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Abstract

We show by computational solution of the incompressible Navier-Stokes equa-
tions with friction force boundary conditions, that the classical inviscid circulation
theory by Kutta-Zhukovsky for lift and laminar viscous boundary layer theory by
Prandtl for drag, which have dominated 20th century fluid dynamics, do not cor-
rectly describe the real turbulent airflow around a sail under tacking. We show that
lift and drag essentially originate from a turbulent wake ofcounter-rotating rolls of
low-pressure streamwise vorticity generated by a certain instability mechanism of
potential flow at rear separation. The new theory opens the possibility of ab initio
computational prediction of characteristics of a sailing boat using les than a mil-
lion meshpoints without resolving thin boundary layers, instead of the imposssible
quadrillions required according to state-of-the-art for boundary layer resolution.

1 New Theory of Sailing

As a corollary of the resolution of d’Alembert’s paradox of zero lift/drag of potential
flow [32, 37] and the related mathematical theory of flight [34, 35, 36], we outline in
this article a mathematical theory for the generation of forward drive force and sideway
heeling force from the combined action of the sail and keel ofa sailing boat under
tacking against the wind, which is fundamentally differentfrom the classical theory by
Kutta-Zhukovsky for lift in inviscid flow and by Prandtl for drag in viscous flow. A
keel moving through water acts like a symmetric wing generating lift which balances
the heeling from the sail. A sail in a flow of air also acts like awing with the drive
coming from a forward component of lift and the heeling from the sideway component
of lift. But there is an important difference in the action ofa sail and a keel, with the
purpose of the sail to give forward drive at the price of heeling, and the purpose of the
keel to give lift at the price of drag. A sail requires a relatively largeangle of attack
α = 15 − 25 degrees to give sufficient drive to overcome the the total drag from the
sail, keel and hull, while for a keel the angle of attack is smaller with α = 5 − 10.

In thegliding flight of birds and airplanes with fixed wings at subsonic speeds, the
lift/drag ratio L

D with L the lift andD the drag, is typically between 10 and 20, which
means that a good glider can glide up to 20 meters upon loosing1 meter in altitude, or
that Charles Lindberg could cross the Atlantic in 1927 at a speed of 50 m/s in his 2000
kg Spirit of St Louisat an effective engine thrust of 150 kp (withLD = 2000/150 ≈ 13)
from 100 horse powers.
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In [34] we gave a mathematical explanation based on a combination of computation
and analysis of how a symmetric wing can generateL

D > 10 for 3 < α < 15, where
α is theangle of attack, and maximal lift forα = 20 with L

D ≈ 3 just before stall, as
displayed in Fig.4. With this basis we give in this note a mathematical explanation of
the combined action of the sail and keel of a sailing boat under tacking.

We shall find that the different shape of a sail on the windwardside, as compared
to a symmetric wing, allows a crucialLD > 6 − 10 also for the large angle of attack
of α ≈ 20 required by a sail. Along the lines of [34], we will give evidence that the
turbulent flow around a sail can be seen as a perturbation of zero-lift/drag potential flow
resulting from a specific three-dimensional instability mechanism at separation gener-
ating a turbulent wake of counter-rotating low-pressure rolls of streamwise vorticity,
a mechanism which changes the pressure distribution aroundthe trailing edge so as
to produce drive but also heeling. By mathematical analysisand computation we thus
identify the basic mechanism, seen as a modification of zero lift/drag potential flow,
generating both drive and heeling in the real turbulent flow around a sail.

On the other hand, we give evidence that the modification by Kutta-Zhukovsky
consisting of large scale two-dimensional circulation around the section of the sail,
which is the basic mechanism for lift according to classicaltheory representing state-
of-the-art [23, 24], is purely fictional without counterpart in real three-dimensional
turbulent flow. Altogether we thus identify the true mechanism for drive and heeling
of sail and keel, which is not captured by classical theory.
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Figure 1: Lift coefficient and circulation (left), drag coefficient (middle) and lift/drag
ratio (right) of Naca 0012 wing as functions of angle of attack by G2 computation.

The new theory is based on the incompressible Navier-Stokesequations for slightly
viscous flow with slip (small friction force) boundary conditions as a model of a turbu-
lent boundary layer coupling a solid boundary to the free stream flow through a small
skin friction force. We compute turbulent solutions of the Navier-Stokes equations us-
ing a stabilized finite element method with a posteriori error control of lift and drag,
referred to asGeneral Galerkinor G2, available in executable open source from [20].
The stabilization in G2 acts as an automatic turbulence model, and thus offers a model
for ab initio computational simulation of the turbulent flow around a wingwith the
only input being the geometry of the wing. Computations for asail are under way and
will be presented shortly.

We show in [31, 34] that lift and drag of a wing can be accurately predicted us-
ing a couple of hundred thousand mesh points, to be compared with the impossible
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Figure 2: Lift, drag and lift/drag ratioLD for sail as functions of the angle of attackα.
Notice thatL

D > 6 peaks atα = 15.

quadrillions of mesh-points required by state-of-the-artto resolve thin no-slip boundary
layers as dictated by Prandtl [48, 67]. The computations show that Kutta-Zhukovsky’s
circulation theory is unphysical and that the curse of Prandtl’s laminar boundary layer
theory can be avoided opening new possibilities of sail simulation. Our analysis in-
cludes the following key elements:

(i) Turbulent solutions of the incompressible Navier-Stokes equations with slip/small
friction force boundary conditions.

(ii) Potential flow as Navier-Stokes solution subject to small force perturbations.

(iii) Separation of potential flow only at stagnation.

(iv) Mechanism of lift/drag from instability at rear separation of retarding opposing
flows generating surface vorticity enhanced by vortex stretching in accellerating
flow after separation into counter-rotating low-pressure rolls of streamwise vor-
ticity, which change the pressure distribution of potential flow into lifting flow
with drag.

By Newton’s 3rd law, lift by a wing must be accompanied bydownwashwith the wing
redirecting air downwards. The enigma of flight is the mechanism of a wing generating
substantial downwash, which is also the enigma of sailing against the wind with both
sail and keel acting like wings creating substantial lift. To say that a sail redirects air
and thereby generates lift with drive, is tautological withlittle informative content. We
shall see that the action of a sail redirecting air is a form ofmiracle, and not a triviality,
which results from a specific interplay between the sail and the keel with the lift/drag
ratio L

D playing acrucial role, but a miracle which can be deconstructed, explained and
understodd.

Before presenting details of (i)-(iv) uncovering the miracle by the new theory, we
recall the classical circulation theory because it is useful to understand what is wrong in
order to properly understand what is correct. The new theoryin a nutshell is illustrated
in Fig.3, also presented as a Knol [36], with support from computation in Fig.4. The
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new theory also opens to accurate simulation os sailing in open winds from the side or
rear in which case the air flow around the sail is heavily turbulent. We conclude with
an account of G2 for the Navier-Stokes equations.

Figure 3: Sail action in a nutshell: Windward high pressure (Hi) and leeward low pres-
sure (Lo) from counter-rotating low-pressure rolls of streamwise vortices at leeward
separation (sideview left), and resulting lift L and drag D (topview middle) with angle
of attackaoa indicated.

