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Abstract

We discuss the formulation of the Clay Mathematics Institute Millen-

nium Prize Problem on the Navier-Stokes equations in the perspective of

Hadamard’s notion of wellposedness.

1 The Clay Navier-Stokes Millennium Problem

The Clay Mathematics Institute Millennium Prize Problem on the incompress-
ible Navier-Stokes equations [3, 7] asks for a proof of (I) global existence of
smooth solutions for all smooth data, or a proof of the converse (II) non global
existence of a smooth solution for some smooth data, referred to as breakdown
or blowup.

In [10, 12, 13, 14] we have discussed the formulation of the Millennium Prize
Problem and pointed to a possible reformulation and resolution. Central to
our discussion is Hadamard’s concept [8] of wellposed solution of a differential
equation. Hadamard makes the observation that perturbations of data (forcing
and initial/boundary values) have to be taken into account. If a vanishingly
small perturbation can have a major effect on a solution, then the solution (or
problem) is illposed, and in this case the solution may not carry any mean-
ingful information and thus may be meaningless from both mathematical and
applications points of view. According to Hadamard, only a wellposed solution,
for which small perturbations have small effects (in some suitable sense), can
be meaningful. Hadamard, thus makes a distinction between a wellposed and
illposed solution through a quantitative measure of the effects of small pertur-
bations: For a wellposed problem the effects are small and for an illposed large.
A wellposed solution is meaningful, an illposed not.

In this perspective it is remarkable that the issue of wellposedness does not
appear in the formulation of the Millennium Problem [7]. The purpose of this
note is to seek an explanation of this fact, which threatens to make the prob-
lem formulation itself illposed in the sense that a resolution is either trivial or
impossible [10].
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2 Wellposedness vs Continuous Dependence

The notion of wellposedness is commonly expressed as existence and unique-
ness of solutions with continuous dependence on data. In this formulation
Hadamard’s requirement of small effects of small perturbations of data, thus
is phrazed as a dependence which is

(C) continuous.

This is an equivalent reformulation, if “continuous dependence” is defined as
small effects of small perturbations, which however more precisely should be
expressed as a dependence which is

(L) Lipschitz continuous with a Lipschitz constant of moderate size.

We recall that a function f : R → R is Lipschitz continuous with Lipschitz
constant L if for x ∈ R

|f(x) − f(x+ dx)| ≤ L |dx| for (small) dx ∈ R. (1)

If L is of moderate size, then a small perturbation dx of the argument x, will
result in a small change of function value from f(x) to f(x+ dx). On the other
hand, if L is “large”, then the effect of a small perturbation may not be small,
because then L|dx| can be large even if dx is small.

Comparing (C) and (L), we see that (L) contains the requirement that the
Lipschitz constant L is of moderate size, whereas this information is not visible
in (C). There is thus a risk that if (L) is replaced by (C), then the quantitative
aspect in (L) gets lost and thus Hadamard’s concept of wellposedness gets dis-
torted and looses meaning. This happens if (C) is allowed to accommodate a
large Lipschitz constant, which seems to be the case in [7].

It is thus necessary to make a distinction between continuous dependence
with “moderate” and “large” Lipschitz constants. In the context of the Navier-
Stokes equations and the Prize Problem, we shall see that this is not something
very subtle: A large Lipschitz constant can be of size of googol = 10100, while
one of moderate size say 1− 1000. A distinction is thus made between 10n with
n ≤ 3 and n ≥ 100, say. Illposedness will then be represented by a Lipschitz
constant of googol size, and wellposedness by a constant of moderate size, and
thus there will be a very clear distinction between an illposed and a wellposed
solution.

This connects to the meaning of “smooth solution” or “C∞-solution” in
the Prize Problem formulation. Does a “smooth function” have derivatives
of any order which are Lipschitz continuous with Lipschitz constants which
are of moderate size, or can they be large? Of course, this is a matter of
definition of “smooth” or “continuous” derivatives of any order. The Prize
Problem formulation is not clear on this point, but it appears that a definition
allowing arbitrarily large Lipschitz constants is used. Thus no distinction seems
to be made between wellposedness and illposedness. This is like making no
distinction between 1 and 10100, only between 10100 and ∞.

Defining wellposedness as existence and uniqueness coupled with continuous
data dependence, may give the impression that uniqueness in principle can be
separated from continuous dependence. Doing so would allow a mathematical
proof of existence and uniqueness without assessment of continuous data de-
pendence according (L), only according to (C) with arbitrarily large Lipschitz
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constants. We argue that this runs the risk of being meaningless from both
mathematical and physical point of view.

