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Abstract

We present a scenario of stable 3d rotational separation in high Reynolds
number slightly viscous incompressible turbulent flow around a solid body
such as an airplane, car or boat, supported by computation, mathematical
analysis and experimental observation. Our scenario is fundamentally dif-
ferent from the scenario of unstable 2d irrotational separation in viscous flow
advocated by Prandtl in 1904 signifying the birth of modern fluid mechan-
ics of viscous flow as a development of classical fluid mechanics of inviscid
potential flow presented by Euler and d’Alembert. Our scenario allows a
description of high Reynolds number slightly viscous flow past a solid body
as inviscid potential flow before separation followed by 3d rotational sepa-
ration. We show that the pressure distribution of 3d rotational separation is
a determining factor for both drag and lift.

1 From Unstable to Stable Separation
In this note we present an analysis of the fundamental problem of fluid mechanics
of the motion of a solid body, such as a subsonic airplane, car or boat, through
a slightly viscous incompressible fluid such as air at subsonic speeds or water.
We focus on incompressible flow at large Reynolds number (of size 106 or larger)
around both bluff and streamlined bodies, which is always partly turbulent.

The basic problem is to determine the forces acting on the surface of the body
from the motion through the fluid, with the drag being the total force in the direc-
tion of the flow and the lift the total force in a transversal direction to the flow.
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As a body moves through a fluid initially at rest, like a car or airplane moving
through still air, or equivalently as a fluid flows around a body at rest, approaching
fluid particles are deviated by the body in contracting flow, switch to expanding
flow at a crest and eventually leave the body. The flow is said to attach in the front
and separate in the back as fluid particles approach and leave a proximity of the
body surface.

In high Reynolds number slightly viscous flow the tangential forces on the
surface, or skin friction forces are small and both drag and lift mainly result from
pressure forces and the pressure distribution at turbulent separation is of particular
concern.

Figure 1: Irrotational separation of potential flow around a circular cylinder (left)
from line of stagnation surrounded by a high pressure zone indicated by +, with
corresponding opposing surface flow instability (right) .

Separation requires stagnation of the flow to zero velocity somewhere in the
back of the body as opposing flows are meeting. Stagnation requires retardation
of the flow, which requires a streamwise increasing pressure, or adverse pressure
gradient. We show by a linearized stability analysis that retardation from opposing
flows is exponentially unstable, which in particular shows potential flow to be
unstable. Since unstable flow cannot persist over time, we expect to find a quasi-
stable separation pattern resulting from the most unstable mode of potential flow,
as a flow without streamwise retardation from opposing flows. By quasi-stable
we mean a flow which is not exponentially unstable and thus may have a certain
permanence over time.

Both experiment and computation show that there is such a quasi-stable sep-
aration pattern arising from transversal reorganization of opposing potential flow
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in the back into a set of counter-rotating vortex tubes of swirling flow (streamwise
vorticity) attaching to the body, accompanied by a zig-zag pattern of alternating
low and high pressure zones around points of stagnation with low pressure inside
the vortex tubes. This pattern is illustrated in Fig. 1 for a cylinder along with
computation and experiment, where we see how the flow finds a way to separate
with unstable streamwise retardation in opposing flows replaced by quasi-stable
transversal accelleration close to the surface before separation and in the swirling
flow after separation. We see this phenomenon in the swirling flow in a bathtub
drain, which is a stable configuration with transversal accelleration replacing the
unstable opposing flow retardation of fully radial flow.

Figure 2: 3d rotational separation from alternating high/low pressure: principle,
computation and experiment

We refer to this quasi-stable pattern as 3d rotational separation. This is a
macroscopic phenomenon with the stagnation points spaced as widely as possibe.
From macroscopic point of view the small skin friction of slightly viscous flow
can be modeled with a slip boundary condition expressing vanishing skin fric-
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tion. We show that computational solution of Navier-Stokes equations with slip
is possible at affordable cost, because with slip there are no boundary layers to
resolve, which makes it possible to compute both drag and lift of a of a car, boat
or airplane arbitrary shape without the quadrillions of mesh points for boundary
layer resolution commonly believed to be required [20].

The single high pressure zone stretching along the stagnation line of potential
flow around a circular cylinder (creating instability) as shown in Fig. 1, is thus
broken down into a pattern of high and low pressure zones by the development
of low pressure vortical flow, which allows the fluid to separate without unstable
streamwise retardation in opposing flow. The so modified pressure creates drag of
a bluff body and lift of a wing from the zero drag and lift of potential flow.

