
Task Learning Using Graphical Programming and
Human Demonstrations

Staffan Ekvall, Daniel Aarno and Danica Kragic*
Computational Vision and Active Perception and Centre for Autonomous Systems

Royal Institute of Technology, Stockholm, Sweden
{ekvall, bishop, danik }@nada.kth.se

Abstract— The next generation of robots will have to learn
new tasks or refine the existing ones through direct interaction
with the environment or through a teaching/coaching process
in Programming by Demonstration (PbD) and Learning by
Instruction frameworks. In this paper, we propose to extend the
classical PbD approach with a graphical language that makes
robot coaching easier. The main idea is based on graphical
programming where the user designs complex robot tasks by
using a set of low-level action primitives. Different to other
systems, our action primitives are made general and flexible so
that the user can train them online and therefore easily design
high level tasks.

I. I NTRODUCTION

With robots moving out of factories to home and office
environments, it is unfeasible to preprogram them for all
tasks they are required to perform. Furthermore, the end-
user cannot be expected to have a deep knowledge of
programming or robotics algorithms and can thus not extend
the robot’s capabilities by classical programming implemen-
tation. It has been recognized that for successful deployment
of autonomous systems in unstructured environments there is
a need for online task learning and problem solving with and
without interaction with a human, [1]–[5]. This also applies
to medical and traditional factory settings where reprogram-
ming of robots can still be a bottleneck in times of increased
outsourcing and just-in-time production requirements. If the
reprogramming is performed by anyone of the regular factory
staff, robots can be used to solve a more diverse set of tasks
and increase the throughput. One of the examples close to
robot users is the Roomba vacuuming robot from iRobot, [6]
which is designed for a single application. Its control panel
allows a user to partially reprogram the robot by selecting
different room sizes. Robotic systems that are able to perform
more complex tasks commonly use text-based programming
languages with few high-level abstractions, [7].

In cognitive psychology, it is well known that there are at
least three different ways to learn how to solve problems, [8].
One way is bydiscovery, or exploration. A second way is by
instruction, and a third way is byobservation. The robotics
community has been trying to replicate these three teaching
modalities in different ways. For example, the Programming
by Demonstration (PbD) paradigm [1], [9]–[11] is inspired
by the observation whereas learning by discovery is related

This work has been supported by EU through the project PACO-PLUS,
FP6-2004-IST-4-27657 and Swedish Research Council.

to reinforcement learning (RL) and similar methods. For
teaching a robot by instruction, alanguage for human-
robot communication is required. Low-level programming
languages such as C++ have significant flexibility, but are
the most difficult to use in case of regular users. In addition,
they require a lot of tedious work when even simple tasks
are considered. Spoken (high-level) languages like English
are easy to use, but require complex translation to low-level
programming languages before the robot understands and
executes the task.

Related to the above, three scientific problems currently
investigated in our research are: (1)Synthesis:the develop-
ment of systems tools necessary for describing and imple-
menting a PbD system; (2)Modeling: given sensor traces
of a human performing a task, segmenting those traces into
logical task components and/or measuring the compatibility
of a given PbD structure to that sequence of components;
and (3) Validation: measuring system’s performance. In
this paper, we study the synthesis and modeling issues by
considering the problem of teaching a robot household and
office tasks given a set of action primitives ranging from
robot localization to object manipulation.

For similar applications, there have been examples where
a set of simple behaviors (follow, stop, turn etc.) are pre-
programmed and, during teaching, the right behavior is
identified through dialog with the teacher, [12]. Conditional
behaviors are however more difficult to model. It is in general
hard to keep track of all instructions in a sentence such as
“If X do A and B, otherwise if Y do C otherwise do D”.
Motivated by this, we propose to use a mid-level, graphical
language for robot instruction. This way, the drawbacks of
high-level languages are avoided and the user is given a
detailed overview of what the goals of different steps in a
task are. It is straightforward to monitor how the program
branches at conditional behaviors and the user (teacher) is
also free to add and change behaviors, something that is hard
to achieve just using verbal communication.

