
EL2310 – Scientific Programming
Lecture 9: Scope and Pointers

Carl Henrik Ek
(chek@csc.kth.se)

Royal Institute of Technology – KTH

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Overview

Overview

Lecture 9: Scope and Pointers
Wrap Up
Splitting code
Makefiles
Scopes
Pointer Basics
Pointers and Arrays

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Wrap Up

Last time

� Arrays
� Functions
� Logical expressions
� Precedence

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Wrap Up

Today

� Splitting into separate files
� A first look at a Makefile
� Scope rules
� Pointers

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Wrap Up

Functions

� Functions provide a way to encapsulate a piece of code
� Gives it a well defined input and output
� Makes code easier to read
� (Often do not have to read code in the function)

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Wrap Up

Functions, cont’d

� Syntax:
return-type function-name([parameters])
{
declarations
statements

}
� If the function does return anything you give it return-type void
� If you return something you leave the function with a statement

like
return value;
where value is of the return-type

� If the function has return-type void you leave with return if
you want to leave before the function ends, otherwise you do
not have to give an explicit return

� NOTE: If your function has a return type and you do not have
an explicit return the function will return something undefined.

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Wrap Up

Declaring functions

� A function just like a variable need to be declared before it is
used

� Either put the definition of the function before it is used or,
� add a declaration of it first and then later define it
� File example:
#includes
#defines

function declarations

main() { ...}

function definitions

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Wrap Up

Linking to extra libraries

� Often use function defined in other libraries, such as cos,
sin, exp from libm

� Need to tell linker that it should use libm as well
� Ex: gcc -o mymathprg mymathprg.c -lm

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Splitting code

Lecture 9: Scope and Pointers
Wrap Up
Splitting code
Makefiles
Scopes
Pointer Basics
Pointers and Arrays

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Splitting code

Splitting code into separate files

� Can split code in a program into many files
� Easier to read large programs
� Makes code reuse easier

� Ex: main.c and myfunctions.c
� Compile with gcc -o program main.c myfunctions.c

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Splitting code

Declaring and definition

� If you have separate files you need to make sure that the
functions are declared before you use them

� If you move functions into separate files you can create a
header file (h-file) where you declare the functions in the
corresponding source file (c-file)

� Ex: The file myfunctions.c would be accompanied with a file
myfunctions.h where the functions in myfunction.c are declared

� Files using myfunctions.c then
#include “myfunctions.h” to get these declarations

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Splitting code

#include

� To include function declarations we use #include
� You can do
#include <file.h> or
#include ‘‘file.h’’

� The difference is in the order in which directories are searched
� ‘‘file.h’’ version starts to look for files in local directory
� <file.h> looks in include the path

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Splitting code

Avoiding multiple definitions

� Each variable/function must be declared before used
� Each variable/function can only be defined once
� What if you include a file that includes a file, that includes a file,

etc

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Splitting code

Avoiding multiple declarations

� To avoid multiple declarations use construction like
#ifndef MYFUNCTIONS H
#define MYFUNCTIONS H

double function1(double x);
double function2(double x, double y);

#endif
in the header file

� Make sure that the symbol, here MYFUNCTIONS H is unique

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Splitting code

Task 1

� Implement a Newton to f (x) = cos(x)− x3

xn+1 = xn −
f (x)
f ′(x)

� Put the functions that evaluate f (x) and f ′(x) into a separate file
� The function should have parameters for max number of

iterations and precision

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Makefiles

Lecture 9: Scope and Pointers
Wrap Up
Splitting code
Makefiles
Scopes
Pointer Basics
Pointers and Arrays

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Makefiles

Building project with many files

� Method 1: Build everything on one line
gcc -o program program.c file1.c file2.c -lm

� Method 2: Compile first, then link
gcc -o file1.o -c file1.c
gcc -o file2.o -c file2.c
gcc -o program program.c file1.o file2.o -lm

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Makefiles

The make tool

� When you have many files and larger project it helps to have a
tool when you compile and link your code

� make is such a tool
� File Makefile contains instructions/rules

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Makefiles

Makefile

� = declares variable
� $ access variable
� : defines rule

� Make <foo> Makes rule <foo>
� Make Makes first rule

� provided “skeleton” todays task

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Makefiles

Variables

CXX = compiler id
LIBS = external libraries Ex: -lm
INCLUDES = path for external declarations Ex: -I
CXXFLAGS = flags for the compiler Ex: -Wall
GETSCANS = executable name
GETSCANS OBJS = source

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Makefiles

Rules

� Compiles executable
$(GETSCANS):
$(CXX) -o $(GETSCANS) $(GETSCANS OBJS)
$(INCLUDES) $(LIBS)

� Remove created files
clean:
rm -f *.o $(GETSCANS)

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Makefiles

Task 2

Write a Makefile for Task 1

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Scopes

Lecture 9: Scope and Pointers
Wrap Up
Splitting code
Makefiles
Scopes
Pointer Basics
Pointers and Arrays