2 Resolution of D’Alembert’s Paradox
A potential solution can be viewed as an approximate solution of the Navier-
Stokes equations at high Reynolds number with a slip boundary condition, but a
potential solution is unphysical because both drag and lift are zero, as expressed
in d’Alembert’s paradox [15]. Inspection of potential flow shows unstable irrota-
tional separation of retarding opposing flow, which is impossible to observe as a
physical flow. D’Alembert’s paradox is thus resolved by observing that potential
flow with zero drag and lift is unstable [15] and thus unphysical, and not by the
official resolution suggested by Prandtl stating that the unphysical feature is the
slip boundary condition.

Although 3d rotational separation has a macroscopic features the flow is tur-
bulent at separation in the sense that the dissipation in the flow is substantial even
though the viscosity is very small, following the definition of turbulent flow in
[14].

3 Main Result
We present evidence in the form of mathematical stability analysis, computation
and observation, that high Reynolds number incompressible flow around a body
moving through a fluid can be described as

• quasi-stable potential flow before separation,

• quasi-stable 3d rotational separation.
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We show that both drag and lift critically depend on the pressure distribution of
3d rotational separation. We remark that in the attaching flow in the front the flow
is retarded by the body and not by opposing flows as in the back, which allows
stable potential flow attachment. We show that drag and lift of a body of arbitrary
shape can be accurately computed by solving the Navier-Stokes equations with
slip.

The description and analysis of the crucial flow feature of separation presented
here is fundamentally different from that of Prandtl, named the father of modern
fluid mechanics, based on the idea that both drag and lift originate from a thin
viscous boundary layer, where the flow speed relative to the body rapidly changes
from the free stream speed to zero at the body surface corresponding to a no-
slip boundary condition. Prandtl’s scenario for separation, which has dominated
20th century fluid, can be described as 2d boundary layer no-slip separation, to
be compared with our entirely different scenario of 3d no-boundary layer slip
separation.

The unphysical aspect of Prandtl’s scenario of separation is illuminated in
[18]:

• The passage from the familiar 2d to the mysterious 3d requires a complete
reconsideration of concepts apparently obvious (separation and reattach-
ment points, separated bubble, recirculation zone) but inappropriate and
even dangerous to use in 3d flows.

4 The Incompressible Navier-Stokes Equations with
Slip

We study separation in high Reynolds number slightly viscous incompressible
flow through the Navier-Stokes equations for an incompressible fluid of unit den-
sity with small viscosity ν > 0 and small skin friction β ≥ 0 filling a volume Ω
in R3 surrounding a solid body with boundary Γ over a time interval I = [0, T ]:
Find the velocity u = (u1, u2, u3) and pressure p depending on (x, t) ∈ Ω∪Γ× I ,
such that

u̇+ (u · ∇)u+∇p−∇ · σ = f in Ω× I,
∇ · u = 0 in Ω× I,
un = g on Γ× I,
σs = βus on Γ× I,

u(·, 0) = u0 in Ω,

(1)
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where u̇ = ∂u
∂t

, un is the fluid velocity normal to Γ, us is the tangential velocity,
σ = 2νϵ(u) is the stress with ϵ(u) the usual velocity strain, σs is the tangential
stress, f is a given volume force, g is a given inflow/outflow velocity with g = 0
on a non-penetrable boundary, and u0 is a given initial condition. We notice the
skin friction boundary condition coupling the tangential stress σs to the tangential
velocity us with β = U

2
cf , where cf = 2τ

U2 is the skin friction coefficient, with
β = 0 for slip (and β >> 1 for no-slip).

Experiments show that the skin friction coefficient decreases with increasing
Reynolds number Re as cf ≈ 0.05 ∼ Re−0.2, so that cf ≈ 0.0005 for Re = 1010

and cf ≈ 0.005 for Re = 105. Accordingly we model a turbulent boundary layer
by friction boundary condition with a friction parameter β ≈ 0.03URe−0.2 and in
the case of very large Reynolds number wih β = 0 corresponding to slip.

We show in [14, 12, 15] that the Navier-Stokes equations (1) can be solved by
a stabilized finite element referred to as G2 as an acronym for General Galerkin.
G2 produces turbulent solutions characterized by substantial turbulent dissipation
from the least squares stabilization acting as an automatic turbulence model, re-
flecting that the Navier-Stokes residual cannot be made small in turbulent regions.
G2 has a posteriori error control based on duality and shows output uniqueness in
mean-values such as lift and drag [14, 11, 10, 13]

We find that G2 with slip is capable of modeling slightly viscous turbulent
flow with Re > 106 of relevance in many applications in aero/hydro dynamics,
including flying, sailing, boating and car racing, with hundred thousands of mesh
points in simple geometry and millions in complex geometry, while according to
state-of-the-art quadrillions is required [20]. This is because a friction-force/slip
boundary condition can model a turbulent boundary layer, and interior turbulence
does not have to be resolved to physical scales to capture mean-value outputs [14].