Similar systems use only one of the three teaching modal-
ities mentioned above when teaching robots new tasks. This
often limits the range of the tasks that can be performed
by the robot. We propose an architecture where graphical
programming, PbD and skill refinement through practice can
be used together with reasoning on different levels to allow
a non-expert user to teach the robot a large set of new and
meaningful skills in both autonomous and human-machine



collaborative environments. One of the main contributions
of this paper is the integration of graphical programming
and PbD in a behavior based control framework.

This paper is organized as follows. In Section II, we
shortly review the related work and present our system de-
sign. We continue by presenting the task description system
in Section III and reasoning mechanisms in Section IV and
give details on various PbD solutions in V. Experiments
are described in Section VI and the paper is concluded in
Section VII.

II. M OTIVATION AND SYSTEM DESIGN

Our system is based on four different levels of control,
shown in Fig. 1. At the bottom level, there are robot
platform dependentaction primitives, implemented in C++.
One or more primitives can be combined into abehavior,
executed at theexecution levelwhich also deals with fault
detection and error recovery. At the top, there is atask
levelwhere several behaviors are combined to reach the goal
state. Variations of the approach with different levels have
been widely and successfully used in systems such as ISR,
DAMN, Saphira and others, [13]–[16] and favors platform
portability. What makes our system unique is the training
of the action primitives. Each action primitive comes as an
untrained PbD problem, capable of learning from human
demonstration within its domain. Then, the primitives are
combined in the graphical framework in order to unite several
domains and perform advanced tasks. Section V describes in
detail how some of our action primitives are trained.

Fig. 1. Different control levels of the system.

The PbD paradigm has been successfully applied in sev-
eral areas, ranging from the typical pick-and-place type tasks
[17] to fine manipulation [10] and games such as air hockey
[11] and marble mazes [18]. In classical approaches, it has
only been possible to program variations of the same task.
For example, a PbD system written to handle pick-and-
place tasks can only handle pick-and-place tasks, where as a
system that can be taught how to play air-hockey can only be
used to play air-hockey. By combining PbD with a graphical
task specification interface our system is able to support the
PbD paradigm for a much broader set of tasks.

Systems that rely on graphical programming or task de-
scription have been proposed previously. As an example,
MissionLab included a graphical editor that allowed users to
construct programs in the configuration description language
(CDL) [19]. The CDL can be used to describe a set of

agents, the channels between them and the data-flow graph.
In [20] a program called RoboGlyph was used to program
various tasks for a PUMA 560 manipulator. These examples
show that graphical programming can be successfully used
by a regular end user who is only familiar with typical
computer software such as, for example, word processors.
The main difference to our work is that the low-level items,
corresponding to our action primitives, cannot be trained by
human demonstration.

Another example is the Behavior Composer in ERSP,
[21], which is a graphical programming environment that
allows the user to connect several behavior blocks and
build a behavior based robot task. Compared to our work,
the behaviors operate at a much lower level which means
that more blocks are needed for accomplishing the same
task. Again, the blocks cannot be trained as in our system.
Instead, different parameters and thresholds have to be set.
All behaviors are active in parallel, in opposite to our system
which operates sequentially. Consequently, our system is
more useful for teaching the robot sequential tasks, while
Behavior Composer could be useful for constructing the low-
level action primitives.

Most work presented in the areas of PbD, graphical
programming, RL and behavior based robotics has focused
mainly on one, or perhaps two of the teaching modalities.
Our work is different in the way it integrates all teaching
modalities to form a complete environment where appro-
priate methods can be applied at different levels in the
architecture to solve more complex problems.

Fig. 2. A sorting behavior: sorting the object in front of the robot depending
on the object type, and Pick-and-place behavior used by the sorting behavior.

