
EL2310 Scientific Programming

LAB1: MATLAB lab session

Patric Jensfelt



Chapter 1

Introduction

1.1 Goals for this lab

The goals for this lab is

• handle the computers in the computer rooms

• create and edit files

• get started using MATLAB

• basic MATLAB programming

1.2 Reporting errors

As any document, this document is likely to include errors and typos. Please
report these to patric@kth.se.

1.3 Acknowledgements

Valuable feedback and error reports on this document have been provided by:

• K. Huber, 2009

1.4 Prerequisite

You need to have a computer on which you can run matlab. Matlab runs every-
where and you can download it from http://progdist.ug.kth.se/public/ assuming
you have a working kth.se account. If you want to use the CSC Unix computers
and need some help to get started you can read the next section. If you want
to use some other computer or alread know what is needed to know about the
CSC computers you can skip to Chapter ??.

1

http://progdist.ug.kth.se/public/


1.5 Before getting started with CSC Unix com-
puters

If you want to use the CSC computers you need a working CSC computer ac-
count. If you are attending the Master Program Systems, Control and Robotics
you should have been given a kth.se-account. If you attended the first EE-
registration this account should have been transfered to the CSC-computers
and you should be able to login with the same name and password as you were
given for the kth.se. Note that if you change the kth.se passwd this will not
have affected the csc.kth.se account and you should thus use the original lo-
gin/passwd. If you have any problems doing so please contact the course leader
or if you know that you should have a working account go directly to the systems
group “Delfi” located at the ground floor at Oscars backe 2.

You can skip this section if you are already familiar with a Unix/Linux
system and emacs.

1.5.1 The terminal window

Many of the tasks you want to do can be performed by using the mouse. How-
ever for some tasks you may want to be be able to instruct the computer what
to do by typing in commands. You do this in a terminal window. The terminal
window on a Unix/Linux system looks and works much the same as the com-
mand prompt on a Windows machine. To start the terminal window you can
right-click on the mouse to get a popup-menu from which you can choose to
start a terminal window.

1.5.2 Files and folders

Each of you will be assigned a directory in the file system where you can store
your own files. Each directory in the file system contains files and directories.
A directory is also known as a folder as it stores things. It is good practice to
organize your files into folders so that it is easy to find them afterwards.

If you want to see where you are in the file system you can issue the command

pwd

at the command prompt in a terminal window. This results in an output similar
to

/afs/nada.kth.se/home/cvap/patric

depending on who you are.

Listing a folder

To list files in the current directory you issue the command

ls

This will give you a list of files and folders. If you want a bit more information
than the name of the files and folders you can do

ls -l

2



Just like in Windows there are hidden files/folders in Unix/Linux. These
files are prefixed with a “.”. Most of these files are system setting files so be
careful with these. To see these files do

ls -a

or if you want more information at the same time

ls -la

If you want to see all files of a certain kind the wild card “*” is very useful.
The wild card can be used more than once in a filename. For example

ls *scr*

lists all files that contains the letters “scr” in that order and in lower case. To
list all matlab m-files that you have written in a certain directory you would do

ls *.m

Notice that each directory contains a file “.” and one “..”. These are special
files that allows you to move up and down the file hierarchy.

Also notice that the filenames in Unix/Linux are case sensitive. That means
that “file.txt” and “File.txt” are not the same.

Moving in the file system

To change the current directory you use the command

cd <folder>

where <folder> is the name of a folder you want to move into.
Using the special file mentioned above you can move to the directory above

in the tree (the one containing the current directory) with

cd ..

To move to you home directory simply do

cd

i.e. cd without argument. You can also use the special symbol “ “ which stands
for you home directory, that is

cd ~

or equivalently

cd ~/

The slash (“/”) at the end of a folder name is optional but is needed when
you want to specify a path that contains more than one folder name, for example

cd foo/bar

(assuming that you have a directory foo with another directory bar inside).
To move to the previous directory, i.e. the directory that you were in before

the current one do

cd -

3



Creating a folder

To create a folder you use the command

mkdir <folder>

Deleting a folder

To delete a folder use the command

rmdir <folder>

This is not possible unless the directory is empty. If the system claims that the
directory is not empty but you cannot see any files/folders it could be that they
are hidden (use ls -a to see them).

