EL2310 Scientific Programming
LAB2: C lab session

Patric Jensfelt

Chapter 1

Introduction

1.1 Reporting errors

As any document, this document is likely to include errors and typos. Please
report these to patric@kth.se.

1.2 Acknowledgements
Valuable feedback and error reports on this document have been provided by:
e T. Gezork 2008

Thank you!

1.3 Before getting started

Have a look at the first part of the Matlab lab session if you are not familiar
with Unix/Linux computers. If you want to run the lab on your own Windows
laptop then Cygwin might be an alternative. Another way would be to using
VMWare and create a virtual Linux machine on your windows machine. For
information on Cygwin see the lecture notes.

Chapter 2

Lab instructions

2.1 Getting help

On Unix/Linux systems (including Cygwin) it is possible to get help regarding
the syntax of a certain function by using the man command. These so called
man-pages contains information about what include files to use, what arguments
to pass and what the return values are.

Task

Test the man function on the functions atoi and atof. The syntax is
man atof

2.2 Repetition

Repeating a certain calculation or operation a number of times is a very common
task. In C there are (at least) three ways to accomplish this. These are for,
while and do-while.

Task

Write programs loop-for.c, loop-while.c and loop-do-while.c which gen-
erates the following output on the screen using different ways to do the itera-
tionl]

1

2

4

8

16

32

1For more information see slides from lecture 7

2.3 Command line arguments

In many cases you want to be able to control the execution of your program
somehow. One way to do this is to have the user input information during the
execution. Another way that is frequently used in the Unix/Linux world is to
provide the program with command line arguments.

2.3.1 Syntax

To get command line argument you need to add some input parameters to your
main function.

int main(int argc, char *argv[])

Here argc tells how many input arguments there are and argv contains the
input arguments.

Task

Write a program, parse_input. c that iterates through the input arguments and
prints them one by one on the screen. Remember that char *argv[] is an array
of char* |, i.e. character arrays or strings (C style). Try with the following

e .\parse_input

e .\parse_input 1

e .\parse_input hello world
e .\parse_input -h

e .\parse_input -x 4

What is argv[0]?

2.3.2 Converting char* to int and double

You often want be able to input numerical values to your program. However, all
inputs from the keyboard are in the form of characters (arrays). To convert from
character array to a number we can use the functions atof (char* to double)
and atoi (char* to int).

Task

Write a program to test atoi and atof. Try for example the following

e printf (““%d\n’’, toi(‘‘1’7));

printf (¢ ‘%f\n’’, tof(‘‘1°’));

printf(‘‘%d\n’’, toi(“‘1.2°7));

printf(‘‘%f\n’’, tof(““1.2°7));

printf(‘‘%d\n’’, toi(‘‘1Sven’’));

printf(‘‘%d\n’’, toi(‘‘Sven’’));

2.3.3 Parsing of command line arguments

If you only want to pass in a single value it is easy to do by simply using the
argv-array directly. However when you start to get many different possible
command line arguments and in addition you might want to be able to put
them in different order on the command line the following construction is quite
useful

#include <unistd.h>

int main(int argc, char *argv[]) {

const char *optstring = "i:j";
char o = getopt(argc, argv, optstring);
while (o != -1) {
switch (o) {
case ’i’:
printf (¢ ‘The argument for -i is \"%s\"\n",optarg);
break;
case ’j’:
printf(‘ ‘This option has no argument");
break;
case ’7’:
fprintf (stderr, "Usage:7%);
return -1;

}

= getopt(argc, argv, optstring);

}

Task

Write a program, coords.c, which you can send in x and y coordinates with
command line options -x and -y. The variables x and y should be given default
values x=1 and y=2 which can be overridden on the command line. The program
should print out the value of x and y at the end and the sum of these. The
following two calls should be possible

e .\coords -x 3 -y 4
e .\coords -y 4 -x 3
e .\coords -x 3

e .\coords -y 4

2.4 Pointers

Pointers are special variables which contain the address of a variable. Knowing
the address to where the variable is stored makes it possible to change the value
of the variable for example. The following code declares an integer variable and

a pointer to an integer, this pointer is then set to point to the integer and finally
the value of the integer variable is changed using the pointer to it.

int a;

int *p;

p = &a;

p=4;

Task

Write a program with one function (in addition to the main function). The
main function should call the other function which return the evaluation of a
function, say cos(x) where z is the first argument to the function. The function
should be written such that a second output containing the derivative of the
function can be given by using a second pointer argument, i.e.

double eval(double x, double *dfdx);. The function should be implemented
so that the caller can choose not to have the derivative calculated. Hint: You
can test if the address passed in is NULL for the second argument.

2.5 Pointers to functions

Just like you can define pointers to variables you can define pointers to func-
tions. To define a variable p which is a pointer to a function that returns a
double and takes a double as argument you would write

double (*p) (double);

Notice that p is the name of the function. You assign a value to the pointer
by
p = fcnil;
assuming that fcnl is the name of a function with the same interface as above.
You can then use the function by dereferencing the pointer
(*xp) (4.2)
You can also have an array of function pointers.
double (*p[4]) (double);
declares an array of 4 function pointers. You assign values by
pl0] = fcni;
and you use them as
(xp[0]1)(4.2);

Task

Write a program that defines several different functions with the above interface,
i.e. returning a double and taking a double as argument. Create an array
of pointers to these functions and loop over them and call them with some
argument and print the return value. The functions could be for example x+x,

x*x, sqrt(x), Use this to create a nice looking table along the lines of
X x+tx x*x sqrt(x)
1.1 2.2 1.21 1.05
1.2

	Introduction
	Reporting errors
	Acknowledgements
	Before getting started

	Lab instructions
	Getting help
	Repetition
	Command line arguments
	Syntax
	Converting char* to int and double
	Parsing of command line arguments

	Pointers
	Pointers to functions