5 Stability Analysis by Linearization
The stability of a Navier-Stokes solution is expressed by the linearized equations

v̇ + (u · ∇)v + (v · ∇)ū+∇q = f − f̄ in Ω× I,
∇ · v = 0 in Ω× I,
v · n = g − ḡ on Γ× I,

v(·, 0) = u0 − ū0 in Ω,

(2)

where (u, p) and (ū, p̄) are two Euler solutions with slightly different data, and
(v, q) ≡ (u− ū, p− p̄). Formally, with u and ū given, this is a linear convection-
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reaction problem for (v, q) with growth properties governed by the reaction term
given by the 3 × 3 matrix ∇ū. By the incompressiblity, the trace of ∇ū is zero,
which shows that in general ∇ū has eigenvalues with real values of both signs,
of the size of |∇u| (with | · | some matrix norm), thus with at least one exponen-
tially unstable eigenvalue, except in the neutrally stable case with purely imagi-
nary eigenvalues, or in the non-normal case of degenerate eigenvalues represent-
ing parallel shear flow [14].

The linearized equations in velocity-pressure indicate that, as an effect of the
reaction term (v · ∇)ū:

• streamwise retardation is exponentially unstable in velocity,

• transversal accelleration is neutrally stable,

where transversal signifies a direction orthogonal to the flow direction.
Additional stability information is obtained by applying the curl operator ∇×

to the momentum equation to give the vorticity equation

ω̇ + (u · ∇)ω − (ω · ∇)u = ∇× f in Ω, (3)

which is also a convection-reaction equation in the vorticity ω = ∇× u with co-
efficients depending on u, of the same form as the linearized equation (5), with a
sign change of the reaction term. The vorticity is thus locally subject to exponen-
tial growth with exponent |∇u|:

• streamwise accelleration is exponentially unstable in streamwise vorticity.

We sum up as follows: The linearized equations (5) and (5) indicate exponen-
tial growth of perturbation of velocity in streamwise retardation and of stream-
wise vorticity in streamwise accelleration. We shall see in more detail below 3d
rotational separation results from exponential instability of potential flow in retar-
dation followed by vortex stretching in accelleration, with the retardation replaced
by neutrally stable transversal accelleration.

Note that in classical analysis it is often argued that from the vorticity equa-
tion (5), it follows that vorticity cannot be generated starting from potential flow
with zero vorticity and f = 0, which is Kelvin’s theorem. But this is an incorrect
conclusion, since perturbations of f̄ of f with ∇ × f̄ ̸= 0 must be taken into
account, even if f = 0. What you effectively see in computations is local expo-
nential growth of vorticity on the body surface in rear retardation and by vortex
stretching in accelleration, even if f = 0, which is a main route of instability to
turbulence as well as separation.
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6 Exponential Instability of 2d Irrotational Separa-
tion

We now analyze the stability of 2d irrotational separation considered by Planck
in the following model of the potential flow around a circular cylinder studied in
more detail below: u(x) = (x1,−x2, 0) in the half-plane {x1 > 0} with stagnation
along the line (0, 0, x3) and

∂u1
∂x1

= 1 and
∂u2
∂x2

= −1, (4)

expressing that the fluid is squeezed by retardation in the x2-direction and ac-
celleration in the x1-direction. We first focus on the retardation with the main sta-
bility feature of (5) captured in the following simplified version of the v2-equation
of (5), assuming x1 and x2 are small,

v̇2 − v2 = f2,

where we assume f2 = f2(x3) to be an oscillating perturbation depending on x3
of a certain wave length δ and amplitude h, for example f2(x3) = h sin(2πx3/δ),
expecting the amplitude to decrease with the wave length. We find, assuming
v2(0, x) = 0, that

v2(t, x3) = (exp(t)− 1)f2(x3).

We next turn to the accelleration and then focus on the ω1-vorticity equation, for
x2 small and x1 ≥ x̄1 > 0 with x̄1 small, approximated by

ω̇1 + x1
∂ω1

∂x1
− ω1 = 0,

with the “inflow boundary condition”

ω1(x̄1, x2, x3) =
∂v2
∂x3

= (exp(t)− 1)
∂f2
∂x3

.

