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Abstract— We study an early learning of object grasping
process where the agent, based on a set of innate reflexes and
knowledge about its embodiment. We present a system that
extracts low-level 3D visual features from a binocular vision
system and uses geometry, appearance and spatial relations
between the features to guide early reactive grasping.

I. INTRODUCTION

A robot is not able to form useful categories or object
representations by only being a passive observer of its
environment. It should be able to learn about objects by
interacting with them, forming representations and categories
that are grounded in its embodiment. The objects and action
that can be performed on them are inseparably intertwined;
things in the world will only become semantically useful
objects through the action that the agent can/will perform on
them. One of the basic interactions that can occur between
a robot and an object is for the robot to push the object, i.e.
to simply make a physical contact. Already at this stage, the
robot should be able to form two categories: physical and
non-physical objects, where a physical object is categorized
by the fact that interaction forces occur. A higher level
interaction between the robot and an object would exist if
the robot was able to grasp the object. In this case, the robot
would gain actual physical control over the object and having
the possibility to perform controlled actions on it, such as
examining it from other angles, weighing it, placing it etc.
Information obtained during this interaction can then be used
to update the robots representations about objects and the
world.

In this paper, we are interested in investigating an initial
“reflex-like” grasping strategy. The grasping strategy does
not require a-priori object knowledge, and it can be adopted
for a large class of objects. The proposed strategy is based
on second order relations of multi-modal visual features
descriptors, called spatial primitives, that represent object’s
geometric information, e.g. 3D pose (position and orienta-
tion) as well as its appearance information, e.g. color and
contrast transition etc. [1], Fig. 1. Co–planar tuples of the
spatial primitives allow for the definition of a plane that
can be associated to a grasp hypothesis. Furthermore, the
color information (by defining co–colority in addition to co–
planarity of primitive pairs) can be used to further improve
the definition of grasp hypotheses. In this paper, we employ

the structural richness of the descriptors in terms of their
geometry and appearance as well as the structural relations
co–linearity, co–planarity and co–colority to derive a set of
grasping reflexes from a stereo image. The contributions of
our work are the generation of a set of grasp suggestions
on unknown objects based on visual feedback, grouping of
visual primitives for decreasing the size of the grasps and
evaluation of grasps using the GraspIt! environment, [2].

A. Related Work

There has been a large amount of work presented in
the area of robotic grasping during the last two decades
[3]. Much of this work has dealt with analytical methods
where the shape of the objects being grasped is known
a-priori. This work, has focused primarily on computing
grasp stability based on force and form-closure properties
or contact-level grasps synthesis based on finding a fixed
number of contact locations with no regard to hand geometry,
[3]. This problem is important and difficult mainly because
of the high number of DOFs involved in grasping arbitrary
objects with complex hands. Another important research
area is grasp planning without detailed object models where
sensor information such as computational vision is used to
extract relevant features in order to compute suitable grasps,
[4], [5]. Some ideas of how to learn or refine grasping
strategies have been presented in [6], [7].

The work on automatic grasp synthesis and planning,
[8],[9],[10],[11] concentrates on generation of stable grasps
given assumptions about the shape of the object and robot
hand kinematics. Example of assumptions may be that the
full and exact pose of the object is known in combina-
tion with its (approximate) shape, [8]. Another common
assumption is that the outer contour of the object can be
extracted and a planar grasp applied, [10]. Taking into
account both the hand kinematics as well as some a-priori
knowledge about the feasible grasps has been acknowledged
as a more flexible and natural approach towards automatic
grasp planning [12],[8]. The main differences of our work
compared to the abovementioned work are: i) We rely on
information based on three dimensional primitives extracted
online. This allows us to compute arbitrary grasping direc-
tions compared to only planar grasps considered in [10].
ii) The structural richness of the primitives (geometric and



