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Abstract— We evaluate Layered Hidden Markov Models
(LHMM) for motion intention recognition based on action-
primitives or gestemes. The proposed methodology uses three
different HMM models at the gesteme level: one-dimensional
HMM, multi-dimensional HMM and multi-dimensional HMM
with Fourier transform. These three models are evaluated with
respect to the number of gestemes, the influence of the number of
training samples, the effect of noise and the effect of the number
of observation symbols.

I. INTRODUCTION

Learning and recognizing human skills is an important rese-
arch problem in teleoperation, programming-by-demonstration
(PbD), Human-Machine Collaborative systems (HMCS) and
human-computer interaction [1], [2], [3], [4], [5], [6], [7], [8],
[9], [10]. The problem studied in this paper is recognition of an
operator’s intention in a teleoperated system. The assumption
is that if the intention can be recognized online in real-time,
it is possible to improve the task execution by allowing the
system to adapt to the operator’s need by applying the correct
control mode in the transfer step [3], [6], [7].

The methodology is based on a layered hidden Markov
model (LHMM) where there is a HMM modeling the overall
task and a HMM modeling each action primitive, hereafter
referred to as gesteme. In particular, given a set of gestemes
generated in the learning step, the online recognition step is
responsible for choosing the most likely mental state/intention
given the measurements. We aim at extending motion intention
recognition using HMMs to tasks in 2D/3D with a large set
of primitives. Although a straightforward approach may be
to model every high-level task with a single complex HMM,
we are interested in learning hierarchical representations of
tasks for which the low-level set of skill primitives is common.
We thoroughly evaluate the proposed methodology using three
different types of HMM models at the gesteme level. These
three types of models are evaluated with respect to the number
of gestemes, the influence of the number of training samples,
the effect of noise and the effect of the number of observation
symbols.

II. MOTIVATION AND RELATED WORK

Hidden Markov models have been used frequently in tra-
jectory tracking and virtual fixture applications, [3], [11], [12].
In our previous work, [6], we used a combination of K-
means clustering, SVMs and HMMs to automatically extract
virtual fixtures during task execution. This was then used to
segment the task into a number of subtasks, corresponding to
a particular fixture and provide online assistance by applying

the correct fixture during subsequent task executions. The
output of the HMM was used to adjust the compliance
of the virtual fixture so that the fixture was harder when
the system was more certain about the current state. This
allowed the system to handle task-deviations (i.e. none of
the subtasks were executed) by lowering the stiffness of the
fixture. Work presented in [1], shows how HMMs can be
used at the gesteme level as opposed to the task level. The
basic interaction primitives are modeled by an HMM and the
task is represented as a network of simpler HMMs. In our
current work we combine gesteme classification with task-
level modeling by the suggested LHMM approach in order to
handle more complicated types of tasks. This is an extension
of the work presented in [6] where the SVM classifiers are
replaced by the more expressive HMM classifiers.

Our work relates to the work on Hierarchical Hidden
Markov Models (HHMMs). HHMMs have been used to model
stochastic structures at different levels in speech and text
recognition, modeling of group actions in meetings and ex-
tracting contexts, [13], [14], [15]. The reason for using the
LHMM instead of the HHMM structure is that it corresponds
well with the intended scenario. At the lowest level there are
several models active in parallel classifying sensor data into
action primitives. The classification then progresses through
the LHMM until finally the task is modelled at the top level. In
other words, in the LHMM there are several HMMs running
at parallel at any given level of the hierarchy, where each
HMM corresponds to a different “concept”. Even though a
fully connected HMM could always be used if enough training
data is available, it is useful to constrain the model by not
allowing arbitrary state transitions. In the same way, it can be
beneficial to embed the HMM into a more complex structure.
In principle, this may not facilitate the solution of more
complex problems compared to the basic HMM but can solve
some problems more efficiently when it comes to the amount
of required training data.

