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Abstract— In this work, we perform an extensive statistical
evaluation for learning and recognition of object manipulation
actions. We concentrate on single arm/hand actions but study
the problem of modeling and dimensionality reduction for cases
where actions are very similar to each other in terms of arm
motions. For this purpose, we evaluate a linear and a nonlin-
ear dimensionality reduction techniques: Principal Component
Analysis and Spatio-Temporal Isomap. Classification of query
sequences is based on different variants of Nearest Neighbor
classification. We thoroughly describe and evaluate different
parameters that affect the modeling strategies and perform the
evaluation with a training set of 20 people.

I. INTRODUCTION

In robotics, recognition of human activity has been used
extensively for robot task learning through imitation and
demonstration, [1], [2], [3], [4], [5], [6], [7], [8]. It has
been shown in [9] that an action perceived by a human can
be represented as a sequence of clearly segmented action
units. This motivates the idea that the action recognition
process may be considered as an interpretation of the con-
tinuous human behaviors which, in its turn, consists of a
sequence of action primitives [6] such as reaching, picking
up, putting down. In relation, learning what and how to
imitate has been recognized as an important problem, [8].
It has been argued that the data used for imitation has
statistical dependencies between the activities one wishes
to model and that each activity has a rich set of features
that can aid both the modeling and recognition process.
In [4], a framework for acquiring hand-action models by
integrating multiple observations based on gesture spotting
is proposed. The work presented in [5] proposes a gesture
imitation system where the focus is put on the coordinate
system transformation (View-Point Transformation) so that
the teacher induced gesture is transformed into the robot’s
egocentric system. This way the robot observes the gesture
as it was generated by the observer himself. The work in
[6] approaches the task learning problem by proposing a
system for deriving behavior vocabularies or simple action
models that can be used for more complex task extraction and
learning. A learning system for one and two-hand motions
where the robot’s body constraints are considered as a part of
the optimal trajectory generation process has been presented
in [8]. Our work differs from the work above in that we
perform a thorough analysis of how the dimensionality of
the data as well as the number and placement of sensors
affect the recognition rate. In addition, the above cited work
studies actions which are very different in nature while we
concentrate on actions that are very similar to each other
and thus difficult to disambiguate. The studied actions are
basic building blocks of any imitation based learning system

and the contribution of our work is in the evaluation of the
suitability of the known methods. An interesting trend to note
here is that most of the studies are based on a single user
generated motion. A natural question to pose here is how
the underlying modeling methods scale and apply for cases
when the robot is supposed to learn from multiple teachers.
The experimental evaluation conducted in our work is based
on 20 people.

We perform an extensive statistical evaluation and stress
that achieving the high recognition rates is not the focus
of our study but the evaluation of the existing techniques
and their suitability for modeling and recognition of object
manipulation actions. Such an evaluation, considering a
training set of 20 people, has previously not been performed.
Single arm/hand actions are considered with a specific focus
on the problem of modeling and dimensionality reduction for
cases where actions are very similar to each other in terms
of arm motions. For this purpose, we evaluate a linear and
a nonlinear dimensionality reduction techniques: Principal
Component Analysis and Spatio-Temporal Isomap. Classi-
fication of query sequences is based on a combination of
clustering and different variants of Nearest Neighbor classi-
fiers. For both methods, we thoroughly describe and evaluate
different parameters that affect the modeling strategies and
perform the evaluation with a training set of 20 people. To
our knowledge, there are no examples in the field of robotics
where such a large set of people was considered. The results
can be used to enable a more sophisticated probabilistic
modeling and recognition of actions for methods such as
those presented in [6], [8].

In Section II we describe the experimental setting and data
collection. In Section III we give a short overview of dimen-
sionality reduction techniques and present details of their
implementation in Section IV. Experimental evaluation is
summarized in Section V and paper concluded in Section VI.