Fig. 1. Illustration of the vision module. a) and b) shows the images captured by the left and right cameras (respectively); c) and d) show the primitives
extracted from these two images; in e) a detail of the primitive extraction is shown; f) illustrates the schematic representation of a primitive, where 1.
represents the orientation, 2. the phase, 3. the color and 4. the optical flow. g) from a stereo–pair of primitives (πi, πj) we reconstruct a 3D primitive Π,
with a position in space Λ and an orientation Θ; h) shows the resulting 3D primitives reconstructed for this scenario.

appearance based information, collinear grouping) allows for
an efficient reduction of grasping hypotheses while keeping
relevant ones, and iii) Our system focuses on generating a
subset of successful grasps on arbitrary objects rather than
high quality grasps on a constrained set of objects.

II. SPATIAL PRIMITIVES

Our vision system is based on multi-modal visual prim-
itives [1], [14]. First, 2D primitives are extracted sparsely
at points of interest in the image (in this case contours)
and encode the value of different visual operators (hereby
referred to as visual modalities) such as local orientation,
phase, color (on each side of the contour) and optical flow
(see Fig. 1.d, 1.e and 1.f). In a second step, the 2D primitives
become extended to the spatial primitives used in this work.
After finding correspondences between primitives in the left
and right image, we reconstruct a spatial primitive, (see
Fig. 1.g) that has the following components, (for details see
[15], [14]):

Π = {Λ, Θ, Ω, (cl, cm, cr)},

where Λ is the 3D position; Θ is the 3D orientation; Ω
is the phase (i.e., contrast transition); and, (cl, cm, cr) is
the representation of the color of the spatial primitive,

corresponding to the left (cl), the middle (cm) and the right
side (cr).

The sparseness of the primitives allows to formulate three
relations between primitives that are crucial in our context:

• Co–planarity:
Two spatial primitives Πi and Πj are co–planar iff their
orientation vectors lie on the same plane, i.e.:

cop(Πi, Πj) = 1 − |projΘj×vij
(Θi × vij)|,

where vij is defined as the vector (Λi − Λj), and
proj

u
(a) is defined as:

proj
u
(a) =

a · u

‖ u ‖2
u. (1)

The co–planarity relation is illustrated in Fig. II.
• Collinear grouping (i.e., collinearity):

Two spatial primitives Πi and Πj are collinear (i.e., part
of the same group) iff they are part of the same contour.
Due to uncertainty in 3D reconstruction process, in this
work, the collinearity of two spatial primitives Πi and
Πj is computed using their 2D projections πi and πj .
We define the collinearity of two 2D primitives πi and
πj as:

col(πi, πj) = 1 −
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Fig. 2. Illustration of the relations between a pair of primitives. (a) Co–
planarity of two 3D primitives Πi and Πj ., (b) Co–colority of three 2D
primitives πi, πj and πk. In this case, πi and πj are cocolor, so are πi

and πk; however, πj and πk are not cocolor., (c) Collinearity of two 2D
primitives πi and πj ..
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Fig. 3. left) A set of spatial primitives on two different contours li and
lj that have co–planarity, co–colority and collinearity relations; a plane P
defined by the co–planarity of the spatial primitives and and an example
grasp suggested by the plane, right) Parameterization of EGAs.

where αi and αj are as shown in Fig. 2(c), see [14] for
more details on collinearity.

• Co–colority: Two spatial primitives Πi and Πj are co–
color iff their parts that face each other have the same
color. In the same way as collinearity, co–colority of two
spatial primitives Πi and Πj is computed using their 2D
projections πi and πj . We define the co–colority of two
2D primitives πi and πj as:

coc(πi, πj) = 1 − dc(ci, cj),

where ci and cj are the RGB representation of the col-
ors of the parts of the primitives πi and πj that face each
other; and, dc(ci, cj) is Euclidean distance between
RGB values of the colors ci and cj . In Fig. 2(b), a
pair of co–color and not co–color primitives are shown.

