
EL2310 – Scientific Programming
Lecture 13: Intro to C++

Carl Henrik Ek
(chek@csc.kth.se)

Royal Institute of Technology – KTH

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Overview

Overview

Lecture 13: Intro to C++
Object Oriented Programming

C++ Basics
Namespaces, Printing and User Input
Reference and Pointers
Classes
Code Structure

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 13: Intro to C++ C++ Basics

Course so far

� MATLAB: Using program to achieve a goal
� C: Learning how to program

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 13: Intro to C++ C++ Basics

Rest of the course

� C++
� Writing extendable programs
� Using other peoples code
� Extending other peoples code
� Writing re-useable code

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 13: Intro to C++ C++ Basics

Today

� Object oriented programming
� Intro to C++

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 13: Intro to C++ C++ Basics

Object Oriented Programming

Lecture 13: Intro to C++
Object Oriented Programming

C++ Basics
Namespaces, Printing and User Input
Reference and Pointers
Classes
Code Structure

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 13: Intro to C++ C++ Basics

Object Oriented Programming

The Object-Oriented Paradigm

The motivation:
� Abstraction levels
� Intuitiveness
� Modularity

� Division of labor and responsibilty
� Interchangeability
� Confidentiality
� Decomposability
� Code reuse

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 13: Intro to C++ C++ Basics

Object Oriented Programming

The Object-Oriented Paradigm, cont’d

The tools:
� Classes
� Methods
� Information hiding
� Polymorphism
� Inheritance

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 13: Intro to C++ C++ Basics

Lecture 13: Intro to C++
Object Oriented Programming

C++ Basics
Namespaces, Printing and User Input
Reference and Pointers
Classes
Code Structure

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 13: Intro to C++ C++ Basics

C is a subset of C++

� You can use all you learned in C in C++ as well
� Some constructions have a C++ version

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 13: Intro to C++ C++ Basics

C++ Compiler

� Use g++ instead of gcc
� Syntax the same as for C
� Should print the version of the g++
� Also make sure you know how to use make

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 13: Intro to C++ C++ Basics

Naming of files

� We named files in C .c (source) and .h (header)
� In C++ the ending is typically .cc or .cpp for source files and .h,

.hh or .hpp for header files
� In this course we will use .cpp and .h

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 13: Intro to C++ C++ Basics

Comments in C++

� Can write comments as in C, i.e. /* ...*/
� Single line comments after //
int main() {
// This is a comment
...

}

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 13: Intro to C++ C++ Basics

Basic data types

� All data types from C can be used plus e.g.
� bool: boolean value true/false
� string: “real” string (need to #include <string>

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 13: Intro to C++ C++ Basics

Declaration of variables

� You no longer need to declare the variable at the beginning of
the function (scope)

� Useful rule of thumb: Declare variables close to where they’re
used.

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 13: Intro to C++ C++ Basics

Finally

for(int i=0;i<N;i++){. . .}

� i only defined within loop
� “Save” specific names for counters, i,j,k,...

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 13: Intro to C++ C++ Basics

Namespaces, Printing and User Input

Lecture 13: Intro to C++
Object Oriented Programming

C++ Basics
Namespaces, Printing and User Input
Reference and Pointers
Classes
Code Structure

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 13: Intro to C++ C++ Basics

Namespaces, Printing and User Input

Namespaces

� In C all function share a common namespace
� This means that there can only be one function for each

function name
� Namespaces offers a way around this
� Functions are placed in namespaces
� Syntax:
namespace NamespaceName {

void fcn(); ...
}

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 13: Intro to C++ C++ Basics

Namespaces, Printing and User Input

Accessing functions in a namespace

� To access a function fcn in namespace A
A::fcn

� This way you can have more than one function with the same
name but in different namespaces

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 13: Intro to C++ C++ Basics

Namespaces, Printing and User Input

Task 1

� Write a program to test the idea with namespaces
� Define two functions void fcn(); inside namespaces A and
B