Deleting files

When you delete a file always think twice. There is no easy way to get a file
back. You delete a file with

rm <file>

1.5.3 Using emacs

When editing files under Unix emacs is one of the most common editors. You
start emacs from the command line in a terminal window with

emacs&

the “&” at the end tell the system to start emacs as a separate process and
allow you to continue the terminal window for other things.

Notice that during this, the matlab lab session, you do not need to use emacs.
You can use the built-in matlab editor instead.

Creating a new file or opening an existing one

To create a new file you select the “Open file” menu option or press ctrl-x
followed by ctrl-f. This will give you a line at the bottom of the emacs
window where you can enter the filename. If the file already exists you open
that file and if it does not exist you create a new empty file.

Editing the file

You can input text by simply typing in the window.

Saving the file

To save you changes either use the menu option save or press ctrl-x followed
by ctrl-s. If you want to save the file under another name either use menu
option “Save buffer as” or press ctrl-x followed by ctrl-w.

4



More on emacs

A manual for emacs is avalible at the GNU emacs home page
http://www.gnu.org/software/emacs/manual/emacs.html in for example pdf and
html format.

5

http://www.gnu.org/software/emacs/manual/emacs.html
http://www.gnu.org/software/emacs/manual/emacs.pdf
http://www.gnu.org/software/emacs/manual/html_mono/emacs.html


Chapter 2

Lab instructions

2.1 Starting Matlab

To start Matlab, open a terminal window and type

matlab&

Depending on your configuration you might have to issue the command

module add matlab

before being able to start Matlab.

2.1.1 Getting help on matlab

When using matlab there are several sources of information besides the web.

Tasks

Make yourself familiar with the following ways to get help

help If you know what a function is called but you are uncertainty about the
syntax you can use the help function.
Syntax: help <function>

doc The function doc is similar to help but brings up a separate window with
the information.

lookfor If you do not know what a function is called and if such a function
exist but you know what you want it to do you can search for this with lookfor
Syntax: lokfor <keyword>

helpdesk If you want to get more general information you can use the helpdesk
function by simply typing helpdesk. This will bring up the manual with docu-
mentation starting from the very basics of matlab to specific information about
functions. You can accomplish this also by going into the help menu in matlab
and selecting “Full product family help”.

6



2.2 Command line input

Matlab is interactive. When you type something on the command line it is
interpreted and text feedback, return values etc are given back. You can supress
Matlab’s output by ending the line with a “;”.
>> a = 5 will print out something on the screen whereas >> a = 5; will not.
In this example it does not matter much but when working with large matrices
or functions you typically do not want to have a lot of output on the screen
unless you are debugging.

2.3 Vectors

There are a number of ways to create sequences/arrays of numbers in matlab

2.3.1 Creating a vector

Enumeration

The simplest way to create vector is to enumerate the elemets.
Ex: v = [2 4 6 9]

colon

If you want to create a sequence of number with a fixed step inbetween you can
use the colon function or the colon-notation.
Ex: v = 1:3:10
which will create a vector with number between 1 and 9 separated by 3, i.e.
the sequence 1,4,7 and 10. You can use any float point value for the start, step
and end value and you can use a negative step value if you want to have an
ascending sequence of numbers.

linspace

The colon-notation above is very convenient when you work with integer val-
ues and when it does not matter so much if you actually include the start
and the end. The function linspace allows you to easily create a sequence
of equally spaced number between a start and end value, including both ends.
linspace(x1, x2, n) where x1, x2, n and start values, end value and num-
ber of valus respectiviely.

logspace

Similar to linspace, logspace creates a vector with numbers that are loga-
rithimcally spaced.
logspace(x1,x2,n)
will create n numbers between 10x1 and 10x2 .

7



2.3.2 Accessing elements in a vector

You can access an element of a vector like v(2) = 3

N
¯
OTE: Indices starts from 1

2.3.3 Length of a vector

You can get the length of a vector with
length(v)

2.3.4 Tasks

• Test the function described in this section

• What is the last value of v = 1:2:10 and why?