Co–planarity in combination with the 3D position allows
for the definition of a grasping pose; Collinearity and co–
colority allows for the reduction of grasping hypotheses. The
use of the relations in the grasping context is shown in Fig. 3.
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Fig. 4. Elementary grasping actions, EGAs.

III. ELEMENTARY GRASPING ACTIONS

Coplanar relationships between visual primitives suggests
different graspable planes. Fig. 3 shows a set of spatial
primitives on two different contours li and lj with co–
planarity, co–colority and collinearity relations.

Five elementary grasping actions (EGA) will be consid-
ered as shown in Fig. 4. EGA1 is a “pinch” grasp on a
thin edge like structure with approach direction along the
surface normal of the plane spanned by the primitives. EGA2
is an “inverted” grasp using the inside of two edges with
approach along the surface normal. EGA3 is a “pinch” grasp
on a single edge with approach direction perpendicular to the
surface normal. EGA4 is similar to EGA2 but its approach
direction is perpendicular to the surface normal. Also it
tries to go in “below” one of the primitives. EGA5 is wide
grasp making contact on two separate edges with approach
direction along the surface normal.

The EGAs will be parameterized by their final pose (po-
sition and orientation) and the initial gripper configuration.
For the simple parallel jaw gripper, an EGA will thus be
defined by seven parameters: EGA(x, y, z, γ, β, α, δ) where
p = [x, y, z] is the position of the gripper “center” according
to Fig. 3; γ, β, α are the roll, pitch and yaw angles of the
vector n; and δ is the gripper configuration. Note that the
gripper “center” is placed in the “middle” of the gripper.

The main motivation for choosing these grasps is that they
represent the simplest possible two fingered grasps humans
commonly use. The result of applying the EGAs can be
evaluated to provide a reinforcement signal to the system.
The number of possible outcomes of each of the EGAs are
different and will be explained below.

For all of the EGAs the possibility of an early failure
exists. That is, the EGA fails before reaching the target
configuration. This will result in a reinforcement Rfe. Fur-
thermore, it is possible for all EGAs to fail a grasping
procedure.

For EGA1, EGA3 and EGA5, a failed grasp can be
detected by the fact that the gripper is completely closed.
This situation will result in a reinforcement Rfl.

For EGA1 and EGA3, the expected grasp is a pinch type
grasp, i.e. narrow. Therefore, they can also “fail” if the
gripper comes to a halt too early, that is δ > ∆min. This
will result in a reinforcement Rft.

EGA2 fails if the gripper is fully opened, meaning that no
contact was made with the object. This gives a reinforcement
Rfh.



To detect failure of EGA4, a tactile sensor is required on
the side of the “fingers”. If, after positioning and opening the
gripper, there is no contact between the object and the tactile
sensor, the EGA has failed. This results in a reinforcement
Rfc.

If none of the above situations is encountered, a positive
reinforcement Rg is given, and the EGA is considered
successful.

A. Computing Action Parameters

Let Γ = {Π1, Π2} be a primitive pair, Λ(Π) be the
position of Π and Θ(Π) be the orientation of Π, also let
Γi be the i:th pair. From that we can calculate

d = Λ(Π2) − Λ(Π1)

n1 = Θ(Π1) × d

n2 = Θ(Π2) × d

sw =

{

−1 if n1 · n2 < 0
1 else

and with those we calculate the plane p

Pp = Λ(Π1) + fracd2

np =
n1 + swn2

‖ n1 + swn2 ‖

which is used when calculating actions parameters
The parameterization of the EGAs is given with the

gripper normal n and the normal of the surface between
the two fingers a as illustrated in Fig. 3. From this, the yaw,
pitch and roll angles can be easily computed.

For EGA1, there will be two possible parameter sets given
the primitive pair Γ = {Π1, Π2}. The parameterization is as
follows:

pgripper = Λ(Πi)

n = ∇(p)

a = perp
n
(Θ(Πi))/ ‖ perp

n
(Θ(Πi)) ‖ for i = 1, 2

where ∇(p) is the normal of the plane p and perp
u
(a) is

the projection of a perpendicular to u. That is perp
u
(a) =

a− proj
u
(a), where proj

u
(a) is defined according to (1).

