effect, all related to delayed
separation from a turbulent boundary layer with slip.

1 Prandtl and Flow Separation
The problem of fluid separation is of fundamental importance in fluid mechanics, in
particular in the case of a slightly viscous incompressible flow in aero/hydro mechan-
ics considered in this note. As a body moves through a slightly viscous fluid initially
at rest, like a car or airplane moving through still air, or equivalently as a fluid flows
around a body at rest, approaching fluid particles are deviated by the body in contract-
ing flow, switching to expanding flow at a crest and eventually separate away from the
body somewhere in the rear, at or after the crest. In the front the flow is typically lami-
nar and approaches/attaches to the boundary at stagnation with zero fluid velocity. On
the other hand, the fluid mechanics of the turbulent separation occuring in the rear in
slightly viscous flow, which creates drag and lift forces, appears to be largely unknown,
despite its crucial importance in many applications, including flying and sailing. The
purpose of this article is to contribute to fill this gap. We focus here on the basic case
of turbulent separation from a convex body like a sphere, circular cylinder, wing, car
or boat hull.
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In 1904 the young German physicist Ludwig Prandtl (1875-1953) suggested in a
10 page sketchy presentation entitled Motion of Fluids with Very Little Viscosity [22]
at the Third International Congress of Mathematics in Heidelberg, that the substantial
drag of a bluff body moving through a fluid with very small viscosity (such as air or wa-
ter), possibly could arise from the presence of of a thin laminar boundary layer causing
the flow to separate from the boundary brought to stagnation under an adverse pressure
gradient (negative pressure gradient in the flow direction), to form a low-pressure wake
behind the body. Prandtl’s boundary layer has a distinctive two-dimensional (2d) char-
acter with the flow changing slowly in the direction transverse to the flow and parallel
to the boundary. The acceptance of Prandtl’s ideas was remarkably slow [1]:

• Prandtls idea (about the boundary layer) went virtually unnoticed by anybody
outside of Göttingen... The fifth and sixth editions of Lambs classic text Hydro-
dynamics published in 1924, devoted only one paragraph to the boundary-layer
concept.

However, Prandtl got two forceful students, Theodore von Karman (emigrated to the
US in 1930) and Hermann Schlichting (remained in Germany), who crowned Prandtl
as the father of modern fluid mechanics. Prandtl’s main ideas are described as follows
in Schlichting’s treatise Boundary Layer Theory from 1951:

• Boundary layer flow has the peculiar property that under certain conditions the
flow in the immediate neighbourhood of a solid wall becomes reversed causing
the boundary layer to separate from it. This is accompanied by a more or less
pronounced formation of eddies in the wake of the body. Thus the pressure dis-
tribution is changed and differs markedly from that in a frictionless stream. The
deviation in pressure distribution from that of the ideal is the cause of form drag,
and its calculation is thus made possible with the aid of boundary layer theory.

• The first important question to answer is to find when separation of the flow from
the wall may occur. When a region with an adverse pressure gradient exists
along the wall, the retarded fluid particles cannot, in general, penetrate too far
into the region of increased pressure owing to their small kinetic energy. Thus
the boundary layer is deflected sideways from the wall, separates from it, and
moves into the main stream. In general the fluid particles follow the pressure
gradient and move in a direction opposite to the external stream.

• In some cases the boundary layer increases its thickness considerably in the
downstream direction and the flow in the boundary layer becomes reversed. This
causes the decelerated fluid particles to be forced outwards, which means that
the boundary layer is separated from the wall. We then speak of boundary layer
separation. This phenomenon is always associated with the formation of vor-
tices and with large energy losses in the wake of the body. The large drag can
be explained by the existence of large deviation in pressure distribution (from
potential flow), which is a consequence of boundary-layer separation.

• Downstream the pressure minimum the discrepancies increase very fast on ap-
proaching the separation point (for circular cylinder).
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• The circumstance that real flows can support considerable rates of pressure in-
crease (adverse pressure gradients) in a large number of cases without separa-
tion is due to the fact that the flow is mostly turbulent. The best known examples
include cases of flow past circular cylinders and spheres, when separation oc-
curs much further upstream in laminar than in turbulent flow. It is nevertheless
useful to consider laminar flow because it is much more amenable to mathe-
matical treatment than is the case of turbulent flow....At the present time these
very complicated phenomena (separation in turbulent flow) are far from being
understood completely...

• The form drag which does not exist in frictionless subsonic flow, is due to the fact
that the presence of the boundary layer modifies the pressure distribution on the
body as compared with ideal flow, but its computation is very difficult.

• The origin of pressure drag lies in the fact that the boundary layer exerts a dis-
placement action on the external stream. This modifies somewhat the pressure
distribution on the body surface. In contrast with potential flow (d’Alembert’s
paradox), the resultant of this pressure distribution modified by friction no longer
vanishes but produces a preessure drag which must be added to skin friction. The
two together give form drag.