In the formulation of the Millenium Problem, uniqueness is not explicitly
mentioned, only existence of a smooth solution, the reason being that unique-
ness with continuous dependence according to (C) is known to be a direct con-
sequence of smoothness. This is another indication that no distinction is made
between wellposedness and illposedness.

3 Illposed into Wellposed by Regularization

Even if Hadamard defined certain problems as being illposed, as e.g. the back-
ward heat equation or many so-called inverse problems, such problems remained
as a challenge in applications, and techniques for their solution were developed
based on regularization. By regularization certain solution outputs, typically
mean-values, can become wellposed, but regularization does not remove all as-
pects of illposedness. Thus, it is still necessary to make a distinction between
wellposed and illposed solution outputs. We meet this aspect in turbulent flow
with pointvalues being illposed while mean-values may be wellposed.

4 The Incompressible Navier-Stokes Equations

The incompressible Navier-Stokes equations express conservation of momentum
and mass of an incompressible Newtonian fluid enclosed in an open domain
Ω in R

3 with boundary Γ: Find the velocity u = (u1, u2, u3) and pressure p
depending on (x, t) ∈ Ω ∪ Γ × I , such that

u̇+ (u · ∇)u+ ∇p− ν∆u = f in Ω × I,
∇ · u = 0 in Ω × I,

u = 0 on Γ × I,
u(·, 0) = u0 in Ω,

(2)

where ν > 0 is a constant viscosity, f is a given volume force, u0 is a given initial
condition, u̇ = ∂u

∂t and I = (0, T ] a given time interval. It is generally believed
that the Navier-Stokes equations is a good mathematical model for a wide range
of flows including in particular turbulent flows generically occuring when ν is
small. We focus here on this case and thus expect mathematical solutions of (2)
to generically be turbulent. To indicate the dependence on the viscosity ν, we
denote a solution of (2) by (uν , pν).

The Reynold’s number is defined b y Re = UL
ν where U is a representative

velocity and L a length scale. We assume U = L = 1 and thus Re = ν−1 is
large. In typical applications in aero and fluid dynamics, Re ≥ 106 or ν ≤ 10−6.

The assumption of constant viscosity ν is central in the Millenium Prob-
lem formulation. If the viscosity is increased by h2|∇u|, where | · | is a matrix
norm, and h > 0 is an arbitarily small parameter signifying a smallest scale,
then existence and uniqueness of a smooth solution can be proved by stan-
dard mathematical techniques, without assessment of wellposedness according
to (L). With this modification of the viscosity, we can thus for the discussion
assume the existence of smooth solutions to the Navier-Stokes equations, and
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as a main objective subject these solutions to a mathematical analysis including
in particular wellposedness according to (L).

5 Turbulent Solutions

The basic energy estimate for (2) is obtained by multiplying the momentum
equation with uν and integrating in space and time, to give in the case f = 0,

K(uν ; t) +D(uν ; t) = K0, t > 0, (3)

which expresses a balance between instantaneous kinetic energy

K(uν ; t) =
1

2

∫
Ω

|uν(t, x)|2dx, K0 =
1

2

∫
Ω

|u0|2dx,

and accumulated viscous dissipation

D(uν ; t) =

∫ t

0

∫
Ω

ν|∇uν(s, x)|2dxds,

with any loss in kinetic energy appearing as viscous dissipation, and vice versa.
Obviously K(uν ; t) ≥ 0, D(uν ; t) ≥ 0 and D(uν ; t) ≤ K0.

Turbulent solutions of (2) are characterized by substantial turbulent dissipa-
tion defined by D(uν ; t) ∼ 1 if K0 ∼ 1, which is consistent with Kolomogorov’s
conjecture that locally

|∇uν | ∼
1√
ν
, (4)

In turbulent flow, thus a significant part of the kinetic energy is transformed
into viscous dissipation, and turbulence is defined this way. Conversely, laminar
flow is defined as smooth flow with small viscous dissipation.

Massive evidence from computational and physical experiments indicate that
slightly viscous initially smooth laminar flow invariably becomes turbulent.
There is thus considerable evidence that for slightly viscous flow kinetic en-
ergy and viscous dissipation balance with K(uν ; t) ∼ D(uν ; t) ∼ 1 forcing |∇uν |
to be large in turbulent regions typically according to (4).

The appearance of turbulence in slightly viscous flow can be seen as a result
of pointwise instability or illposedness generating strong velocity gradients which
are tamed by viscous dissipation. Since the instability is so strong, substantial
viscous dissipation is required to maintain the flow, because blowup is not an
option.