The equation for ω1 thus exhibits exponential growth, which is combined with ex-
ponential growth of the “inflow condition”. We can see these features in principle
and computational simulation in Fig. 1 showing how opposing flows at separation
generate a pattern of alternating surface vortices from pushes of fluid up/down,
which act as initial conditions for vorticity stretching into the fluid generating
counter-rotating low-pressure tubes of streamwise vorticity.
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The above model study can be extended to the full linearized equations lin-
earized at u(x) = (x1,−x2, 0):

Dv1 + v1 = − ∂q
∂x1
,

Dv2 − v2 = − ∂q
∂x2

+ f2(x3),

Dv3 = − ∂q
∂x3
,

∇ · v = 0

(5)

where Dv = v̇ + u · ∇v is the convective derivative with velocity u and f2(x3)
as before. We here need to show that the force perturbation f2(x3) will not get
cancelled by the pressure term − ∂q

∂x2
in which case the exponential growth of v2

would get cancelled. Now f2(x3) will induce a variation of v2 in the x3 direction,
but this variation does not upset the incompressibility since it involves the varia-
tion in x2. Thus, there is no reason for the pressure q to compensate for the force
perturbation f2 and thus exponential growth of v2 is secured.

We thus find streamwise vorticity generated by a force perturbation oscillating
in the x3 direction, which in the retardation of the flow in the x2-direction creates
exponentially increasing vorticity in the x1-direction, which acts as inflow to the
ω1-vorticity equation with exponential growth by vortex stretching. Thus, we find
exponential growth at rear separation in both the retardation in the x2-direction
and the accelleration in the x1 direction, as a result of the squeezing expressed by
(4).

Since the combined exponential growth is independent of δ, it follows that
large-scale perturbations with large amplitude have largest growth, which is also
seen in computations with δ the distance between streamwise rolls as seen in Fig.
5 which does not seem to decrease with decreasing h. The perturbed flow with
swirling separation is large scale phenomenon, which we show below is more
stable than potential flow.

The corresponding pressure perturbation changes the high pressure at separa-
tion of potential flow into a zig-zag alternating more stable pattern of high and
low pressure with high pressure zones deviating opposing flow into non-opposing
streaks which are captured by low pressure to form rolls of streamwise vortic-
ity allowing the flow to spiral away from the body. This is similar to the vortex
formed in a bathtub rain.

Notice that in attachment in the front the retardation does not come from op-
posing flows but from the solid body, and the zone of exponential growth of ω2 is
short, resulting in much smaller perturbation growth than at rear separation.

We shall see that the tubes of low-pressure streamwise vorticity change the
normal pressure gradient to allow separation without unstable retardation, but the
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price is generation of drag by negative pressure inside the vortex tubes as a “cost
of separation”.

7 Quasi-Stable Rotational 3d Separation
We discover in computation and experiment that the rotational 3d separtion pattern
just detected as the most unstable mode of 2d, represents a quasi-stable flow with
unstable retardation in opposing flows replaced by transversal acceleration.

As a model of flow with transversal accelleration we consider the potential
velocity u = (0, x3,−x2) of a constant rotation in the x1-direction, with corre-
sponding linearized equations linearized problem

v̇1 = 0, v̇2 + v3 = 0, v̇3 − v2 = 0, (6)

which model a neutrally stable harmonic oscillator without exponential growth
corresponding to imaginary eigenvalues of ∇u.

Further, shear flow may represented by (x2, 0, 0), which is marginal unsta-
ble with linear perturbation growth from degenerate zero eigenvalues of ∇u, as
analyzed in detail in [14].

8 Quasi-Stable Potential Flow Attachment
The above analysis also shows that potential flow attachment, even though it in-
volves streamwise retardation, is quasi-stable. This is because the initial pertur-
bation f2 in the above analysis is forced to be zero by the slip boundary condition
requiring the normal velocity to vanish. In short, potential flow attachment is sta-
ble because the flow is retarded by the solid body and not by opposing flows as in
separation.

This argument further shows that a flow retarded by a high pressure zone is
quasi-stable in approach because it is similar to attachment.