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 13: Intro to C++ C++ Basics

Namespaces, Printing and User Input

Printing to screen

� In C++ we use so called streams for input and output
� Output is handled with the stream cout and cerr
� All basic data types have the ability to add themselves to a

stream for printing
� We use the << operator
� Ex: cout << "Hello world";
� To add a line feed use the “\n” as in C or the special endl
� Ex: cout << "Hello world" << endl;

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 13: Intro to C++ C++ Basics

Namespaces, Printing and User Input

Printing to screen cont’d

� You can mix data types easily
� In C:
printf("The value is %d\n", value);

� In C++:
cout << "The value is " << value << endl;

� The stream cerr is the error stream
� Compare stdout and stderr in C

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 13: Intro to C++ C++ Basics

Namespaces, Printing and User Input

Getting input from the user

� You can quite easily get input from the user
� Use the cin stream
� Ex:
int value;
cin >> value;

� Using cin will flush the cout stream

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 13: Intro to C++ C++ Basics

Namespaces, Printing and User Input

Hello world in C++

#include <iostream>
int main ()
{
std::cout << "Hello World!";
return 0;

}
� <iostream> replaced <stdio.h>
� Standard C++ header files are included without the suffix (no .h

at the end)
� Here the std namespace is used, where cout is found

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 13: Intro to C++ C++ Basics

Namespaces, Printing and User Input

Task 2

� Write a program that reads the name and age of a person
� It should then print this info on the screen

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 13: Intro to C++ C++ Basics

Reference and Pointers

Lecture 13: Intro to C++
Object Oriented Programming

C++ Basics
Namespaces, Printing and User Input
Reference and Pointers
Classes
Code Structure

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 13: Intro to C++ C++ Basics

Reference and Pointers

Call by reference

� Standard function calls are by value
� Value of the variable is copied into the function
� Pointers offered a way in C to do call by reference
� Call by reference avoids the need to copy all the data
� Ex: Not so good to copy an entire 10Mpixel image into a

function, better to give a reference to it (i.e. tell where it is)
� In C++ the support for call by reference is built-in

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 13: Intro to C++ C++ Basics

Reference and Pointers

Reference

� Declaration: void fcn(int &x);
� Any changed to x inside fcn will affect the parameter used in

the function call
� Ex:
void fcn(int &x) {

x = 42;
}

int main() {
int x = 1; fcn(x); std::cout << "x=" <<

x << std::endl; }
� Will change value of x in main scope to 42

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 13: Intro to C++ C++ Basics

Reference and Pointers

Pointers vs References

� Try to use references when possible
� Much less error prone constructions
� References need to be assigned constructed
� Ex: This is not allowed
int &x;
int y;
x = y;

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 13: Intro to C++ C++ Basics

Reference and Pointers

Allocating memory

� In C++ the new and delete operators are used
� In C we used malloc and free
� Ex:
int *p = new int;

*p = 42;
...
delete p;

� If you allocate an array with new you need to delete with
delete []

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 13: Intro to C++ C++ Basics

Classes

Lecture 13: Intro to C++
Object Oriented Programming

C++ Basics
Namespaces, Printing and User Input
Reference and Pointers
Classes
Code Structure

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 13: Intro to C++ C++ Basics

Classes

Classes

� C++ is an object oriented programming language
� Classes play a key role here
� A class is an “extension” of a struct
� A class can have both data member and function members

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 13: Intro to C++ C++ Basics

Classes

Why classes

� Encapsulate data (same motive as a struct)
� Ease of creation/maintenance
� Ease of understanding
� Create reusable components
� Bundle data and functions to process the data

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 13: Intro to C++ C++ Basics

Classes

Class definition

� Syntax:
class ClassName {
int m X;

public:
void fcn();

}; // Do not forget the semicolon!!!
� m X is a member data
� void fcn() is a member function
� public is an access specifier telling that everything after it can

be accessed from outside the object

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 13: Intro to C++ C++ Basics

