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Abstract

We show by computational solution of the incompressibleibla8tokes equa-
tions with friction force boundary conditions, that thesdeal inviscid circulation
theory by Kutta-Zhukovsky for lift and laminar viscous balany layer theory by
Prandtl for drag, which have dominated 20th century fluidadyits, do not cor-
rectly describe the real turbulent airflow around a sail utaeking. We show that
lift and drag essentially originate from a turbulent wakeadinter-rotating rolls of
low-pressure streamwise vorticity generated by a certaitability mechanism of
potential flow at rear separation. The new theory opens thsilpiiity of ab initio
computational prediction of characteristics of a sailimgtousing les than a mil-
lion meshpoints without resolving thin boundary layerstéad of the imposssible
guadrillions required according to state-of-the-art foubdary layer resolution.

1 New Theory of Sailing

As a corollary of the resolution of d’Alembert’'s paradox @fra lift/drag of potential
flow [32, 37] and the related mathematical theory of flight,[38, 36], we outline in
this article a mathematical theory for the generation ofvd drive force and sideway
heeling force from the combined action of the sail and keeh shiling boat under
tacking against the wind, which is fundamentally differfeotn the classical theory by
Kutta-Zhukovsky for lift in inviscid flow and by Prandtl forrdg in viscous flow. A
keel moving through water acts like a symmetric wing gerilegdift which balances
the heeling from the sail. A sail in a flow of air also acts likeveng with the drive
coming from a forward component of lift and the heeling frdra sideway component
of lift. But there is an important difference in the actionao§ail and a keel, with the
purpose of the sail to give forward drive at the price of hegliand the purpose of the
keel to give lift at the price of drag. A sail requires a relaly largeangle of attack
a = 15 — 25 degrees to give sufficient drive to overcome the the totaj fiam the
sail, keel and hull, while for a keel the angle of attack is bkenavith « = 5 — 10.

In thegliding flight of birds and airplanes with fixed wings at subsonic speeds, th
lift/drag ratio % with L the lift and D the drag, is typically between 10 and 20, which
means that a good glider can glide up to 20 meters upon lodsineter in altitude, or
that Charles Lindberg could cross the Atlantic in 1927 atesegipf 50 m/s in his 2000
kg Spirit of St Louisat an effective engine thrust of 150 kp (Wig1 =2000/150 ~ 13)
from 100 horse powers.



In [34] we gave a mathematical explanation based on a cortidimaf computation
and analysis of how a symmetric wing can gene%te 10 for 3 < a < 15, where
« is theangle of attackand maximal lift forae = 20 with % ~ 3 just before stall, as
displayed in Fig.4. With this basis we give in this note a reathtical explanation of
the combined action of the sail and keel of a sailing boat utedzking.

We shall find that the different shape of a sail on the windvearlé, as compared
to a symmetric wing, allows a crucidf > 6 — 10 also for the large angle of attack
of a &~ 20 required by a sail. Along the lines of [34], we will give evite that the
turbulent flow around a sail can be seen as a perturbationofifédrag potential flow
resulting from a specific three-dimensional instabilityai&nism at separation gener-
ating a turbulent wake of counter-rotating low-pressutis raf streamwise vorticity,
a mechanism which changes the pressure distribution arthnttailing edge so as
to produce drive but also heeling. By mathematical anabystscomputation we thus
identify the basic mechanism, seen as a modification of Z&fdrag potential flow,
generating both drive and heeling in the real turbulent flosuad a sail.

On the other hand, we give evidence that the modification bigakzihukovsky
consisting of large scale two-dimensional circulationusw the section of the sail,
which is the basic mechanism for lift according to classibabry representing state-
of-the-art [23, 24], is purely fictional without counterpar real three-dimensional
turbulent flow. Altogether we thus identify the true mectsamifor drive and heeling
of sail and keel, which is not captured by classical theory.

Figure 1: Lift coefficient and circulation (left), drag céiefent (middle) and lift/drag
ratio (right) of Naca 0012 wing as functions of angle of dtthg G2 computation.

The new theory is based on the incompressible Navier-Sedpastions for slightly
viscous flow with slip (small friction force) boundary cotidns as a model of a turbu-
lent boundary layer coupling a solid boundary to the freeastr flow through a small
skin friction force. We compute turbulent solutions of thaviér-Stokes equations us-
ing a stabilized finite element method with a posteriori egantrol of lift and drag,
referred to asseneral Galerkinor G2, available in executable open source from [20].
The stabilization in G2 acts as an automatic turbulence madd thus offers a model
for ab initio computational simulation of the turbulent flow around a wimith the
only input being the geometry of the wing. Computations fesa# are under way and
will be presented shortly.

We show in [31, 34] that lift and drag of a wing can be accuyagekdicted us-
ing a couple of hundred thousand mesh points, to be compaithdhe impossible
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Figure 2: Lift, drag and lift/drag ratigs for sail as functions of the angle of attaak
Notice thatZ > 6 peaks aty = 15.

quadrillions of mesh-points required by state-of-thet@résolve thin no-slip boundary
layers as dictated by Prandtl [48, 67]. The computations/ghat Kutta-Zhukovsky’s

circulation theory is unphysical and that the curse of Pil@idminar boundary layer

theory can be avoided opening new possibilities of sail &tmn. Our analysis in-

cludes the following key elements:

(i) Turbulentsolutions of the incompressible Navier-&skquations with slip/small
friction force boundary conditions.

(ii) Potential flow as Navier-Stokes solution subject to Brimaice perturbations.
(iiiy Separation of potential flow only at stagnation.

(iv) Mechanism of lift/drag from instability at rear septiom of retarding opposing
flows generating surface vorticity enhanced by vortex cfiiag in accellerating
flow after separation into counter-rotating low-pressuwisrof streamwise vor-
ticity, which change the pressure distribution of potdrft@aw into lifting flow
with drag.

By Newton’s 3rd law, lift by a wing must be accompanieddownwastwith the wing
redirecting air downwards. The enigma of flight is the med$rarof a wing generating
substantial downwash, which is also the enigma of sailiregresg the wind with both
sail and keel acting like wings creating substantial lifa SRy that a sail redirects air
and thereby generates lift with drive, is tautological witthe informative content. We
shall see that the action of a sail redirecting air is a forrmo&cle, and not a triviality,
which results from a specific interplay between the sail dredkieel with the lift/drag
ratio % playing acrucial role, but a miracle which can be deconstdiexplained and
understodd.

Before presenting details of (i)-(iv) uncovering the mleaby the new theory, we
recall the classical circulation theory because it is ugefunderstand what is wrong in
order to properly understand what is correct. The new thigoaynutshell is illustrated
in Fig.3, also presented as a Knol [36], with support from patation in Fig.4. The



new theory also opens to accurate simulation os sailing @meyinds from the side or
rear in which case the air flow around the sail is heavily tlebu We conclude with
an account of G2 for the Navier-Stokes equations.

aoa

Figure 3: Sail action in a nutshell: Windward high pressiitig and leeward low pres-
sure (Lo) from counter-rotating low-pressure rolls of atravise vortices at leeward
separation (sideview left), and resulting lift L and dragtBp/iew middle) with angle

of attackaoa indicated.