Figure 4: Computed Navier-Stokes solutions around a three-dimensional long
Naca0012 wing showing sideview of speed and pressure, and topview of streamwise
vorticity for α = 14. Notice in particular the rolls of streamwise vorticity at separation.

2 Lack of Theory of Sailing

Classical mathematical mechanics could not explain the lift of a wing, nor the drag.
Newton computed by elementary mechanics the lift of a tiltedflat plate redirecting a
horisontal stream of fluid particles, but obtained a disappointingly small value propor-
tional to the square of the angle of attack. D’Alembert followed up in 1752 by for-
mulating his paradox about zero lift/drag ofinviscid incompressible irrotational steady
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flow referred to aspotential flow, indicating that flight is mathematically impossible,
or at least inexplicable. To explain flight and sailing d’Alembert’s paradox had to be
resolved, and this has only been done recently, after 250 years.

It is natural to expect that today gliding flight is well understood, but surprisingly
one finds that the authority NASA [49] first dismisses three popular theories for lift as
being incorrect (longer-path, skipping-stone,Venturi/Bernouilli), then vaguely suggests
a trivial flow-by-turning theory and ends with the empty seemingly out of reach:“To
truly understand the details of the generation of lift, one has to have a good working
knowledge of the Euler Equations”. The Plane&Pilot Magazine [52] has the same
message. In short, state-of-the-art literature [4, 25, 64,66] presents a two-dimensional
theory from 1903 for lift without drag at small angles of attack in inviscid potential
flow by the mathematicians Kutta and Zhukovsky, called the father of Russian aviation,
and another theory for drag without lift in viscous laminar flow from 1904 by the
physicist Prandtl, called the father of modern fluid dynamics, but no theory for lift
and drag inthree-dimensional slightly viscous turbulent incompressible flow such as
the flow of air around a wing of a jumbojet at the critical phaseof take-off at large
angle of attack (12 degrees) and subsonic speed (270 km/hour), as evidenced in e.g.
[1, 7, 8, 10, 12, 14, 40, 43, 47].

The aero/hydromechanics of sailing is surrounded by even more confusion and
desinformation:

• The leeward of the sail is changing the direction of the air passing it. This is
due too the Coanda effect: Air tends to follow a curved surface as long as the
curvature is not too large [39].

• NASA has an excellent discussion of the various contributions to lift by an air-
plane wing. It disputes the conventional simple version of wing theory and em-
phasizes that lift is produced by the turning of the fluid flow [3].

• When the wind flows over one side it fills the sail while the air flowing on the
other side is moving faster and cannot push as hard and thus the sail recieves a
force that is perpendicular to the direction of the wind [50].

• The wind moving around the leeward side of the sail is forced to take the longer
path [3].

• The sails propel the boat by redirecting the wind coming in from the side towards
the rear [59].

• There are all kinds of controversies about sails [51].

• The wind passes around the sail and because the distance is greater on the lee-
ward side of the sail, the wind must travel faster [56].

• The air being also deflected by the upper side of the wing, by the Coanda effect,
is harder to understand [58].

• The air traveling over the leeward surface of the cambered sail creates the second
force. It has to travel a longer way to reach the end of the sail(the leech), and as
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a consequence goes faster. This is causing a pressure differential in accordance
with Bernoullis principle [65].

• The fact that, after all these years, there is still any question about how sails work
suggests that somewhere we’ve started with some wrong assumptions [61].

• Air will follow the curved shape of an airfoil due to Coanda effect. Why is this
important? As long as airflow is laminar or in contact with theairfoil surface,
it will continue to be turned in the same direction of the airfoil’s shape. This
ensures the change in wind direction needed to drive the boatforward [39].

• It is difficult to explain the generation of lift for laymen [23].

• The fundamental problem as to how a surface such as a sail generates lift is rather
difficult to understand for the average non-technical sailor. The fact that it is the
viscosity of air which make lift possible is even more difficult to grasp...Although
the circulation about the airfoil as generated in theoretical aerodynamics and as
simulated by potential flow programs seems like just a mathematical trick, this
is not the case... [24].

• Aerodynamics is a difficult subject, and all attempts to simplify it for the average
person leads to wrong interpretations. The facts are that lift comes about because
air has viscosity, which leads to the starting vortex. This is followed by the for-
mation of a circulation field about the airfoil necessary to meet one of Helmoltz’s
theorems of vortex motion. Then the Kutta condition is satisfied at the trailing
edge, and bingo – we have lift. These principles, together with knowledge of
boundary layer theory, lead to a correct understanding of the interaction between
the jib and the mainsail. (Arvel Gentry)

• A good introduction to sail theory can be obtained in the workof Arvel Gentry
[22].

We understand that the (most popular) longer-path theory has been dismissed by
NASA, and lack convinced supporters, but NASA’s flow-by-turning is trivial as a the-
ory. The Kutta-Zhukovsky circulation theory ranks highestin scientific prestige (and
incomprehensibility), and is forcefully advocated by Arvel Gentry with support from a
2d bathtub experiment supposedly showing the existence of aso-called starting vortex
required to balance the claimed circulation around an airfoil. However, [34, 35] shows
that circulation theory is a non-physical fictional 2d theory, and that lift and drag in 3d
reality results from a 3d instability mechanism at separation, generating low-pressure
turbulent streamwise vorticity as indicated in Fig.3, without both starting vortex and
circulation around the wing. The bath tub experiment thus does not describe the action
of a real wing nor a sail. In fact, it is impossible to fly or sailin 2d.

Classical theory is split into inviscid circulation theoryfor lift and viscous boundary
layer theory for drag. The new theory captures both lift and drag and the completely
crucial lift/drag ratio, which is beyond classical theory.The new theory [34, 35] ex-
plains the miracle of sailing against the wind, and it is a miracle, while classical theory
does not explain anything correctly.
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3 Kutta-Zhukowsky and Prandtl

It took 150 years before someone dared to challenge the pessimistic mathematical pre-
dictions by Newton and d’Alembert, expressed by Lord Kelvinas: “I can state flatly
that heavier than air flying machines are impossible”. In the 1890s the German en-
gineer Otto Lilienthal made careful studies of the gliding flight of birds, and designed
wings allowing him to make 2000 successful heavier-than-air gliding flights starting
from a little artificial hill, before in 1896 he broke his neckfalling to the ground af-
ter having stalled at 15 meters altitude. The first sustainedpowered heavier-than-air
flights were performed by the two brothers Orwille and WilburWright, who on the
windy dunes of Kill Devils Hills at Kitty Hawk, North Carolina, on December 17 in
1903, managed to get their 400 kg airplaneFlyer off ground into sustained flight using
a 12 horse power engine.