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Scopes

Variable scope: automatic variables

� The scope of a variable tells where this variable can be used
� Local variables in a function can only be used in that function
� These variables are also known as automatic
� They are automatically created when the funcion is called and

disappears when the function is exited
� Automatic variables need to be initialized on each function call
� Will contain garbage otherwise

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Scopes

Variable scope: extern

� If you want to use a variable defined in some other file you need
to use the keyword
extern

� extern int value; declares a variable value and we let
the compiler know that it is is defined somewhere else

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Scopes

Variable scope: static

� If you want a variable to be hidden in a file use the keyword
static

� A variable declared static can be used as any other variable
in that file but will not be seen from outside

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Scopes

Initialization

� External and static variables are guarenteed to be 0 if not
explicitly initialized

� Automatic variables are undefined (whatevery is in the memory)

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Scopes

Task 3

� Write program with two functions, fcn1 and fcn2
� Let each function

1. define a variable
2. print its value,
3. set the value (different for fcn1 and fcn2)
4. print it again

� Call fcn1, fcn1, fcn2 and fcn1 and see what you get
� Lesson: Initializing your variables is important!!

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Pointer Basics

Lecture 9: Scope and Pointers
Wrap Up
Splitting code
Makefiles
Scopes
Pointer Basics
Pointers and Arrays

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Pointer Basics

Pointers

� Pointers are special kinds of variables
� They contain the address of another variable
� Used heavily in C
� Have to be used with care
� Used in the wrong way, makes programs hard to understand
� Used in the right way, makes it easier to write programs

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Pointer Basics

Declaring a pointer

� A pointer is declared by a * as prefix to the variable
Can think of it as a suffix to the data type as well
“int* is a pointer to an int”

� Ex: Pointer to an interger
int *ptr;

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Pointer Basics

Assigning a pointer

� You assign a pointer the address to a memory location
� The address typically correspond to a variable in memory
� You get the address of a variable with the unary & operator
� Ex:
int a;
int *b = &a;

� We say that b “points” to a

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Pointer Basics

Dereferencing a pointer

� To get the value in the address pointed to by a pointer, use the
operator dereferencing operator *

� Ex:
int a;
int* b = &a;

*b = 4;
� Will set a to be 4

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Pointer Basics

Copying pointers

� Copying the data
*ptr1 = *ptr2;

� Copying the pointer address
ptr1 = ptr2;

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Pointer Basics

Pointer for function call by reference

� Can use pointer to function calls by reference
� Allows the function to change a variable

� “Multiple outputs from a function”

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Pointer Basics

Task 4

� Rewrite the Newton code using
� a function on the form
void eval fcn(double x, double *f, double

*dfdx);

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Pointers and Arrays

Pointers and arrays

� Can use pointer to perform operations on arrays
� Ex:
int a[] = {1,2,3,4,5,6,7,8};
int *p = &a[0];

� Will create a pointer that points to the first element of a

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Pointers and Arrays

Stepping forward backward with pointers

� A pointer points to the address of a variable of the given data
type

� If you say ptr = ptr + 1; you step to the next variable in
memory assuming that they are all lined up next to each other

� Can also use shorthand ptr++ and ptr-- as well as
ptr+=2; and ptr-=3;

� Remember sizeof?

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Pointers and Arrays

Task 5

� Allocate an array and use a pointer to loop through it

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Pointers and Arrays

Arrays and pointers

� Pointers and arrays are very similar
� Assume
int a[10];
int *p;

� The following are equivalent
p = &a[0] and p = a;
a[i] and *(a+i)
&a[i] and a+i

*(p+i) and p[i]
fcn(int *a) and fcn(int a[])

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Pointers and Arrays

More on pointers

� You need to keep track of how you can move you pointers
� Common mistake when using pointer: You go outside of the

space you intended and change unexpected things
� The following is allowed but make it hard to read
int a[] = {6,5,4,3,2,1};
int *p = &a[2];
p[-2] = 2;

� What value will change?

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Pointers and Arrays

Constant strings

� The “Hello world” in printf(‘‘Hello world’’); is a
constant string

� It cannot be changed
� Consider the two expressions
char amsg[] = ‘‘Hello world’’;
char *pmsg = ‘‘Hello world’’;

� amsg is a character array initialized to “Hello world”. You can
modify the content of the array

� pmsg is a pointer that currently points to a constant string. You
cannot change the character in the string but change what
pmsg points to.

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Pointers and Arrays

Task 6

� Write the function
void strcpy2(char *dest, char *src);

� Should copy the string src into dest

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Pointers and Arrays

Next Time

� Lecture Tomorrow 10-12 M36
� Continue with pointers

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

	Overview
	Overview

	Content
	Lecture 9: Scope and Pointers
	Wrap Up
	Splitting code
	Makefiles
	Scopes
	Pointer Basics
	Pointers and Arrays