Figure 4. Computed Navier-Stokes solutions around a tHneensional long
Naca0012 wing showing sideview of speed and pressure, gwitto of streamwise
vorticity for « = 14. Notice in particular the rolls of streamwise vorticity aparation.

2 Lack of Theory of Sailing

Classical mathematical mechanics could not explain thefit wing, nor the drag.
Newton computed by elementary mechanics the lift of a tiftatiplate redirecting a
horisontal stream of fluid particles, but obtained a disampwgly small value propor-
tional to the square of the angle of attack. D’Alembert foia up in 1752 by for-
mulating his paradox about zero lift/dragio¥iscid incompressible irrotational steady



flow referred to apotential flow indicating that flight is mathematically impossible,
or at least inexplicable. To explain flight and sailing d’Albert’'s paradox had to be
resolved, and this has only been done recently, after 25@Gyea

It is natural to expect that today gliding flight is well und&rod, but surprisingly
one finds that the authority NASA [49] first dismisses threpipar theories for lift as
being incorrect (longer-path, skipping-stone,VentweitBouilli), then vaguely suggests
a trivial flow-by-turning theory and ends with the empty séegty out of reach:“To
truly understand the details of the generation of lift, oraes o have a good working
knowledge of the Euler Equations"The Plan&Pilot Magazine [52] has the same
message. In short, state-of-the-art literature [4, 2566} presents a two-dimensional
theory from 1903 for lift without drag at small angles of akan inviscid potential
flow by the mathematicians Kutta and Zhukovsky, called thiesieof Russian aviation,
and another theory for drag without lift in viscous laminawfl from 1904 by the
physicist Prandtl, called the father of modern fluid dynaniout no theory for lift
and drag inthree-dimensional slightly viscous turbulent incompitdsesflow such as
the flow of air around a wing of a jumbojet at the critical phasa¢ake-off at large
angle of attack (12 degrees) and subsonic speed (270 kn)/lasuevidenced in e.g.
[1,7,8,10, 12, 14, 40, 43, 47].

The aero/hydromechanics of sailing is surrounded by evere roonfusion and
desinformation:

e The leeward of the sail is changing the direction of the asspay it. This is
due too the Coanda effect: Air tends to follow a curved s@fas long as the
curvature is not too large [39].

e NASA has an excellent discussion of the various contrilmgitm lift by an air-
plane wing. It disputes the conventional simple version migitheory and em-
phasizes that lift is produced by the turning of the fluid fl&} [

e When the wind flows over one side it fills the sail while the aimfing on the
other side is moving faster and cannot push as hard and teusathrecieves a
force that is perpendicular to the direction of the wind [50]

e The wind moving around the leeward side of the sail is forcetdke the longer
path [3].

e The sails propel the boat by redirecting the wind comingamfthe side towards
the rear [59].

e There are all kinds of controversies about sails [51].

e The wind passes around the sail and because the distanamaisgon the lee-
ward side of the sail, the wind must travel faster [56].

e The air being also deflected by the upper side of the wing, eyCthanda effect,
is harder to understand [58].

e The air traveling over the leeward surface of the camberiédreates the second
force. It has to travel a longer way to reach the end of the(dalleech), and as



a consequence goes faster. This is causing a pressuresdtfédin accordance
with Bernoullis principle [65].

e The fact that, after all these years, there is still any qoestbout how sails work
suggests that somewhere we've started with some wrong asisuns [61].

o Air will follow the curved shape of an airfoil due to Coanddest. Why is this
important? As long as airflow is laminar or in contact with #igoil surface,
it will continue to be turned in the same direction of the @ili§ shape. This
ensures the change in wind direction needed to drive thefooaard [39].

e |tis difficult to explain the generation of lift for laymen$2

e The fundamental problem as to how a surface such as a sailajeséft is rather
difficult to understand for the average non-technical sailbe fact that it is the
viscosity of air which make lift possible is even more diffido grasp...Although
the circulation about the airfoil as generated in theoa¢terodynamics and as
simulated by potential flow programs seems like just a magtiea trick, this
is not the case... [24].

e Aerodynamics is a difficult subject, and all attempts to difpjit for the average
person leads to wrong interpretations. The facts are thabiines about because
air has viscosity, which leads to the starting vortex. Thifollowed by the for-
mation of a circulation field about the airfoil necessary ®etone of Helmoltz's
theorems of vortex motion. Then the Kutta condition is $igtisat the trailing
edge, and bingo — we have lift. These principles, togethér wnowledge of
boundary layer theory, lead to a correct understandingeoiftteraction between
the jib and the mainsail. (Arvel Gentry)

A good introduction to sail theory can be obtained in the wafrlArvel Gentry
[22].

We understand that the (most popular) longer-path theosyblean dismissed by
NASA, and lack convinced supporters, but NASA's flow-byrimg is trivial as a the-
ory. The Kutta-Zhukovsky circulation theory ranks highiesscientific prestige (and
incomprehensibility), and is forcefully advocated by Ar@antry with support from a
2d bathtub experiment supposedly showing the existencesofalled starting vortex
required to balance the claimed circulation around an iitfmwever, [34, 35] shows
that circulation theory is a non-physical fictional 2d the@nd that lift and drag in 3d
reality results from a 3d instability mechanism at separatgenerating low-pressure
turbulent streamwise vorticity as indicated in Fig.3, witlh both starting vortex and
circulation around the wing. The bath tub experiment thuessdwt describe the action
of a real wing nor a sail. In fact, it is impossible to fly or sail2d.

Classical theory is splitinto inviscid circulation thedoy lift and viscous boundary
layer theory for drag. The new theory captures both lift areycand the completely
crucial lift/drag ratio, which is beyond classical theoihe new theory [34, 35] ex-
plains the miracle of sailing against the wind, and it is aacle, while classical theory
does not explain anything correctly.



3 Kutta-Zhukowsky and Prandtl

It took 150 years before someone dared to challenge thenpistisimathematical pre-
dictions by Newton and d’Alembert, expressed by Lord Kelai“l can state flatly
that heavier than air flying machines are impossibléh the 1890s the German en-
gineer Otto Lilienthal made careful studies of the glidirigtt of birds, and designed
wings allowing him to make 2000 successful heavier-thargdading flights starting
from a little artificial hill, before in 1896 he broke his netdling to the ground af-
ter having stalled at 15 meters altitude. The first sustapmudered heavier-than-air
flights were performed by the two brothers Orwille and Wilbhiright, who on the
windy dunes of Kill Devils Hills at Kitty Hawk, North Carolia, on December 17 in
1903, managed to get their 400 kg airpldger off ground into sustained flight using
a 12 horse power engine.

