
EL2310 – Scientific Programming
Lecture 14: Object Oriented Programming in C++

Carl Henrik Ek
(chek@csc.kth.se)

Royal Institute of Technology – KTH

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Overview

Overview

Lecture 14: Object Oriented Programming in C++
Wrap Up
Printing
More on getting Input
More on Classes and Members
More on Object Oriented Programming

Tasks
Lecture 13
Lecture 14

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Object Oriented Programming in C++ Tasks

Last time

� Intro to C++
� Some differences C vs C++

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Object Oriented Programming in C++ Tasks

Today

� Printing and Getting Input
� Static members/data
� Review on Classes
� Object Oriented Programming

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Object Oriented Programming in C++ Tasks

Wrap Up

Lecture 14: Object Oriented Programming in C++
Wrap Up
Printing
More on getting Input
More on Classes and Members
More on Object Oriented Programming

Tasks
Lecture 13
Lecture 14

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Object Oriented Programming in C++ Tasks

Wrap Up

Namespace

� Namespace container for naming giving additional abstration
layer

� C has a single namespace
� C++ each class defines a namespace

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Object Oriented Programming in C++ Tasks

Wrap Up

Namespace

� Specifying the namespace gets old,
std::cout << "Apa" << std::endl;

� Extending a specific namespace,
� Ex.
using namespace std
cout << "Apa" << endl;

� Avoid in headerfiles

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Object Oriented Programming in C++ Tasks

Printing

Lecture 14: Object Oriented Programming in C++
Wrap Up
Printing
More on getting Input
More on Classes and Members
More on Object Oriented Programming

Tasks
Lecture 13
Lecture 14

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Object Oriented Programming in C++ Tasks

Printing

Printing to screen

� In C++ we use so called streams for input and output
� Output is handled with the stream cout and cerr
� All basic data types have the ability to add themselves to a

stream for printing
� We use the << operator
� Ex: cout << ‘‘Hello world’’;
� To add a line feed use the “\n” as in C or the special endl
� Ex: cout << ‘‘Hello world’’ << endl;

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Object Oriented Programming in C++ Tasks

Printing

Printing to screen cont’d

� You can mix data types easily
� In C:
printf(‘‘The value is %d\n’’, value);

� In C++:
cout << ‘‘The value is ‘‘ << value << endl;

� The stream cerr is the error stream

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Object Oriented Programming in C++ Tasks

Printing

Formatting output

� Just like in C you can format the output in a stream
� You can use

width number of characters for output to fill
precision number of digits
fill pad with a certain character

� Syntax:
cout.precision(4);
cout.width(10);
cout.fill(’0’);
cout << 12.3456789 << endl;

� Will output 0000012.35
� Default precision=6, fill=’ ’ (space)

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Object Oriented Programming in C++ Tasks

More on getting Input

Getting input from the user

� You can quite easily get input from the user
� Use the cin stream
� Ex:
int value;
cin >> value;

� Using cin will flush the cout stream
� If you want to read an entire line you can use getline
� Ex:
string line;
getline(cin, line);
cout << ‘‘The input was ‘‘ << line << endl;

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Object Oriented Programming in C++ Tasks

More on getting Input

Reference

� Declaration: void fcn(int &x);
� Any changed to x inside fcn will affect the parameter used in

the function call
� Ex:
void fcn(int &x) {

x = 42;
}

int main() {
int x = 1;
fcn(x);
cout << ‘‘x=’’ << x << endl;

}
� Will change value of x in main scope to 42

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Object Oriented Programming in C++ Tasks

More on getting Input

new/delete

� In C++ the new and delete operators are used
� In C we used malloc and free
� Ex:
int *p = new int;

*p = 42;
delete p;

� If you allocate an array with new you need to delete with
delete []

� Ex:
int *p = new int[10];
p[0] = 42;
delete [] p;

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Object Oriented Programming in C++ Tasks

More on Classes and Members

Class definition

� Syntax:
class ClassName {
public:
void fcn();

private:
int m X;

}; // Do not forget the semicolon!!!
� m X is a member data
� void fcn() is a member function
� public is an access specifier telling that everything after it can

be access from outside the object
� private is an access specifier telling that everything after it is

hidden from outside of the class
Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Object Oriented Programming in C++ Tasks

More on Classes and Members

Constructor

� When an object of a certain class is created the so called
constructor is called

� The constructor tells how to “setup” the objects
� The constructor that does not take any arguments is called the

default constructor
� The constructor has the same name as the class and has no

return type
� Try to do as much of the initialization in the initialization list

(“colon list”) rather than using assignment in the body of the
constructor

� Double work otherwise, first default initialization and then
assignment

� Note that variables are initialized in the orders they appear in
the class definition

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Object Oriented Programming in C++ Tasks

More on Classes and Members

Destructor

� When an objects is deleted the destructor is called
� The destructor should clean up things
� For example free up dynamically allocated memory
� There is only destructor
� If not declared a default one is used which will not free up

dynamic memory
� Syntax: ˜ClassName();
� Ex:
Class A {
public:
A(); // Constructor
˜A(); // Destructor

...
};

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Object Oriented Programming in C++ Tasks

More on Classes and Members

this pointer

� Inside an object you can refer to the object with the this
pointer

� The this pointer cannot be assigned (done automatically)

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Object Oriented Programming in C++ Tasks

