EL2310 Scientific Programming
LAB3: C++ lab session

Patric Jensfelt

Rev 1: Autumn 2007
Rev 2: Autumn 2009



Chapter 1

Introduction

1.1 Reporting errors

As any document, this document is likely to include errors and typos. Please
report these to patric@kth.se.

1.2 Acknowledgements

Valuable feedback and error reports on this document have been provided by:

e No one so far...

1.3 Before getting started

Have a look at the first part of the Matlab lab session if you are not familiar
with Unix/Linux computers. If you want to run the lab on your own Windows
laptop then Cygwin might be an alternative. Another way would be to using
VMWare and create a virtual Linux machine on your windows machine. For
information on Cygwin see the lecture notes.



Chapter 2

Lab instructions

2.1 Class definition

One of the core concepts in C++ is the class. In C we looked at using a struct
to create compound data types of simple data types. The class takes this a step
further and allows you to have not only data but also functions that operates
on the data all collected in one unit, the class.

Task

Define a class Matrix such that the you can run the following program:

Matrix m1(3,3);

ml = 0; // set all elements to the same scalar value
for (dnt i = 0; i < 2; i++) m1(i,i) = 1+i*2;

cout << ‘‘ml=’’ << ml << endl;

Matrix m2(3,3);

m2 = ml; m2(0,2) = 5;

m2(1,0) = 42;

cout << ‘‘m2=’’m2 << endl;

Matrix m3(m1+m2);

cout << ‘‘m3=’’ << m3 << endl;

cout << ‘‘m3-m2=’’ << m3-m2 << endl;
cout << ‘‘m3*m2=’’ << m3*m2 << endl;
Help

You might want to take a look at operators like the following when solving the
task

e ostream& operator<<(ostream &os, const Matrix &m);

e Matrix operator+(const Matrix &ml, const Matrix &m2);



2.2 Reference

The standard way of passing arguments to functions is “by value”, i.e. you pass
the value of the function argument into the function. For small data types like
the basic datatypes this is not in general a big problem from a performance
point of view. For large data types, like images, this should be avoided if pos-
sible. There are two ways in C++ to avoid this in C and C++, one is to use
pointers (which you can do in C as well), the other is to use a reference.

Consider the three functions
void fcnl(double x) {
X = 2;

}

void fcn2(double *x) {
X = 42;

}

void fcn3(double &x) {
x = 4711;

}

Task

Make sure you knwo the difference between the three? Make sure you know how
to call the three functions. What will happen to the variable you call it with?
Can you do fcn1(4)? What about fcn2(4) and fcn3(4).

2.3 const

Using references is often motivated by avoiding to copy large pieces of data.
However, passing a variable by reference allows the function to change the value
of the variable which might not always be desirable.

Task

e Make sure you know the difference between the following constructions
(you can combine them as well)

1. const double& fcni(double x);
2. double fcn2(double x) const;
3. double fcn3(const double& x);

e Give examples of when they would be used.

e What is the condition for a function to be called from inside fcn2 from
above?



2.4 Inheritance

Inheritance is a powerful method that allows you to express dependencies of
type “is a” between classes. The syntax for inheritence is

class B : public A { ...

if you want B to inherit from A.

Task

e Implement a class hierachy with the base class Animal and at least two
levels of subclasses such as Mammal and Human.

e What information/functionality would you put at what level

e If you have a function that accepts an Animal as input is ok to send in a
Mammal? Why? What if it the function wanted a Mammal, could you
send in an Animal?

e What if you implement the same function in all classes, which one will be
used?

e Investigate what happens if you change the public in the inheritance to
protected and private.



2.5 virtual

Function overloading allows you to re-define the meaning of a function. However,
if you use normal overloading you need to have a reference or poiner to the exact
right subclass to get the right implementation. In other words, continuing the
example from above, if you have a function that takes an Animal as input there
is no way that you can use any of the overloaded functions that might be in the
subclasses. The solution to this is to use the virtual keyword.