The undeniable presence of substantial lift now required anexplantion and to this
end Kutta and Zhukovsky augumented inviscid zero-lift potential flow by a large scale
two-dimensionalcirculation or rotation of air around the wing section causing the ve-
locity to increase above and decrease below the wing, thus generating lift proportional
to the angle of attack [66, 64], orders of magnitude larger than Newton’s prediction,
but the drag was still zero. Kutta-Zhukovsky thus showed that if there is circulation
then there is lift, which by a scientific community in desperate search for a theory of
lift was interpreted as an equivalence:“If the airfoil experiences lift, a circulation must
exist”, [64, 41]. State-of-the-art is described in [5] as:“The circulation theory of lift is
still alive... still evolving today, 90 years after its introduction”.

The modified potential solution is illustrated in Fig.5 indicating zones of low (L)
and high (H) pressure, with the switch between high and low pressure at the trailing
edge creating lift as an effect of the circulation. Kutta-Zhukovsky suggested that the
circulation around the wing section was balanced by a counter-rotating so-calledstart-
ing vortexbehind the wing shown in Fig.5 (right) giving zero total circulation according
to Kelvin’s theorem. Kutta-Zhukovsky’s formula for lift agreed reasonably well with
observations for long wings and small angles of attack, but not for short wings and large
angles of attack. We will below subject Kutta-Zhukovsky’s theory of lift to a reality
test, and we will find that it in fact is pure fiction, as much fiction as zero-lift potential
flow; the true origin of lift is not large scale two-dimensional circulation around the
wing section.

In 1904 the young physicist Ludwig Prandtl took up the challenge of resolving
d’Alembert’s paradox and explaining the origin of drag in the 8 page sketchy article
Motion of Fluids with Very Little Viscosity[53] described in [55] as“one of the most
important fluid-dynamics papers ever written”and in [25] as“the paper will certainly
prove to be one of the most extraordinary papers of this century, and probably of many
centuries”. Prandtl suggested that the substantial drag (and lift) of a body moving
through aslightly viscousfluid like air, possibly could arise from the presence of a
thin no-slip laminar viscous boundary layer, where the tangential fluid velocity rapidly
changes from zero on the boundary to the free-stream value. Prandtl argued that a
flow canseparatefrom the boundary due to anadverse pressure gradientretarding the
flow in a laminar boundary layer to form alow-pressure wakebehind the body creating
drag. This is the official resolution of d’Alembert’s paradox [54, 60, 66, 16], although
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Figure 5: Potential flow (left) past a wing section with zero lift/drag modified by cir-
culation around the section (middle) to give Kutta-Zhukovsky flow (right) leaving the
trailing edge smoothly with downwash/lift and a starting vortex behind, but without
viscous drag.

seriously questioned in e.g. [11, 13, 44]. The commonly accepted view on Prandtl’s
role is expressed as follows:

• Prandtl’s contribution was to realize that a proper understanding of the bound-
ary layer allows us to understand how a (vanishingly) small viscosity and a
(vanishingly) small viscous region can modify the global flow features. Thus,
with one insight Prandtl resolved d’Alembert’s paradox andprovided fluid mech-
anists with the physics of both lift and form drag[55].

• The general view in the fluid mechanics community is that, from a practical point
of view, the paradox is solved along the lines suggested by Prandtl. A formal
mathematical proof is missing, and difficult to provide, as in so many other fluid-
flow problems modelled through the NavierStokes equations...The viscous effects
in the thin boundary layers remain also at very high Reynoldsnumbers they
result in friction drag for streamlined objects, and for bluff bodies the additional
result is flow separation and a low-pressure wake behind the object, leading to
form drag[16].

The suggestion is that substantial drag results from the presence of a thin boundary
layer even for arbitarily small viscosity, that is a substantial effect from a vanishingly
small cause [63]:

• ...great efforts have been made during the last hundred or soyears to propose
alternate theories and to explain how a vanishingly small frictional force in the
fluid can nevertheless have a significant effect on the flow properties.

But to claim that something substantial can result from virtually nothing, is very cum-
bersome from a scientific point of view, since it requires access to an infinitely precise
theory for justification, which is not available. Moreover,d’Alemberts paradox con-
cerns a contradiction between mathematical prediction andpractical observation and
can only be solved by understanding the mathematics leadingto an absurd mathemat-
ical prediction. It is precisely a“mathematical proof” which is needed, which the
fluid mechanics community apparently acknowledges“is missing”. The trouble is that
mathematics predicts zero drag, not that observation showssubstantial drag.

8



If it is impossible to justify Prandtl’s theory, it can well be possible to disprove it:
It suffices to remove the infinitely small cause (the boundarylayer) and still observe
the effect (substantial drag). This is what we did in our resolution of d’Alembert’s
paradox [32], but we did not remove the viscosity in the interior of the flow, which
creates turbulent dissipation manifested in drag.

In any case, Prandtl’s resolution of d’Alembert’s paradox took fluid dynamics out of
its crisis in the early 20th century, but led computational aerodynamics into its present
paralysis described by Moin and Kim [48] as follows:

• Consider a transport airplane with a 50-meter-long fuselage and wings with a
chord length (the distance from the leading to the trailing edge) of about five
meters. If the craft is cruising at 250 meters per second at analtitude of 10,000
meters, about1016 grid points are required to simulate the turbulence near the
surface with reasonable detail.

But computation with1016 grid points is beyond the capacity of any thinkable com-
puter, and the only way out is believed to be to designturbulence modelsfor simula-
tion with millions of mesh points instead of quadrillons, but this is an open problem
since 100 years. State-of-the-art is decribed in the sequence ofAIAA Drag Prediction
Work Shops[17], with however a disappointingly large spread of the 15 participating
groups/codes reported in the blind tests of 2006. In addition, the focus is on the simpler
problem of transonic compressible flow at small angles of attack (2 degrees) of rele-
vance for crusing at high speed, leaving out the more demanding problem of subsonic
incompressibleflow at low speed and large angles of attack at take-off and landing,
because a work shop on this topic would not draw any participants. Similar difficulties
of computing lift is reported in [41, 42]:

• Circulation control applications are difficult to compute reliably using state-of-
the-art CFD methods as demonstrated by the inconsistenciesin CFD prediction
capability described in the 2004 NASA/ONR Circulation Control workshop.

4 Shortcut to Lift an Drag of a Wing

The new resolution of d’Alembert’s paradox [31, 32, 30] identifies the basic mechanism
of instability of potential flow described above, which we will find is also an essential
mechanism for generating lift of a wing by depleting the highpressure before rear
separation of potential flow and thereby allowing downwash.This mechanism is illus-
trated in Fig.6 showing a perturbation (middle) consistingof counter-rotating rolls of
low-pressure streamwise vorticity developing at the separation of potential flow (left),
which changes potential flow into turbulent flow (right) witha different pressure dis-
tribution at the trailing edge generating lift. The rolls ofcounter-rotating streamwise
vorticity appear along the entire trailing edge and have a different origin than thewing
tip vortex[19], which adds drag but not lift, which is of minor importance for a long
wing. We shall find that the diameter of the rolls scale with the thickness of the wing
(and not the viscosity), and the intensity with the angle of attack.