• In the case of the most important fluids, namely water and air, the viscosity is
very small and, consequently, the forces due to viscous friction are, generally
speaking, very small compared with the remaining forces (gravity and pressure
forces). For this resaon it was very difficult to comprehend that very small fric-
tional forces omitted in classical (inviscid) theory influenced the motion of a fluid
to so large extent.

Prandtl described the difficulties himself in Applied Hydro- and Aeromechanics from
1934:

• Only in the case where the “boundary layer” formed under the influence of the
viscosity remains in contact with the body, can an approximation of the actual
fluid motion by means of a theory in terms of the ideal frictionsless fluid be
attempted, whereas in all cases where the boundary leaves the body, a theoretical
treatment leads to results which do not coincide at all with experiment. And it
had to be confessed that the latter case occurs most frequently.

In a nutshell, these quotes present much of the essence of modern fluid mechanics
propagated in standard books and courses in fluid mechanics: Drag and lift in slightly
viscous flow are claimed to arise from 2d separation in a thin viscous laminar bound-
ary layer brought to stagnation with reversed flow due to an adverse pressure gradient.
On the other hand, both Prandtl and Schlichting admit that this standard scenario does
not describe turbulent flow, always arising in slightly viscous flow, but persists that “it
is nevertheless useful to consider laminar flow because it is much more amenable to
mathematical treatment”. However, turbulent and laminar flow have different proper-
ties, and drawing conclusions about turbulent flow from studies of laminar flow can be
grossly misleading.
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2 Critique by Lancaster and Birkhoff
Prandtl’s contribution to fluid mechanics was to explain separation, drag and lift as
effects of a very small (vanishingly small) viscosity. This view has been seriously
questioned, however with little effect since no alternative to Prandtl’s theory has been
in sight. Lancaster stated already in 1907 in his in Aerodynamics[20]:

• According to the mathematical theory of Euler and Lagrange, all bodies are
of streamline form (with zero dragh and lift). This conclusion, which would
otherwise constitute a reductio ad absurdum, is usually explained on the gorund
the fluid of theory is inviscid, whereas real possess viscosity. It is questionable
of this expanlanation alone is adequate.

Birkhoff followed up in his Hydromechanics from 1950 [3]:

• The art of knowing “how to apply” hydrodynamical theories can be learned even
more effectively, in my opinion, by studying the paradoxes I will describe (e.g
d’Alemberts paradox). Moreover, I think that to attribute them all to the neglect
of viscosity is an oversimplification. The root lies deeper, in lack of precisely that
deductive rigor whose importance is so commonly minimized by physicists and
engineers.

However, critique of Prandtl was not well received, as shown in the review of Birkhoff’s
book by James. J. Stoker [24]. The result is that Prandtl still dominates fluid mechanics
today, although the belief in Prandtl’s boundary layer theory (BLT) seems to be fading
as expressed by Cowley [4]:

• But is BLT a 20th century paradox? One may argue, yes, since for quantita-
tive agreement with experiment BLT will be outgunned by computational fluid
dynmaics in the 21st century.

The 21st century is now here, and yes, computational fluid mechanics reveals a differ-
ent scenario than Prandtl’s.

But Prandtl’s influence is still strong, as evidenced by the common belief that accu-
rate computational simulation requires very thin boundary layers to be resolved. Thus
Kim and Moin [19] claim in 200? that to correctly predict lift and drag of an aircraft at
the relevant Reynolds number of size 108, requires computation on meshes with more
than 1016 mesh points, which is way out of reach for any foreseeable computer, a con-
viction supported by Henningson [21] in 2008. This puts CFD into a deadlock: Either
compute at irrelevant too small Reynolds numbers or invent turbulence models, which
has shown to be very difficult.

Techniques for preventing 2d laminar separation based on suction and blowing have
been suggested. In the recent study [25] computational simulations are presented of
synthetic jet control for a NACA 0015 wing at Reynolds number 896.000 (based on the
chord length) for different angles of attack. As indicated, the relevant Reynolds number
is two orders of magnitude larger, and the relevance of the study can be questioned. The
effects of the synthetic jet control may simply be overshadowed by turbulent boundary
layers.
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3 Outline
In this note we give evidence that Prandtl’s boundary layer theory for 2d laminar sep-
aration has fallen into this trap, with the unfortunate result is that much research and
effort has gone into preventing 2d laminar separation in flows which effectively are
turbulent with 3d turbulent separation. We present a scenario for 3d turbulent sepa-
ration with streamwise vorticity supported by analysis, computation and experiments,
which connects to the familiar experience of the rotating flow through a bathtub drain
replacing the theoretically possible but unstable fully radial flow. This new scenario
is radically different from Prandtl’s scenario for 2d laminar separation at stagnation
(without streamwise vorticity). We shall find that Prandtl’s 2d scenario is academic in
the sense that laminar separation triggers turbulence which allows flow reattachment
after a separation bubble into later 3d turbulent separation.