The undeniable presence of substantial lift now requiredxgdantion and to this
end Kutta and Zhukovsky augumented inviscid zero-lift ptitd flow by a large scale
two-dimensionatirculation or rotation of air around the wing section causing the ve-
locity to increase above and decrease below the wing, thusrggng lift proportional
to the angle of attack [66, 64], orders of magnitude largantNewton’s prediction,
but the drag was still zero. Kutta-Zhukovsky thus showed ithidere is circulation
then there is lift, which by a scientific community in despersearch for a theory of
lift was interpreted as an equivalen¢H:the airfoil experiences lift, a circulation must
exist”, [64, 41]. State-of-the-art is described in [5] &8he circulation theory of lift is
still alive... still evolving today, 90 years after its inttuction”.

The modified potential solution is illustrated in Fig.5 iodiing zones of low (L)
and high (H) pressure, with the switch between high and lossgure at the trailing
edge creating lift as an effect of the circulation. KuttaiKbvsky suggested that the
circulation around the wing section was balanced by a countating so-calledtart-
ing vortexbehind the wing shown in Fig.5 (right) giving zero total citation according
to Kelvin's theorem Kutta-Zhukovsky’s formula for lift agreed reasonably welth
observations for long wings and small angles of attack, btitor short wings and large
angles of attack. We will below subject Kutta-Zhukovskyigory of lift to a reality
test, and we will find that it in fact is pure fiction, as muchibctas zero-lift potential
flow; the true origin of lift is not large scale two-dimensarcirculation around the
wing section.

In 1904 the young physicist Ludwig Prandtl took up the chake of resolving
d’Alembert’s paradox and explaining the origin of drag i # page sketchy article
Motion of Fluids with Very Little Viscosit}p3] described in [55] asone of the most
important fluid-dynamics papers ever writteahd in [25] as'the paper will certainly
prove to be one of the most extraordinary papers of this egnéund probably of many
centuries”. Prandtl suggested that the substantial drag (and lift) oddybmoving
through aslightly viscoudluid like air, possibly could arise from the presence of a
thin no-slip laminar viscous boundary layavhere the tangential fluid velocity rapidly
changes from zero on the boundary to the free-stream valuend® argued that a
flow canseparatgrom the boundary due to adverse pressure gradiergtarding the
flow in a laminar boundary layer to formew-pressure wakbehind the body creating
drag. This is the official resolution of d’Alembert’s paradé4, 60, 66, 16], although
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Figure 5: Potential flow (left) past a wing section with zeifddrag modified by cir-
culation around the section (middle) to give Kutta-ZhukgvBow (right) leaving the
trailing edge smoothly with downwash/lift and a startingtea behind, but without
viscous drag.

seriously questioned in e.g. [11, 13, 44]. The commonly piszkview on Prandtl’'s
role is expressed as follows:

e Prandtl’s contribution was to realize that a proper undestling of the bound-
ary layer allows us to understand how a (vanishingly) smatesity and a
(vanishingly) small viscous region can modify the globakffeatures. Thus,
with one insight Prandtl resolved d’Alembert’s paradox gmavided fluid mech-
anists with the physics of both lift and form drggp].

e The general view in the fluid mechanics community is that) fxgoractical point
of view, the paradox is solved along the lines suggested bpd®:. A formal
mathematical proof is missing, and difficult to provide,ms® many other fluid-
flow problems modelled through the NavierStokes equatidhe.viscous effects
in the thin boundary layers remain also at very high Reynoldsibers they
result in friction drag for streamlined objects, and for Hlbodies the additional
result is flow separation and a low-pressure wake behind thea, leading to
form drag[16].

The suggestion is that substantial drag results from theepiee of a thin boundary
layer even for arbitarily small viscosity, that is a subsitreffect from a vanishingly
small cause [63]:

e ...great efforts have been made during the last hundred gresws to propose
alternate theories and to explain how a vanishingly smadtimnal force in the
fluid can nevertheless have a significant effect on the flopepties.

But to claim that something substantial can result fromualliy nothing, is very cum-

bersome from a scientific point of view, since it requiresesscto an infinitely precise
theory for justification, which is not available. MoreovdiAlemberts paradox con-
cerns a contradiction between mathematical predictionpradtical observation and
can only be solved by understanding the mathematics leadiag absurd mathemat-
ical prediction. It is precisely &mathematical proof” which is needed, which the
fluid mechanics community apparently acknowledgemissing”. The trouble is that

mathematics predicts zero drag, not that observation skoba&tantial drag.



If it is impossible to justify Prandtl’'s theory, it can welklpossible to disprove it:
It suffices to remove the infinitely small cause (the boundaygr) and still observe
the effect (substantial drag). This is what we did in our heson of d’Alembert’s
paradox [32], but we did not remove the viscosity in the iteof the flow, which
creates turbulent dissipation manifested in drag.

Inany case, Prandtl’s resolution of d’Alembert’s paradmétfluid dynamics out of
its crisis in the early 20th century, but led computatioreabalynamics into its present
paralysis described by Moin and Kim [48] as follows:

e Consider a transport airplane with a 50-meter-long fuselamnd wings with a
chord length (the distance from the leading to the trailirdge) of about five
meters. If the craft is cruising at 250 meters per second alitude of 10,000
meters, about0'® grid points are required to simulate the turbulence near the
surface with reasonable detail.

But computation with10'6 grid points is beyond the capacity of any thinkable com-
puter, and the only way out is believed to be to desigbulence modelfor simula-
tion with millions of mesh points instead of quadrillons blis is an open problem
since 100 years. State-of-the-art is decribed in the sexpuefAIAA Drag Prediction
Work Shop$17], with however a disappointingly large spread of the &Btipipating
groups/codes reported in the blind tests of 2006. In additlee focus is on the simpler
problem of transonic compressible flow at small angles @ickt(2 degrees) of rele-
vance for crusing at high speed, leaving out the more demgmiiblem of subsonic
incompressibldlow at low speed and large angles of attack at take-off anditay
because a work shop on this topic would not draw any partitgpasimilar difficulties
of computing lift is reported in [41, 42]:

e Circulation control applications are difficult to computeliably using state-of-
the-art CFD methods as demonstrated by the inconsisteircieBD prediction
capability described in the 2004 NASA/ONR Circulation @anworkshop.

4 Shortcut to Lift an Drag of a Wing

The new resolution of d’Alembert’s paradox [31, 32, 30] itiées the basic mechanism
of instability of potential flow described above, which wdlind is also an essential
mechanism for generating lift of a wing by depleting the hgylessure before rear
separation of potential flow and thereby allowing downwastis mechanism is illus-
trated in Fig.6 showing a perturbation (middle) consistiigounter-rotating rolls of
low-pressure streamwise vorticity developing at the sajar of potential flow (left),
which changes potential flow into turbulent flow (right) wahdifferent pressure dis-
tribution at the trailing edge generating lift. The rollsadunter-rotating streamwise
vorticity appear along the entire trailing edge and havdfardint origin than theving
tip vortex[19], which adds drag but not lift, which is of minor import@afor a long
wing. We shall find that the diameter of the rolls scale wité thickness of the wing
(and not the viscosity), and the intensity with the angletteck.