Task

Implement a base class A and let this class have two function printInfol and
printInfo2 defined like this

void printInfol();

virtual void printInfo2();

Add some data member to this base class and implement the print functions so
that they print the information about the object.

Now implement a subclass B of A. Add some new data in B and overload
the two print functions such that they print the content of A and B (Can you
re-use the print functions in A somehow for printing the A part?).

What happens and why with the following program?
void print(A &a) {

a.printInfol();
a.printInfo2();

}

in

ct

main() {
A a;

B b;
a.printInfol();
b.printInfol();
a.printInfo2();
b.printInfo2();
printQ;



2.6 STL

The Standard Template Library (STL) contains some handy classes that are
often of use. These classes are so called template classes that allow you to
specify what data type they should operate on. The idea with templates is that
you can define how a class or function should work on some general data type.
One example of this is a list. Instead of having to implement a list class for
every data type you might want to put in the list you can define a list template
class so that you define when you use it what type of data to put in it.

These template classes can be found in the std namespace. To use a class
such as the list class you need to specify what type the list should contain, such
as std::list<std::string> for a list of strings.

Three of the most common types are std::1ist, std::1ist and std: :map.

2.6.1 std::list

A list provides the means to store elements in a list and provides means to step
back and forth between elements, check how many elements (size()). A list is a
good choice if you do not know before hand how many elements you will want
to store and it is expensive to create new objects. When a new element is added
to a list space only needs to be allocated for the new element and it is inserted
into the structure by redefining some pointers internally. A list is a bad choice
if you want to be able to access an element at a particular position in the list
fast as you need to step element by element through the list. To move between
the element you use so called iterators. The code below illustrates how you can
use a list.

#include <list>

std::list<double> dlist;
dlist.push back(4.12);
dlist.push_back(1l);
dlist.push_front(3.14);
dlist.push_back(2.78);

std::cout << "List contains:" << std::endl;
for (std::list<double>::iterator i = dlist.begin(); i != dlist.end();
i++)
std::cout << *i << std::endl;
std::cout << std::endl;

dlist.pop_front();
dlist.pop_back();
std::cout << "List contains:’’ << std::endl;
for (std::list<double>::iterator i = dlist.begin(); i !'= dlist.end();
i++)
std::cout << *i << std::endl;
std::cout << std::endl;

std::cout << "The first element is " << dlist.front() << std::endl;
std::cout << "The last element is " << dlist.back() << std::endl;



2.6.2 std::vector

A vector provides an interface for access similar to that of an array. That is if
v is a vector you can access the first element with v[0]. You can access the
elements using using the iterators as well. You can only push new objects at
the end and only pop them from the back. A vector allows you to preallocate
the size (resize()) of the vector so that you do not need to resize it every time
you add an element.

2.6.3 std::map

A map allows you to start pairs of objects where the first one is the index/key
which can be used in find operations. An example of using a map is given below.
#include <map>

std: :map<int,double> dmap;

dmap.insert(std: :make_pair(2,2.78));

dmap.insert(std: :make_pair(1,3.14));
dmap.insert (std: :make pair(42,4711));

std::cout << "Elements in map:" << std::endl;

int n = 0;

for (std::map<int,double>::iterator i = dmap.begin(); i != dmap.end();
i++)

std::cout << "Element " << ++n << " " << i->first << ":" << i->second
<< std::endl;

std::cout << std::endl;

std: :map<int,double>::iterator f = dmap.find(2);

if (f != dmap.end()) std::cout << "found " << f->second << std::endl;
else std::cout << "Did not find any element" << std::endl;

Task

e Play with vectors and lists in different situations to see how they behave
when you need to allocate many elements dynamically or when you need
to access a certain one. Which is more effecient in what situation?

e Use a map to define a lookup table from month number to month name.

e If you want to create a list of Vehicles where Vehicle is the base class for
Car, Motorcycles, etc. How would you define the list such that your list
can have any type of Vehicle in it?



	Introduction
	Reporting errors
	Acknowledgements
	Before getting started

	Lab instructions
	Class definition
	Reference
	const
	Inheritance
	virtual
	STL
	std::list
	std::vector
	std::map