III. B UILDING A TASK DESCRIPTION

In our system, there are three different teaching modalities
together with a reasoning level that allows a robot to learn
new tasks. In the system, the user is able to i) instruct
the robot through a graphical programming interface (GPI),
effectively providing an outline of a new behavior, ii) the user
may then, by demonstration, train parts of this new behavior
that need further specification, and finally, iii) the robot may
carry out the task under supervision of the human, where
the human has the possibility of giving feedback, such as
corrective motions or penalizing/rewarding the robot for its
decisions.

A. Action Primitives

The basic foundation in our framework are the action
primitives. An action primitive is a flexible “black box”



that is implemented in C++ towards a specific hardware
platform. It is flexible in the sense that it is possible to
train it and black in the sense that the user has no detailed
knowledge of how it works. This also supports the general
idea that users do not have to know the details of a specific
algorithm to be able to use it. An action primitive must
be simple enough so that it can be combined with other
primitives and reused in a variety of tasks. On the other
hand, it also has to be expressive enough so that it is able
to achieve the goal of the task. Example action primitives
are MOVEARMor CLOSEGRIPPER. Their implementations
are platform dependent and therefore low-level.

B. Behaviors

Different action primitives can be connected using a GPI
to form a behavior, as it will be described in Section III-D.
Once a set of action primitives has been defined, it constitutes
a behavior that can be reused. For example, the behavior
PICK UP OBJECT consists of the primitivesMOVEARM ;

VISUAL SERVO ; MOVEARM ; CLOSEGRIPPER. The ac-
tion can be stored and reused in another task. If training data
for the primitives is present when storing it, thetrained be-
havior is stored, i.e., if we have trainedPICK UP OBJECTon
the objectMILK, we can store the behavior asPICK UP MILK,
and the action will be executable without training it in some
other task. Fig. 2 shows an example of a sorting behavior.
The behavior contains another behavior, pick-and-place. Note
that the two instances of the pick-and-place behavior do not
share the same training data, so the robot will move the
object to different positions dependent on its type.

C. Programming by Demonstration

In our framework, a GPI is used to determine the domain
in which PbD is to take place. Using the GPI requires
only moderate knowledge of the capabilities of the plat-
form and no programming experience. Given the GPI, it
is possible to use PbD to solve a larger set of tasks. For
example, in the GPI it is possible to define a pick-and-place
behavior by specifying the following sequence of action
primitives:PP BHVR= LOCATEOBJECT; VISUAL SERVARM;
GRASPOBJECT; MOVEARM; RELEASEOBJECT.

The actions inPP BHVRcan now be trained to pick up
an object and place it to a certain position. PbD is used
primarily at the action primitive level, but can also be used at
the behavior and task level. The majority of action primitives
must be programmed before they can be executed, e.g., an
object recognition primitive must first be demonstrated the
object to recognize before it can actually recognize it. PbD
can also be performed at the behavior level. By specifying
that a number ofPP BHVRare to be executed in a sequence it
is possible to demonstrate, for example, aset tablebehavior,
[22].

By combining PbD with a GPI, it is therefore possible
to solve a much larger set of tasks. The final step towards
a more autonomous learning is to incorporate a learning
by practice step, where the robot performs a task under
the supervision of a human in such a way that the human

can provide useful feedback. Feedback can be in many
forms such as simple “good robot”/”bad robot”, by supplying
further demonstrations or modifying the robot’s plan.

D. Graphical User Interface

The GUI used to instruct the robot is shown in Fig. 3. From
a menu, the user can select from a wide variety of actions
and behaviors, both trained and untrained. When connecting
components, the GUI uses visual cues to match input types
with the data provided by the active output. This can be seen
as a highlighted (green) input on theOBJECTSIMILARITY

andIMAGESIMILARITY behaviors in Fig. 3, since they both
require an image as input and that is the data that is provided
by the CAPTUREHANDIMAGE action. TheMOVEARMaction
on the other hand does not accept an image as input and
its input connector is therefore disabled (gray). By use of
tooltips the user can also easily investigate the different
inputs and outputs of each action.

Fig. 3. The graphical programming interface.