III. LAYERED HIDDEN MARKOV MODELS

In our approach, we adopt layered hidden Markov model
(LHMM), [14] that consists of N levels of HMMs where the
HMMs on level N +1 corresponds to observation symbols or
probability generators at level N. Every level i of the LHMM
consists of Ki HMMs running in parallel, Fig. 1. At any
given level L in the LHMM a sequence of TL observation
symbols oL = {o1,o2, ...,oTL} can be used to classify the input
into one of KL classes, where each class corresponds to each
of the KL HMMs at level L. This classification can then



Fig. 1. A layered hidden Markov model.

be used to generate a new observation for the level L − 1
HMMs. At the lowest layer, i.e. level N, primitive observation
symbols op = {o1,o2, ...,oTp} would be generated directly
from observations of the modeled process. For example, in
a trajectory tracking task, the primitive observation symbols
would originate from the quantized sensor values. Thus at
each layer in the LHMM, the observations originate from the
classification of the previous layer, except for the lowest layer
where the observation symbols originate from measurements
of the observed process.

It is not necessary to run all levels at the same level of
granularity. For example, it is possible to use windowing at any
level in the structure so that the classification takes the average
of several classifications into consideration before passing the
results up the layers of the LHMM. Instead of simply using the
winning HMM at level L+1 as an input symbol for the HMM
at level L, it is possible to use it as a probability generator by
passing the complete probability distribution up the layers of
the LHMM. Hence, instead of having a “winner takes all”
strategy where the most probable HMM is selected as an
observation symbol, the likelihood L(i) of observing the i-
th HMM can be used in the recursion formula of the level L
HMM to account for the uncertainty in the classification of the
HMMs at level L+1. Thus, if the classification of the HMMs
at level n+1 is uncertain, it is possible to pay more attention
to the a-priori information encoded in the HMM at level L.

A LHMM could in practice be transformed into a single
layered HMM where all the different models are concatenated
together. Some of the advantages that may be expected from
using the LHMM over a large single layer HMM is that
the LHMM is less likely to suffer from over-fitting since
the individual sub-components are trained independently on
smaller amounts of data. A consequence of this is that a
significantly smaller amount of training data is required for
the LHMM to achieve a performance comparable of the
HMM. Another advantage is that the layers at the bottom
of the LHMM, which are more sensitive to changes in the

Fig. 2. A two level layered hidden Markov model, modeling gestemes at
level 2 and a task at level 1.

environment such as the type of sensors, sampling rate etc,
can be retrained separately without altering the higher layers
of the LHMM.

Here, a LHMM with two levels are considered. At level 1 a
single HMM is used to model the task, where each state in the
HMM corresponds to a sub-task. At level 2 there is a HMM
for each of the K2 possible gestemes that may occur during
execution of the task. The observation sequence for the level
2 HMMs is generated from the quantized motion direction
of the trajectory recorded during task operation. The index
of the HMM with highest likelihood among the K2 HMMs
at level 2 is then taken to be the the observation symbol
for the level 1 HMM. The level 1 HMM is then used to
compute the probability of a certain state as a function of
time given the observation sequence produced by the HMMs
at level 2. Since each state in the level 1 HMM corresponds to
a mental stage of the teleoperation task this information can
be used to understand the operator’s intention. The proposed
structure is outlined in Fig. 2. Here, the winning HMM at
level 2, i.e. the one with the highest likelihood, is chosen
and an observation symbol corresponding to this gesteme is
generated for the level 1 HMM. The alternative would be to
use the complete probability distribution and have the HMMs
at level 2 act as a probability estimator for the level 1 HMM.
However, according to [14] using the complete distribution
does not give any apparent advantage over the simpler winner
takes all model.

A. The gesteme HMM

The goal of the gesteme HMMs is to distinguish between
different motion primitives. For example, there can be gesteme
HMMs to recognize motion along lines with different direction
or circles with different radii and orientation in space. In
our case, the gestemes can be any arbitrary motion in 2D
or 3D. The observations for the gesteme HMMs are extracted
from motion data. The trajectory is recorded, normalized and
differentiated in order to compute the motion directions which
are then mapped to corresponding observation symbols as
described later in this section.

