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Last time

� Intro to C++
� Some differences C vs C++
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Today

� Printing and Getting Input
� Static members/data
� Review on Classes
� Object Oriented Programming
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Wrap Up

Namespace

� Namespace container for naming giving additional abstration
layer

� C has a single namespace
� C++ each class defines a namespace
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Wrap Up

Namespace

� Specifying the namespace gets old,
std::cout << "Apa" << std::endl;

� Extending a specific namespace,
� Ex.
using namespace std
cout << "Apa" << endl;

� Avoid in headerfiles
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Printing

Printing to screen

� In C++ we use so called streams for input and output
� Output is handled with the stream cout and cerr
� All basic data types have the ability to add themselves to a

stream for printing
� We use the << operator
� Ex: cout << ‘‘Hello world’’;
� To add a line feed use the “\n” as in C or the special endl
� Ex: cout << ‘‘Hello world’’ << endl;
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Printing

Printing to screen cont’d

� You can mix data types easily
� In C:
printf(‘‘The value is %d\n’’, value);

� In C++:
cout << ‘‘The value is ‘‘ << value << endl;

� The stream cerr is the error stream
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Printing

Formatting output

� Just like in C you can format the output in a stream
� You can use

width number of characters for output to fill
precision number of digits
fill pad with a certain character

� Syntax:
cout.precision(4);
cout.width(10);
cout.fill(’0’);
cout << 12.3456789 << endl;

� Will output 0000012.35
� Default precision=6, fill=’ ’ (space)
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More on getting Input

Getting input from the user

� You can quite easily get input from the user
� Use the cin stream
� Ex:
int value;
cin >> value;

� Using cin will flush the cout stream
� If you want to read an entire line you can use getline
� Ex:
string line;
getline(cin, line);
cout << ‘‘The input was ‘‘ << line << endl;

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Object Oriented Programming in C++ Tasks

More on getting Input

Reference

� Declaration: void fcn(int &x);
� Any changed to x inside fcn will affect the parameter used in

the function call
� Ex:
void fcn(int &x) {

x = 42;
}

int main() {
int x = 1;
fcn(x);
cout << ‘‘x=’’ << x << endl;

}
� Will change value of x in main scope to 42
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More on getting Input

new/delete

� In C++ the new and delete operators are used
� In C we used malloc and free
� Ex:
int *p = new int;

*p = 42;
delete p;

� If you allocate an array with new you need to delete with
delete []

� Ex:
int *p = new int[10];
p[0] = 42;
delete [] p;
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More on Classes and Members

Class definition

� Syntax:
class ClassName {
public:
void fcn();

private:
int m X;

}; // Do not forget the semicolon!!!
� m X is a member data
� void fcn() is a member function
� public is an access specifier telling that everything after it can

be access from outside the object
� private is an access specifier telling that everything after it is

hidden from outside of the class
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More on Classes and Members

Constructor

� When an object of a certain class is created the so called
constructor is called

� The constructor tells how to “setup” the objects
� The constructor that does not take any arguments is called the

default constructor
� The constructor has the same name as the class and has no

return type
� Try to do as much of the initialization in the initialization list

(“colon list”) rather than using assignment in the body of the
constructor

� Double work otherwise, first default initialization and then
assignment

� Note that variables are initialized in the orders they appear in
the class definition
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More on Classes and Members

Destructor

� When an objects is deleted the destructor is called
� The destructor should clean up things
� For example free up dynamically allocated memory
� There is only destructor
� If not declared a default one is used which will not free up

dynamic memory
� Syntax: ˜ClassName();
� Ex:
Class A {
public:
A(); // Constructor
˜A(); // Destructor

...
};
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More on Classes and Members

this pointer

� Inside an object you can refer to the object with the this
pointer

� The this pointer cannot be assigned (done automatically)
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More on Classes and Members

const

� Can have const function arguments
� Ex: void fcn(const string &s);
� Pass the string as a reference into the function but commit to

not change it
� For classes this can be used to commit to not change an object

as well
� Ex: void fcn(int arg) const;
� The function fcn commits to not change anything in the object

it belongs to
� Can only call const functions from a const function or with a
const object
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More on Classes and Members

Static members

� Members (both functions and data) can be declared static
� A static member is the same across all objects
� That is all instantiated objects share the same static member
� You can use a static without instantiating an object
� You need to define static data member
� Ex: (in source file) int A::m Counter = 0; if m Counter is

a static data member of class A
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More on Object Oriented Programming
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More on Object Oriented Programming

Object Oriented Programming (OOP)

� Encapsulation
� Bundle data and the code to process it
� Can create a “black-box” with well defined interface
� Hiding the inside means you can not change the inside
� this bundle or box is the object

� Polymorphism
� “one interface, multiple methods”
� Can have the same interface for many classes that do the same

thing
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More on Object Oriented Programming

Object Oriented Programming (OOP)

� Inheritance
� Support for hierarchies (most knowledge can be structured by

hierarchical classifications)
� Ex: A car is a motor vehicle which is a vehicle which is a

transportation system which is a . . .
� Subclass to inherit the properties of the base class
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More on Object Oriented Programming

Operator overloading

� You can overload most operator
� This way you can make them behave in a certain way for a

certain class
� It will not change the behavior for other classes only the new

you add definition for
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More on Object Oriented Programming

Inheritance

� Inheritance is a way to show a relation like “is a”
� Ex: A car is a vehicle
� A car inherits many of its properties from being a vehicle
� These same properties could also be inherited by a truck or a

bus
� Syntax: class Car : public Vehicle to tell that Car

inherits from Vehicle
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More on Object Oriented Programming

Inheritance vs Aggregation

� Inheritance correspond to “is a” relations
� Ex:
class Car : public Vehicle ...

� Aggregation to “has a”
� Ex:
class Car {
...
Person m Owner;
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More on Object Oriented Programming

Inheritance and Constructors

� If you have three classes A, B and C,
� where B inherits from A and C from B
� When you create C the constructor from the base classes (B

and A) will be run first
� Execution order

1. Initialization list for A runs
2. Body of A constructor runs
3. Initialization list for B runs
4. Body of B constructor runs
5. Initialization list for C runs
6. Body of C constructor runs
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More on Object Oriented Programming

Constructors

� If you do not specify a constructor in the initialization list the
default constructor will be called
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Lecture 13

Task 13.4

� Write class Complex for a complex number
� Provide 3 constructor

� default which should give value 0
� one argument which should give a real value
� two arguments, real and imaginary part
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Lecture 14

Task 1

� Create a class hierarchy with Vehicle as base class and
subclasses Car and Motorcycle

� What belongs in the base class and what goes into the
subclasses?
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Lecture 14

Task 2

� Start from the Complex class from last time
� Add a static int member
� Every time a new complex number is created the static variable

should be incremented
� Implement the member function
Complex& add(const Complex &c);
which should add c to the object

� How does the number of created objects change if we change
the function to
Complex& add(Complex c);

� Also look at the functions
� Complex add(const Complex &c1, const Complex

&c2);
� Complex add(Complex c1, Complex c2);
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Lecture 14

Task 3

� Use the Complex number class from before
� Overload std::ostream& operator<<(std::ostream
&os, const Complex &c);

� Overload Complex operator+(const Complex &c1,
const Complex &c2)

� implement Complex operator+(const Complex &c);
(member function)

� implement Complex& operator=(const Complex &c);
(member function)
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Lecture 14

Next Time

� C Help Session: Today 15-16 Room 304
� Lecture: Wednesday 10th of October, 15-17, D34
� Inheritance, Virtual Functions and Templates
� C-project deadline Thursday 6th of October
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