• Verifify that logspace(x1, x2) = 10linspace(x1,x2)

2.4 Matrices

2.4.1 Creating a matrix

Matrices can be creates just like vectors by enumerating all the elements. To
indicate the next row use “;”.
Ex: A = [1 2 3; 4 5 6]
which results in the matrix

A =
[

1 2 3
4 5 6

]
You can also use any of the method above to define the elements of the

matrix
Ex: A = [1:3;linspace(4,6,3)]
will give the same result as above.

eye

The identify matrix is used frequently. Can easily be created with
eye(n)

zeros

Often want a matrix with all zeros
A = zeros(n,m)
where n,m is number of rows and columns respectively

8



ones

Often want a matrix with all ones
A = ones(n,m)
where n,m is number of rows and columns respectively. To create a matrix with
all elements equal to some other number k simple do
A = k*ones(n,m)

diag

You can create a diagonal matrix by specifying the diagonal vector
A = diag(v)

You can shift the provided vector up and down from the diagonal by adding
one more argument
A = diag(v,k)

If you instead provide a matrix as argument the function will extract the
diagonal.
v = diag(A)

blkdiag

You can also create block matrices easily with
blkdiag(M1, M2, M3, ...)
where M1, M2, M3 are matrices that will end up on the diagonal.

rand

You can create a matrix with elements uniformly distributed bwteen 0 and 1
with
rand(n,m)
Note that you might want to set the seed for the random generator (do help
rand)

randn

You can create a matrix with elements from a normal distribution with mean 0
and standard deviation 1 with
randn(n,m)

2.4.2 Accessing elements in a matrix

Accessing elements in a matrix can be done in two way, either using doubld
indices or single indices.

Double index

Specify the row and column, like in
A(2,3) = 4
where 2,3 is row and column respectively

You often want every row but only some columns or vice versa. In this case
you can use the “:” operator. To get 3 column and all rows do

9



A(:,3)
To get the 1st and 3rd row and all columns do
A([1 3],:)

Single index

You can also access the elements of a matrix with a single index. The elements
in a matrix are numbered column wise. For a 2x3 matrix the numbering would
be

A =
[

a1 a3 a5

a2 a4 a6

]
In a 2x3 matrix the 3rd element on the second row would have index 6 and
would thus be accessed with
A(6)
and would in this case (with 2 rows) be equal to
A(2,3)

2.4.3 Submatrices

You can manipulate whole submatrices by specifying the range index for rows
and columns such as
A(1:3,1:3) = diag([1 2 3])
which will make the upper leftmost 3x3 submatrix equal to a diagonal matrix
with 1,2,3 on the diagonal.

The range of indices for rows and columns do not have to be “complete”.
That is something like
A([1 3],[2 3])
is allowed.

2.4.4 Size of matrices

You get the size of a matrix with
size(A) which will return number of rows and columns. To get the number of
rows do
size(A,1)
and to get the number of columns do size(A,2)

2.4.5 Tasks

• Make sure you can create matrices and access their elements

• How would you create a matrix of the form

A =


1 0 0 1 0 0
0 1 0 0 3 0
0 0 1 0 0 5
5 0 0 2 2 2
0 3 0 2 2 2
0 0 1 2 2 2



10



• What happens if you (without having defined A before) do
A(10,3) = 42?

• Make sure you under stand how the end operator does as in v(4:end).

• What will diag(diag(A)) do?

• Create a matrix with random values between -5 and 5 uniformly dis-
tributed

• Create a vector wit values drawn from a normal distrubution with mean
3 and standard deviation 2

• Investigate how the “:”-operator behaves when used as single index for a
matrix, i.e. e.g. A(:)

2.5 Finding elements

Finding elements in a matrix fulfilling some criteria is done with the function
find. It can return double or single index reference to the elements.

double indices

[di, dj] = find(A>5)
will return two vectors di,dj with double indices to all elements in A which are
greater than 5.

single indices

si = find(A==42)
which will return a vector with single indices of all elements equal to 42.

2.5.1 Tasks

• Create a random 5x5 matrix with integer values between 0 and 9 with
floor(10*rand(5,5))
and then replace all elements ≥ 5 with their negative value

2.6 Operators

Most of the standard operators (×,−,+−, , sin, cos, . . .) are built-in in Matlab.
Many of these will operate element wise on a matrix. To force and operator like
* to operate element wise you prefix it with “.”.

Tasks

• Invetsigate the different between sum, cumsum and cumprod. When are
they useful?

• Given two vectors v1 and v2 with some signal data, what will cov(v1,v2)
give you? What if you say cov(v1,v1)? What does this mean?