6 Wellposedness

The standard method to study wellposedness of the Navier-Stokes equations
(2) is to subtract these equations for two solutions (u, p) and (ū, p̄) with cor-
responding (slightly) different data, to obtain the following linearized equation
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for the difference (v, q) ≡ (ū− u, p̄− p):

v̇ + (ū · ∇)v + (v · ∇)u+ ∇q − ν∆v = 0 in Ω × I,
∇ · v = 0 in Ω × I,

v = 0 on Γ × I,
v(·, 0) = v0 in Ω,

(5)

where v(0) = v0 is the perturbation in initial data, and for simplicity we assume
the the perturbation of the force f is zero. With u and ū given, this is a linear
convection-reaction problem for (v, q) with the reaction term given by the 3× 3
matrix ∇u. By the incompressiblity, the trace of ∇u is zero, which shows that in
general ∇u has eigenvalues with real value of both signs, of the size of |∇u| (with
| · | som matrix norm), thus with at least one exponentially unstable eigenvalue
(domainating the stablizing contribution from the Laplacian in the present case
with ν small. Thus, exponential local perturbation growth with exponent |∇u|
can be expected. Observations of turbulent flow and computations of turbulent
Navier-Stokes solutions [10] give concrete evidence of strong local perturbation
growth making pointvalues of turbulent solutions very sensitive to perturbations
and thus illposed [1].

On the other hand we present evidence in [10] that global mean-values such
as drag and lift are wellposed, which we associate with cancellation effects in the
linearized problem with a rapidly oscillating reaction coeffient ∇u for a turbulent
velocity u. Thus, there is strong evidence that pointvalues of turbulent Navier-
Stokes solutions are illposed, while mean-values can be wellposed.

7 Gronwall Stability Estimates

The standard way to assess the wellposedness of a Navier-Stokes solution (u, p)
is to estimate the solution (v, q) of the linearized equation (5) in terms of the
initial perturbation v(0), via multiplication of the momentum equation by v
and integration together with a Gronwall estimate bounding the non-linear term
pointwise by |∇u||v|2, which gives

‖v(T )‖ ≤ ‖v(0)‖ exp(

∫ T

0

‖∇u(t)‖∞dt) ≡ ‖v(0)‖L1, (6)

where ‖ · ‖ and ‖ · ‖∞ denote the L2(Ω) and L∞(Ω)-norms. Alternatively, using
a Sobolev inequality as in [9] in combination with the viscous term, one can
similarly show that

‖v(T )‖ ≤ ‖v(0)‖ exp(
C

ν3

∫ T

0

‖∇u(t)‖4dt) ≡ ‖v(0)‖L2, (7)

where C is a constant of moderate size depending on Ω. In the standard analysis,
as presented e.g in [9], estimates of the form (6) and (7) would be taken as
assessment of continuous dependence on initial data, if only the corresponding
Lipschitz constants Li <∞, without quantitative estimation of their size.

Regularity estimates bounding a Sobolev norm of ‖u(t)‖Hs in terms of
‖u0‖Hs , are derived similarly by differentiating the momentum equation, and

5



involve similar multiplicative exponentials. On the basis of such estimates it
is claimed that for any s ≥ 0, u(t) ∈ Hs if u0 ∈ Hs, if the corresponding
exponentials are not infinite.

However, if |∇u| ∼ ν−1/2 and ν ∼ 10−6 as indicated, then the exponential
factors

L1 ∼ exp(T103), L2 ∼ exp(T1030)

which are both way bigger than googol as soon as T is not small. Effectively
this indicates illposeness, rather than wellposedness, and non-regularity rather
than regularity. If an initial smooth velocity profile with slope of size 1 over
time develops into a profile with slope of size googol, then it cannot be argued
that the velocity remains smooth, unless all meaning of smoothness has been
given up.

We also note that since L2 is much larger than L1, the idea of using a Sobolev
inequality combined with the viscous term, does not seem to be constructive,
in the case of small viscosity.

We thus argue that Gronwall type estimates with crude estimates of the non-
linear term, possibly combined with Sobolev estimates, cannot be used in case
of large velocity gradients |∇u| occuring in turbulent flow. Assessing continuous
dependence with Lipschitz constants of size googol cannot be meaningful, nei-
ther from mathematics nor from applications point of view. We find support of
this standpoint in [9] stating: What would be useful in applications, and should
be sought, is a theorem that gives an estimate for the continuous dependence of
solutions on the prescribed data. However, we have also met strong resistance
from mathematicians to the idea of continuous dependence according to (L). A
clarification of this point seems to be essential for the discussion.

