COMPUTATIONAL THERMODYNAMICS

Johan Hoffman and Claes Johnson

www.bodysoulmath.org, www.fenics.org, www.icarusmath.com

PERSPECTIVE: Three Periods

- CLASSICAL 1600-1900
- MODERN 1900-2000
- POST-MODERN 2000-
- Where Do We Live?

Classical 1600-1900

- Mathematics: Calculus: Analytical Solution
- Physics: Newtonian Mechanics
- Industrial Society: Mass Production
- Leibniz Newton Euler Lagrange Laplace...
- Main Challenges:
- N-Body, Heat, Wave, ElectroMagnetism

Solar System

Local Interaction: Aristotle

Action at Distance: Newton

Modern 1900-2000

- Mathematics: Calculus: Existence of Solution
- Physics: Quantum Mechanics Relativity
- Service Society
- Hilbert Courant von Neumann Lions Lax...
- Main Challenges: Turbulence, Quantum Mech

Schrödinger Equation: Electron Density

Post-Modern 2000–

- Mathematics: COMPUTATIONAL CALCULUS
- COMPUTATIONAL SOLUTION
- Physics: Nano-Micro-Bio—Cosmology
- INFORMATION SOCIETY:
- SIMULATION—VIRTUAL REALITY

CHALLENGE: LIFE

CHALLENGE: LIFE

CHALLENGE: BIG BANG

Kurzweil: Singularity 2045

- Kurzweil: Synthesizer....
- Moore's law:
- Computational power doubles every 18 months
- DIGITAL SIMULATION
- Computational Technology Blow Up 2045
- Infinite speed of development

Kurzweil: Epochs of Evolution

Baudrillard: SIMULATION

- Copy of Reality
- Confusion Simulation—Reality
- Mask of Nonexisting Reality:
- HYPERREALITY
- HyperMarkets

HYPERREALITY (masking reality)

Deleuze: SIMULATION

- SIMULATION is REALITY
- REALITY is SIMULATION

SIMULATION

- Math: COMPUTATIONAL CALCULUS
- Physics: Basic Conservation Laws
- Chemistry-Biology—: Constitutive Laws
- COMPUTATIONAL TECHNOLOGY

TEST: THERMODYNAMICS

- DIFFICULT!!
- Why?
- TURBULENCE/SHOCKS!!

THERMODYNAMICS

Kinetic Energy → Heat Energy

CIRCULAR CYLINDER RE= 3900

CLASSICAL THERMODYNAMICS

- DIFFICULT
- 2nd LAW?
- Who can understand and teach?
- Lars Onsager (1903-1976), Nobel Prize 1968
- Ilya Prigogine Nobel Prize 1989
- STATISTICAL MECHANICS
- Microscopic Games of Roulette
- PLANCK: ACT of DESPERATION!

1st LAW: EASY

- CONSERVATION of Mass, Momentum, Energy
- EULER EQ PERFECT IDEAL GAS
- UNDERSTANDABLE.

Classical 2nd LAW

First Law of Thermodynamics -

Conservation of Energy

Second Law of Thermodynamics – It is not possible to create a cyclical heat engine that draws heat from a reservoir without wasting some heat energy.

Entropy – is a measure of the disorder in the Universe. It must always increase; local decreases make a bigger mess elsewhere.

Classical 2nd LAW

- The 2nd Law cannot be derived from purely mechanical laws. It carries the stamp of the essentially statistical nature of heat.

 (Bergman in Basic Theories of Physics 1951)
- The total energy of the universe is constant; the total entropy is continually increasing. (Rudolf Clausius 1865)
- PHYSICAL SIGNIFICANCE of ENTROPY??

HYPER-REALITY

- NON-EXIST EXACT EULER SOL!!
- Reason: TURBULENCE/SHOCKS
- WEAK SOL: NOT STRONG SOL
- APPROX TURBULENT SOL EXIST
- G2: GENERAL GALERKIN
- SIMULATION of NONEXIST EXACT SOL
- DETERMINISTIC NEW 2nd LAW
- ARROW of TIME

DETERMINISTIC 2nd LAW

- G2 satisfies 2nd LAW AUTOMATICALLY
- PENALTY for not being EXACT
- TURBULENT DISSIPATION
- Kinetic Energy → Heat Energy
- LOSSES
- Cooling of engine
- ARROW of TIME: IRREVERSIBILITY
- DETERMINISTIC: No Statistics!!