11



• Make sure you understand the difference between for example

– Multiplication * and .*

– To the power of with and without “.”

• If you have to vector v1 and v2, how do you calculate the Euclidean
distance between them?

2.7 Graphics

2.7.1 2D graphics

plot

You can plot data using the plot command. If used with one argument as in
plot(x)
it will plot the values in x against their indices in the vector. That is if the
vector contains 50 elements the plot will have an x-axis from 1 to 50.

By adding a second argument you can plot y against x, as in
plot(x,y)

If you want to specify that the line should be dashed instead of solid you
can say
plot(x,y,’--’)

If you want to change the color to red you do
plot(x,y,’r’)
and dashed red would be plot(x,y,’r--’)

You can add more than one set of x,y values after each other to the plot com-
mand and at the same time specifying color nd line types plot(x1,y1,’r-.’,x2,y2,’g--’)

See help plot for information. Also check functions semilogx, semilogy,
loglog, hold

2.7.2 3D graphics

Plotting in 3D is not more difficult than in 2D with
plot3(x,y,z)

You can make nice 3D shapes with mesh and surf and contour plots are
made simple with contour. Also take a look at quiver.

For the 3D functions the method
[X,Y] = meshgrid(x,y)
is very useful to get the X and Y arguments for e.g. surf(X,Y,Z).

2.7.3 Axis, Labels, etc

You can specify the axis to use for the plot with
axis(x min x max y min y max)
If you plot in 3D then you add min and max values for z as well.

12



You can easily label the axes and add titles with
xlabel(’This is the label for the x-axis’)
ylabel(’This is the label for the y-axis’)
title(’This is the title’)

If you want to change the font size on the titles do for example
xlabel(’Label on x-axis’,’FontSize’,20)

If you want to set what extra properties you can specify for different graphical
command you can get the handle
h = plot(x,y)
and then list the avalable properties with
get(h)
and change it with
set(h,’SomeProperty’,SomeValue)

Also check grid, zoom, rotate3d, view, clf, figure, close, legend,
ginput

2.7.4 Tasks

• Make sure that you can plot and format data including labels, legends,
titlels etc and that you can produce a file with the figure in for example
.eps format.

• What happens if you plot(X,Y) if X and/or Y are matrices?

• Plot a 2D Gaussian distribution and sum the probability. Does it come
close to what you expect?

2.8 Scripts and Functions

You can extend the functionality of Matlab by writing your own so called m-files.
They have the file-ending .m, hence m-files.

You can create/edit and m-file with the built in text editor in Matlab with
edit <filename>. It will create non-existing files and open and existing one.

These m-files come in two flavors, scripts and functions. The commands
written in a script are executed one by one as if they were typed on the com-
mand line. A function has input and output arguments and the first line in the
file should be something like
function[out1,out2] = myfunction(in1,in2,in3)

2.8.1 Comments

Everything after a % on a line is interpreted as a comment. Use comments to
make it easier for people to read you scripts/functions.

13



2.8.2 Input and output

To output something on the screen you can use the disp function. To get input
from the user have a look at the input function. For more fancy formatting
look at sprintf.

2.8.3 Tasks

• Write a function and make sure that the help and lookfor function works
for it

• Test the which function

• Investigate the different between scripts and function

– How are variables in the workspace affected by what happens in
scripts and functions?

– Can you get access to the variables from a function from outside a
function

• How can you handle the user just pressing ENTER when he was supposed
to enter a value?

• What happens if you do not provide enough input or output arguments?

• What does the keyword global do?

• Investigate how the path variable and function works

• Investigate the load/save functions.

2.9 Timing and profiling

• Try tic and toc

• Test cputime

• Test the profiling tool (profile

• Investigate how you can use breakpoints to debug your code

2.10 Symbol manipulations

Matlab (given the right toolboxes) allows you to do symbolic operations as well
as numerical ones. This can be quite handy as you can imagine.

The test following

clear
syms t
x = 4*cos(2*t)
y = 2*sin(2*t)
f = [x;y]
dfdt=diff(f,’t’)

14



t = 2
eval(f)
eval(dfdt)

What does it do?

2.10.1 Tasks

• Define f(x, y) =
(

x + x ∗ y
x2 + y2

)
and calculate the Jacobian of f and evaluate

it for x = 1, y = 2

15