IV. PLANNING

The behaviors are stored in the behavior database. In
addition to the name of the behavior, inspired by the STRIPS
planner [23], thepreconditionsandeffectsare also stored. As
an example, the behaviorPICK UP OBJECTis represented in
the XML behavior database as following:

In this case, before an object can be picked up, it has
to be in front of the robot. The effect is that the object
will be held by the gripper and no longer in front of the
robot. By specifying the preconditions and effects for each



behavior, the robot can search the behavior database and
automatically plan a sequence of behaviors that eventually
fulfills the end conditions. When planning for the behav-
ior PICK UP OBJECT, the robot would find that either the
behaviorMOVETO OBJECTor PLACEOBJECThas to come
immediately before, as they are the only behaviors that
fulfill the precondition. The user is also allowed to add
new behaviors to the behavior database. New behaviors are
automatically taken into account by the planner and next time
a task is executed, new behaviors will be considered, e.g.,
DROPOBJECT.

This approach relieves the user of some tedious task
description work. Instead of having to specify all the be-
haviors for, e.g.,FETCHMILK it is enough to just describe
the behaviorPOURMILK with the precondition that the robot
is already holding the milk. The steps for acquiring the milk
are automatically generated by the planning algorithm. When
there are several ways to satisfy preconditions the robot must
learn from experience and decide which one to select. For
example, if the robot chooses to go to the store instead of
the kitchen to fetch milk, the user might penalize it through
the skill refinement system so that the most preferred place
(kitchen) is always considered first.

V. ACTION PRIMITIVE TRAINING

One of the main contributions of this work is the design
of flexible action primitives that can be trained by human
demonstrations. In this section we provide examples of
how training is done for specific behaviors. Several action
primitives have been implemented in the system, some of
them are listed below. We avoid a detailed description and
refer to our previous work instead, [24], [25].

MOVEARM Robot arm movement along a prerecorded
trajectory. Stops if colliding with an obstacle. Trained by the
user by physically dragging the gripper to the desired posi-
tion and orientation. A force/torque sensor is used together
with inverse kinematics to calculate the desired pose.

CLOSE/OPENGRIPPER Two different primitives for con-
trolling the gripper. No training necessary.

IMAGESIMILARITY Calculates the similarity between
a stored image and a given image using Receptive Field
Cooccurrence Histograms [24].

OBJECTSIMILARITY Similar to the previous, but in the
training phase a specific object and not the entire image is
learned. Object segmentation is performed using image dif-
ferencing and morphological operations so that a segmented
training image is automatically generated.

OBJECTRECOGITION Evaluates if the object in front
of the camera is exactly the same as the training
object using SIFT-features [26]. Same training proce-
dure as with OBJECTSIMILARITY . The two primitives
OBJECTRECOGNITIONand OBJECTSIMILARITY comple-
ment each other. The former is used for recognizing a
specific object, rich in local features and the latter is used for
recognizing object categories, or for recognizing a specific
object with few or no local features.

MOVETO A navigation primitive that moves the robot to
a specific place. The navigation is SLAM-based using the
SICK laser scanner and sonars to avoid unexpected local
obstacles.

A. Learning Object Recognition

In our framework, objects are learned from human demon-
strations using two steps. First, the robot observes the back-
ground. Then the operator places an object in front of it and
the object is segmented using image differencing, relieving
the user of manually extracting the object. Image differencing
is followed by a number of incremental morphological opera-
tions to achieve better segmentation (errode - dilate - errode),
[27]. These operations are performed using information from
the original image, i.e., a growing effect (covering holes) will
not add black pixels but pixels from the original image. The
result of this step can be seen in Fig. 4.

Fig. 4. Left: The original image. Center: The result after image differenc-
ing. Right: The result after morphological operations

A problem with image differencing is the choice of
a thresholdθ that determines if a pixel is part of the
background or not. Ifθ is set too high, too much of the
background will remain. Ifθ is set too low, significant
parts of the object may be omitted. In our work, we use
an automatic adjustment ofθ based on the result of the
differencing performance. If image differencing was suc-
cessful, the remaining pixels should be concentrated to a
single area where the object has moved. If the differencing
has failed, the pixels are mostly scattered around the entire
image. Thus, the success is measured in terms of detection
variance. In addition, a penalty that is linearly proportional
to the number of pixels remaining is added to cover the case
of very few remaining pixels that have a low variance but
are not sufficient for the object representation. The algorithm
tests everyθ from 1 to 150, to find the optimal setting with
the lowest score.