2nd LAW

- FINITE PRECISION:
- ANALOG or DIGITAL COMPUTATION
- EDGE STABILITY: Not Stable, Not Unstable

EULER EQUATIONS

- air/water
- ullet in fixed volume Ω in \mathbb{R}^3 with boundary Γ
- over a time interval I
- very small viscosity and heat conductivity
- density ρ
- momentum $m = \rho u$
- velocity $u=(u_1,u_2,u_3)$
- total energy ϵ

Conserv. Mass, Momentum, Energy

Find ρ , m and ϵ such that in $\Omega \times I$

$$\dot{\rho} + \nabla \cdot (\rho u) = 0$$

$$\dot{m} + \nabla \cdot (mu) + \nabla p = 0$$

$$\dot{\epsilon} + \nabla \cdot (\epsilon u + pu) = 0$$

$$u \cdot n = 0 \quad \text{on } \Gamma \times I$$

inital condition

- p pressure, $\dot{v} = \frac{\partial v}{\partial t}$
- SLIP BC

Constitutive Equations

- $\epsilon = k + e$ total energy
- $k = rac{
 ho |u|^2}{2}$ kinetic energy
- $e = \rho T$ internal energy
- T temperature.
- $p = (\gamma 1)\rho T = (\gamma 1)e$ perfect gas
- $\gamma > 1$ gas constant, $\gamma = 5/3$ monoatomic gas
- viscosity $\nu=0$, heat conductivity $\kappa=0$.

What is VISCOSITY?

- Nobody knows!!
- kinematic, dynamic, laminar, turbulent,
- molecular, eddy,....??
- solution dependent losses??
- experimental determination??
- ?????
- But we know it is small $\nu \le 10^{-6}$
- Enough!! Euler: $\nu = 0!!$

Einstein's DREAM

- $\gamma = 5/3$, $\nu = 0$, $\kappa = 0$.
- NO PARAMETER
- Predictive Power??
- YES!!
- The World as Analog Computation
- The World as Digital Computation

HyperReality of Euler Equations

- NON-EXISTENCE of EXACT SOL: Inf small scales
- COMPUTATIONAL TURBULENT SOL EXIST
- GIVE USEFUL INFO:
- Predict Drag and Lift of Car/Aircraft!!
- (CALCULUS USELESS)
- (COMPUTATIONAL CALCULUS USEFUL)

NS APPROX EULER

Find $\hat{u} = (\rho, m, \epsilon)$:

$$\dot{\rho} + \nabla \cdot (\rho u) = 0$$

$$R_m(\hat{u}) \equiv \dot{m} + \nabla \cdot (mu) + \nabla p = -\nu \Delta u$$

$$\dot{\epsilon} + \nabla \cdot (\epsilon u + pu) = 0$$

$$\int R_m(\hat{u})\varphi \, dxdt = \int \nu \nabla u \nabla \varphi \, dxdt = \sqrt{\nu} \|\varphi\|_{H^1}$$

- NS SOL: WEAK APPROX EULER SOL
- $||R_m(\hat{u})||_{H^{-1}} \approx \sqrt{\nu}$

NS APPROX EULER

$$\int (\dot{m} + \nabla \cdot (mu) + \nabla p) \cdot u \, dx = \int \nu |\nabla u|^2 \equiv D(u) \approx 1$$

- <u>u Hölder</u> 1/3
- D(u) = 0 if u smoother, but u is not (Onsager)
- NS NOT STRONG APPROX EULER

$$\int (\dot{m} + \nabla \cdot (mu) + \nabla p) \cdot u = \int \nu |\nabla u|^2$$

LARGE = LARGE or LARGE - LARGE =0

G2 APPROX EULER

- LEAST-SQUARES STABILIZED GALERKIN
- MESH SIZE h
- G2 SOL: WEAK APPROX EULER SOL
- $\|R(\hat{u})\|_{H^{-1}} \approx \sqrt{h}$
- $\nu \sim h$
- BOUNDARY LAYERS: $\nu \sim h^2$ (SLIP/FRICTION)