For EGA2, there is only one parameter set.

d = Λ(Π2) − Λ(Π1)

pgripper = Λ(Π1) + d/2

n = ∇(p)

a = n × d/ ‖ n× d ‖

For EGA3, there will be two possible parameter sets for
i = 1, j = 2 and i = 2, j = 1.

d = Λ(Πj) − Λ(Πi)

n = d/ ‖ d ‖

pgripper = Λ(Πi)

a = n ×∇(p)

For EGA4, there will be two possible parameter sets for
i = 1, j = 2 and i = 2, j = 1. Where ε is a step size
parameter that will depend on the gripper used.

d = Λ(Πj) − Λ(Πi)

n = d/ ‖ d ‖

pgripper = Λ(Πi) −∇(p) · ε

a = n×∇(p)

EGA5 will have the same parameters as EGA2 except that
the gripper will be fully opened.

B. Limiting the Number of Actions

For a typical scene, the number of coplanar pairs of
primitives is in the order of 103 − 104. Given that each
coplanar relationship gives rise to 8 different grasps from
the five different categories, it is obvious that the number
of suggested actions must be further constrained. Another
problem is that coplanar structures occur frequently in natural
scenes and only a small set of them suggest feasible actions,
e.g. objects placed on a table create a lot of 3D line structures
coplanar to the table but can not grasped directly by a
grasping direction normal to the table. In addition, there exist
many coplanar pairs of primitives affording similar grasps.

To overcome some of the above problems, we make use
of the structural richness of the primitives. First, their em-
bedding into collinear groups naturally clusters the grasping
hypotheses into sets of redundant grasps from which only
one needs to be tested. Furthermore, co–colority, gives an
additional hypothesis for a potential grasp.

1) Using Grouping Information: From the 2D primitives
(before stereo reconstruction) collinear neighbors can be
found. The collinear neighbors can be mapped to corre-
sponding 3D primitives. These small neighborhoods form
the set of small groups, {g1, g2, ..., gN}. The large groups,
{G1, G2, ..., GM}, are formed by the grouping of the small
groups overlapping each other such that if Πi and Πj are
part of group gx and Πj and Πk is part of group gy then
gy and gx is part of the same large group Gz . The result is
that the large groups are separated meaning that a primitive
that exist in group GX can not exist in any other group
GY . Using this grouping information it is possible to add
additional constraints on the generation of EGA s.

First, all primitives that are not part of a sufficiently
large group Gi are discarded. Secondly, the relations co–
planarity and co–colority between small groups of primitives
are computed such that primitive Πi ∈ gx and Πj ∈ gy

are only considered to have a co–planarity or co–colority
relation if all primitives in gx are coplanar or cocolor w.r.t
all primitives in gy. Finally, it is possible to constrain the
generation of EGAs to only one EGA of each type for each
large group.

IV. EXPERIMENTAL EVALUATION

Fig. 6, Fig. 7 and Fig. 8 show some of the grasps generated
for the scenes evaluated here. Fig. 5 shows visual features



Fig. 6. Examples of plate grasps (from left): successful grasp using EGA5, and a few early failures using EGA1, EGA3 and EGA5, respectively.

Fig. 5. Two example scenes designed for testing and a selection of the
generated actions.

generated by the stereo system and a selection of generated
actions. Fig. 6 shows a simple plate structure for which the
outer contour is generated since the object is homogeneous
in texture. Fig. 7 shows a scene with a single, but a more
complex object than the previous one. Fig. 8 shows two
scenes with two (cup and knife) and three objects (box, cup
and bottle9.

On each of the scene, after the spatial primitives have
been extracted, elementary actions shown in Fig. 4 are tested.
There are few reasons for which a certain grasp may fail:

• The system does not have the knowledge of whether
the object is hollow or not, so testing EGA2 will results
with a collision and thus failure.