We see that the difference between Kutta-Zhukovsky andéheaxplantion is the
nature of the modification/perturbation of zero-lift paiahflow: Kutta and Zhukovsky



Figure 6: Stable physical 3d turbulent flow (right) with Aftag, generated from po-
tential flow (left) by a perturbation at separation consigidf counter-rotating rolls of
streamwise vorticity (middle), which changes the presatithe trailing edge generat-
ing downwash/lift and drag.

claim that it consists of a global large scale two-dimenaiarirculation around the
wing section, that ifransversal vorticityorthogonal to the wing section combined with
a transversal starting vortex, while we find that it is a thdé@aensional local turbulent
phenomenon of counter-rotating rolls of streamwise vitytiat separation, without
starting vortex. Kutta-Zhukovsky thus claim that lift cosnfeom global transversal
vorticity without drag, while we give evidence that instddtlis generated by local
turbulent streamwise vorticity with drag.

We observe that the real turbulent flow shares the crucigdgoty of potential flow
of adhering to the upper surface beyond the crest and thasrggelownwash, because
the real flow is similar to potential flow before separatiomd &#ecause potential flow
can only separate at a point of stagnation with opposing floesting in the rear, as
we will prove below.

On the other hand, a flow with a viscous no-slip boundary layikcorrectly ac-
cording to Prandtl) separate on the crest, because in andsmundary layer the pres-
sure gradient normal to the boundary vanishes and thus taontribute the normal
acceleration required to keep fluid particles following thevature of the boundary
after the crest, as shown in [33]. It is thus the slip boundamydition modeling a
turbulent boundary layer in slightly viscous flow, whichdes the flow to suck to the
upper surface and create downwash. This is a feature of ip@ssible irrotational
slighty viscous flow with slip, thus in particular of poteaitflow, and is not an effect
of viscosity or molecular attractive forces as often sugggesinder the name of the
Coanda effect This explains why gliding flight is possible for airplanesdalarger
birds, because the boundary layer is turbulent and actsliggreventing early sep-
aration, but not for insects because the boundary layemgkr and acts like no-slip
allowing early separation.

4.1 Mechanismsof Lift and Drag

We have given evidence that the basic mechanism for the agéomeof lift of a wing

consists of counter-rotating rolls of low-pressure stredsa vorticity generated by
instability at separation, which reduce the high pressartop of the wing before the
trailing edge of potential flow and thus allow downwash, bhtek also generate drag.
At a closer examination of the quantitative distributiofi$ifo and drag forces around
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the wing, we discover large lift at the expense of small desgitting from leading edge
suction, which answers the opening question of of how a warggenerate a lift/drag
ratio larger than 10.

The secret of flight is in concise form uncovered in Fig. 1 simgWG2 computed
lift and and drag coefficients of a Naca 0012 3d wing as funetiaf the angle of attack
«, as well as the circulation around the wing. We see that thadid drag increase
roughly linearly up to 15 degrees, withka > 10 for o > 3 degrees, and that lift peaks
at stall ato = 20 after a quick increase of drag and flow separation at thergagtige.

We see that the circulation remains small foless than 10 degrees without con-
nection to lift, and conclude that the theory of lift of by KatZhukovsky is fictional
without physical correspondence: There is lift but no dtion. Lift does not origi-
nate from circulation.

Inspecting Figs. 7-9 showing velocity, pressure, vorjcind lift and drag distri-
butions over the upper and lower surfaces of the wing (aligvéilso pitching moment
to be computed), we can now, with experience from the abogpgratory analysis,
identify the basic mechanisms for the generation of lift @ndg in incompressible
high Reynolds number flow around a wing at different anglestiaicka: We find two
regimes before stall at = 20 with different, more or less linear growth im of both
lift and drag, a main phase < a < 15 with the slope of the lift (coefficient) curve
equal t00.09 and of the drag curve equal @08 with L/D =~ 14, and a final phase
15 < o < 20 with increased slope of both lift and drag. The main phaséeativided
into an initial phas® < a < 4 — 6 and an intermediate phage- 6 < o < 15, with
somewhat smaller slope of drag in the initial phase. We noesemt details of this
general picture.

42 Phasel: 0<a<4-6

At zero angle of attack with zero lift there is high pressureéha leading edge and
equal low pressures on the upper and lower crests of the wioguse the flow is essen-
tially potential and thus satisfies Bernouilli's law of hitgw pressure where velocity
is low/high. The drag is about 0.01 and results from rollsoe¥-pressure streamwise
vorticity attaching to the trailing edge. As increases the low pressure below gets
depleted as the incoming flow becomes parallel to the lowdasel at the trailing edge
for « = 6, while the low pressure above intenisfies and moves towael¢eading
edge. The streamwise vortices at the trailing edge esfigrsiay constant in strength
but gradually shift attachement towards the upper surfade high pressure at the
leading edge moves somewhat down, but contributes littléttdrag increases only
slowly because of negative drag at the leading edge.

43 Phae2:4-6<a<15

The low pressure on top of the leading edge intensifies tdeseaormal gradient pre-
venting separation, and thus creates lift by suction pepsimtop of the leading edge.
The slip boundary condition prevents separation and dowhigcreated with the help
of the low-pressure wake of streamwise vorticity at reaasa{ion. The high pressure
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at the leading edge moves further down and the pressure lietogases slowly, con-
tributing to the main lift coming from suction above. The meag from the upper
surface is close to zero because of the negative drag atddenteedge, known as
leading edge suctignwhile the drag from the lower surface increases (lineaxiyf
the angle of the incoming flow, with somewhat increased hlitsshall drag slope.
This explains why the line to a flying kite can be almost vaitieven in strong wind,
and that a thick wing can have less drag than a thin.

44 Phase3: 15 < a <20

This is the phase creating maximal lift just before stall meth the wing partly acts as a
bluff body with a turbulent low-pressure wake attachindnatriear upper surface, which
contributes extra drag and lift, doubling the slope of tfficlirve to give maximal lift
~ 2.5 ata = 20 with rapid loss of lift after stall.

4.5 Lift and Drag Distribution Curves

The distributions of lift and drag forces over the wing réisigl from projecting the
pressure acting perpendicular to the wing surface onteastalirections, are plotted
in Fig.9. The total lift and drag results from integratingsle distributions around the
wing. In potential flow computations (with circulation acding to Kutta-Zhukovsky),
only the pressure distribution ej-distribution is considered to carry releveant infor-
mation, because a potential solution by construction hesdag. In the perspective
of Kutta-Zhukovsky, it is thus remarkable that the projectg-curves carry correct
information for both lift and drag.