9 Circular Cylinder
We consider the flow around a around a long circular cylinder of unit radius with
axis along the x3-axis in R3 with coordinates x = (x1, x2, x3), assuming the flow
velocity is (1, 0, 0) at infinity.
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9.1 Unstable Unphysical Potential Flow
Potential flow as inviscid, irrotational, incompressible stationary flow, is given in
polar coordinates (r, θ) in a plane orthogonal to the cylinder axis by the potential
function, see Fig. 3,

φ(r, θ) = (r +
1

r
) cos(θ)

with corresponding velocity components

ur ≡
∂φ

∂r
= (1− 1

r2
) cos(θ), us ≡

1

r

∂φ

∂θ
= −(1 +

1

r2
) sin(θ)

with streamlines being level lines of the conjugate potential function

ψ ≡ (r − 1

r
) sin(θ).

Potential flow is constant in the direction of the cylinder axis with velocity (ur, us) =

Figure 3: Potential flow past a circular cylinder: fully symmetric velocity (left)
and pressure (right).

(1, 0) for r large, is fully symmetric with zero drag/lift, attaches and separates
at the lines of stagnation (r, θ) = (1, π) in the front and (r, θ) = (1, 0) in the
back. Potential flow shows exponentially unstable 2d irrotational separation but
quasi-stable 2d attachment. Potential flow thus represents physical flow before
separation but not in separation and after separation.
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By Bernouilli’s principle the pressure is given by

p = − 1

2r4
+

1

r2
cos(2θ)

when normalized to vanish at infinity. We compute

∂p

∂θ
= − 2

r2
sin(2θ)),

∂p

∂r
=

2

r3
(
1

r2
− cos(2θ)),

and discover an adverse pressure gradient in the back. Further, the normal pressure
gradient on the boundary

∂p

∂r
= 4 sin2(θ) ≥ 0

is precisely the force required to accelerate fluid particles with speed 2| sin(θ)|
to follow the circular boundary without separation, by satisfying the condition of
non-separation on a curve with curvature R

∂p

∂n
=
U2

R
. (7)

We note, coupling to the above discussion relating to (??), that ∂us

∂r
= 2

r3
sin(θ) =

2 at the crest. We further compute

∂ψ

∂r
=

1

r2
sin(θ)

which shows that fluid particles decrease their distance to the boundary in front of
the cylinder and increase their distance in the rear, but the flow only separates at
rear stagnation.

9.2 Quasi-Stable Physical Turbulent Flow
Solving Navier-Stokes equations with very small viscsoity and slip boundary con-
dition by G2 we find the a a flow initialized as potential flow develops into a tur-
bulent solution with rotational separation as identified above, in shown in Fig. 4
and 5.

10 NACA0012 Trailing Edge Separation
The separation at the trailing edge of a wing is similar to that of a circular cylinder,
as shown in Fig. 10 for a NACA012 wing at 5 degrees angle of attack.
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Figure 4: Turbulent flow past a cylinder; velocity (left) and pressure (right). No-
tice the low pressure wake of strong streamwise vorticity generating drag.

Figure 5: Levels surfaces of strong vorticity in EG2 solution: streamwise |ω1|
(left) and transversal |ω2| (middle) and |ω3| (right), at two times t1 < t2 (upper,
lower), in the x1x3-plane.
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Figure 6: Velocity, pressure and vorticity at trailing edge separation for
NACA0012 wing. Notice the zig-zag pattern of the velocity.
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Figure 7: Evidence that drag and lift of a wing can be computed by solving the
Navier-Stokes equations with slip without resolving any boundary layers.

11 Accuracte Drag and Lift without Boundary Layer
We compare in Fig. 14 drag and lift of a long NACA0012 wing for different angles
of attack including stall computed by solving the of Navier-Stokes equations with
slip using Unicorn ??, with different experiments and notice good agreement. We
conclude that drag and lift are computable without resolving and boundary layers.

12 Sphere
Potential flow around a sphere is exponentially unstable at its point of stagnation
at separation and develops a quasi-stable separation pattern of four counterrotating
rolls of streamwise vorticity as shown in Fig. ??.

13 Hill
In Fig. 9 we show turbulent Euler flow over a hill with separation after the crest
by again the mechanism of tangential separation through generation of surface

15



Figure 8: Pattern of exponential instability of potential flow at the point of stagna-
tion of potential flow around a sphere forming four counterrotating rolls of stream-
wise vorticity shown in computation.

vorticity.

14 Flat Plate
The experience reported above suggests the following scenario for separation into
a turbulent boundary layer over a flat plate as a representation of a smooth bound-
ary: (i) Rolls of streamwise vorticity are formed by non-modal linear perturbation
growth referred to as the Taylor Görtler mechanism in [14]. (ii) The rolls create
opposing transversal flows (as in the back of cylinder), which generate surface
vorticity which is stretched into the fluid while being bent into to streamwise di-
rection, as evidenced in e.g. [6, 7].
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