For the gesteme HMMs we evaluate the following types of
models: One-dimensional HMM (OD): Here, the observation
symbols are taken from a set O = {O1,O2, ...,OK} of K
discrete symbols. The B matrix is used to store the probability
of observing the jth symbol in state i, Bi,j = P(O j|state i).



The symbols are generated by k-means clustering of all the
training directions. The number of cluster centers is 25 in
all experiments, if not stated otherwise. This number was
chosen by an offline examination of the data. Using too few
clusters makes it hard to distinguish between different motion
directions while using too many makes the generalization
difficult.

Multi dimensional HMM (MD): The MD HMM assumes
independence between the different dimensions of the input
data. Thus, there is a B matrix for each dimension of the
input data. This means that for a D dimensional HMM
the observation symbols are also D dimensional where each
dimension d contains values from a finite enumerated set.
Each dimension is split into 10 equally sized bins and the
input directions are projected into these bins generating the
observation symbols.

Multi dimensional HMM with FT (MD-FT): MD-FT is
similar to the MD except that instead of mapping the raw
motion directions to symbols, each dimension of the raw input
directions are pre-processed by applying the Fourier transform
to small overlapping windows, similar to that reported in [7].
In this work a Hamming window, [16] of size 6 was used with
50% overlap.

B. The Task HMM

The task HMM, or the level 1 HMM in the LHMM
structure, encodes the task sequencing. Both levels of the
LHMM work on the same time granularity and for each
observation generated from the motion data the likelihood
of the gesteme (level 2) HMMs are computed. The gesteme
HMMs are enumerated and the index of the most likely
gesteme HMM is used as an observation for the task level
(level 1) HMM. Each of the states in the task level HMM
corresponds to a sub-task in the operator’s mental model and
the most likely state can be computed in order to, for example,
aid the operator with the execution of that sub-task. It should
be noted that there need not be a one-to-one mapping between
a state in the task level HMM and a gesteme HMM. Rather a
specific gesteme can correspond to different states depending
on the previous state (the Markov assumption). Furthermore
there may be several gestemes that can appear in a single state.

As mentioned previously, the states of the task level HMM
are supposed to correspond to the mental states of the operator.
As a consequence, it is not possible to use the Baum-Welch
algorithm to train the task level HMM, because it will optimize
the HMM parameters λ in order to maximize P(Q|λ) for
the state sequence Q. The approach taken in this work is to
have the operator manually segment the trajectory into sub-
tasks corresponding to the mental model of the operator. The
gesteme HMMs are trained using the Baum-Welch algorithm.
Using the gesteme HMMs to classify the training data a new
observation sequence o′ is obtained. From the observation se-
quence o′ the B can be computed by counting the occurrences
of each symbol in every state and then normalizing the rows
of B. The task level HMM can now be trained by a modified
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Fig. 3. Example trajectories in 2D (left) and 3D (right). The red dots marks
the change from one primitive to the next.

version of the Baum-Welch algorithm where the B matrix is
kept constant.

IV. EXPERIMENTAL EVALUATION

To better analyze and reproduce the results, we carry out
experiments on synthetic data. The goal of the evaluation is to
evaluate the three models: one-dimensional, multi-dimensional
and multi-dimensional HMM with Fourier transform, with
respect to the number of gestemes, the influence of the number
of training samples, the effect of noise and the effect of the
number of observation symbols. For the evaluation on real
sensor data we refer to our previous work presented in [17].

A reference task consists of a sequence of motion primitives
randomly generated from two groups of motion primitives.
The first group contains straight lines of varying directions
and lengths and the second group is made up of circle
segments with varying starting and ending angles as well
as orientations and radii. Fig. 3 shows example trajectories.
These trajectory types may seem simple, but they were chosen
because we believe that there exists several relevant tasks in
areas such as medical surgery or automotive assembly that can
be decomposed into a sequence of linear and circular motions.