The lift generation in Phase 1 and 3 can rather easily beienéd, while both the
lift and drag in Phase 2 results from a (fortunate) intridaterplay of stability and
instability of potential flow: The main lift comes from uppsurface suction arising
from a turbulent boundary layer with small skin friction cbimed with rear separation
instability generating low-pressure streamwise vostjoithile the drag is kept small
by negative drag from the leading edge. We conclude thatepténg transition to
turbulence at the leading edge can lead to both decreasaddifincreased drag.

4.6 Comparing Computation with Experiment

Comparing G2 computations with about 150 000 mesh points @iperiments [26,
46], we find good agreement with the main difference that thesb of the lift co-

efficient in phase 3 is lacking in experiments. This is prdpamn effect of smaller
Reynolds numbers in experiments, with a separation bulasteifig on the leading
edge reducing lift at high angles of attack. The oil-film piets in [26] show surface
vorticity generating streamwise vorticity at separatisroaserved also in [30, 33].

A jumbojet can only be tested in a wind tunnel as a smalleestaldel, and upscal-
ing test results is cumbersome because boundary layerstdoale. This means that
computations can be closer to reality than wind tunnel érpents. Of particular im-
portance is the maximal lift coefficient, which cannot bedicted by Kutta-Zhukovsky
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Figure 7: G2 computation of velocity magnitude (upper) sgtee (middle), and non-
transversal vorticity (lower), for angles of attack 2, 4d&h (from left to right). Notice
in particular the rolls of streamwise vorticity at sepaoati
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Figure 8: G2 computation of velocity magnitude (upper) sgtee (middle), and non-
transversal vorticity (lower), for angles of attack 10, a6d 20 (from left to right).
Notice in particular the rolls of streamwise vorticity apseation.
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Figure 9: G2 computation of normalized local lift force (@ppand drag force (lower)
contributions acting along the lower and upper parts of timgyfor angles of attack O,
2,4 ,10 and 18 each curve translated 0.2 to the right and 1.0 up, with the foece
level indicated for each curve.
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nor in model experiments, which for Boeing 737 is reporteeéd.73 in landing in
correspondence with the computation. In take-off the makilift is reported to be
1.75, reflected by the rapidly increasing drag beyand 16 in computation.

5 Shortcut to New Theory of Sailing

We now explain how the sail and keel of a sailing boat togepldrthe boat forward
in tacking at 35-45 degrees against the wind.

51 Key Fact 1: Sail and keel act likewings

Both the sail and keel act like wings generating lift and diag the action, geometrical
shape and angle of attacka of the sail and the keel are somewhat different. The
effectiveaoa of a sail in tacking is 15-25 degrees and that of a keel 5-10essg The
aoa of the keel is also referred to as tlemway the difference between the direction
the boat is pointed and the actual direction of travel.

5.2 Key Fact 2: Sail givesforward pull/drive at the price of heeling

The boat is pulled forward by the sail, assuming: = 15 with the boom inclined
degrees to the direction of the boat, by the forward drivepomentin(20)L ~ 0.3L
of the lift L counted perpendicular to the effective wind direction, efthis the usual
for a wing. There is also a side (heeling) fores(20) L from the sail, which tilts the
boat and needs to be balanced by lift from the keel. A sailésslift than a symmetric
wing because the strong concentration of lift at the uppended leading edge of the
wing, is missing for the sail.

The action of a sail is thus different from that of a wing: Algaves forward pull
at the price of heeling (lift), while a wing gives lift at theige of drag (backward pull).

5.3 Key Fact 3: £ of sail > 6 — 10

The drive from lift L is reduced by a component of the drAgcounted parallel to
the effective wind direction, with similar contribution®fn the leeward and windward
side of the sail because the shape is the same. This makegpariamt difference with
a symmetric wing for which the backward pull/drag is largenfi the windward side
because of the high pressure at the lower leading edge of ithg @&s displayed in
Fig.9.

The netresultis a lift/drag ratig > 6—10ataoa = 15—20 for a sail, as indicated
by Fig.2 showing thag— for a sail peaks atoa = 15, which reduces the drive 2L,
Compare with Fig.1 showing th% ~ 3 for a wing ataoa = 20, which would reduce
the forward pull/drive td).1L, which is too small according to:
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54 Key Fact 4. Keel balances heeling at the price of drag

The heeling force from the sail is balanced by lift from the tteel in the opposite
direction. Assuming the lift/drag ratio for the keel is 1Quat: = 5 — 10, the forward
drive is then reduced t@®.2 — 0.1) L = 0.1L, which is used to overcome the drag from
the hull minus the keel.

Note that with an% < 3forthe sail, the net forward drive would disappear. Replac-
ing the sail by a wing thus does not seem to be a good idea, seeauoa > 15 is re-
quired to get sufficient drive. But a keel like a wing works fihecause atioa = 5—10
is sufficient.

55 KeyFact5: Sail areavskedl area

Assuming that the effective speed relative the air of a sdilim/s ataoa = 15 and
the speed of the keel/boat through the water is 3 mis@at= 5, we find (using that the
density of water is about 800 times that of air) that the s@hacan be up tB5 times
the keel area. In practice, the ratio is typically- 9 with a traditional full-keel and
10-15 with a modern fin-keel.

5.6 Summary

The shape of a sail is different from that of a wing which gisasaller drag from the

windward side and thus improved drive, while the keel hasstigpe of a symmetric
wing and acts like a wing. A sail withoa = 15 — 20 gives strong drive at strong
heeling with contribution also from the rear part of the ddik for a wing just before

stall, while the drag is smaller than for a wing.

The % curve for a sail is different from that of wing: aba = 15—20 & > 6 — 10
for a sail, while% < 3 — 4 for a wing. On the other hand, a keel witha = 5 — 10
has% > 6 — 10. A sail ataoa = 15 — 20 thus gives strong drive at strong heeling
and small drag, which together with a keekat: = 5 — 10 with strong lift and small
drag, makes an efficient combination. This explains why modesigns combine a
deep narrow keel acting efficiently for smaba, with a broader sail acting efficiently
at a largemoa.

Using a symmetric wing as a sail would be inefficient, sina lifi/drag ratio is
poor at maximal lift aoa = 15 — 20. On the other hand, using a sail as a wing can
only be efficient at a large angle of attack, and thus is ndéblé for cruising at higher
speed and smaller aoa.