We see that the difference between Kutta-Zhukovsky and the new explantion is the
nature of the modification/perturbationof zero-lift potential flow: Kutta and Zhukovsky
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Figure 6: Stable physical 3d turbulent flow (right) with lift/drag, generated from po-
tential flow (left) by a perturbation at separation consisting of counter-rotating rolls of
streamwise vorticity (middle), which changes the pressureat the trailing edge generat-
ing downwash/lift and drag.

claim that it consists of a global large scale two-dimensional circulation around the
wing section, that istransversal vorticityorthogonal to the wing section combined with
a transversal starting vortex, while we find that it is a three-dimensional local turbulent
phenomenon of counter-rotating rolls of streamwise vorticity at separation, without
starting vortex. Kutta-Zhukovsky thus claim that lift comes from global transversal
vorticity without drag, while we give evidence that insteadlift is generated by local
turbulent streamwise vorticity with drag.

We observe that the real turbulent flow shares the crucial property of potential flow
of adhering to the upper surface beyond the crest and thus creating downwash, because
the real flow is similar to potential flow before separation, and because potential flow
can only separate at a point of stagnation with opposing flowsmeeting in the rear, as
we will prove below.

On the other hand, a flow with a viscous no-slip boundary layerwill (correctly ac-
cording to Prandtl) separate on the crest, because in a viscous boundary layer the pres-
sure gradient normal to the boundary vanishes and thus cannot contribute the normal
acceleration required to keep fluid particles following thecurvature of the boundary
after the crest, as shown in [33]. It is thus the slip boundarycondition modeling a
turbulent boundary layer in slightly viscous flow, which forces the flow to suck to the
upper surface and create downwash. This is a feature of incompressible irrotational
slighty viscous flow with slip, thus in particular of potential flow, and is not an effect
of viscosity or molecular attractive forces as often suggested under the name of the
Coanda effect. This explains why gliding flight is possible for airplanes and larger
birds, because the boundary layer is turbulent and acts likeslip preventing early sep-
aration, but not for insects because the boundary layer is laminar and acts like no-slip
allowing early separation.

4.1 Mechanisms of Lift and Drag

We have given evidence that the basic mechanism for the generation of lift of a wing
consists of counter-rotating rolls of low-pressure streamwise vorticity generated by
instability at separation, which reduce the high pressure on top of the wing before the
trailing edge of potential flow and thus allow downwash, but which also generate drag.
At a closer examination of the quantitative distributions of lift and drag forces around
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the wing, we discover large lift at the expense of small drag resulting from leading edge
suction, which answers the opening question of of how a wing can generate a lift/drag
ratio larger than 10.

The secret of flight is in concise form uncovered in Fig. 1 showing G2 computed
lift and and drag coefficients of a Naca 0012 3d wing as functions of the angle of attack
α, as well as the circulation around the wing. We see that the lift and drag increase
roughly linearly up to 15 degrees, with aLD > 10 for α > 3 degrees, and that lift peaks
at stall atα = 20 after a quick increase of drag and flow separation at the leading edge.

We see that the circulation remains small forα less than 10 degrees without con-
nection to lift, and conclude that the theory of lift of by Kutta-Zhukovsky is fictional
without physical correspondence: There is lift but no circulation. Lift does not origi-
nate from circulation.

Inspecting Figs. 7-9 showing velocity, pressure, vorticity, and lift and drag distri-
butions over the upper and lower surfaces of the wing (allowing also pitching moment
to be computed), we can now, with experience from the above preparatory analysis,
identify the basic mechanisms for the generation of lift anddrag in incompressible
high Reynolds number flow around a wing at different angles ofattackα: We find two
regimes before stall atα = 20 with different, more or less linear growth inα of both
lift and drag, a main phase0 ≤ α < 15 with the slope of the lift (coefficient) curve
equal to0.09 and of the drag curve equal to0.08 with L/D ≈ 14, and a final phase
15 ≤ α < 20 with increased slope of both lift and drag. The main phase canbe divided
into an initial phase0 ≤ α < 4 − 6 and an intermediate phase4 − 6 ≤ α < 15, with
somewhat smaller slope of drag in the initial phase. We now present details of this
general picture.

4.2 Phase 1: 0 ≤ α ≤ 4 − 6

At zero angle of attack with zero lift there is high pressure at the leading edge and
equal low pressures on the upper and lower crests of the wing because the flow is essen-
tially potential and thus satisfies Bernouilli’s law of high/low pressure where velocity
is low/high. The drag is about 0.01 and results from rolls of low-pressure streamwise
vorticity attaching to the trailing edge. Asα increases the low pressure below gets
depleted as the incoming flow becomes parallel to the lower surface at the trailing edge
for α = 6, while the low pressure above intenisfies and moves towards the leading
edge. The streamwise vortices at the trailing edge essentially stay constant in strength
but gradually shift attachement towards the upper surface.The high pressure at the
leading edge moves somewhat down, but contributes little tolift. Drag increases only
slowly because of negative drag at the leading edge.

4.3 Phase 2: 4 − 6 ≤ α ≤ 15

The low pressure on top of the leading edge intensifies to create a normal gradient pre-
venting separation, and thus creates lift by suction peaking on top of the leading edge.
The slip boundary condition prevents separation and downwash is created with the help
of the low-pressure wake of streamwise vorticity at rear separation. The high pressure
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at the leading edge moves further down and the pressure belowincreases slowly, con-
tributing to the main lift coming from suction above. The netdrag from the upper
surface is close to zero because of the negative drag at the leading edge, known as
leading edge suction, while the drag from the lower surface increases (linearly)with
the angle of the incoming flow, with somewhat increased but still small drag slope.
This explains why the line to a flying kite can be almost vertical even in strong wind,
and that a thick wing can have less drag than a thin.

4.4 Phase 3: 15 ≤ α ≤ 20

This is the phase creating maximal lift just before stall in which the wing partly acts as a
bluff body with a turbulent low-pressure wake attaching at the rear upper surface, which
contributes extra drag and lift, doubling the slope of the lift curve to give maximal lift
≈ 2.5 atα = 20 with rapid loss of lift after stall.

4.5 Lift and Drag Distribution Curves

The distributions of lift and drag forces over the wing resulting from projecting the
pressure acting perpendicular to the wing surface onto relevant directions, are plotted
in Fig.9. The total lift and drag results from integrating these distributions around the
wing. In potential flow computations (with circulation according to Kutta-Zhukovsky),
only the pressure distribution orcp-distribution is considered to carry releveant infor-
mation, because a potential solution by construction has zero drag. In the perspective
of Kutta-Zhukovsky, it is thus remarkable that the projected cp-curves carry correct
information for both lift and drag.

The lift generation in Phase 1 and 3 can rather easily be envisioned, while both the
lift and drag in Phase 2 results from a (fortunate) intricateinterplay of stability and
instability of potential flow: The main lift comes from uppersurface suction arising
from a turbulent boundary layer with small skin friction combined with rear separation
instability generating low-pressure streamwise vorticity, while the drag is kept small
by negative drag from the leading edge. We conclude that preventing transition to
turbulence at the leading edge can lead to both decreased lift and increased drag.