The simulated trajectories are created in the following way.
Given a reference trajectory Tr a target point p is selected
on Tr so that the distance to p from the current position q
is larger than some threshold ξ. A direction of motion d is
then computed as the average between the direction towards
p from q and the current direction of motion. A random
error ed is then added to d where each element of ed is
generated independently according to ed(i) = κ ·Γ, where Γ
is generated from a normal distribution (µ = 1,σ = 1) and κ
determines the noise level. Finally the current position q is
updated by taking a step of size δ · (1+2κ ·Γ) in the direction
of d where δ determines the step-size, which was set to 0.05
in all experiments. The value of κ was set to 0.15 for all
experiments if not otherwise stated. Here, three classes of
reference trajectories are used. They are referred to as line,
circle and mixed trajectories in 2D respectively 3D. The line
trajectories are made up of a sequence of linear segments,
the circle trajectories are comprised of circle segments and
the mixed trajectory type consists of a mixture of linear and
circular segments.
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Fig. 4. Classification performance as a function of noise.

A. The Gesteme Classifier

The HMM is able to handle a large amount of noise as long
as the noise is consistent during training and classification.
To evaluate what amount of noise the gesteme classifiers can
handle, we tested the classification performance with several
synthetic runs generated by varying the value of κ from 0.05
to 0.55. If the gestemes are not generated at random but
chosen from some set of gestemes that are constructed to
be easy to distinguish between (such as the letters of the
alphabet) the performance could be expected to be better
than that reported here. For the proposed methods to work
in the intended setting it is required to obtain good results
with only a limited amount of training samples. Therefore
only five training samples where used for the experiments in
this section, if not otherwise stated. Furthermore, the results
presented in this section are the average of 10 independent
trials, if not explicitly stated.

Fig. 4 and 5 shows the classification performance as a
function of the noise, κ. We can conclude that a reasonable
value for the noise parameter κ is less then 0.2 − 0.25.
For the remainder of the experimental results on synthetic
data the value of κ is therefore set to 0.15 unless explicitly
specified. Note that a value of κ ∈ [0.3,0.5] is almost as bad
as guessing. By examining the individual runs, it can be seen
that the noise sensitivity is highly affected by the similarity
of the gestemes. If the gestemes are similar, the performance
decreases almost linearly with increased noise. If the gestemes
contains few common symbols, the classification performance
remains relatively unaffected until the noise starts to dominate
(i.e is large compared to the nominal motion).

One interesting result is that the OD HMM appears to
have better performance with respect to noise sensitivity. We
believe that the reason for this is the low dimensionality and
that the k-means clustering of the pre-processing step helps
with generalization since the cluster centers are affected by
the actual training data instead of using pre-defined bins.
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Fig. 5. Classification performance as a function of noise.
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Fig. 6. Classification performance as a function of the number of gestemes.

The second experiment evaluates the effect of the number
of gestemes on classification. For every gesteme there is a
corresponding HMM which is trained to recognize it. As it
can be seen in Fig. 6 and 7, the performance drops almost
linearly from 100% to about 60% for 25 gestemes for the
medium noise case where κ = 1.5. It is again interesting to
note that the OD HMM appears to have better performance
w.r.t noise. The classification performance for the 3D data is
a bit better but that can be explained with the fact that the
individual gestemes are less likely to be similar.