We show that 2d laminar separation with no-slip occurs at the crest of slightly
vicous flow with a large wake and drag, while turbulent separation can occur after the
crest with smaller wake and drag. We show that drag can be seen as cost of separation,
which for a wing also generates lift as shown in [13]. We show that the difference
between laminar and turbulent separation can give rise to non-symmetric separation,
which underlies both the Magnus effect and the reverse Magnus effect generating lift by
rotation. We also show that the Coanda effect arises from delayed turbulent separation
with slip. We start recalling some critcism of Prandtls boundary layer theory.

We compute solutions of the Navier-Stokes equations with slip/small friction bound-
ary condition as a model of a turbulent boundary layer, motivated in more detail in [16],
using an adaptive finite element method with duality based a posteriori error control de-
scribed in detail in [14] and referred to as G2 as an acronym of General Galerkin. In
particular, the use of slip/small friction boundary condition is justified in [16] by a
posteriori analysis. This article relates closely to the new resolution of d’Alembert’s
paradox and blowup of potential flow [15, 12] and connects to a new analysis of the
fluid mechanics of subsonic flight [13]. The entire material is presented to a general
audience as Knol articles [17].

4 Can You Prove that Prandtl Was Not Correct?
Lancaster and Birkhoff did not accept Prandtl’s explanation of the generation of drag
and lift as an effect of a vanishingly small viscosity. But you cannot directly prove
that an infinitely small cause cannot have a large effect, without access to an infinitely
precise mathematical model or laboratory, which are not available. So Prandtl can be
pretty safe to direct attacks, but not to indirect: Suppose you eliminate that vanishingly
small cause from the consideration altogether, and yet obtain good correspondence
between theory and experiment, that is, suppose you observe the effect without the
infinitely small cause. Then you can say that the small cause has little to do with the
effect.

This is what we do: We compute turbulent solutions of the incompressible Navier-
Stokes equations with slip boundary conditions, requiring only the normal velocity
to vanish letting the tangential velocity be free, and we obtain drag and lift which fit
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with experiments. We thus obtain the effect (drag and lift) without Prandtl’s cause
consisting of a viscous boundary layer with no-slip boundary condition requiring also
the tangential velocity to vanish. We conclude that the origin of drag and lift in slightly
viscous flow, is not viscous boundary layers with no-slip boundary conditions.

5 Turbulent Separation with Slip/Small Friction
We motivate the use of slip boundary condition by the fact that the skin friction of
a turbulent boundary layer (the tangential force from a no-slip boundary condition),
tends to zero with the viscosity, which is supported by both experiment and computa-
tion, also indicating that boundary layers in general are turbulent. More generally, we
use a friction-force boundary condition as a model of the skin friction effect of a tur-
bulent boundary layer, with a (small) friction coefficient determined by the Reynolds
number Re = UL

ν , where U is a representative velocity, L a length scale and ν the
viscosity. The limit case of zero friction with slip then corresponds to vanishing vis-
cosity/very large Reynolds number, while large friction models no-slip of relevance for
small to moderately large Reynolds numbers. In mathematical terms we combine the
Navier-Stokes equations with a natural (Neumann/Robin type) boundary condition for
the tangential stress, instead of an essential (Dirichlet type) condition for the tangential
velocity as Prandtl did.

We thus make a distinction between laminar separation from a laminar boundary
layer with no-slip velocity boundary condition considered by Prandtl, and turbulent
separation from a turbulent boundary layer modeled by a slip/small friction boundary
condition.

We find quantitative evidence in benchmark problems that the effect on mean-value
outputs such as lift and drag of modeling a turbulent boundary layer with a slip/small
friction boundary condition, is small in the case of small viscosity. We do this by an
a posteriori sensitivity analysis by computational solution of a dual problem linearized
at a turbulent solution with no-slip and discovering that relevant stability factors are
of moderate size, which we understand to be an effect of cancellation in a turbulent
boundary layer, as in the case of interior turbulence studied in [14].

On the other hand, we find linearizing at a laminar solution that corresponding sta-
bility factors are large, which indicates that a laminar boundary layer cannot be mod-
eled by slip even if the skin friction is small. However, after laminar separation slightly
vicous flow typically turns turbulent which can allow reattachment with a turbulent
boundary layer.

Altogether, we find that slightly viscous flow in many cases can be modeled by
slip/small friction boundary condition with a posteriori justification of the use of slip/small
friction boundary conditions.

6 Separation vs Normal Pressure Gradient
Fluid particles with non-zero tangential velocity can only separate from a smooth
boundary tangentially, because the normal velocity vanishes on the boundary. By ele-
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mentary Newtonian mechanics it follows that fluid particles follow the curvature of the
boundary without separation if

∂p

∂n
=
U2

R
(1)

and separate tangentially if
∂p

∂n
<
U2

R
, (2)

where p is the pressure, n denotes the unit normal pointing into the fluid, U is the tan-
gential fluid speed and R is the radius of curvature of the boundary counted positive if
the body is convex. This is because a certain pressure gradient normal to the boundary
is required to accelerate fluid particles to follow the curvature of the boundary.