STABILIZATION $\delta \sim h$

$$(\dot{\rho} + \nabla \cdot (\rho u), v) + (\delta u \cdot \nabla \rho, u \cdot \nabla v) = 0$$

$$(\dot{m} + \nabla \cdot (mu) + \nabla p, v) + (\delta u \cdot \nabla m, u \cdot \nabla v) = 0$$

$$(\dot{\epsilon} + \nabla \cdot (\epsilon u + pu), v) + (\delta u \cdot \nabla \epsilon, u \cdot \nabla v) = 0$$

STABILITY: v = u in MOMENTUM:

$$D_h(u) = \int h\rho |u \cdot \nabla u|^2 dx dt$$
 PENALTY

$$D(u) = \int \nu |\nabla u|^2 dx$$

WEAK UNIQUENESS

- MEAN-VALUE INDEPENDENT of h or ν
- INDEPENDENCE on STABILIZATION
- FOCUS on $R(\hat{u})$ NOT $-\nu\Delta u$
- $R(\hat{u})$ CANNOT BE STRONGLY SMALL!!

Drag of Sphere: Vorticity

DRAG CRISIS $c_D = 0.5, 0.3, 0.2, 0.2$

 $\beta = 0.082, 0.032, 0.022, 0.018 \sim \nu^{0.2}$

DRAG CRISIS $c_D = 0.2, 0.2, 0.2, 0.1$

 $\beta = 0.013, 0.012, 0.011, 0.0097$

Joule-Thompson Experiment

Fig. 358 Concerning overflowing experiment of Joule (Scientific Papers).

R contains at first air compressed to 20 atm, E is initially a vacuum, D the tube

JOULE'S EXPECTATION

- T=1 in both chambers
- High Pressure/Density in 1
- Gas expands from 1 into 2.
- Kinetic energy K increases
- Temperature T drops < 1
- Finally T = ?

Density at two times

Temperature at two times

Average Density in Left/Right Chamber

Average Temp Left/Right

Average kinetic and heat energy

Average Kinetic Energy Left/Right

Irreversibility

- Kinetic energy increases under expansion.
- No tendency of gas to return to Chamber 1 (compression)
- Gas expands by itself but does not compress by itself.
- Compression produces heat: cooling: lost energy.

EG2: EULER G2

- STABILIZATION PENALTY: $D(u) = \int hR^2 dx$
- h mesh size, R(u) Residual $\approx h^{-1/2} >> 1$
- $\overline{D(u)}$ NOT SMALL ≈ 1 : TURBULENCE
- 10⁷ meshpoints for COMPLEX GEOM
- output error $\leq S \|hR\|_{L^2} < 1$, S Stability factor
- NO VISCOUS BOUNDARY LAYER
- 10¹⁸ for DNS: IMPOSSIBLE USELESS

SECRET of FLYING

LIFT DRAG vs ANGLE of ATTACK

EG2 BREAKTHROUGH

- NO VISCOUS BOUNDARY LAYER
- 10⁷ meshpoints for COMPLEX GEOM
- OUTPUT ERROR $\leq S ||hR||_{L2} < 1$,
- S Stability factor

2nd Law for EG2

MULT of MOMENTUM by u gives:

$$\dot{K} = W - D, \quad \dot{E} = -W + D$$

- D > 0 NOT SMALL = TURBULENCE
- K(t) (total) KINETIC energy at time t
- -E(t) (total) HEAT energy
- $W = \int_{\Omega} p \nabla \cdot u \, dx$ WORK rate
- W > / < 0 under EXPANSION/COMPRESSION
- W=0 incompressible flow

ESSENCE of THERMODYNAMICS

- $\dot{K} = W D, \quad \dot{E} = -W + D$
- Transfer of kinetic energy K to heat energy E
- Irreversibility Arrow of Time
- K grows by expansion ONLY
- E grows by compression
- Entropy: NO ROLE
- NOBODY knows what Entropy is (Neumann)
- G2 THERMODYN: Understandable + Useful
- COMPUTATIONAL CALCULUS!!