4.6 Comparing Computation with Experiment

Comparing G2 computations with about 150 000 mesh points with experiments [26,
46], we find good agreement with the main difference that the boost of the lift co-
efficient in phase 3 is lacking in experiments. This is probably an effect of smaller
Reynolds numbers in experiments, with a separation bubble forming on the leading
edge reducing lift at high angles of attack. The oil-film pictures in [26] show surface
vorticity generating streamwise vorticity at separation as observed also in [30, 33].

A jumbojet can only be tested in a wind tunnel as a smaller scale model, and upscal-
ing test results is cumbersome because boundary layers do not scale. This means that
computations can be closer to reality than wind tunnel experiments. Of particular im-
portance is the maximal lift coefficient, which cannot be predicted by Kutta-Zhukovsky
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Figure 7: G2 computation of velocity magnitude (upper), pressure (middle), and non-
transversal vorticity (lower), for angles of attack 2, 4, and 8◦ (from left to right). Notice
in particular the rolls of streamwise vorticity at separation.
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Figure 8: G2 computation of velocity magnitude (upper), pressure (middle), and non-
transversal vorticity (lower), for angles of attack 10, 16,and 20◦ (from left to right).
Notice in particular the rolls of streamwise vorticity at separation.
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Figure 9: G2 computation of normalized local lift force (upper) and drag force (lower)
contributions acting along the lower and upper parts of the wing, for angles of attack 0,
2 ,4 ,10 and 18◦, each curve translated 0.2 to the right and 1.0 up, with the zero force
level indicated for each curve.
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nor in model experiments, which for Boeing 737 is reported tobe 2.73 in landing in
correspondence with the computation. In take-off the maximal lift is reported to be
1.75, reflected by the rapidly increasing drag beyondα = 16 in computation.

5 Shortcut to New Theory of Sailing

We now explain how the sail and keel of a sailing boat togetherpull the boat forward
in tacking at 35-45 degrees against the wind.

5.1 Key Fact 1: Sail and keel act like wings

Both the sail and keel act like wings generating lift and drag, but the action, geometrical
shape and angle of attackaoa of the sail and the keel are somewhat different. The
effectiveaoa of a sail in tacking is 15-25 degrees and that of a keel 5-10 degrees. The
aoa of the keel is also referred to as theleeway, the difference between the direction
the boat is pointed and the actual direction of travel.

5.2 Key Fact 2: Sail gives forward pull/drive at the price of heeling

The boat is pulled forward by the sail, assumingaoa = 15 with the boom inclined5
degrees to the direction of the boat, by the forward drive componentsin(20)L ≈ 0.3L
of the lift L counted perpendicular to the effective wind direction, which is the usual
for a wing. There is also a side (heeling) forcecos(20)L from the sail, which tilts the
boat and needs to be balanced by lift from the keel. A sail has less lift than a symmetric
wing because the strong concentration of lift at the upper rounded leading edge of the
wing, is missing for the sail.

The action of a sail is thus different from that of a wing: A sail gives forward pull
at the price of heeling (lift), while a wing gives lift at the price of drag (backward pull).

5.3 Key Fact 3: L

D
of sail > 6 − 10

The drive from liftL is reduced by a component of the dragD counted parallel to
the effective wind direction, with similar contributions from the leeward and windward
side of the sail because the shape is the same. This makes an important difference with
a symmetric wing for which the backward pull/drag is larger from the windward side
because of the high pressure at the lower leading edge of the wing, as displayed in
Fig.9.

The net result is a lift/drag ratioLD > 6−10 ataoa = 15−20 for a sail, as indicated
by Fig.2 showing thatLD for a sail peaks ataoa = 15, which reduces the drive to0.2L,
Compare with Fig.1 showing thatLD ≈ 3 for a wing ataoa = 20, which would reduce
the forward pull/drive to0.1L, which is too small according to:
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5.4 Key Fact 4: Keel balances heeling at the price of drag

The heeling force from the sail is balanced by lift from the the keel in the opposite
direction. Assuming the lift/drag ratio for the keel is 10 ataoa = 5 − 10, the forward
drive is then reduced to(0.2−0.1)L = 0.1L, which is used to overcome the drag from
the hull minus the keel.

Note that with anL
D < 3 for the sail, the net forward drive would disappear. Replac-

ing the sail by a wing thus does not seem to be a good idea, because anaoa > 15 is re-
quired to get sufficient drive. But a keel like a wing works fine, because anaoa = 5−10
is sufficient.

5.5 Key Fact 5: Sail area vs keel area

Assuming that the effective speed relative the air of a sail is 10 m/s ataoa = 15 and
the speed of the keel/boat through the water is 3 m/s ataoa = 5, we find (using that the
density of water is about 800 times that of air) that the sail area can be up to25 times
the keel area. In practice, the ratio is typically7 − 9 with a traditional full-keel and
10-15 with a modern fin-keel.

5.6 Summary

The shape of a sail is different from that of a wing which givessmaller drag from the
windward side and thus improved drive, while the keel has theshape of a symmetric
wing and acts like a wing. A sail withaoa = 15 − 20 gives strong drive at strong
heeling with contribution also from the rear part of the sail, like for a wing just before
stall, while the drag is smaller than for a wing.

The L
D curve for a sail is different from that of wing: ataoa = 15−20 L

D > 6−10

for a sail, while L
D < 3 − 4 for a wing. On the other hand, a keel withaoa = 5 − 10

has L
D > 6 − 10. A sail ataoa = 15 − 20 thus gives strong drive at strong heeling

and small drag, which together with a keel ataoa = 5 − 10 with strong lift and small
drag, makes an efficient combination. This explains why modern designs combine a
deep narrow keel acting efficiently for smallaoa, with a broader sail acting efficiently
at a largeraoa.

Using a symmetric wing as a sail would be inefficient, since the lift/drag ratio is
poor at maximal lift ataoa = 15 − 20. On the other hand, using a sail as a wing can
only be efficient at a large angle of attack, and thus is not suitable for cruising at higher
speed and smaller aoa.

6 Navier-Stokes with Force Boundary Conditions

The Navier-Stokes equations for an incompressible fluid of unit density withsmall
viscosityν > 0 andsmall skin frictionβ ≥ 0 filling a volumeΩ in R

3 surrounding a
solid body with boundaryΓ over a time intervalI = [0, T ], read as follows: Find the

17



velocityu = (u1, u2, u3) and pressurep depending on(x, t) ∈ Ω ∪ Γ × I, such that

u̇+ (u · ∇)u+ ∇p−∇ · σ = f in Ω × I,
∇ · u = 0 in Ω × I,
un = g onΓ × I,
σs = βus onΓ × I,

u(·, 0) = u0 in Ω,

(1)

whereun is the fluid velocity normal toΓ, us is the tangential velocity,σ = 2νǫ(u) is
the viscous (shear) stress withǫ(u) the usual velocity strain,σs is the tangential stress,
f is a given volume force,g is a given inflow/outflow velocity withg = 0 on a non-
penetrable boundary, andu0 is a given initial condition. We notice the skin friction
boundary condition coupling the tangential stressσs to the tangential velocityus with
the friction coefficientβ with β = 0 for slip, andβ >> 1 for no-slip. We note thatβ is
related to the standardskin friction coeffieientcf = 2τ

U2 with τ the tangential stress per
unit area, by the relationβ = U

2 cf . In particular,β tends to zero withcf (if U stays
bounded).