More on Classes and Members

const

� Can have const function arguments
� Ex: void fcn(const string &s);
� Pass the string as a reference into the function but commit to

not change it
� For classes this can be used to commit to not change an object

as well
� Ex: void fcn(int arg) const;
� The function fcn commits to not change anything in the object

it belongs to
� Can only call const functions from a const function or with a
const object

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Object Oriented Programming in C++ Tasks

More on Classes and Members

Static members

� Members (both functions and data) can be declared static
� A static member is the same across all objects
� That is all instantiated objects share the same static member
� You can use a static without instantiating an object
� You need to define static data member
� Ex: (in source file) int A::m Counter = 0; if m Counter is

a static data member of class A

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Object Oriented Programming in C++ Tasks

More on Object Oriented Programming

Lecture 14: Object Oriented Programming in C++
Wrap Up
Printing
More on getting Input
More on Classes and Members
More on Object Oriented Programming

Tasks
Lecture 13
Lecture 14

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Object Oriented Programming in C++ Tasks

More on Object Oriented Programming

Object Oriented Programming (OOP)

� Encapsulation
� Bundle data and the code to process it
� Can create a “black-box” with well defined interface
� Hiding the inside means you can not change the inside
� this bundle or box is the object

� Polymorphism
� “one interface, multiple methods”
� Can have the same interface for many classes that do the same

thing

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Object Oriented Programming in C++ Tasks

More on Object Oriented Programming

Object Oriented Programming (OOP)

� Encapsulation
� Bundle data and the code to process it
� Can create a “black-box” with well defined interface
� Hiding the inside means you can not change the inside
� this bundle or box is the object

� Polymorphism
� “one interface, multiple methods”
� Can have the same interface for many classes that do the same

thing

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Object Oriented Programming in C++ Tasks

More on Object Oriented Programming

Object Oriented Programming (OOP)

� Inheritance
� Support for hierarchies (most knowledge can be structured by

hierarchical classifications)
� Ex: A car is a motor vehicle which is a vehicle which is a

transportation system which is a . . .
� Subclass to inherit the properties of the base class

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Object Oriented Programming in C++ Tasks

More on Object Oriented Programming

Operator overloading

� You can overload most operator
� This way you can make them behave in a certain way for a

certain class
� It will not change the behavior for other classes only the new

you add definition for

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Object Oriented Programming in C++ Tasks

More on Object Oriented Programming

Inheritance

� Inheritance is a way to show a relation like “is a”
� Ex: A car is a vehicle
� A car inherits many of its properties from being a vehicle
� These same properties could also be inherited by a truck or a

bus
� Syntax: class Car : public Vehicle to tell that Car

inherits from Vehicle

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Object Oriented Programming in C++ Tasks

More on Object Oriented Programming

Inheritance vs Aggregation

� Inheritance correspond to “is a” relations
� Ex:
class Car : public Vehicle ...

� Aggregation to “has a”
� Ex:
class Car {
...
Person m Owner;

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Object Oriented Programming in C++ Tasks

More on Object Oriented Programming

Inheritance and Constructors

� If you have three classes A, B and C,
� where B inherits from A and C from B
� When you create C the constructor from the base classes (B

and A) will be run first
� Execution order

1. Initialization list for A runs
2. Body of A constructor runs
3. Initialization list for B runs
4. Body of B constructor runs
5. Initialization list for C runs
6. Body of C constructor runs

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Object Oriented Programming in C++ Tasks

More on Object Oriented Programming

Constructors

� If you do not specify a constructor in the initialization list the
default constructor will be called

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Object Oriented Programming in C++ Tasks

Lecture 14: Object Oriented Programming in C++
Wrap Up
Printing
More on getting Input
More on Classes and Members
More on Object Oriented Programming

Tasks
Lecture 13
Lecture 14

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Object Oriented Programming in C++ Tasks

Lecture 13

Task 13.4

� Write class Complex for a complex number
� Provide 3 constructor

� default which should give value 0
� one argument which should give a real value
� two arguments, real and imaginary part

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Object Oriented Programming in C++ Tasks

Lecture 14

Task 1

� Create a class hierarchy with Vehicle as base class and
subclasses Car and Motorcycle

� What belongs in the base class and what goes into the
subclasses?

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Object Oriented Programming in C++ Tasks

Lecture 14

Task 2

� Start from the Complex class from last time
� Add a static int member
� Every time a new complex number is created the static variable

should be incremented
� Implement the member function
Complex& add(const Complex &c);
which should add c to the object

� How does the number of created objects change if we change
the function to
Complex& add(Complex c);

� Also look at the functions
� Complex add(const Complex &c1, const Complex

&c2);
� Complex add(Complex c1, Complex c2);

� What is the difference between the functions?Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Object Oriented Programming in C++ Tasks

Lecture 14

Task 3

� Use the Complex number class from before
� Overload std::ostream& operator<<(std::ostream
&os, const Complex &c);

� Overload Complex operator+(const Complex &c1,
const Complex &c2)

� implement Complex operator+(const Complex &c);
(member function)

� implement Complex& operator=(const Complex &c);
(member function)

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Object Oriented Programming in C++ Tasks

Lecture 14

Next Time

� C Help Session: Today 15-16 Room 304
� Lecture: Wednesday 10th of October, 15-17, D34
� Inheritance, Virtual Functions and Templates
� C-project deadline Thursday 6th of October

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming


	Overview
	Overview

	Content
	Lecture 14: Object Oriented Programming in C++
	Wrap Up
	Printing
	More on getting Input
	More on Classes and Members
	More on Object Oriented Programming

	Tasks
	Lecture 13
	Lecture 14