PENDULUM

$$\dot{v} = -u, \quad \dot{u} = v$$

$$\frac{d}{dt}(\frac{v^2}{2}) = -uv, \frac{d}{dt}(\frac{u^2}{2}) = uv,$$

$$\dot{K} = W, \quad \dot{E} = -W, \quad W = -uv$$

- K kinetic energy, E potential energy
- W work rate, D = 0: reversible
- Oscillation: kinetic—potential energy
- Thermodyn = Oscill: kinetic-heat energy

JOULE EXPERIMENT

- T=1 in both chambers
- Gas expands from 1 into 2.
- Kinetic energy K increases
- Temperature T drops < 1
- Turbulence develops in 2
- Kinetic energy transforms into heat energy
- Temperature increases
- Final state T=1 in both chambers.
- Simple Clear: Dynamics: No Mystery

SHEEP

U-GLASS

Boltzmann: Statistical Mechanics?

- Entropy/disorder increases
- More disorder in bigger volume
- Small probability that gas will return.
- Difficult Unclear: No Dynamics: Mystery

CLAY \$1 MILLION PRIZE

- EXISTENCE: APPROX TURB EULER SOL
- NON-EXISTENCE: EXACT EULER SOL
- APPROX: WEAK LERAY INCOMPRESS NS SOL OR G2
- SAME FOR COMPRESS EULER (NEW)
- WEAK UNIQUENESS: OUTPUT ERROR
 CONTROL
- ANY REGULARIZATION!!
- NONTRIVIAL SOL of PRIZE PROBLEM??

SOCIETY of FINITE PRECISION

FLAG FLAT in PERFECT SOCIETY.

TURBULENCE

- Analytical Turbulence: IMPOSSIBLE
- Computational Turbulence: POSSIBLE

Computational Calculus vs Calculus?

- Mathematicians: MINOR Modification
- BUT MAJOR CHANGE!!
- Calculus: DIFFICULT
- Computational Calculus: EASY!!
- Calculus: IMPOSSIBLE to Teach
- Computational Calculus: POSSIBLE!!

CHINA CHALLENGE

- China: 400.000 Engineers/year
- Europe: Tradition
- Math Education stable for 100 years:
- Calculus–Classical–Analytical
- REFORM: COMPUTATIONAL CALCULUS
- COMPUTATIONAL TECHNOLOGY
- Start: First Day of First Year

INVESTMENTS

- CALCULUS 1700-2000: 300 years!!
- FLUID DYNAMICS: DNS Impossible!!
- RESISTANCE to REFORM!!

BODY&SOUL: www.bodysoulmath.org

Solve

$$\dot{u} = f(u)$$

- Derivative, integral, lin alg, Gauss, Stokes
- Compute general ODE
- Compute general PDE: Poisson, heat, wave, convection, Maxwell
- Compute Euler/Navier-Stokes, Schrödinger...
- Turbulence...Computer Games...

BOOKS

- Vol 1: Derivatives and Geometry in \mathbb{R}^3 2003
- Vol 2: Integrals and Geometry in \mathbb{R}^n 2003
- Vol 3: Calculus in Several Dimensions 2003
- Vol 4: Comp Turbulent Incompress Flow 2007
- Vol 5: Computational Thermodynamics 2007
- Vol 6. The Arrow of Time 2007
- Vol 7: Many-Minds Relativity 2000
- Vol 8: Many-Minds Quantum Mechanics 2008
- Vol 9: Comp Solid Mech 2008....Vol 10...

FENICS: AUTOMATION of CC

- G2 General PDE
- FEniCS Form Compiler
- Adaptivity—Duality
- A Posteriori Error Control
- Optimization- Control
- www.fenics.org

ICARUS: www.icarusmath.com

- Web version of BODY&SOUL
- Computer Game = CC
- DEMO: Crash Course Thermodynamics

COMPUTER GAMES

- $\Box \dot{u} = f(u)$
- Interactive Model
- Input: Data
- Output: Solution
- CONTROL
- Stimulate Students: Active Learning

SUMMARY

- COMPUTATIONAL CALCULUS
- COMPLEX MODELING: TURBULENCE
- HYPERREALITY: SIMULATION
- KNOWLEDGE SOCIETY
- REFORM? WHEN?