• Since no surface is reconstructed, EGA1 will fail for
hollow objects which are grasped from “below”.

• If the hand, during the approach, detects a collision on
one of the fingers, the grasping process is stopped. In
reality, this grasp may happen to be successful anyway
if the object is moved so that it is centered between the
fingers.

Scene gr pl+gr col+gr gr+pl+col

Plane 70% (7/10) 83% (5/6) 57% (4/7) 100% (5/5)

Cup 26% (17/66) 38% (14/37) 27% (13/49) 33% (8/24)
Cup/Kn 31% (14/45) 28% (9/32) 31% (11/35) 25% (5/20)

3 objects 8% (33/434) 9% (9/98) 13% (18/139) 15% (8/53)

TABLE I
EXPERIMENTAL EVALUATION OF THE GRASP SUCCESS RATE WHERE THE

FOLLOWING NOTATION IS USED: PL (CO-PLANARITY), GR (GROUPING),
CL (CO-COLORITY) AND (SUCCESFULL/TESTED) GRASPS.

Table I summarizes the results for the generated success

rate regarding a number of successful grasps given no
knowledge of the object shape. We note that the results are
a summary of an extensive experimental evaluation since,
given different types and combinations of spatial primitives
all generated actions had to be evaluated. It can be seen that
for a scene of low complexity (plate) the average number of
successful grasps is close to 80%. For more complex scenes
this number is dependant on the number and type of objects.
It is also important to note not only the percentage but the
number of evaluated grasps. Although, in some cases, the
success rate is lower when primitives are integrated, there
are much fewer hypotheses tested. These results should also
be considered together with the results presented in Table II
where we show how the integration of grouping, co-colority
and co-planarity affects the number of generated hypotheses
(affordances). Another thing to point out related to Table I
is that most of the unsuccessful grasps happened due to an
“early failure” such as that a contact was detected before the
grasp was executed. Again, this failure may in some cases
result with a successful grasp anyway. Another big source
of failure was that there was nothing to lift, i.e. EGA3 could
not have been applied.

Scene (no gr) (no gr)+pl (no gr)+col (no gr)+pl+col

Plane 46 224 35 608 38 512 30 224
Cup 172 224 96 112 89 392 56 120

Cup/knife 269 360 140 920 139 136 79 104

3 objects 927 368 303 960 315 336 166 008

Scene gr gr+pl gr+col gr+pl+col

Plane 80 48 56 40
Cup 528 296 392 192

Cup/knife 360 256 280 160
3 objects 3472 784 1112 424

TABLE II
THE NUMBER OF GENERATED ACTION HYPOTHESES WHERE THE

FOLLOWING NOTATION IS USED: NO GR (NO GROUPING), PL

(CO-PLANARITY), GR (GROUPING), CL (CO-COLORITY).

V. CONCLUSIONS

Robots should be able to extract more knowledge through
their interaction with the environment. The basis for this
interaction should not be a detailed model of the environment



Fig. 7. Examples of cup grasps (from left): a successful grasp using EGA1, and a few early failures using EGA1, EGA1, EGA2 and EGA3, respectively.

Fig. 8. Examples of successful grasps with two and three objects.

and lots of a-priori knowledge but the robot should be
engaged in an exploration process through which it can
generate more knowledge and more complex representations.
In this paper, we have presented one of the building blocks
necessary in such a system.

In particular, we have designed an early grasping system,
based on a set of innate reflexes and knowledge about
its embodiment. We relied on 3D information based on
primitives extracted online and showed how the structural
richness of primitives can be used for an efficient reduction
of grasping hypotheses while keeping relevant ones. Rather
than dealing with high quality grasps on a constrained set
of known objects, we have demonstrated that the system
is able of generating a certain percentage of successful
grasps on arbitrary objects. This is important for our future
research that will develop complex learning schemes aiming
at more sophisticated grasping strategies and knowledge
representation.
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