6 Navier-Stokeswith Force Boundary Conditions
The Navier-Stokes equations for an incompressible fluid rof density withsmall

viscosityr > 0 andsmall skin friction3 > 0 filling a volume$ in R? surrounding a
solid body with boundary' over a time interval = [0, 7], read as follows: Find the
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velocityu = (u1, ue, ug) and pressurg depending orfx, t) € QUT x I, such that

U+ (u-Vu+Vp—-V.o = f inQx I,
Veu = 0 inQx I,
U, = ¢ onI" x I, Q)
os = [us onI' x I,
u(-,0) = u° in Q,

whereu,, is the fluid velocity normal t@’, u is the tangential velocityy = 2ve(u) is
the viscous (shear) stress with:) the usual velocity straing, is the tangential stress,
f is a given volume forcey is a given inflow/outflow velocity withy = 0 on a non-
penetrable boundary, and is a given initial condition. We notice the skin friction
boundary condition coupling the tangential stresso the tangential velocity, with
the friction coefficients with 5 = 0 for slip, andg >> 1 for no-slip. We note that is
related to the standaskin friction coeffieient; = % with 7 the tangential stress per
unit area, by the relatiog = %Cf. In particular,3 tends to zero witle; (if U stays
bounded).

Concerning the size of the viscosity, we recall that for b&kinematic viscosity
(normalized to unit density) is abot6—° (and for water about0—%). Normalizing
also with respect to velocity and length scale, the visgasitepresented by the inverse
of the Reynolds numbemhich in subsonic flight ranges fro0® for medium-size
birds overl07 for a smaller airplane up to0® for a jumbojet, for a sail and ke@®~7.
We are thus considering normalized viscosities in the rdraya 10~° to 10~ to be
compared with density, velocity and length scale of uni¢ siée understand that —>
is smallcompared to 1, and thad—° compared to 1 isery small

Massive evidence indicates that the incompressible N&tigkes equations consti-
tute an accurate mathematical model of slightly viscous fitosubsonic aerodynamics.
We will show that turbulent solutions can be computed on &lafor simple geome-
tries and on a cluster for complex geometries, with corregamvalue outputs such
as lift, drag and twisting moment of a wing or entire airplawihout resolving thin
boundary layers and without resort to turbulence modelsis iBhmade possible by
using skin friction force boundary conditions for tangahstresses instead of no-slip
boundary conditions for tangential velocities, and beeathg skin friction is small
from a turbulent boundary layer of a fluid with very small \6sity, and because it is
not necessary to resolve the turbulent features in theidmtef the flow to physical
scales.

Prandtl insisted on using a no-slip velocity boundary cbadiwith us = 0 on T,
because his resolution of d’Alembert’s paradox hinged soréthinating potential flow
by this condition. On the oher hand, with the new resolutibd’ Alembert’s paradox,
relying instead on instability of potential flow, we are fiteechoose instead a friction
force boundary condition, if data is available. Now, expents show [60, 15] that
the skin friction coefficient decreases with increasing idgrs numbetRe ascy ~
0.07 ~ Re™%2, so thatcy ~ 0.0005 for Re = 10'% andc; =~ 0.007 for Re = 10°.
Accordingly we model a turbulent boundary layer by fricttmoundary condition with
a friction parametep3 ~ 0.03URe~°2. For very large Reynolds numbers, we can
effectively uses = 0 in G2 computation corresponding to slip boundary condgtion
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We have initiated benchmark computations for tabulatingesof 5 (or o) for
different values ofRe by solving the Navier-Stokes equations with no-slip for glien
geometries such as a flat plate, and more generally for differalues o/, U and
length scale, since the dependence seems to be more commghesimply through the
Reynolds number. Early results are reported in [31] with 0.005 for v ~ 10~* and
U = 1, with corresponding velocity strain in the boundary lay&to, ~ 50 indicating
that the smallest radius of curvature without separatighigcase could be expected
to be abou©.02 [33].

7 Potential Flow

Potential flow(u, p) with velocity u = V¢, wherey is harmonic inQ2 and satisfies
a homogeneous Neumann condition Ibrand suitable conditions at infinity, can be
seen as a solution of the Navier-Stokes equations for §figigcous flow with slip
boundary condition, subject to

e perturbation of the volume forcgé = 0 in the form ofc = V - (2ve(u)),
e perturbation of zero friction in the form of; = 2ve(u)s,

with both perturbations being small becawsis small and a potential flow velocity

is smooth. Potential flow can thus be seen as a solution of #iveeNStokes equations
with small force perturbations tending to zero with the oisty. We can thus express
d’Alembert’s paradox as the zero lift/drag of a Navier-&slkolution in the form of a

potential solution, and resolve the paradox by realizireg fotential flow is unstable

and thus cannot be observed as a physical flow.

Potential flow is like an inverted pendulum, which cannot beesved in reality be-
cause it is unstable and under infinitesimal perturbationsstinto a swinging motion.
A stationary inverted pendulum is a fictious mathematicéltsmn without physical
correspondence because it is unstable. You can only obpbéemomena which in
some sense are stable, and an inverted pendelum or poftastia not stable in any
sense.

Potential flow has the following crucial property which pasill be inherited by
real turbulent flow, and which explains why a flow over a wingjsat to small skin
friction can avoid separating at the crest and thus gendmat@wash, unlike viscous
flow with no-slip, which separates at the crest without doasiw We will conclude
that gliding flight is possible only in slightly viscous inopressible flow. For simplic-
ity we consider two-dimensional potential flow around amgfical body such as long
wing (or cylinder).

Theorem. Let ¢ be harmonic in the domai in the plane and satisfy a homogeneous
Neumann condition on the smooth boundBrgf Q2. Then the streamlines of the cor-
responding velocityy = V¢ can only separate frofi at a point of stagnation with
u=Vp=0.

Proof. Let« be a harmonic conjugate towith the pair(, 1) satisfying the Cauchy-
Riemann equations (locally) ift. Then the level lines of> are the streamlines qf
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and vice versa. This means that as longvas # 0, the boundary curv€& will be a
streamline ofu and thus fluid particles cannot separate fidin bounded time.

8 Exponential Instability

Subtracting the NS equations with= 0 for two solutions(u, p, o) and(a, p, ) with
corresponding (slightly) different data, we obtain theédaing linearized equation for
the differenc€v, ¢, 7) = (u — 4,p — p,0 — &) with :

v+ (u-Vo+ v -VYi+Veg-V-1 = f—f inQ x I,
Vv = 0 inQ x1I,
vn = g—g onI' x I, (2)
7 = 0 onI' x I,
v(-,0) = u®—a° in Q,

Formally, withw anda given, this is a linear convection-reaction-diffusionipleam for
(v, q, 7) with the reaction term given by thex 3 matrix Vu being the main term of
concern for stability. By the incompressiblity, the tradeNou is zero, which shows
that in generaVa has eigenvalues with real value of both signs, of the sizg/af
(with | - | som matrix norm), thus with at least one exponentially usistaigenvalue.