B. Learning Arm Movements

Many tasks require the user to guide the robot arm, either
for teaching the robot how to move the arm along a specific
trajectory or to position the camera mounted on the end-
effector relative to the object. This can be achieved using a
keyboard or a joystick but these devices are not intuitive
for controlling a 6-DOF robot arm. Instead, we use the
force/torque sensor attached to the end-effector and an arm
movement is taught by simply dragging the arm to the
desired pose. The compliant control of the arm is briefly
described below.



Fig. 6. The robot executing the task. The rice package has been recognized and moved to the left bin as demonstrated by the user.

1) Arm Control: The manipulator is equipped with a JR3
force/torque sensor mounted between the end-effector and
the last link, providing 6 DOF force/torque measurements.
It provides decoupled data at 8 kHz per channel, which is
low-pass filtered with the bandwidth 30 Hz (-3 dB) by a
DSP. The data is first read from the DSP and the current
arm configuration is then used to subtract the influence of
gravity on the end-effector. The force/torque vector is then
transformed to the base frame attached to the base of the
mobile platform. If the magnitudes of the force and torque
are both below a threshold the velocity of all joints are set to
zero. Otherwise, the Cartesian velocity of the arm is set to be
proportional to the force. The same applies to the torque. The
Cartesian velocities are then transformed to joint velocities
of the arm using the inverse kinematics.

C. Training the Navigation Primitive

When the program flow reaches an untrainedMOVETO

primitive, it will stop and ask for advice. The user can then
teach the system where to move by i) asking the robot to
follow him/her, or ii) by controlling the robot directly with a
joystick. TheFOLLOWbehavior is implemented by tracking
the user’s legs with the laser scanner. However, it is easier
to teach more precise locations using the joystick. As the
robot moves, it drops virtual roadmap nodes in its map and
automatically connects these. The nodes indicate free space

Fig. 5. The user drags the robot arm to show it how to grasp the object,
and move the object to the bin.

and the roadmap tree enables the robot to quickly find the
fastest way to a specific location. For more details, see [25].

VI. EXAMPLE TASKS

The experimental platform is an ActivMedia PowerBot,
Fig. 6. It is a non-holonomic differential drive platform with
a 6 DOF robotic manipulator on the top. It has a SICK
LMS200 laser scanner, 28 Polaroid sonar sensors, a Canon
VC-C4 pan-tilt-zoom camera and a Firewire camera on the
last joint of the arm.

One of the behavior that was designed using the system
is an object sorting task. The main goal of the task is
to sort two objects shown in the small image in Fig. 5.
The rice package should be sorted to the left bin, and
the raisins package to the right bin, shown in the larger
image in Fig. 5. First, if the behavior is not constructed, the
user drags the blocks according to Fig. 2 and then presses
the run button. The program starts by opening the robot
gripper, then initializes the arm for movement but stops at
the MOVECAMERAprimitive because this primitive has not
yet been trained. The user is the asked to rotate the camera
to the desired direction using the keyboard. When satisfied,
training of this primitive is complete and the value is stored
for future use. The robot then captures an image of the object,
which requires no training. The program then stops again, at
the object recognition block which is untrained. The training
proceeds according to Section V-A and the robot learns to
recognize the rice box. Then, the robot executes the learned
primitive and realizes that the rice box is indeed present
in the image. Thus, the upperPICK ANDPLACE behavior
is executed. However, this behavior is also untrained and
the individual arm movements are shown by the user which
drags the robot arm to the correct positions, see Fig. 5. The
user then executes the task again, this time with the rice
package not in the image. Thus, the rice package is not
recognized and the program chooses the lower branch in
Fig. 2, and once again asks for instruction. After the second
movement have been shown, the program is complete. A few
example images taken during robot performing the learned