II. DATA COLLECTION AND PREPROCESSING

We follow the classical approach to activity recognition
through training and testing steps. The system learns a model
for each activity which is then used for the classification of
new actions in the testing step. The four activities considered
in this work are:

1) Push forward an object placed on a table (P);
2) Rotate an object placed on table (R);
3) Pick up the object placed on the table (PU) and
4) Put down an object on a table (PD).

Notations P, R, PU, PD are used to denote different actions
in the experimental evaluation in Section V.



Fig. 1. Left) An example of pushing forward an object on the table and
Right) An example of pushing forward an object on the box

Fig. 1 shows two example images stored during a push
activity training - the activity is performed with the object
being placed at two different heights. To motivate the choice
of these activities, let us consider a robot being a part of
a coffee drinking scenario. A pick up activity could be
representing the fact of picking up the cup to take a swig
of coffee; put down an object could represent leaving the
cup of coffee after taking a swig, rotate an object would be
similar to fold a napkin placed on the table, and finally, let
us suppose that the person who sat down in front of you
taking a coffee asks for the sugar bowl close to you and
you push the bowl sliding over the table to bring it closer
to him/her. The activities considered in this work are major
building blocks of any similar task.

To generate the measurements for the training data, a Nest
of Birds sensors were used which track the position and
orientation of four sensors, referred to transmitter emitting
pulsed DC magnetic field. The placement of the sensors
is shown Fig. 1: thumb, hand, lower arm and upper arm.
Apart from the variation in their height and velocity with
which an action was performed, the following variations
were introduced to the training data:

• The objects were put on two different heights
• The person was standing at three different angles with

respect to the table: 0, 30 and 60 degrees
Each action was performed three times for all combina-

tions of the above heights and orientations resulting in total
18 training sequences per person and action thus 360 training
sequences for each action.
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Fig. 2. Sensor measurements retrieved for three trials of a ”rotate” activity.

III. DIMENSIONALITY REDUCTION

Finding low-dimensional representation of high-
dimensional observations is one of the key problems

in the area of activity modeling and recognition. In
the current study, we have evaluated two dimensionality
reduction methods. The first is the classical PCA, [10] where
each data point is reconstructed by a linear combination
of the principal components. For cases where the data
represents essential nonlinear structures, PCA and similar
techniques fail to detect the intrinsic dimensionality and
model for the data. Therefore, we also evaluate a nonlinear
dimensionality reduction approach proposed in [6] which is
based on the isometric feature mapping or Isomap, [11].

A. Principal Component Analysis (PCA) and Isometric Fea-
ture Mapping (Isomap)

PCA method retains those characteristics of the data
set that contribute most to its variance, by keeping lower-
order principal components. The idea is that such low-order
components often contain the ”most important” aspects of
the data if the assumption of linearity holds.

The main idea of Isomap, [11] is to find the intrinsic
geometry of the data by computing the geodesic manifold
distances between all pairs of data points. Once the geodesic
distances are estimated, multidimensional scaling is applied
which removes nonlinearities in the data and produces a
coordinate space intrinsic to the underlying manifold. Since
the training data in our system are represented in a global
coordinate system (robot centered), the system should be
able to perform disambiguation of spatially proximal data
that are structurally different (pick up and put down) as
well as model the correspondence of spatially distal data
points that share common structure (actions performed at
different heights). An extension of the classical Isomap, the
ST-Isomap, proposed in [6] is a method that satisfies the
above requirements. Implementation details are presented in
Section IV-C.

B. Clustering Methods

We have evaluated two clustering techniques in connection
to PCA based action classification: k-means clustering and
Gustafson-Kessel clustering. k-means clustering [10] is a
partitioning method in which clusters are mutually exclusive
(hard partitioning method). Clustering algorithms group sam-
ple points, m j into c clusters. The set of cluster prototypes
or centers is defined as C =

[

c(1), . . . ,c(c)
]

where

c(i) =
∑d

j=1 ui j m j

∑d
j=1 ui j

i = 1,2, . . . ,c (1)

where ui j ∈U denotes the membership of m j in the ith cluster
and U is known as the partition matrix. For the classical k-
means clustering, the hard partitioning space is defined as:

Mh = {U∈Vcd : ui j ∈{0,1},∀(i, j);
c

∑
i=1

ui j = 1;0 <
d

∑
i=1

ui j < d,∀i}

(2)
The objective function we have to minimize is:

Jh(M;U,C) =
c

∑
i=1

d

∑
j=1

ui jd2
A

(

m j,c(i)
)

(3)



where A is a norm-inducing matrix and d2
A represents the

distance measure

d2
A =

(

m j,c(i)
)

= ‖m j−c(i)‖2
A =

(

m j − c(i)
)T

A
(

m j − c(i)
)

(4)
The above condition of hard membership can be relaxed
so that each sample point has some graded or “fuzzy”
membership in a cluster. The incorporation of probabilities
(or graded memberships) may improve the convergence of
the clustering method compared to the classical k-means
method. In addition, we do not have to assume anymore that
the samples belong to spherical clusters. We shortly describe
the method used in our work also known as Gustafson-Kessel
(GK) clustering. First, we define a fuzzy partition space as:

M f = {U∈Vcd : ui j ∈ [0,1] ,∀(i, j);
c

∑
i=1

ui j = 1;0 <
d

∑
i=1

ui j < d,∀i}

(5)
Here, fuzzy objective function is a least-squares functional:

J f (M;U,C) =
c

∑
i=1

d

∑
j=1

(ui j)
wd2

A

(

m j,c(i)
)

(6)

where w is a weighting factor w = [1,∞). Gustafson-Kessel
method is a variation of fuzzy clustering algorithms which
allows the samples to belong to several clusters simultane-
ously, with different degrees of membership. It employs an
adaptive distance norm in order to detect clusters of different
geometrical shapes in the data set. Specifically, each cluster
has its own norm-inducing matrix A(i):

d2
A(i) =

(

c(i)
l −m j

)T
A(i)

(

c(i)
l −m j

)

(7)

where

A(i) = (|F(i)|)1/(r+1)(F(i))−1 (8)

F(i) =
∑d

j=1(ui j)
w
(

m j − c(i)
)(

m j − c(i)
)T

∑d
j=1(ui j)w

(9)

IV. IMPLEMENTATION

We give a short overview and implementation details for
the methods used in this study.

A. PCA without temporal dependencies

These measurements are gathered by 1,2,3 and/or 4 sen-
sors where each sensor provides a full pose estimate. The
assumption is that each action consists of a set of discrete
poses represented in a high-dimensional space. Each rotation
angle is represented by its sine and cosine value resulting
in 9 measurements in total per sensor. Our reasoning here
was that different actions will vary differently along different
directions. If we are able to find this directions, each action
may be represented only with those ones along which the
data varies the most, precisely what PCA gives us. The
implementation follows the classical PCA approach: we first
estimate the mean of the data, subtract it from all the
samples, estimate the covariance matrix and estimate its
SVD, [10]. Finally, we keep only the eigenvectors that for
which eigenvalues λn > 0.005λmax. In our evaluation, the
dimensionality reduction was following: single sensor (from
9 to 3), two sensors (18 to 5), three sensors (27 to 6) and four
sensors (36 to 7). These values are easy to understand due to

the constraints posed by the kinematic structure of the arm.
Once the basic set of eigenvectors is chosen, the training
data is projected to this reduced space. This is done for each
action separately. To ease the classification, we cluster each
action representation space. For this purpose, we have used
k-means and GK clustering presented in Section III-B. In the
classification stage, each testing sequence is first projected
to the reduced action representation space. For each sample
point in an action, the distance to the closest cluster center
is estimated and the classification is based on the Euclidean
distance.

B. PCA with Temporal Dependencies

We have also evaluated a PCA approach where we took
into account the temporal dependencies in the data. To
be able to estimate the covariance matrix using whole
sequences, we normalized them to equal length - 85 sample
points per sequence. According to the procedure described
in the previous section, the dimensionality reduction was
following: single sensor (from 765 to 17), two sensors (1530
to 22), three sensors (2225 to 24) and four sensors (3060
to 26). Training sequences are then projected to separate
decreased spaces where each represents one of the actions.
Classification of a new sequence is performed based on the
Euclidean distance.