Accordingly, we expect local exponential perturbationvgitoof sizeexp(|Vul|t)
of a solution(u, p, o), in particular we expect a potential solution to be illpasétis
is seen in G2 solutions with slip initiated as potential flevhich subject to residual
perturbations of mesh siZg in log(1/h) time develop into turbulent solutions. We
give computational evidence that these turbulent solstase wellposed, which we ra-
tionalize by cancellation effects in the linearized probjevhich has rapidly oscillating
coefficients when linearized at a turbulent solution.

Formally applying the curl operatdv x to the momentum equation of (1), with
v = @ = 0 for simplicity, we obtain thevorticity equation

O+ w-Vw—(w-Vu=Vx f inQ, (3)

which is a convection-reaction equation in the vorticity= V x u with coefficients
depending onu, of the same form as the linearized equation (2), with sinplap-
erties of exponential perturbation growtkp(|Vu|t) referred to avortex stretching
Kelvin’s theorem formally follows from this equation assimgp the initial vorticity is
zero andV x f = 0 (andg = 0), but exponential perturbation growth makes this con-
clusion physically incorrect: We will see below that largerticity can develop from
irrotational potential flow even with slip boundary condits.

9 Energy Estimatewith Turbulent Dissipation
The standar@nergy estimatéor (1) is obtained by multiplying the momentum equa-

tion
U+ (u-Vu+Vp—-V.-0—-f=0,
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with « and integrating in space and time, to get in the ¢ase0 andg = 0,

t
/ / R, (u,p) - udxdt = D, (u;t) + Bg(u;t) 4)
0 JQ
where
is theEuler residualfor a given solution(u, p) with v > 0,

D, (u;t) z/ot/gz/|e(u(t_,x))|2dxdf

is theinternal turbulent viscous dissipatipand

t
Bg(u;t):/0 /Fﬁ|us(f,x)|2dxdf

is theboundary turbulent viscous dissipatidnom which follows by standard manip-
ulations of the left hand side of (4),

K, (u;t) + Dy (u;t) + Bg(u;t) = K(u°), t>0, (5)

where )
K (ust) = —/ lu(t, )| dz.
2 Ja

This estimate shows a balance of #ieetic energyK (u;t) and theturbulent viscous
dissipationD, (u; t) + Bg(u;t), with any loss in kinetic energy appearing as viscous
dissipation, and vice versa. In particular,

D, (u;t) + Bg(u;t) < K(0),

and thus the viscous dissipation is bounded (i 0 andg = 0).
Turbulent solution®f (1) are characterized tgubstantial internal turbulent dissi-
pation, that is (fort bounded away from zero),
D(t) = lir% D(uy;t) >> 0, (6)
which is Kolmogorov’s conjectur§21]. On the other hand, the boundary dissipation
decreases with decreasing friction

lir% Bg(u;t) =0, (7)

since3 ~ %2 tends to zero with the viscosity and the tangential velocity, ap-
proaches the (bounded) free-stream velocity, which ismattordance with Prandtl’s
conjecture that substantial drag and turbulent dissipati@inates from the boundary
layer. Kolmogorov’s conjecture (6) is consistent with

1Ry, )0 ~ —=, ®)

Vullo ~ 7

1
\/;)
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where|| - ||o denotes thd.o(Q)-norm with@ = 2 x I. On the other hand, it follows
by standard arguments from (5) that

1Ry (u, )| -1 < Vo, (9)

where|| - | is the norm inLy(I; H=1(Q)). Kolmogorov thus conjectures that the
Euler residualR,, (u, p) for smallv is strongly (inL-) large, while being small weakly
(in H—1).

Altogether, we understand that the resolution of d’Alentbgraradox of explain-
ing substantial drag from vanishing viscosity, consistsealizing that the internal
turbulent dissipatiorD can be positive under vanishing viscosity, while the boupda
dissipationB will vanish. In contradiction to Prandtl, we conclude theagldoes not
result from boundary layer effects, but from internal tuemt dissipation, originating
from instability at separation.

10 G2 Computational Solution

We show in [31, 30, 32] that the Navier-Stokes equations &b) loe solved by G2
producing turbulent solutions characterized by substhtitrbulent dissipation from
the least squares stabilization acting as an automatialembe model, reflecting that
the Euler residual cannot be made small in turbulent regiGi2shas a posteriori error
control based on duality and shows output uniqueness in fglaes such as lift and
drag [31, 28, 29]

We find that G2 with slip is capable of modeling slightly visisoturbulent flow
with Re > 10° of relevance in many applications in aero/hydro dynamisluiding
flying, sailing, boating and car racing, with hundred thawsaof mesh points in sim-
ple geometry and millions in complex geometry, while acaogdo state-of-the-art
quadrillions is required [48]. This is because a frictiamefe/slip boundary condition
can model a turbulent blundary layer, and interior turbaéedoes not have to be re-
solved to physical scales to capture mean-value outpujs [31

The idea of circumventing boundary layer resolution byxielg no-slip boundary
conditions introduced in [28, 31], was used in [9] in the fapfrweak satisfaction of
no-slip, which however misses the main point of using a famedition instead of a
velocity condition.

An G2 solution(U, P) on a mesh with local mesh siZéx,t) according to [31],
satisfies the following energy estimate (wjth= 0, ¢ = 0 ands = 0):

K(U(t)) + Du(Ust) = K (u”), (10)

where .
Dy (Ust) = / / WR(U, P)P dadt, (11)
0 Q

is an analog oD, (u; t) with h ~ v, whereR, (U, P) is the Euler residual ofU, P)
We see that the G2 turbulent viscosiy, (U; t) arises from penalization of a non-zero
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Euler residualR;, (U, P) with the penalty directly connecting to the violation (ato
ing the theory of criminology). A turbulent solution is clhaterized by substantial
dissipationDy, (U; t) with || Ry, (U, P)|jo ~ h~'/%, and

|RR(U, P)||-1 < VA (12)

in accordance with (8) and (9).

11 Wellposedness of M ean-Value Outputs

Let M(v) = fQ vpdrdt be amean-value outpudf a velocityv defined by a smooth
weight-functiony(x, t), and let(u, p) and(U, P) be two G2-solutions on two meshes
with maximal mesh sizé. Let (y, 8) be the solution to thdual linearized problem

—p—(u-V)p+VUTp+Vl = inQ x I,
Vo = 0 inQ x I,
p-n = g onI' x I, (13)
o(T) = 0 in €,

whereT denotes transpose. Multiplying the first equationby U and integrating by
parts, we obtain the following output error representafin ?]:

M(w) = M) = [ (Rulu,p) = Ru(U. P)) - o dad (14)
Q

where for simplicity the dissipative terms are here omitfeaim which follows the a

posteriori error estimate:

[M(u) = M(U)| < S([|Bn(u, p)l|-1 + [[Ba(U, P)[|-1), (15)
where the stability factor
S =8u,UM)=SuU)=|o|mqg)- (16)

In [31] we present a variety of evidence, obtained by contjrial solution of the
dual problem, that for global mean-value outputs such ag dnal lift, S << 1/v/h,
while || R||_; ~ v/h, allowing computation of of drag/lift with a posteriori errcontrol
of the output within a tolerance of a few percent. In shortamgalue outputs such as
lift amd drag are wellposed and thus physically meaningful.