It is known that HMMs can be trained with only a small
amount of data. Fig. 8 and 9 show that the recognition rate
is quite high even for only two training runs. This is a
good feature of the HMM gesteme classifier since in many
settings extensive training is not possible. When the type
of noise changes and outliers are introduced the necessary
number of training sequences will increase in order to be
able to capture the larger variations that occurs. However,



5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n 

ra
te

Number of gestems

FFT HMM − 2D Mixed

 

 

κ = 0.1
κ = 0.15
κ = 0.2
Random

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n 

ra
te

Number of gestems

FFT HMM − 2D Circles

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n 

ra
te

Number of gestems

FFT HMM − 2D Lines

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n 

ra
te

Number of gestems

MD HMM − 2D Mixed

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n 

ra
te

Number of gestems

MD HMM − 2D circles

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n 

ra
te

Number of gestems

MD HMM − 2D Lines

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n 

ra
te

Number of gestems

OD HMM − 2D Mixed

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n 

ra
te

Number of gestems

OD HMM − 2D Circles

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n 

ra
te

Number of gestems

OD HMM − 2D Lines

Fig. 7. Classification performance as a function of the number of gestemes.
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Fig. 8. Classification as a function of the number of training sequences.

preliminary results indicate that in practice the necessary
number of training sequences is actually quite low as long as
the training sequences are representative for what will occur
during execution.

The number of observation symbols is not crucial but have
to be set reasonably. If too few symbols are used the HMM
can not distinguish between different directions leading to
poor classification. At the same time, using too many symbols
will prevent the HMM from generalizing, leading to poor
classification because none of the models will correspond
well with the training sequences. Fig. 10 and 11 show the
classification performance as a function of the number of
observation symbols. Remember that the observation symbols
are defined differently between the OD and MD HMMs and
values are thus not comparable. For the OD HMM the obser-
vation symbols correspond to the cluster centers obtain from
the k-means clustering of the nominal motion directions of
the training data, whereas for the MD HMMs the observation
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Fig. 9. Classification as a function of the number of training sequences.
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Fig. 10. Classification as a function of the number of symbols. Note that
the number of symbols have different meaning for OD and MD HMMs.

symbols are taken from M ·D predefined bins of size 1/M
giving a total of MD different possible observations, where M
is the number of discrete observation symbols and D is the
dimensionality of the MD HMM.

B. The LHMM

Fig. 12 shows a 2D trajectories with 4 gestemes, G =
{l1, l2, l3,c1}. The “mental model” of this task is that the
gestemes should be performed in a sequential-left-to-right
(SLR) fashion with the c1 gesteme appearing twice, the task
having five different states S1, ...,S5.

A task level HMM is now trained on the output of the
gestem classifiers. That is, the trajectory is classified by
the gesteme classifiers (online) and the sequence of winning
gestemes are used as input to the task-level HMM which is
trained in order to extract the task-model. Fig. 12 (right) shows
classification results. The dashed lines indicate the switch from
one state to the next. Note that there are only four gestemes
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Fig. 11. Classification as a function of the number of symbols. Note that
the number of symbols have different meaning for OD and MD HMMs.
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Fig. 12. Example tasks with 5 states and 4 gestemes.

recognized in the bottom plot whereas there is five states in the
top and middle plots since the gesteme c1 is associated with
two states. Even though the gesteme classifiers are sometimes
confused, the task-level HMM is still capable of determining
the correct state. This is because the misclassification of the
gesteme classifiers are consistent with training data and thus
the task-level HMM expects some misclassification. Further-
more the discriminant power of the LHMM is much better
than that of the HMM, i.e. the difference between the most
probable and the second most probable state is in general much
larger for the LHMM.

V. DISCUSSION AND CONCLUSION

In this paper, we have evaluate Layered Hidden Markov
Models (LHMM) for motion intention recognition based on
action-primitives or gestemes. Three different HMM models
were used at the gesteme level: one-dimensional HMM, multi-
dimensional HMM and multi-dimensional HMM with Fourier
transform. These three models were evaluated with respect
to the number of gestemes, the influence of the number of

training samples, the effect of noise and the effect of the
number of observation symbols in both 2D and 3D tasks. One
observation was that the OD HMM shows better performance
with respect to noise sensitivity and we conclude that this is
due to the low dimensionality and k-means clustering of the
pre-processing step. We have also shown that the discriminant
power of the LHMM is much better than that of the HMM
since the difference between the most probable and the second
most probable state is in general much larger for the LHMM.
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