We understand that flow separation is directly related to the pressure gradient nor-
mal to the boundary accelerating fluid particles in the normal direction, while Prandtl
instead makes a connection to an adverse pressure gradient retarding the flow in a tan-
gentially to the boundary. We exhibit the difference in several examples below.

7 Laminar Separation with No-Slip
The classical (stationary) 2d boundary layer equations for laminar viscous flow pro-
posed by Prandtl in 1904 [22], take the following form assuming that the fluid occupies
the half plane x2 ≥ 0 with main flow in the positive x1-direction with u3 = 0: Find
(u1, u2, p) such that

u1
∂u1
∂x1

+ u2
∂u1
∂x2

+
∂p

∂x1
= ν

∂2u1
∂x22

,

∂u1
∂x1

+
∂u2
∂x2

= 0,

∂p

∂x2
= 0,

(3)

combined with the no-slip boundary condition u1 = u2 = 0, where ν > 0 denotes
the viscosity. These equations are formally derived form the Navier-Stokes equations
assuming ν to be small, that the flow is constant in the x3-direction and does not vary
quickly in the x1-direction. An important feature of the boundary layer equations is
that the pressure is constant in the x2-direction as expressed by the equation ∂p

∂x2
= 0,

resulting from inertial momentum balance in the x2-direction:

∂p

∂x2
≈ −u1

∂u2
∂x1

− u2
∂u2
∂x2

, (4)

where in particular u1 ∂u2

∂x1
is small because u1 = 0 on the boundary by the no-slip

condition.
In the converging flow around a convex body before the crest a positive normal

pressure gradient satisfying (1) can be balanced by a negative normal gradient of mo-
mentum, but not in the diverging flow after the crest. Assuming the plane x2 = 0 is
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tangent to the body at the crest at x1 = 0 with the flow in the (positive) x1-direction,
we have u2 > 0 and ∂u2

∂x2
< 0 before the crest allowing attachment. On the other hand,

at the crest u2 = 0 and in the case of no-slip also u1 = 0, which forces ∂p
∂x2

= 0, thus
violating (1) and causing separation. A slightly viscous flow with no-slip thus separates
on the crest, but can stay attached before.

The form of the boundary layer equations (3) led Prandtl to focus on the role of of
the adverse pressure gradient ∂p

∂x1
in the momentum balance in the streamwise direc-

tion, with the goal of associating separation to adverse pressure gradients retarding the
flow, thereby discarding the crucial role of the normal derivative ∂p

∂x2
effectively con-

nected to separation in slightly viscous flow. Of course, an adverse pressure gradient
appears in the expanding flow after the crest, but cannot instantly cause separation, as
Prandtl would have to claim in the case of separation at the crest.

Prandtl’s boundary layer theory propagated by his student Schlichting in the monu-
mental treatise [23] has dominated modern fluid mechanics, but its inherent paradoxes
are today being acknowledged by the fluid mechanics community [4].

8 Turbulent Separation with Slip
In the case of slip boundary condition the tangential velocity u1 in (4) can be positive.
Assuming irrotational flow we have u1 ∂u2

∂x1
= u1

∂u1

∂x2
where now it is possible that

∂u1

∂x2
< 0 at the crest, thus allowing ∂p

∂x2
> 0 to satisfy (1) and prevent separation by

suction, as we will discover in the closer study below.

9 Potential Flow and Non-Separation
To understand 3d turbulent separation with slip, it is instructive to consider potential
flow which is stationary, incompressible, irrotational, inviscid flow with the velocity
u = ∇φ, where φ is harmonic in the fluid domain and satisfies the slip boundary
condition u · n = ∇φ · n = 0 on the boundary.

Potential flow can only separate/attach at a stagnation point with ∇φ = 0. In 2d
flow this follows from the facts that the flow velocity is the gradient of a harmonic
function with a level line of the corresponding conjugate function coinciding with the
boundary as long as the gradient does not vanish. Streamlines thus follow level lines
of the conjugate function which follow the curvature of the boundary, away from stag-
nation points. This means that potential flow “sticks to the boundary” and can only
separate at a stagnation with opposing flows meeting.