We explain in [31] the crucial fact that << 1/\/5, heuristically as an effect of
cancellationrapidly oscillating reaction coefficients of turbulent stbns combined
with smooth data in the dual problem for mean-value outpiiissmooth potential
flow there is no cancellation, which explains why zero liflg cannot be observed in
physical flows.

As an example, we show in Fig.10 turbulent G2 flow around a ¢t substantial
drag in accordance with wind-tunnel experiments. We seeti@rpaof streamwise
vorticity forming in the rear wake. We also see surface edgjxtiforming on the hood
transversal to the main flow direction. We will below discosimilar features in the
flow of air around a wing.
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Figure 10: Velocity of turbulent G2 flow with slip around a car

12 Scenario for Separation without Stagnation

We now present a scenario for transition of potential flove itutrbulent flow, based
on identifying perturbations of strong growth in the lineked equations (2) and (3) at
separation generating rolls of low pressure streamwistcityrchanging the pressure
distribution to give both lift and drag of a wing.

As a model of potential flow at rear separation, we considerptential flow
u(z) = (x1, —x2,0) in the half-plane{z; > 0}. Assumingz; andz, are small, we
approximate thes-equation of (2) by

Uy — v = fo,

where fo = fa(z3) is an oscillating mesh residual perturbation dependingp(n-
cluding also a pressure-gradient), for examfiérs) = hsin(xs/d), with § > 0. It
is natural to assume that the amplitudefetiecreases with. We conclude, assuming
v2(0,z) = 0, that

va(t, x3) = texp(t) f2(3),

and for the discussion, we assumg = 0. Next we approximate the-vorticity
equation forz, small andey > z; > 0 with z; small, by

. Owy
W Fr— —w =0,

8I1
with the “inflow boundary condition”

8’[12 - 8f2
The equation fotw; thus exhibits exponential growth, which is combined witlp@x

nential growth of the “inflow condition”. We can see thesetfiees in Fig.?? show-
ing how opposing flows on the back generate a pattern of @aiingtsurface vortices

w1(Z1, 2, x3) =
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which act as initial conditions for vorticity stretchingtinthe fluid generating rolls of
low-pressure streamwise vorticity, as displayed in Figgaid 3.

Altogether we expeatxp(t) perturbation growth of residual perturbations of size
h, resulting in a global change of the flow after tifie~ log(1/h), which can be
traced in the computations.

We thus understand that the formation of streamwise str@maitse result of a force
perturbation oscillating in thes direction, which in the retardation of the flow in the
xo-direction creates exponentially increasing vorticityhiex; -direction, which acts as
inflow to thew; -vorticity equation with exponential growth by vortex stfeing. Thus,
we find exponential growth at rear separation in both thedateon in thexs-direction
and the accelleration in the, direction. This scenario is illustrated in principle and
computation in Fig.11. Note that since the perturbatiomis/ected with the base flow,
the absolute size of the growth is related to the length oé tine perturbation stays in
a zone of exponential growth. Since the combined expordegroavth is independent
of ¢, it follows that large-scale perturbations with large aitojle have largest growth,
which is also seen in computations wiftthe distance between streamwise rollss as
seen in Fig.3 which does not seem to decrease with decreasing

Notice that at forward attachment of the flow the retardatioes not come from
opposing flows, and the zone of exponential growthvgis short, resulting in much
smaller perturbation growth than at rear separation.

We can view the occurence of the rear surface vorticities mgehanism of sep-
aration with non-zero tangential speed, by diminishingribemal pressure gradient
of potential flow, which allows separation only at stagnatid@he surface vorticities
thus allow separation without stagnation but the price rsegation of a system of low-
pressure tubes of streamwise vorticity creating drag inran fof “separation trauma”
or “cost of divorce”.

The scenario for separation can briefly be described asifsilvelocity instability
in retardation as opposing flows meet in the rear of the cglingenerates a zig-zag
pattern of surface vorticity from which by vorticity instéity in accelleration, a pattern
of rolls of low-pressure vorticity develops. We depict thienario is depicted in Fig.11.

13 Separation vs Normal Pressure Gradient

Fluid particles with non-zero tangential velocity can oslparate from a smooth
boundary tangentially, because the normal velocity vasgin the boundary. By ele-
mentary Newtonian mechanics it follows that fluid partidiaiw the curvature of the
boundary without separation if

0 U?

= E (7
and separate tangentially if

0 U?

B < T (18)

wherep is the pressure; denotes the unit normal pointing into the fluid,is the tan-
gential fluid speed ang is the radius of curvature of the boundary counted posifive i
the body is convex. This is because a certain pressure gtattiemnal to the boundary
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Figure 11: Turbulent separation without stagnation ingigle and simulation in flow
around a circular cylinder.

is required to accelerate fluid particles to follow the ctuve of the boundary. By mo-
mentum balance normal to the boundary, it follows tggtscales with the strain rate
relating separation t® as indicated in Section 4.

One of Prandtl’s boundary layer equations for a laminarousmo-slip boundary
layer states tha% = 0, from which follows separation at the crest of a wing without
downwash and lift [33]. However, Prandtl erronously asasts separation with an
adverse pressure gradient retarding the flow in a tangbntiiathe boundary. In any
case, gliding flight in viscous laminar flow with no-slip is pmssible. It is the slip
boundary condition resulting from a turbulent boundaryelayvhich makes the flow
stick to the upper surface of a wing and thus generate downarmdg lift.

14 Kutta-Zhukovsky’s Lift Theory is Non-Physical

We understand that the above scenario of the action of a windifferent angles of
attack, is fundamentally different from that of Kutta-Ztwwsky, although for lift there
is a superficial similarity because both scenarios involeglifired potential flow. The
slope of the lift curve according to Kutta-Zhukovsky2is® /180 ~ 0.10 as compared
to the computed.09.

Fig.1 shows that the circulation is small without any inaseap too = 10, which
gives evidence that Kutta-Zhukovsky'’s circulation theooupling lift to circulation
does not describe real flow. Apparently Kutta-Zhukovsky aggnto capture some
physics using fully incorrect physics, which is not science

Kutta-Zhukovsky’s explanation of lift is analogous to artdated explanation of
the Robin-Magnus effect causing a top-spin tennis ball tveewlown as an effect
of circulation, which in modern fluid mechanics is insteadlenstood as an effect of
non-symmetric different separation in laminar and turbtbundary layers [33]. Our
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Figure 12: Separation in slightly viscous flow with slip ogesmooth hill by generation
of surface vorticity. Notice that the flow separates afterdhest

results show that Kutta-Zhukovsky’s lift theory for a winig@aneeds to be replaced.
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