On the other hand, we show in [10] that because of cancellation effects in
the non-linear term, mean-value outputs such as drag and lift can be wellposed
with Lipschitz constants of moderate size.

8 EG2 Regularization

We compute in [10] solutions of the Navier-Stokes equations using a least squares
stabilized finite element method referred to as G2, presented in detail in [10].
A G2 solution (U, P ) on a mesh with local mesh size h(x, t) according to [10],
satisfies the following energy estimate (with f = 0 and g = 0):

K(U(t)) +Dh(U ; t) = K(u0), (8)

where

Dh(U ; t) =

∫ t

0

∫
Ω

(h|R(U, P )|2 + ν|∇U |2) dxdt, (9)

is an analog of D(uν ; t), where R(U, P ) is the Navier-Stokes residual. In appli-
cations to turbulent flow h >> ν and the viscous dissipation in G2 is dominated
by the least squares stabilization h|R(U, P )|2. Thus the G2 viscosity arises from
penalization of a non-zero Navier-Stokes residual R(U, P ) with the penalty di-
rectly connecting to the violation (according the theory of criminology). A
turbulent G2 solution is characterized by substantial dissipation Dh(U ; t) with
|R(U, P )| ∼ h−1/2 locally. Furthermore,

‖R(U, P )‖−1 ≤
√
h. (10)
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where ‖ · ‖−1 is the H−1(Q) norm. A turbulent G2 solution (U, P ) is thus
characterized by a residual R(U, P ) which is large in L2(Q) but small inH−1(Q).

9 Wellposedness of Mean-Value Outputs

Let M(v) =
∫

Q vψdxdt be a mean-value output of a velocity v defined by a

smooth weight-function ψ(x, t), and let (u, p) and (U, P ) be two G2-solutions
on two meshes with maximal mesh size h. Let (ϕ, θ) be the solution to the dual
linearized problem

−ϕ̇− (u · ∇)ϕ + ∇U>ϕ+ ∇θ = ψ in Ω × I,
∇ · ϕ = 0 in Ω × I,
ϕ · n = g on Γ × I,

ϕ(·, T ) = 0 in Ω,

(11)

where > denotes transpose. Multiplying the first equation by u − U and inte-
grating by parts, we obtain the following output error representation [10, 11]

M(u) −M(U) =

∫
Q

(R(u, p) −R(U, P )) · ϕdxdt (12)

from which follows the a posteriori error estimate

|M(u) −M(U)| ≤ S(‖R(u, p)‖−1 + ‖R(U, P )‖−1), (13)

where the stability factor

S = S(u, U,M) = S(u, U) = ‖ϕ‖H1(Q). (14)

In [10] we presented a variety of evidence, obtained by computational solution
of the dual problem, that for global mean-value outputs such as drag and lift,
S << 1/

√
h, while ‖R‖−1 ∼

√
h. This allows an G2 solution (U, P ) to pass a

wellposedness test of the form

S(U,U)‖R(U, P )‖−1 ≤ TOL (15)

for tolerances TOL > 0 and mesh sizes h of interest, because S(U,U) shows to
be of moderate size.

As above, a crude analytical stability analysis of the dual linearized problem
(11) using Gronwall type estimates, indicates that the dual problem is point-
wise exponentially unstable because the reaction coefficient ∇U is locally very
large, in which case effectively S(U,U) = ∞. This is consistent with massive
observation that point-values of turbulent flow are non-unique or illposed.

On the other hand we observe computationally that S is not large for mean-
value outputs of turbulent solutions. We explain in [10] this remarkable fact as
an effect of cancellation from the following two sources:

(i) rapidly oscillating reaction coefficients of turbulent solutions,

(ii) smooth data in the dual problem for mean-value outputs.

We remark that in the mathematics education reform project Body and
Soul [2, 6], we consistently use the concept of Lipschitz continuity, and we show
advantages of this approach. It is seen as a basic element of Computational
Calculus as the modern computer-age form of classical Calculus.
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10 Summary

We have pointed to the fact that in assessing continuous dependence of solutions
to the Navier-Stokes equations in the case of small viscosity, it seems to be
necessary to define continuity as Lipschitz continuity with specific consideration
of the size of the Lipschitz constant. We have shown that standard Gronwall
can give estimates of Lipschitz constants of size googol, which seem to have little
informative value.
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