In particular, potential flow around a sphere separates at one stagnation point in the
rear, and around a circular cylinder along a line of stagnation with one stagnation point
in each cross section.
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10 The Incompressible Navier-Stokes Equations
We study laminar and turbulent separation in slightly viscous incompressible flow
through the Navier-Stokes equations for an incompressible fluid of unit density with
small viscosity ν > 0 and small skin friction β ≥ 0 filling a volume Ω in R3 surround-
ing a solid body with boundary Γ over a time interval I = [0, T ]: Find the velocity
u = (u1, u2, u3) and pressure p depending on (x, t) ∈ Ω ∪ Γ× I , such that

u̇+ (u · ∇)u+∇p−∇ · σ = f in Ω× I,
∇ · u = 0 in Ω× I,
un = g on Γ× I,
σs = βus on Γ× I,

u(·, 0) = u0 in Ω,

(5)

where u̇ = ∂u
∂t , un is the fluid velocity normal to Γ, us is the tangential velocity,

σ = 2νϵ(u) is the stress with ϵ(u) the usual velocity strain, σs is the tangential stress,
f is a given volume force, g is a given inflow/outflow velocity with g = 0 on a non-
penetrable boundary, and u0 is a given initial condition. We notice the skin friction
boundary condition coupling the tangential stress σs to the tangential velocity us with
β = U

2 cf , where cf = 2τ
U2 is the skin friction coefficient, with β = 0 for slip (and

β >> 1 for no-slip).
Prandtl insisted on using a no-slip velocity boundary condition with us = 0 on

Γ, because his resolution of d’Alembert’s paradox hinged on discriminating potential
flow by this condition. On the oher hand, with our new resolution of d’Alembert’s
paradox, relying instead on instability of potential flow, we are free to choose instead
a friction force boundary condition, if data is available. Now, experiments show that
the skin friction coefficient decreases with increasing Reynolds number Re as cf ≈
0.05 ∼ Re−0.2, so that cf ≈ 0.0005 for Re = 1010 and cf ≈ 0.005 for Re = 105.
Accordingly we model a turbulent boundary layer by friction boundary condition with
a friction parameter β ≈ 0.03URe−0.2.

We are now performing benchmark computations for tabulating values of β (or σs)
for different values of Re by solving the Navier-Stokes equations with no-slip, and
more generally for different values of ν, U and length scale, since the dependence
seems to be more complex than simply through the Reynolds number. Early results
are reported in [14] with σs ≈ 0.005 for ν ≈ 10−4 and U = 1, with corresponding
velocity strain in the boundary layer 104σs ≈ 50 indicating that the smallest radius of
curvature without separation in this case could be expected to be about 0.02.

We show in [14, 12, 15, ?, ?] that the Navier-Stokes equations (5) can be solved by
a stabilized finite element referred to as G2 as an acronym for General Galerkin. G2
produces turbulent solutions characterized by substantial turbulent dissipation from the
least squares stabilization acting as an automatic turbulence model, reflecting that the
Navier-Stokes residual cannot be made small in turbulent regions. G2 has a posteriori
error control based on duality and shows output uniqueness in mean-values such as lift
and drag [14, 11, 10, 13, ?]

We find that G2 with slip is capable of modeling slightly viscous turbulent flow
with Re > 106 of relevance in many applications in aero/hydro dynamics, including
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flying, sailing, boating and car racing, with hundred thousands of mesh points in sim-
ple geometry and millions in complex geometry, while according to state-of-the-art
quadrillions is required [19]. This is because a friction-force/slip boundary condition
can model a turbulent blundary layer, and interior turbulence does not have to be re-
solved to physical scales to capture mean-value outputs [14].

The idea of circumventing boundary layer resolution by relaxing no-slip bound-
ary conditions introduced in [14], was used in [2] in the form of weak satisfaction of
no-slip, which however misses the main point of using a force condition instead of a
velocity condition.

11 Transition to Turbulence vs Separation
We will analyze 3d turbulent separation as a phenomenon of instability of potential
flow at stagnation through the linearized equations

v̇ + (u · ∇)v + (v · ∇)ū+∇q = f − f̄ in Ω× I,
∇ · v = 0 in Ω× I,
v · n = g − ḡ on Γ× I,

v(·, 0) = u0 − ū0 in Ω,

(6)

where (u, p) and (ū, p̄) are two Euler solutions with slightly different data, and (v, q) ≡
(u−ū, p−p̄). Formally, with u and ū given, this is a linear convection-reaction problem
for (v, q) with growth properties governed by the reaction term given by the 3×3 matrix
∇ū. By the incompressiblity, the trace of ∇ū is zero, which shows that in general
∇ū has eigenvalues with real values of both signs, of the size of |∇u| (with | · | som
matrix norm), thus with at least one exponentially unstable eigenvalue. In particular
there is exponential perturbation growth in regions where the flow is retarding in the
streamwise direction.

Alternatively, applying the curl operator ∇× to the momentum equation we obtain
the vorticity equation

ω̇ + (u · ∇)ω − (ω · ∇)u = ∇× f in Ω, (7)

which is also a convection-reaction equation in the vorticity ω = ∇×uwith coefficients
depending on u, of the same form as the linearized equation (6), with a sign change of
the reaction term. Also the vorticity is thus locally subject to exponential growth with
exponent |∇u|.

