EL2310 — Scientific Programming

Lecture 9: Scope and Pointers

10 9

S

Carl Henrik Ek
(chek@csc.kth.se)

Royal Institute of Technology — KTH

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Overview

Overview

Lecture 9: Scope and Pointers
Wrap Up
Splitting code
Makefiles
Scopes
Pointer Basics
Pointers and Arrays

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Scope and Pointers

Last time

Arrays

Functions

Logical expressions
Precedence

vy v.vY

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Splitting into separate files
A first look at a Makefile
Scope rules

Pointers

vy v.vY

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Functions

> Functions provide a way to encapsulate a piece of code
> Gives it a well defined input and output

> Makes code easier to read

> (Often do not have to read code in the function)

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 9: Scope and Pointers

Functions, cont'd

> Syntax:
return-type function—name ([parameters])
declarations
statements

> If the function does return anything you give it return-type void
> If you return something you leave the function with a statement
like
return value;
where value is of the return-type
> If the function has return-type void you leave with return if
you want to leave before the function ends, otherwise you do

not have to give an explicit return
Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Declaring functions

> A function just like a variable need to be declared before it is
used

> Either put the definition of the function before it is used or,
> add a declaration of it first and then later define it

> File example:
#includes
#defines

function declarations
main() { ...}

function definitions

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Linking to extra libraries

> Often use function defined in other libraries, such as cos,
sin, exp from libm

> Need to tell linker that it should use libm as well
> EX: gcc -o mymathprg mymathprg.c -1lm

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 9: Scope and Pointers

Lecture 9: Scope and Pointers

Splitting code

Carl Henrik Ek, Patric Jensfelt

EL23 Scientific Pro

Lecture 9

Splitting code

Splitting code into separate files

> Can split code in a program into many files
> Easier to read large programs
> Makes code reuse easier

> Ex: main.c and myfunctions.c

» Compile with gcc -0 program main.c myfunctions.c

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Declaring and definition

> If you have separate files you need to make sure that the
functions are declared before you use them

> |f you move functions into separate files you can create a
header file (h-file) where you declare the functions in the
corresponding source file (c-file)

> Ex: The file myfunctions.c would be accompanied with a file
myfunctions.h where the functions in myfunction.c are declared

> Files using myfunctions.c then
#include “myfunctions.h” to get these declarations

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 9: Scope and Pointer:
)OO0 @00

Splitting code

#include

v

To include function declarations we use #include

You can do
#include <file.h>or
#include ‘‘file.h'’’

> The difference is in the order in which directories are searched
‘‘file.h’’ version starts to look for files in local directory
<file.h> looks in include the path

v

\{

A\

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 9: Scope and Pointer:
)O000e0

Splitting code

Avoiding multiple definitions

» Each variable/function must be declared before used
> Each variable/function can only be defined once

> What if you include a file that includes a file, that includes a file,
etc

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 9: Scope
0O0000e

Splitting code

Avoiding multiple declarations

> To avoid multiple declarations use construction like
#ifndef _MYFUNCTIONS_H__
#define _MYFUNCTIONS_ H__

double functionl (double x);
double function2 (double x, double vy);

#endif
in the header file

> Make sure that the symbol, here __MYFUNCTIONS_H__is unique

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 9: Scope

> Implement a Newton to f(x) = cos(x) — x3

Xn+1 = Xn — %

> Put the functions that evaluate f(x) and f'(x) into a separate file

> The function should have parameters for max number of
iterations and precision

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 9: Scope and Pointers
000000

Makefiles

Lecture 9: Scope and Pointers

Makefiles

Carl Henrik Ek, Patric Jensfelt

EL23 Scientific Pro

Building project with many files

> Method 1: Build everything on one line

gcc —o program program.c filel.c file2.c —-1m
> Method 2: Compile first, then link

gce —o filel.o -c filel.c

gcc —o file2.0 -c file2.c

gcc —o program program.c filel.o file2.o0 —-1m

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 9: Scope and Pointers

0@0000

The make tool

> When you have many files and larger project it helps to have a
tool when you compile and link your code

> make is such a tool
> File Makefile contains instructions/rules

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 9: Scope and Pointers
[e]e]e] Te]e]

Makefiles

Makefile

> = declares variable
$ access variable
: defines rule

> Make <foo> Makes rule <foo>
> Make Makes first rule

provided “skeleton” todays task

v

v

v

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 9: Scope and Pointers
[e]e]e] lele)

Variables

Ccxx = compilerid

LIBS = external libraries Ex: —1m

INCLUDES = path for external declarations Ex: -1
CXXFLAGS = flags for the compiler Ex: -wall
GETSCANS = executable name

GETSCANS_OBJS = source

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 9: Scope and Pointers
0000e0

Rules

» Compiles executable
$ (GETSCANS) :

$(CXX) -o $(GETSCANS) $(GETSCANS_OBJS)
$ (INCLUDES) $(LIBS)

> Remove created files
clean:
rm —f *.0 $(GETSCANS)

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 9: Scope and Pointers

0000000e

Makefiles

Task 2

Write a Makefile for Task 1

Ek, Patric Jensfelt Royal Institute of Technology — KTH

Lecture 9: Scope and Pointers

Scopes

Lecture 9: Scope and Pointers

Scopes

Carl Henrik Ek, Patric Jensfelt

EL23 Scientific Pro

Lecture 9: Scope and Pointer:

Scopes

Variable scope: automatic variables

> The scope of a variable tells where this variable can be used

> Local variables in a function can only be used in that function

> These variables are also known as automatic

> They are automatically created when the funcion is called and
disappears when the function is exited

> Automatic variables need to be initialized on each function call

> Will contain garbage otherwise

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 9: Scope

Scopes

Variable scope: extern

> If you want to use a variable defined in some other file you need
to use the keyword
extern

> extern int value; declares a variable value and we let
the compiler know that it is is defined somewhere else

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 9: Scope

Scopes

Variable scope: static

> If you want a variable to be hidden in a file use the keyword
static

> A variable declared static can be used as any other variable
in that file but will not be seen from outside

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 9: Scope

Scopes

Initialization

> External and static variables are guarenteed to be 0 if not
explicitly initialized
> Automatic variables are undefined (whatevery is in the memory)

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Scopes

Task 3

>

v

v

v

Write program with two functions, fcn1 and fcn2
Let each function

1. define a variable

2. print its value,

3. set the value (different for fcn1 and fcn2)
4. printit again

Call fen1, fent, fcn2 and fen1 and see what you get
Lesson: Initializing your variables is important!!

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology — KTH

EL2310 -

Scientific Programming

Lecture 9: Scope and Pointers

Pointer Basics

Lecture 9: Scope and Pointers

Pointer Basics

Carl Henrik Ek, Patric Jensfelt

EL23 Scientific Pro

Lecture 9: Scope

Pointers

Pointers are special kinds of variables

They contain the address of another variable

Used heavily in C

Have to be used with care

Used in the wrong way, makes programs hard to understand
Used in the right way, makes it easier to write programs

Yy Y vV vV VY

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 9: Scope

Declaring a pointer

> A pointer is declared by a * as prefix to the variable
Can think of it as a suffix to the data type as well
“int* is a pointer to an int”

> Ex: Pointer to an interger
int *ptr;

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 9: Scope

Assigning a pointer

You assign a pointer the address to a memory location
The address typically correspond to a variable in memory
You get the address of a variable with the unary & operator
Ex:

int a;
int *b = &a;
> We say that b “points” to a

vy v.vY

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 9: Scope

Dereferencing a pointer

> To get the value in the address pointed to by a pointer, use the
operator dereferencing operator *

> Ex:
int a;
intx b = &a;
*b = 4;

> Will set ato be 4

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 9: Scope

Copying pointers

> Copying the data
*ptrl = *ptr2;

> Copying the pointer address
ptrl = ptr2;

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 9: Scope

Pointer for function call by reference

> Can use pointer to function calls by reference
> Allows the function to change a variable
> “Multiple outputs from a function”

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 9: Scope and Pointers

Pointer Basics

Task 4

> Rewrite the Newton code using

> a function on the form
void eval_fcn (double x, double *f, double

*dfdx) ;

Royal Institute of Technology — KTH

Carl Henrik Ek, Patric Jensfelt

EL2310 - Scientific Programming

Lecture 9: Scope

)®0000000

Pointers and arrays

> Can use pointer to perform operations on arrays
> Ex:

int al] = {1,2,3,4,5,6,7,8};

int xp = &al[0];

> Will create a pointer that points to the first element of a

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 9: Scope and Pointers

Pointers and Arrays

Stepping forward backward with pointers

> A pointer points to the address of a variable of the given data
type

> |f you say ptr = ptr + 1; you step to the next variable in
memory assuming that they are all lined up next to each other

> Can also use shorthand pt r++ and ptr—- as well as
ptr+=2; and ptr-=3;

> Remember sizeof?

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology — KTH

EL2310 - Scientific Programming

> Allocate an array and use a pointer to loop through it

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 9: Scope

Arrays and pointers

> Pointers and arrays are very similar

> Assume
int a[l107];
int *p;
> The following are equivalent
p = &al[0)landp = a;
ali] and x (a+1)
&ali] and a+i
*x (p+i) and p[i]
fen (int +a) and fcn (int afl])

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology — KTH

EL2310 - Scientific Programming

nters and Arrays

More on pointers

> You need to keep track of how you can move you pointers

» Common mistake when using pointer: You go outside of the
space you intended and change unexpected things
> The following is allowed but make it hard to read
int al] = {6,5,4,3,2,1};
int *p = &al2];
pl-2] = 2;
> What value will change?

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology — KTH

EL2310 - Scientific Programming

nters and Arrays

Constant strings

> The “Hello world” in printf (*‘Hello world’’); isa
constant string

> |t cannot be changed

> Consider the two expressions
char amsg[] = ‘‘Hello world’’;
char xpmsg = ‘‘Hello world’’;

> amsg is a character array initialized to “Hello world”. You can
modify the content of the array

> pmsg is a pointer that currently points to a constant string. You

cannot change the character in the string but change what
pmsg points to.

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology — KTH

EL2310 - Scientific Programming

> Write the function
void strcpy2 (char xdest, char =*src);

> Should copy the string src into dest

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Pointers and Arrays

Next Time

> Lecture Tomorrow 10-12 M36
> Continue with pointers

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology — KTH

EL2310 - Scientific Programming

	Overview
	Overview

	Content
	Lecture 9: Scope and Pointers
	Wrap Up
	Splitting code
	Makefiles
	Scopes
	Pointer Basics
	Pointers and Arrays

