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ABSTRACT

We present a modification to a latent topic model, which makes the model exploit su-
pervision to produce a factorized representation of the observed data. The structured
parameterization separately encodes variance that is shared between classes from vari-
ance that is private to each class by the introduction of a new prior over the topic space.
The approach allows for a more efficient inference and provides an intuitive interpreta-
tion of the data in terms of an informative signal together with structured noise. The
factorized representation is shown to enhance inference performance for image, text, and
video classification.
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Notation:
- m: Document index
k: Topic index
- c¢: Class index
- 0@: Topic distribution in for each document
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Illustration of topic distribution 8 and 0¢'%35, K=10 is used here as an example
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LDA with class label Our factorized LDA

We employ an entropy-like measure H (k) over class for
each topic k:
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| e High H(k) — class-independent topics

0.65

A e Low H(k) — class-depended topics

0.55

8 N S S S S S S Hence we introduce the following function:
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The static function A A(k) — H(k.)Q _ H(k) + 1

K
We define the new prior as: p(0) x H Ak

which treats each column of °2%% independently.
With the additional prior, the generative model becomes:
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* We introduce an "auto-annealing” procedure, where A

0.7

a is changed to dynamic function, since H is close to 1

By during initialization.
PR S - A(k) = H(k)? —2HH (k) + 1 , (1)
i 55 os o7 on on where the average H, H = 2521 H(k)/K, is used as

The  dynamic  energy an annealing parameter in the function.

optimization function A

We consider topics with low H as class-dependent while topics with high H are
considered as independent.

An additional factor F_x is introducted in the update equation of the Gibbs Sam-
pling,
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In the updating procedure for F_.. a gradient step is carried out by measuring
the possible change with respect to the prior AA(k) = A?s5"™€ (k) — A(k), where

A?ssume (k) ig the evaluation of Eq. 1 for the current sample. AA(k) € (—1,1).
Thus the factor takes the following form,

Fr. =1+ AA(k)

We introduce a parameter x that controls the contribution of this term, hence

J-Fk — 1+ |AAK)|R, if AA(K) >0
(Fi=1—|AAK)|®, if AA(k) <0
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EXPERIMENTS

We evaluated our model(F-LDA) against regular LDA model [2] and SLDA [3] on four
different classification tasks with different data.

e Object Classification

S

The toy dataset used in the object classification
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Confusion matrix for Confusion matrix for Confusion matrix for
regular LDA: 34.38% SLDA: 0% F-LDA: 81.25%

e Text Classification
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e Scene Classification
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e Action Classification
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Performance Regular SLDA Factorized
LDA LDA
Text Classification 74.63% 63.75% 83.91%
Scene Classification 80.50% 84.00% 84.50%
Action Classification 38% 52.33% 65.22%