The linearized equations (6) and (3) indicate exponential growth of velocity per-
turbations in retarding flow and of streamwise vorticity in accellerating flow. We iden-
tified in [12] a corresponding basic instablity mechanism generating counter-rotating
low-pressure streaks of strong streamwise vorticity attaching to the rear of the body
allowing separation without stagnation, as well as the associated cost for separation in
terms of increased drag.

Note that in classical analysis it is often argued that from the vorticity equation
(3), it follows that vorticity cannot be generated starting from potential flow with zero
vorticity and f = 0, which is Kelvin’s theorem. But this is an incorrect conclusion,
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since perturbations of f̄ of f with ∇× f̄ ̸= 0 must be taken into account, even if f = 0.
What you effectively see in computations is local exponential growth of vorticity on the
body surface in rear retardation and by vortex stretching in accelleration, even if f = 0,
which is a main route of instability to turbulence as well as separation.

12 Non-Separation in Viscous Flow
For a completeness we consider also the case of viscous flow with viscous terms dom-
inating over convection terms in which case (4) is replaced by

∂p

∂x2
≈ ν

∂2u2
∂x22

. (8)

In the converging flow before the crest ∂2u2

∂x2
2
> 0 because the flow cannot separate be-

fore the crest, and by (approximate) symmetry of the flow pattern in the flow direction
in the case of small convection, ∂2u2

∂x2
2
> 0 also in the diverging flow after the crest thus

preventing separation. In short, laminar Stokes flow with dominating viscous terms
does not separate, but laminar convection-dominated flow does separate, at the crest.

13 Flow around a Cylinder and Sphere

13.1 Potential Flow
We start considering potential flow in R3 with coordinates x = (x1, x2, x3) around a
circular cylinder of unit radius with axis along the x3-axis, assuming the flow velocity
is (1, 0, 0) at infinity, see Fig. 1. Potential flow is constant in the x3-direction and fully

Figure 1: Potential flow past a circular cylinder: velocity (left) and pressure (right).

symmetric in x1 and x2, with zero drag/lift and separates at the plane of stagnation
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x2 = 0 in the rear. It is given (in polar coordinates (r, θ) in a (x1, x2)-plane) by the
potential function

φ(r, θ) = (r +
1

r
) cos(θ)

with corresponding velocity components

ur ≡ ∂φ

∂r
= (1− 1

r2
) cos(θ), us ≡

1

r

∂φ

∂θ
= −(1 +

1

r2
) sin(θ)

with streamlines given as the level lines of the conjugate potential function

ψ ≡ (r − 1

r
) sin(θ).

By Bernouilli’s principle the pressure is given by

p = − 1

2r4
+

1

r2
cos(2θ)

when normalized to vanish at infinity. We compute

∂p

∂θ
= − 2

r2
sin(2θ)),

∂p

∂r
=

2

r3
(
1

r2
− cos(2θ)),

and discover an adverse pressure gradient in the back, while the normal pressure gra-
dient

∂p

∂r
= 4 sin2(θ) ≥ 0

is precisely the force required to accelerate fluid particles with speed 2| sin(θ)| to fol-
low the circular boundary without separation, satisfying the condition (1). We note,
coupling to the above discussion relating to (4), that ∂us

∂r = 2
r3 sin(θ) = 2 at the crest.

We further compute
∂ψ

∂r
=

1

r2
sin(θ)

which shows that fluid particles decrease their distance to the boundary in front of
the cylinder and increase their distance in the rear, but the flow only separates at rear
stagnation.

13.2 3d Turbulent Separation and Drag Crisis
We find that EG2 solutions with slip initialized as potential flow develop into time-
dependent flow with a turbulent wake with counter-rotating low-pressure rolls of stream-
wise vorticity generating substantial drag, as displayed in Fig. 2 and 3.

We may compare with EG2 computations reported in [?, ?] with variable friction
coefficient β. If β > 0.02 the effect is no-slip with laminar separation at the crest with a
drag coefficient cD ≈ 0.7. If β < 0.002, then the effect is slip with cD ≈ 0.4. Varying
the friction parameter we can thus simulate the drag crisis with a drastic reduction of
drag due to a switch from laminar separation at the crest to delayed turbulent separation
with increasing large Reynolds numbers (in the range 105 − 106.)
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Figure 2: Turbulent flow past a cylinder; velocity (left) and pressure (right). Notice the
low pressure wake of strong streamwise vorticity generating drag.

Figure 3: Levels surfaces of strong vorticity in EG2 solution: streamwise |ω1| (left) and
transversal |ω2| (middle) and |ω3| (right), at three times t1 < t2 < t3 (upper, middle,
lower), in the x1x3-plane.
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Figure 4: xx

Figure 5: xx

We display similar results for the flow around a sphere from [7] in Fig 4 with β =
2, 10−2, 10−2, 5, 10−3, with a corresponding drop of drag from 0.5 to 0.2, showing for
small friction a pattern of four low-pressure co-rotating streaks of streamwise vorticity
which are analogous to the pattern of streamwise streaks behind the cylinder. This
indicates that the drag-reducing effect of the dimples of a golf ball is by triggering
turbulent separation.