sorting task are shown in Fig. 6. Currently, the approach
requires the object to be in a precise pose. We plan to
incorporate aVISUAL SERVOprimitive that will allow the
object to be just roughly at the same position. The robot
executed the task 10 times, with 100 % success rate. This
was expected, as it is easy to separate the two objects visually
and the grasping action cannot fail as long as the object is
placed at the correct position. Although this experiment is
not particularly challenging, we believe that it demonstrates
the concept of our approach. The human is able to teach the
robot a combined behavior that is not within any of the PbD
domains of each individual primitive.

Another example of a behavior is theSTATUSCHECK

behavior. It involves both navigation, camera movement and
computer vision, and can be trained for many different tasks,
e.g., checking if a certain button is pressed, or if a door
is open or closed. The behavior uses two image similarity
actions and picks the training image that is most similar to
the test image. This behavior can be used by higher order
behaviors, for example if the robot takes the elevator, it
can use theSTATUSCHECKto verify that the button has
been pressed successfully. Naturally, the success rate of this
behavior is highly dependent on what it is used for.

VII. C ONCLUSIONS

Robots that are to operate in everyday, dynamic environ-
ments such as homes and offices need learning mechanisms
that allow for adaptation to the surrounding. As the reasoning
capabilities of robots are still quite limited, most of the high
level knowledge is acquired through interaction with humans.
In this paper, we have presented a mid-level communication
tool for teaching robots different tasks in a Programming by
Demonstration framework. The tool is based on graphical
programming which does not require any programming skills
making it suitable for regular users.

One of the main contributions of this paper is the in-
tegration of graphical programming and Programming by
Demonstration in a behavior based control framework. The
proposed system allows the user to specify the task structure,
and then, using demonstrations, instruct the robot exactly
how to perform the task following the task structure. Using
this method, we have successfully taught a mobile robot
several behaviors, such asSORT and STATUSCHECK. An
important issue we are dealing with is fault handling and
error recovery. Currently, all action primitives can report
success or failure but to achieve more robust and flexible
performance, the system has to have the support so that the
user can instruct the system what to do in case of failure.
This will be the strongest topic for our future research.

REFERENCES

[1] M. J. Mataríc, “Getting humanoids to move and imitate,” inIEEE
Intelligen Systems, pp. 18–24, jul 2000.

[2] T. Fong, I. Nourbakhsh, and K. Dautenhahn, “A survey of socially
interactive robots,” 2002.citeseer.ist.psu.edu/article/
fong02survey.html .

[3] M. Kleinehagenbrock, J. Fritsch, and G. Sagerer, “Supporting ad-
vanced interaction capabilities on a mobile robot with a flexible control
system,” inIEEE/RSJ International Conference on Intelligent Robots
and Systems, IROS, vol. 4, pp. 3469–3655, Oct. 2004.

[4] F. Michaud, Y. Brosseau, C. Cote, D. Letourneau, P. Moisan, A. Pon-
chon, C. Raievsky, J.-M. Valin, E. Beaudryy, and F. Kabanza, “Modu-
larity and integration in the design of a socially interactive robot,”
in IEEE International Workshop on Robot and Human Interactive
Communication, 2005. ROMAN, pp. 172–177, Aug. 2005.

[5] A. M. Steinfeld, T. W. Fong, D. Kaber, M. Lewis, J. Scholtz,
A. Schultz, and M. Goodrich, “Common metrics for human-robot
interaction,” in 2006 Human-Robot Interaction Conference, ACM,
March 2006.

[6] iRobot, “Roomba robotic vacuum cleaner,” in
http://www.roombavac.com, 2003.

[7] G. Biggs and B. MacDonald, “A survey of robot programming
systems.”citeseer.ist.psu.edu/biggs03survey.html .