Concerning the size of the viscosity, we recall that for air thekinematic viscosity
(normalized to unit density) is about10−5 (and for water about10−6). Normalizing
also with respect to velocity and length scale, the viscosity is represented by the inverse
of the Reynolds number, which in subsonic flight ranges from105 for medium-size
birds over107 for a smaller airplane up to109 for a jumbojet, for a sail and keel106−7.
We are thus considering normalized viscosities in the rangefrom 10−5 to 10−9 to be
compared with density, velocity and length scale of unit size. We understand that10−5

is smallcompared to 1, and that10−9 compared to 1 isvery small.
Massive evidence indicates that the incompressible Navier-Stokes equations consti-

tute an accurate mathematical model of slightly viscous flowin subsonic aerodynamics.
We will show that turbulent solutions can be computed on a laptop for simple geome-
tries and on a cluster for complex geometries, with correct mean-value outputs such
as lift, drag and twisting moment of a wing or entire airplane, without resolving thin
boundary layers and without resort to turbulence models. This is made possible by
using skin friction force boundary conditions for tangential stresses instead of no-slip
boundary conditions for tangential velocities, and because the skin friction is small
from a turbulent boundary layer of a fluid with very small viscosity, and because it is
not necessary to resolve the turbulent features in the interior of the flow to physical
scales.

Prandtl insisted on using a no-slip velocity boundary condition with us = 0 on Γ,
because his resolution of d’Alembert’s paradox hinged on discriminating potential flow
by this condition. On the oher hand, with the new resolution of d’Alembert’s paradox,
relying instead on instability of potential flow, we are freeto choose instead a friction
force boundary condition, if data is available. Now, experiments show [60, 15] that
the skin friction coefficient decreases with increasing Reynolds numberRe ascf ≈
0.07 ∼ Re−0.2, so thatcf ≈ 0.0005 for Re = 1010 andcf ≈ 0.007 for Re = 105.
Accordingly we model a turbulent boundary layer by frictionboundary condition with
a friction parameterβ ≈ 0.03URe−0.2. For very large Reynolds numbers, we can
effectively useβ = 0 in G2 computation corresponding to slip boundary conditions.
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We have initiated benchmark computations for tabulating values ofβ (or σs) for
different values ofRe by solving the Navier-Stokes equations with no-slip for simple
geometries such as a flat plate, and more generally for different values ofν, U and
length scale, since the dependence seems to be more complex than simply through the
Reynolds number. Early results are reported in [31] withσs ≈ 0.005 for ν ≈ 10−4 and
U = 1, with corresponding velocity strain in the boundary layer104σs ≈ 50 indicating
that the smallest radius of curvature without separation inthis case could be expected
to be about0.02 [33].

7 Potential Flow

Potential flow(u, p) with velocity u = ∇ϕ, whereϕ is harmonic inΩ and satisfies
a homogeneous Neumann condition onΓ and suitable conditions at infinity, can be
seen as a solution of the Navier-Stokes equations for slightly viscous flow with slip
boundary condition, subject to

• perturbation of the volume forcef = 0 in the form ofσ = ∇ · (2νǫ(u)),

• perturbation of zero friction in the form ofσs = 2νǫ(u)s,

with both perturbations being small becauseν is small and a potential flow velocityu
is smooth. Potential flow can thus be seen as a solution of the Navier-Stokes equations
with small force perturbations tending to zero with the viscosity. We can thus express
d’Alembert’s paradox as the zero lift/drag of a Navier-Stokes solution in the form of a
potential solution, and resolve the paradox by realizing that potential flow is unstable
and thus cannot be observed as a physical flow.

Potential flow is like an inverted pendulum, which cannot be observed in reality be-
cause it is unstable and under infinitesimal perturbations turns into a swinging motion.
A stationary inverted pendulum is a fictious mathematical solution without physical
correspondence because it is unstable. You can only observephenomena which in
some sense are stable, and an inverted pendelum or potentialflow is not stable in any
sense.

Potential flow has the following crucial property which partly will be inherited by
real turbulent flow, and which explains why a flow over a wing subject to small skin
friction can avoid separating at the crest and thus generatedownwash, unlike viscous
flow with no-slip, which separates at the crest without downwash. We will conclude
that gliding flight is possible only in slightly viscous incompressible flow. For simplic-
ity we consider two-dimensional potential flow around a cylindrical body such as long
wing (or cylinder).

Theorem. Letϕ be harmonic in the domainΩ in the plane and satisfy a homogeneous
Neumann condition on the smooth boundaryΓ of Ω. Then the streamlines of the cor-
responding velocityu = ∇ϕ can only separate fromΓ at a point of stagnation with
u = ∇ϕ = 0.
Proof. Letψ be a harmonic conjugate toϕ with the pair(ϕ, ψ) satisfying the Cauchy-
Riemann equations (locally) inΩ. Then the level lines ofψ are the streamlines ofϕ
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and vice versa. This means that as long as∇ϕ 6= 0, the boundary curveΓ will be a
streamline ofu and thus fluid particles cannot separate fromΓ in bounded time.

8 Exponential Instability

Subtracting the NS equations withβ = 0 for two solutions(u, p, σ) and(ū, p̄, σ̄) with
corresponding (slightly) different data, we obtain the following linearized equation for
the difference(v, q, τ) ≡ (u− ū, p− p̄, σ − σ̄) with :

v̇ + (u · ∇)v + (v · ∇)ū + ∇q −∇ · τ = f − f̄ in Ω × I,
∇ · v = 0 in Ω × I,
v · n = g − ḡ onΓ × I,
τs = 0 onΓ × I,

v(·, 0) = u0 − ū0 in Ω,

(2)

Formally, withu andū given, this is a linear convection-reaction-diffusion problem for
(v, q, τ) with the reaction term given by the3 × 3 matrix∇ū being the main term of
concern for stability. By the incompressiblity, the trace of ∇ū is zero, which shows
that in general∇ū has eigenvalues with real value of both signs, of the size of|∇ū|
(with | · | som matrix norm), thus with at least one exponentially unstable eigenvalue.

Accordingly, we expect local exponential perturbation growth of sizeexp(|∇u|t)
of a solution(u, p, σ), in particular we expect a potential solution to be illposed. This
is seen in G2 solutions with slip initiated as potential flow,which subject to residual
perturbations of mesh sizeh, in log(1/h) time develop into turbulent solutions. We
give computational evidence that these turbulent solutions are wellposed, which we ra-
tionalize by cancellation effects in the linearized problem, which has rapidly oscillating
coefficients when linearized at a turbulent solution.