13.3 Separation vs Normal Pressure Gradient
We show in Fig. 5 the normal pressure gradient ∂p

∂n on the boundary for different
patterns of separation varying with the friction, and notice as expected that tangential
separation coincides with small ∂p

∂n (but is not related to an adverse pressure gradient).
EG2 with variable friction thus opens to computational simulation of high Reynolds

number flow without resolving thin boundary layers, with potentiall very many appli-
cations, considered impossible in state-of-the-art [19].

14 Scenario for 3d Turbulent Separation
We now present a scenario 3d turbulent separation based on identifying 3d perturba-
tions of strong growth in the linearized equations (6) and (3), which consist of low-
pressure tubes of streamwise vorticity allowing 3d separation without retardation to
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stagnation.
As a basic model of 2d laminar separation we consider the potential flow u(x) =

(x1,−x2, 0) in the half-plane {x1 > 0} with stagnation at (0, 0, 0) and

∂u1
∂x1

= 1 and
∂u2
∂x2

= −1, (9)

expressing that the fluid is squeezed by retardation/compression in the x2-direction
and accelleration/stretching in the x1-direction. We first focus on the compression
with the main stability feature of (6) captured in the following simplified version of the
v2-equation, assuming x1 and x2 are small, of (6) by

v̇2 − v2 = f2,

where we assume f2 = f2(x3) to be an oscillating mesh residual perturbation depend-
ing on x3, for example f2(x3) = h sin(x3/δ) with δ > 0 expecting the amplitude of
f2 to decrease with δ. We conclude, assuming v2(0, x) = 0, that

v2(t, x3) = t exp(t)f2(x3).

We next turn to the stretching and then focus on the ω1-vorticity equation, for x2
small and x1 ≥ x̄1 > 0 with x̄1 small, approximated by

ω̇1 + x1
∂ω1

∂x1
− ω1 = 0,

with the “inflow boundary condition”

ω1(x̄1, x2, x3) =
∂v2
∂x3

= t exp(t)
∂f2
∂x3

.

The equation for ω1 thus exhibits exponential growth, which is combined with expo-
nential growth of the “inflow condition”. We can see these features in principle in Fig.
6 and in computational simulation in Fig. ?? showing how opposing flows at separa-
tion generate a pattern of alternating surface vortices from pushes of fluid up/down,
which act as initial conditions for vorticity stretching into the fluid generating tubes of
low-pressure alternating streamwise vorticity.

We thus find streamwise vorticity generated by a force perturbation oscillating in
the x3 direction, which in the retardation of the flow in the x2-direction creates ex-
ponentially increasing vorticity in the x1-direction, which acts as inflow to the ω1-
vorticity equation with exponential growth by vortex stretching. Thus, we find expo-
nential growth at rear separation in both the retardation in the x2-direction and the
accelleration in the x1 direction, as a result of the squeezing expressed by (9).

Since the combined exponential growth is independent of δ, it follows that large-
scale perturbations with large amplitude have largest growth, which is also seen in
computations with δ the distance between streamwise rolls as seen in Fig. 3 which does
not seem to decrease with decreasing h. The perturbed flow with swirling separation is
large scale phenomenon, which we show below is more stable than potential flow.
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The corresponding pressure perturbation changes the high pressure at separation
into a zig-zag alternating more stable pattern of high and low pressure with high pres-
sure zones deviating opposing flow into non-opposing streaks which are captured by
low pressure to form rolls of streamwise vorticity allowing the flow to spiral away from
the body. This is similar to the vortex formed in a bathtub rain.

Notice that at forward separation the retardation does not come from opposing
flows, and the zone of exponential growth of ω2 is short, resulting in much smaller
perturbation growth than at rear separation.

The tubes of low-pressure streamwise vorticity change the normal pressure gradient
to allow separation without stagnation, but the price is generation of drag as a “cost of
separation”.

Figure 6: 3d separation in principle and computation

15 Stability of Swirling Separation
A swirling flow with flow velocity u = (0, x3,−x2) is stable because the correspond-
ing linearized problem

v̇1 = 0, v̇2 + v3 = 0, v̇3 − v2 = 0, (10)

models a harmonic oscillator without exponential growth.
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Overlaying this flow on potential flow, we obtain the following model for swirling
flow separation from the halfplane x1 > 0:

u = (2ϵx1, x3 − ϵx2,−x2 − ϵx3), (11)

where ϵ > 0 is a parameter which can be allowed to be small while still allowing
fluid particles to separate from the boundary x1 = 0. This is because in swirling flow
more time is alloted for separation, since fluid particles spiral away from the boundary.
Swirling flow separation thus is a more stable gentle way of separation as compared
to unstable more brutal potential flow separation with velocity field u = (x1,−x2, 0).
Evidently, Nature prefers an elegant stable solution before a brutal unstable. A swirling
hand gesture at separation was also practiced in royal courts as an expression of ele-
gance.

