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Scope and Pointers

Last time
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Functions
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Functions

> Functions provide a way to encapsulate a piece of code
> Gives it a well defined input and output

> Makes code easier to read

> (Often do not have to read code in the function)
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Lecture 9: Scope and Pointers

Functions, cont'd

> Syntax:
return-type function—name ([parameters])
declarations
statements

> If the function does return anything you give it return-type void
> If you return something you leave the function with a statement
like
return value;
where value is of the return-type
> If the function has return-type void you leave with return if
you want to leave before the function ends, otherwise you do

not have to give an explicit return
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Declaring functions

> A function just like a variable need to be declared before it is
used

> Either put the definition of the function before it is used or,
> add a declaration of it first and then later define it

> File example:
#includes
#defines

function declarations
main() { ...}

function definitions

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology — KTH

EL2310 - Scientific Programming



Linking to extra libraries

> Often use function defined in other libraries, such as cos,
sin, exp from libm

> Need to tell linker that it should use libm as well
> EX: gcc -o mymathprg mymathprg.c -1lm
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Lecture 9

Splitting code

Splitting code into separate files

> Can split code in a program into many files
> Easier to read large programs
> Makes code reuse easier

> Ex: main.c and myfunctions.c

» Compile with gcc -0 program main.c myfunctions.c

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology — KTH

EL2310 - Scientific Programming



Declaring and definition

> If you have separate files you need to make sure that the
functions are declared before you use them

> |f you move functions into separate files you can create a
header file (h-file) where you declare the functions in the
corresponding source file (c-file)

> Ex: The file myfunctions.c would be accompanied with a file
myfunctions.h where the functions in myfunction.c are declared

> Files using myfunctions.c then
#include “myfunctions.h” to get these declarations
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Lecture 9: Scope and Pointer:
)OO0 @00

Splitting code

#include

v

To include function declarations we use #include

You can do
#include <file.h>or
#include ‘‘file.h'’’

> The difference is in the order in which directories are searched
‘‘file.h’’ version starts to look for files in local directory
<file.h> looks in include the path

v

\{

A\
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Lecture 9: Scope and Pointer:
)O000e0

Splitting code

Avoiding multiple definitions

» Each variable/function must be declared before used
> Each variable/function can only be defined once

> What if you include a file that includes a file, that includes a file,
etc
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Lecture 9: Scope
0O0000e

Splitting code

Avoiding multiple declarations

> To avoid multiple declarations use construction like
#ifndef _MYFUNCTIONS_H__
#define _MYFUNCTIONS_ H__

double functionl (double x);
double function2 (double x, double vy);

#endif
in the header file

> Make sure that the symbol, here __MYFUNCTIONS_H__is unique

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology — KTH

EL2310 - Scientific Programming



Lecture 9: Scope

> Implement a Newton to f(x) = cos(x) — x3

Xn+1 = Xn — %

> Put the functions that evaluate f(x) and f'(x) into a separate file

> The function should have parameters for max number of
iterations and precision
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Makefiles
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Building project with many files

> Method 1: Build everything on one line

gcc —o program program.c filel.c file2.c —-1m
> Method 2: Compile first, then link

gce —o filel.o -c filel.c

gcc —o file2.0 -c file2.c

gcc —o program program.c filel.o file2.o0 —-1m
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Lecture 9: Scope and Pointers

0@0000

The make tool

> When you have many files and larger project it helps to have a
tool when you compile and link your code

> make is such a tool
> File Makefile contains instructions/rules
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Lecture 9: Scope and Pointers
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Makefiles

Makefile

> = declares variable
$ access variable
: defines rule

> Make <foo> Makes rule <foo>
> Make Makes first rule

provided “skeleton” todays task

v

v

v

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology — KTH

EL2310 - Scientific Programming



Lecture 9: Scope and Pointers
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Variables

Ccxx = compilerid

LIBS = external libraries Ex: —1m

INCLUDES = path for external declarations Ex: -1
CXXFLAGS = flags for the compiler Ex: -wall
GETSCANS = executable name

GETSCANS_OBJS = source
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Lecture 9: Scope and Pointers
0000e0

Rules

» Compiles executable
$ (GETSCANS) :

$(CXX) -o $(GETSCANS) $(GETSCANS_OBJS)
$ (INCLUDES) $(LIBS)

> Remove created files
clean:
rm —f *.0 $(GETSCANS)
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Lecture 9: Scope and Pointers

0000000e

Makefiles

Task 2

Write a Makefile for Task 1
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Lecture 9: Scope and Pointer:

Scopes

Variable scope: automatic variables

> The scope of a variable tells where this variable can be used

> Local variables in a function can only be used in that function

> These variables are also known as automatic

> They are automatically created when the funcion is called and
disappears when the function is exited

> Automatic variables need to be initialized on each function call

> Will contain garbage otherwise
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Lecture 9: Scope

Scopes

Variable scope: extern

> If you want to use a variable defined in some other file you need
to use the keyword
extern

> extern int value; declares a variable value and we let
the compiler know that it is is defined somewhere else
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Lecture 9: Scope

Scopes

Variable scope: static

> If you want a variable to be hidden in a file use the keyword
static

> A variable declared static can be used as any other variable
in that file but will not be seen from outside
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Lecture 9: Scope

Scopes

Initialization

> External and static variables are guarenteed to be 0 if not
explicitly initialized
> Automatic variables are undefined (whatevery is in the memory)
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Scopes

Task 3

>

v

v

v

Write program with two functions, fcn1 and fcn2
Let each function

1. define a variable

2. print its value,

3. set the value (different for fcn1 and fcn2)
4. printit again

Call fen1, fent, fcn2 and fen1 and see what you get
Lesson: Initializing your variables is important!!
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Lecture 9: Scope

Pointers

Pointers are special kinds of variables

They contain the address of another variable

Used heavily in C

Have to be used with care

Used in the wrong way, makes programs hard to understand
Used in the right way, makes it easier to write programs

Yy Y vV vV VY
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Lecture 9: Scope

Declaring a pointer

> A pointer is declared by a * as prefix to the variable
Can think of it as a suffix to the data type as well
“int* is a pointer to an int”

> Ex: Pointer to an interger
int *ptr;
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Lecture 9: Scope

Assigning a pointer

You assign a pointer the address to a memory location
The address typically correspond to a variable in memory
You get the address of a variable with the unary & operator
Ex:

int a;
int *b = &a;
> We say that b “points” to a

vy v.vY
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Lecture 9: Scope

Dereferencing a pointer

> To get the value in the address pointed to by a pointer, use the
operator dereferencing operator *

> Ex:
int a;
intx b = &a;
*b = 4;

> Will set ato be 4
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Lecture 9: Scope

Copying pointers

> Copying the data
*ptrl = *ptr2;

> Copying the pointer address
ptrl = ptr2;
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Lecture 9: Scope

Pointer for function call by reference

> Can use pointer to function calls by reference
> Allows the function to change a variable
> “Multiple outputs from a function”
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Lecture 9: Scope and Pointers

Pointer Basics

Task 4

> Rewrite the Newton code using

> a function on the form
void eval_fcn (double x, double *f, double

*dfdx) ;
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Lecture 9: Scope
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Pointers and arrays

> Can use pointer to perform operations on arrays
> Ex:

int al] = {1,2,3,4,5,6,7,8};

int xp = &al[0];

> Will create a pointer that points to the first element of a
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Lecture 9: Scope and Pointers

Pointers and Arrays

Stepping forward backward with pointers

> A pointer points to the address of a variable of the given data
type

> |f you say ptr = ptr + 1; you step to the next variable in
memory assuming that they are all lined up next to each other

> Can also use shorthand pt r++ and ptr—- as well as
ptr+=2; and ptr-=3;

> Remember sizeof?
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> Allocate an array and use a pointer to loop through it
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Lecture 9: Scope

Arrays and pointers

> Pointers and arrays are very similar

> Assume
int a[l107];
int *p;
> The following are equivalent
p = &al[0)landp = a;
ali] and x (a+1)
&ali] and a+i
*x (p+i) and p[i]
fen (int +a) and fcn (int afl])
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nters and Arrays

More on pointers

> You need to keep track of how you can move you pointers

» Common mistake when using pointer: You go outside of the
space you intended and change unexpected things
> The following is allowed but make it hard to read
int al] = {6,5,4,3,2,1};
int *p = &al2];
pl-2] = 2;
> What value will change?
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nters and Arrays

Constant strings

> The “Hello world” in printf (*‘Hello world’’); isa
constant string

> |t cannot be changed

> Consider the two expressions
char amsg[] = ‘‘Hello world’’;
char xpmsg = ‘‘Hello world’’;

> amsg is a character array initialized to “Hello world”. You can
modify the content of the array

> pmsg is a pointer that currently points to a constant string. You

cannot change the character in the string but change what
pmsg points to.
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> Write the function
void strcpy2 (char xdest, char =*src);

> Should copy the string src into dest
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Pointers and Arrays

Next Time

> Lecture Tomorrow 10-12 M36
> Continue with pointers
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