Formally applying the curl operator∇× to the momentum equation of (1), with
ν = β = 0 for simplicity, we obtain thevorticity equation

ω̇ + (u · ∇)ω − (ω · ∇)u = ∇× f in Ω, (3)

which is a convection-reaction equation in the vorticityω = ∇ × u with coefficients
depending onu, of the same form as the linearized equation (2), with similar prop-
erties of exponential perturbation growthexp(|∇u|t) referred to asvortex stretching.
Kelvin’s theorem formally follows from this equation assuming the initial vorticity is
zero and∇× f = 0 (andg = 0), but exponential perturbation growth makes this con-
clusion physically incorrect: We will see below that large vorticity can develop from
irrotational potential flow even with slip boundary conditions.

9 Energy Estimate with Turbulent Dissipation

The standardenergy estimatefor (1) is obtained by multiplying the momentum equa-
tion

u̇+ (u · ∇)u+ ∇p−∇ · σ − f = 0,
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with u and integrating in space and time, to get in the casef = 0 andg = 0,

∫ t

0

∫
Ω

Rν(u, p) · u dxdt = Dν(u; t) +Bβ(u; t) (4)

where
Rν(u, p) = u̇+ (u · ∇)u + ∇p

is theEuler residualfor a given solution(u, p) with ν > 0,

Dν(u; t) =

∫ t

0

∫
Ω

ν|ǫ(u(t̄, x))|2dxdt̄

is theinternal turbulent viscous dissipation, and

Bβ(u; t) =

∫ t

0

∫
Γ

β|us(t̄, x)|2dxdt̄

is theboundary turbulent viscous dissipation, from which follows by standard manip-
ulations of the left hand side of (4),

Kν(u; t) +Dν(u; t) +Bβ(u; t) = K(u0), t > 0, (5)

where

Kν(u; t) =
1

2

∫
Ω

|u(t, x)|2dx.

This estimate shows a balance of thekinetic energyK(u; t) and theturbulent viscous
dissipationDν(u; t) + Bβ(u; t), with any loss in kinetic energy appearing as viscous
dissipation, and vice versa. In particular,

Dν(u; t) +Bβ(u; t) ≤ K(0),

and thus the viscous dissipation is bounded (iff = 0 andg = 0).
Turbulent solutionsof (1) are characterized bysubstantial internal turbulent dissi-

pation, that is (fort bounded away from zero),

D(t) ≡ lim
ν→0

D(uν ; t) >> 0, (6)

which is Kolmogorov’s conjecture[21]. On the other hand, the boundary dissipation
decreases with decreasing friction

lim
ν→0

Bβ(u; t) = 0, (7)

sinceβ ∼ ν0.2 tends to zero with the viscosityν and the tangential velocityus ap-
proaches the (bounded) free-stream velocity, which is not in accordance with Prandtl’s
conjecture that substantial drag and turbulent dissipation originates from the boundary
layer. Kolmogorov’s conjecture (6) is consistent with

‖∇u‖0 ∼ 1√
ν
, ‖Rν(u, p)‖0 ∼ 1√

ν
, (8)
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where‖ · ‖0 denotes theL2(Q)-norm withQ = Ω × I. On the other hand, it follows
by standard arguments from (5) that

‖Rν(u, p)‖−1 ≤
√
ν, (9)

where‖ · ‖−1 is the norm inL2(I;H
−1(Ω)). Kolmogorov thus conjectures that the

Euler residualRν(u, p) for smallν is strongly (inL2) large, while being small weakly
(in H−1).

Altogether, we understand that the resolution of d’Alembert’s paradox of explain-
ing substantial drag from vanishing viscosity, consists ofrealizing that the internal
turbulent dissipationD can be positive under vanishing viscosity, while the boundary
dissipationB will vanish. In contradiction to Prandtl, we conclude that drag does not
result from boundary layer effects, but from internal turbulent dissipation, originating
from instability at separation.

10 G2 Computational Solution

We show in [31, 30, 32] that the Navier-Stokes equations (1) can be solved by G2
producing turbulent solutions characterized by substantial turbulent dissipation from
the least squares stabilization acting as an automatic turbulence model, reflecting that
the Euler residual cannot be made small in turbulent regions. G2 has a posteriori error
control based on duality and shows output uniqueness in mean-values such as lift and
drag [31, 28, 29]

We find that G2 with slip is capable of modeling slightly viscous turbulent flow
with Re > 106 of relevance in many applications in aero/hydro dynamics, including
flying, sailing, boating and car racing, with hundred thousands of mesh points in sim-
ple geometry and millions in complex geometry, while according to state-of-the-art
quadrillions is required [48]. This is because a friction-force/slip boundary condition
can model a turbulent blundary layer, and interior turbulence does not have to be re-
solved to physical scales to capture mean-value outputs [31].

The idea of circumventing boundary layer resolution by relaxing no-slip boundary
conditions introduced in [28, 31], was used in [9] in the formof weak satisfaction of
no-slip, which however misses the main point of using a forcecondition instead of a
velocity condition.

An G2 solution(U,P ) on a mesh with local mesh sizeh(x, t) according to [31],
satisfies the following energy estimate (withf = 0, g = 0 andβ = 0):

K(U(t)) +Dh(U ; t) = K(u0), (10)

where

Dh(U ; t) =

∫ t

0

∫
Ω

h|Rh(U,P )|2 dxdt, (11)

is an analog ofDν(u; t) with h ∼ ν, whereRh(U,P ) is the Euler residual of(U,P )
We see that the G2 turbulent viscosityDh(U ; t) arises from penalization of a non-zero
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Euler residualRh(U,P ) with the penalty directly connecting to the violation (accord-
ing the theory of criminology). A turbulent solution is characterized by substantial
dissipationDh(U ; t) with ‖Rh(U,P )‖0 ∼ h−1/2, and

‖Rh(U,P )‖−1 ≤
√
h (12)

in accordance with (8) and (9).

11 Wellposedness of Mean-Value Outputs

LetM(v) =
∫

Q
vψdxdt be amean-value outputof a velocityv defined by a smooth

weight-functionψ(x, t), and let(u, p) and(U,P ) be two G2-solutions on two meshes
with maximal mesh sizeh. Let (ϕ, θ) be the solution to thedual linearized problem

−ϕ̇− (u · ∇)ϕ+ ∇U⊤ϕ+ ∇θ = ψ in Ω × I,
∇ · ϕ = 0 in Ω × I,
ϕ · n = g onΓ × I,

ϕ(·, T ) = 0 in Ω,

(13)

where⊤ denotes transpose. Multiplying the first equation byu−U and integrating by
parts, we obtain the following output error representation[31, ?]:

M(u) −M(U) =

∫
Q

(Rh(u, p) −Rh(U,P )) · ϕdxdt (14)

where for simplicity the dissipative terms are here omitted, from which follows the a
posteriori error estimate:

|M(u) −M(U)| ≤ S(‖Rh(u, p)‖−1 + ‖Rh(U,P )‖−1), (15)

where the stability factor

S = S(u, U,M) = S(u, U) = ‖ϕ‖H1(Q). (16)

In [31] we present a variety of evidence, obtained by computational solution of the
dual problem, that for global mean-value outputs such as drag and lift,S << 1/

√
h,

while‖R‖−1 ∼
√
h, allowing computation of of drag/lift with a posteriori error control

of the output within a tolerance of a few percent. In short, mean-value outputs such as
lift amd drag are wellposed and thus physically meaningful.