The essential problem faced by the flow is how to redirect opposing flows at sepa-
ration: Potential flow offers a solution, but it is unstable and cannot be realized physi-
cally. The instablity results from quick retardation to small speed, redirection followed
by quick accelleration, which develops a zig-zag pattern of counterrotating rolls of
streamwise vorticity redirecting the flow without retardation to small velocity in op-
posing flows.

We can compare with the swirling flow in a bathtub drain, which is more stable than
fully radial flow. Similarly, capturing a ball with flat hands opposing the ball requires
fast action, while allowing the ball to sink into the palm before retarding it gives more
time and thus is safer.

16 Applications

16.1 The Magnus effect
Observations show that a top-spin tennis ball curves down, and a backspin curves up, as
a result of the Magnus effect creating a lift force perpendicular to the flow. For top-spin
this can be explained as an effect of non-symmetrical separation occurring because the
friction on top of the ball is larger than below, because the relative velocity is larger,
and thus the separation occurs later below with a corresponding increase of tangential
velocity and pressure drop, resulting in a downward force. Similarly, a back-spin ball
curves up because of a delayed separation on top. In G2 we can model this effect by
varying the skin friction and thereby obtain non-symmetric separation with lift see [?].
In classical fluid mechanics the Magnus effect is described as an effect of large scale
rotation of air around a spinning ball, while today the true reason is expected to be
non-symmetric separation, which is confirmed by G2 computation.

16.2 The Reverse Magnus Effect
Observations show that a ping-pong ball with strong backspin can curve down seem-
ingly subject to a reverse Magnus effect. This can be again be understood as a result of
an non-symmetric separation, but this time as an effect of laminar separation at lower
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Reynolds number on top because of lower relative speed, and delayed turbulent sepa-
ration below because of a higher relative speed and higher effective Reynolds number.
Computations with no-slip boundary condition above and slip below, confirm this sce-
nario [?].

16.3 The Coanda Effect
Holding a spoon vertically under a water faucet, shows the Coanda effect of a stream
of fluid staying attached to a convex surface. The principle was named after Romanian
discoverer Henri Coanda, who was the first to understand the practical importance
of the phenomenon in aircraft development, and patented several devices such as the
Coanda saucer. It is commonly believed that the Coanda effect arises from surface
tension or Van der Waals forces, but in the new scenario it is instead seen to be a direct
consequence of the tendency of turbulent incompressible Euler flow with slip to stick
to a solid boundary.

16.4 Principle of Gliding Flight
The new scenario for flow separation also gives a new explanation of the generation of
the lift of a wing, which is fundamentally different from the commonly aacepted ex-
planation by Kutta-Zhukovsky coupling lift to large scale circulation around the wing.
We show in [13, 14] that lift is generated by the same mechanism generating drag
for a cylinder, which changes the pressure distribution of zero-lift potential flow. We
thus show that there is no lift without drag. More precisely we show that low-pressure
streamwise vorticity is generated at separation creating both lift and drag [14, 13].

We show in Fig. 7 lift and and drag coefficients of a Naca 0012 3d wing under
increasing angles of attack α, as well as the circulation around the wing. We see that
the lift increases linearly with α up to 16 degrees, with tangential flow separation on top
of the wing starting at 10 degrees and moving upstream from the trailing edge. The lift
peaks at stall at α = 20 after a quick increase of drag and flow separation at the leading
edge. We do not see that the circulation increases with the lift and we conclude that the
theory of lift of by Kutta-Zhukovsky is fictional without physical correspondence.

16.5 Turbulent Flow around a Car
In Fig. 8 we show turbulent Euler flow around a car with substantial drag in accordance
with wind-tunnel experiments. We see a pattern of streamwise vorticity forming in the
rear wake. We also see surface vorticity forming on the hood transversal to the main
flow direction.

16.6 Turbulent Flow over a Hill
In Fig. 9 we show turbulent Euler flow over a hill with separation after the crest by
again the mechanism of tangential separation through generation of surface vorticity.
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Figure 7: Lift and drag coefficients (left) and lift and circulation (right) as functions of
the angle of attack

16.7 Separation into a Turbulent Boundary Layer over a Flat Plate
The experience reported above suggests the following scenario for separation into a
turbulent boundary layer over a flat plate as a representation of a smooth boundary:
(i) Rolls of streamwise vorticity are formed by non-modal linear perturbation growth
referred to as the Taylor Görtler mechanism in [14]. (ii) The rolls create opposing
transversal flows (as in the back of cylinder), which generate surface vorticity which is
stretched into the fluid while being bent into to streamwise direction, as evidenced in
e.g. [6, 7].

We note that by energy balance it follows that the total turbulent dissipation in a
turbulent boundary layer of width δb equals σsus which indicates that δb ∼ ν0.2U0.8.
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