[8] J. R. Anderson,Cognitive Psychology and its Implications. 41
Madison Avenue, New York, NY 10010: Worth Publishers, 5th ed.,
2002.

[9] C. Atkeson and S. Schaal, “Robot learning from demonstration,” in
In Machine Learning: Proceedings of the Fourteenth International
Conference (ICML ’97) (ed. D. H. Fisher Jr.), pp. 12–20, July 1997.

[10] R. Zöllner, O. Rogalla, R. Dillmann, and M. Zöllner, “Understanding
Users Intention: Programming Fine Manipulation Tasks by Demon-
stration,” in IEEE International Conference on Intelligent Robots and
Systems, 2002.

[11] D. C. Bentivegna and C. G. Atkeson, “Learning From Observation
Using Primitives,” in IEEE International Conference on Robots and
Automation, 2001.

[12] R. Arkin, Behavior-based Robotics. Intelligent Robotics and Au-
tonomous Agents series, Cambridge, MA: MIT Press, 1998.

[13] H. I. Christensen and P. Pirjanian, “Theoretical methods for planning
and control in mobile robotics,” in1st International Conference on
Conventional and Knowledge Based Intelligent Electronic Systems
(KES-97), vol. 1, pp. 81–86, IEEE Computer Society, April 1997.

[14] K. Konolige, K. L. Myers, E. H. Ruspini, and A. Saffiotti, “The
Saphira architecture: A design for autonomy,”Journal of experimental
& theoretical artificial intelligence: JETAI, vol. 9, no. 1, pp. 215–235,
1997.

[15] J. K. Rosenblatt,DAMN: A Distributed Architecture for Mobile
Navigation. PhD thesis, Carnegie Mellon University Robotics Institute,
1997.

[16] M. Lindström, A. Oreb̈ack, and H. Christensen, “BERRA:A research
architecture for service robots,” inIEEE ICRA, vol. 4, pp. 3278–3283,
2000.

[17] R. Zöllner, M. Pardowitz, S. Knoop, and R. Dillmann, “Towards
Cognitive Robots: Building Hierarchical Task Representations of Ma-
nipulations from Human Demonstration,” inIEEE ICRA, 2005.

[18] D. C. Bentivegna, C. G. Atkeson, and G. Cheng, “Learning From
Observation and Practice Using Primitives,” inAAAI Fall Symposium
Series, Symposium on Real-life Reinforcement Learning, October 22-
24, 2004.

[19] D. C. MacKenzie, J. M. Cameron, and R. C. Arkin, “Specification and
Execution of Multiagent Missions,” 1995.

[20] L. D. Spencer,Graphical Programming Language for Service Robots
in Semi-Structured Environments. PhD thesis, Stanford University,
1994.

[21] M. Munich, J. Ostrowski, and P. Pirjanian, “ERSP: A software
platform and architecture for the service robotics industry,” inProc.
IEEE International Conference on Intelligent Robots and Systems,
2005.

[22] S. Ekvall and D. Kragic, “Integrating object and grasp recognition for
dynamic scene interpretation,” inIEEE International Conference on
Advanced Robotics, ICAR’05, 2005.

[23] R. E. Fikes and N. J. Nilsson, “Strips: A new approach to the appli-
cation of theorem proving to problem solving,”Artificial Intelligence
2, pp. 189–205, 1971.

[24] S. Ekvall and D. Kragic, “Receptive field cooccurrence histograms for
object detection,” inIEEE/RSJ IROS, 2005.

[25] P. Jensfelt, S. Ekvall, D. Kragic, and D. Aarno, “Integrating slam and
object detection for service robot tasks,” inIROS 2005 Workshop on
Mobile Manipulators: Basic Techniques, New Trends and Applications,
Edmonton, Canada: IEEE/RSJ, 2005.

[26] D. Lowe, “Object recognition from local scale-invariant features,” in
International Conference on Computer Vision, pp. 1150–1157, 1999.

[27] R. Gonzalez and R. Woods,Digital Image Processing. Addison Wesley
Publishing Company, 1992.