Classes

Access specifiers

� There are three access specifiers:
� public
� private
� protected

� No access specifier specified ⇒ assumes it is private
� Data and function members that are private cannot be

accessed from outside the object
� Ex: m X above cannot be accessed from outside
� Will come back to protected

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 13: Intro to C++ C++ Basics

Classes

Classes and Objects

� Classes define data types
� Objects are instances of classes
� Objects correspond to variables

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 13: Intro to C++ C++ Basics

Classes

Classes and Namespace

� The class defines a namespace
� Hence function names inside a class do not name clash with

other functions
� Example: the member variable m X above is fully specified as
ClassName::m X

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 13: Intro to C++ C++ Basics

Classes

Constructor

� When an object of a certain class is created the so called
constructor is called

� The constructor tells how to “setup” the objects
� The constructor that does not take any arguments is called the

default constructor
� The constructor has the same name as the class and has no

return type

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 13: Intro to C++ C++ Basics

Classes

Constructor

� Some types cannot be assigned, only initialized
� Ex.: references
� These data members should be initialized in the initializer list in

the constructor

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 13: Intro to C++ C++ Basics

Classes

Constructor

class A {
public:
A():m X(1) {}
int getValue() { return m X; }

private:
int m X;

};
A a;
std::cout << a.getValue() << std::endl;

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 13: Intro to C++ C++ Basics

Classes

Constructor

� You can define several different constructors
� class MyClass {
public:
MyClass():m X(1) {}
MyClass(int value):m X(value) {}
int getValue() { return m X; }

private:
int m X;

};
MyClass a; // Default constructor
MyClass aa(42); // Constructor with argument
std::cout << a.getValue() << std::endl;
std::cout << aa.getValue() << std::endl;

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 13: Intro to C++ C++ Basics

Classes

Destructor

� When an object is deleted the destructor is called
� The destructor should clean up things
� For example free up dynamically allocated memory
� There is only 1 destructor
� If not declared a default one is used which will not free up

dynamic memory
� Syntax: C̃lassName();
� Class A {
public:
A(); // Constructor
Ã(); // Destructor

...
};

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 13: Intro to C++ C++ Basics

Code Structure

Lecture 13: Intro to C++
Object Oriented Programming

C++ Basics
Namespaces, Printing and User Input
Reference and Pointers
Classes
Code Structure

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 13: Intro to C++ C++ Basics

Code Structure

Source and header file

� Normally you split the definition from the declaration like in C
� The definition goes into the header file .h
� The declaration goes into the source file .cpp
� Header file ex:
class A{
public:
A();

private:
int m X;

};
� Source file ex:
#include "A.h"
A::A():m X(0)

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 13: Intro to C++ C++ Basics

Code Structure

Task 3

� Implement a class the defines a Car
� Should have a member variable for number of wheels
� Should have methods to get the number of wheels
� Write program that instantiate a Car and print number of wheels

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 13: Intro to C++ C++ Basics

Code Structure

Task 4

� Write class Complex for a complex number
� Provide 3 constructor

� default which should give value 0
� one argument which should give a real value
� two arguments, real and imaginary part

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 13: Intro to C++ C++ Basics

Code Structure

this pointer

� Inside an object’s methods you can refer to the object with the
this pointer

� The this pointer cannot be assigned (done automatically)

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 13: Intro to C++ C++ Basics

Code Structure

Static members

� Members (both functions and data) can be declared static
� A static member is the same across all objects; it’s a

member of the class, not any single object
� That is all instantiated objects share the same static member
� You can use a static class member without instantiating any

object

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 13: Intro to C++ C++ Basics

Code Structure

Next Time

� Lecture: Tuesday 4th of October, 10-12, M36
� More on Object Oriented Programming
� C-project deadline Thursday 6th of October

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

	Overview
	Overview

	Content
	Lecture 13: Intro to C++
	Object Oriented Programming

	C++ Basics
	Namespaces, Printing and User Input
	Reference and Pointers
	Classes
	Code Structure