We explain in [31] the crucial fact thatS << 1/
√
h, heuristically as an effect of

cancellationrapidly oscillating reaction coefficients of turbulent solutions combined
with smooth data in the dual problem for mean-value outputs.In smooth potential
flow there is no cancellation, which explains why zero lift/drag cannot be observed in
physical flows.

As an example, we show in Fig.10 turbulent G2 flow around a car with substantial
drag in accordance with wind-tunnel experiments. We see a pattern of streamwise
vorticity forming in the rear wake. We also see surface vorticity forming on the hood
transversal to the main flow direction. We will below discover similar features in the
flow of air around a wing.
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Figure 10: Velocity of turbulent G2 flow with slip around a car

12 Scenario for Separation without Stagnation

We now present a scenario for transition of potential flow into turbulent flow, based
on identifying perturbations of strong growth in the linearized equations (2) and (3) at
separation generating rolls of low pressure streamwise vorticity changing the pressure
distribution to give both lift and drag of a wing.

As a model of potential flow at rear separation, we consider the potential flow
u(x) = (x1,−x2, 0) in the half-plane{x1 > 0}. Assumingx1 andx2 are small, we
approximate thev2-equation of (2) by

v̇2 − v2 = f2,

wheref2 = f2(x3) is an oscillating mesh residual perturbation depending onx3 (in-
cluding also a pressure-gradient), for examplef2(x3) = h sin(x3/δ), with δ > 0. It
is natural to assume that the amplitude off2 decreases withδ. We conclude, assuming
v2(0, x) = 0, that

v2(t, x3) = t exp(t)f2(x3),

and for the discussion, we assumev3 = 0. Next we approximate theω1-vorticity
equation forx2 small andx1 ≥ x̄1 > 0 with x̄1 small, by

ω̇1 + x1
∂ω1

∂x1
− ω1 = 0,

with the “inflow boundary condition”

ω1(x̄1, x2, x3) =
∂v2
∂x3

= t exp(t)
∂f2
∂x3

.

The equation forω1 thus exhibits exponential growth, which is combined with expo-
nential growth of the “inflow condition”. We can see these features in Fig.?? show-
ing how opposing flows on the back generate a pattern of co-rotating surface vortices
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which act as initial conditions for vorticity stretching into the fluid generating rolls of
low-pressure streamwise vorticity, as displayed in Figs.11 and 3.

Altogether we expectexp(t) perturbation growth of residual perturbations of size
h, resulting in a global change of the flow after timeT ∼ log(1/h), which can be
traced in the computations.

We thus understand that the formation of streamwise streaksas the result of a force
perturbation oscillating in thex3 direction, which in the retardation of the flow in the
x2-direction creates exponentially increasing vorticity inthex1-direction, which acts as
inflow to theω1-vorticity equation with exponential growth by vortex stretching. Thus,
we find exponential growth at rear separation in both the retardation in thex2-direction
and the accelleration in thex1 direction. This scenario is illustrated in principle and
computation in Fig.11. Note that since the perturbation is convected with the base flow,
the absolute size of the growth is related to the length of time the perturbation stays in
a zone of exponential growth. Since the combined exponential growth is independent
of δ, it follows that large-scale perturbations with large amplitude have largest growth,
which is also seen in computations withδ the distance between streamwise rollss as
seen in Fig.3 which does not seem to decrease with decreasingh.

Notice that at forward attachment of the flow the retardationdoes not come from
opposing flows, and the zone of exponential growth ofω2 is short, resulting in much
smaller perturbation growth than at rear separation.

We can view the occurence of the rear surface vorticities as amechanism of sep-
aration with non-zero tangential speed, by diminishing thenormal pressure gradient
of potential flow, which allows separation only at stagnation. The surface vorticities
thus allow separation without stagnation but the price is generation of a system of low-
pressure tubes of streamwise vorticity creating drag in a form of “separation trauma”
or “cost of divorce”.

The scenario for separation can briefly be described as follows: Velocity instability
in retardation as opposing flows meet in the rear of the cylinder, generates a zig-zag
pattern of surface vorticity from which by vorticity instability in accelleration, a pattern
of rolls of low-pressure vorticity develops. We depict thisscenario is depicted in Fig.11.

13 Separation vs Normal Pressure Gradient

Fluid particles with non-zero tangential velocity can onlyseparate from a smooth
boundary tangentially, because the normal velocity vanishes on the boundary. By ele-
mentary Newtonian mechanics it follows that fluid particlesfollow the curvature of the
boundary without separation if

∂p

∂n
=
U2

R
(17)

and separate tangentially if
∂p

∂n
<
U2

R
, (18)

wherep is the pressure,n denotes the unit normal pointing into the fluid,U is the tan-
gential fluid speed andR is the radius of curvature of the boundary counted positive if
the body is convex. This is because a certain pressure gradient normal to the boundary
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Figure 11: Turbulent separation without stagnation in principle and simulation in flow
around a circular cylinder.

is required to accelerate fluid particles to follow the curvature of the boundary. By mo-
mentum balance normal to the boundary, it follows that∂p

∂n scales with the strain rate
relating separation toR as indicated in Section 4.

One of Prandtl’s boundary layer equations for a laminar viscous no-slip boundary
layer states that∂p

∂n = 0, from which follows separation at the crest of a wing without
downwash and lift [33]. However, Prandtl erronously associates separation with an
adverse pressure gradient retarding the flow in a tangentially to the boundary. In any
case, gliding flight in viscous laminar flow with no-slip is impossible. It is the slip
boundary condition resulting from a turbulent boundary layer, which makes the flow
stick to the upper surface of a wing and thus generate downwash and lift.

14 Kutta-Zhukovsky’s Lift Theory is Non-Physical

We understand that the above scenario of the action of a wing for different angles of
attack, is fundamentally different from that of Kutta-Zhukovsky, although for lift there
is a superficial similarity because both scenarios involve modified potential flow. The
slope of the lift curve according to Kutta-Zhukovsky is2π2/180 ≈ 0.10 as compared
to the computed0.09.

Fig.1 shows that the circulation is small without any increase up toα = 10, which
gives evidence that Kutta-Zhukovsky’s circulation theorycoupling lift to circulation
does not describe real flow. Apparently Kutta-Zhukovsky manage to capture some
physics using fully incorrect physics, which is not science.

Kutta-Zhukovsky’s explanation of lift is analogous to an outdated explanation of
the Robin-Magnus effect causing a top-spin tennis ball to curve down as an effect
of circulation, which in modern fluid mechanics is instead understood as an effect of
non-symmetric different separation in laminar and turbulent boundary layers [33]. Our
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Figure 12: Separation in slightly viscous flow with slip overa smooth hill by generation
of surface vorticity. Notice that the flow separates after the crest

results show that Kutta-Zhukovsky’s lift theory for a wing also needs to be replaced.
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