C. ST-Isomap

For the implementation of Isomap, we adopted the ap-
proach proposed in [6]. As in the case of temporal PCA, the
sequences are first normalized to equal length of 85 sample
points. We shortly explain the basic idea behind the method.

• Calculate a distance matrix Dl between N local neigh-
bors using Euclidean distances. In the current imple-
mentation, N = 10. For each data sample, identify com-
mon temporal neighbors (CTN) and adjacent temporal
neighbors (ATN). We refer to [6] and [12] for a more
detailed definition of these.

• Reduce the distances in the original matrix taking into
account spatio-temporal correspondences

D0
Si,S j

=























Dl
Si,S j

/(cCT NcATN) if S j ∈CTN(Si) and j = i+1,

Dl
Si,S j

/cCT N if S j ∈CTN(Si),

Dl
Si,S j

/cATN if j = i+1,

penalty(Si,S j) otherwise.
(10)

where cATN and cCT N are scalar parameters and CT N()
denotes common temporal neighbors. We set cATN = 1
and vary value for cCT N = [2 5 10 100]. Fig. 3
shows the effect of cCT N parameter to the resulting
embedding of the activities.

• Use D0 to compute shortest path distance matrix Dg
using Dijkstra’s algorithm, [13]

• Use Multidimensional Scaling [14] to embed Dg to a
lower dimensional space. We have evaluated the system
for [3 4 5 6] dimensions.

V. EXPERIMENTAL EVALUATION

We present the results for i) PCA without temporal de-
pendencies, ii) PCA with temporal dependencies and iii) ST-
Isomap.



Fig. 3. Training data after estimating ST-Isomap and MDS embedding in 3 dimensions. The figures show the influence of the cCT N parameter to the
embedding: higher cCTN brings sequences closer to each other.

A. PCA without temporal dependencies

We have trained the system with 1, 5, 10 or 20 people.
In case of 1,5, 10 persons, we split the data in three
possible combinations of two trials for training and one trial
for evaluation. For 20 people, we split the trials in three
possible combinations of two for training the system and
one for testing it, so we test the system three times with the
demonstrations of all people. In all cases we clustered the
data using both k-means and GK-clustering algorithms using
three, five and eight clusters. Here, we show the resulting
average of all the experiments and refer to [12] for a more
detailed evaluation. In the forthcoming tables, the actions in
the upper row are the tested sequences and the actions in the
left column are the result of the classification. The results
are expressed in percentage.

As explained in Section II, for each action, we have varied
the position of the object (two heights) and the relative
orientation of the person with respect to the table. The
first experimental evaluation considered only two actions
(push and rotate) where training and testing was performed
on sequences captured under the same conditions (same
orientation and height of the object). The average results
considering different number of people in the training set
as well as different numbers of sensors are summarized
in Table I. We note here that we present the results for 5
clusters in more detail since it gave the highest classification
rate on average. It can be seen that for only two actions, a
classification rate of close to 90% is achieved. The presented
results use are based on k-means clustering. GK-clustering
gave approximately the same classification rate.

The second experiment to conduct was to consider all four
actions, again considering the same conditions for training
and testing. Due to the limited space, we show only the
average classification rates for all four actions. In Table II
we show how the size of the training set affects the rate given
that the number of clusters is kept constant. In Table III we
show how the number of clusters affect the classification
rate given that the training set consist of all 20 people.
Compared to the previous experiment, we can see that by
adding two additional actions, the recognition rate is 30%
lower on average. Again, similar results are obtained for both
clustering methods.

Finally, we have evaluated the method considering all the
variance in the data, namely that each action was performed
on two different heights and in three orientations. The results

5 clusters
push rot push rot push rot push rot

1pers 1s 2s 3s 4s
push 91.8 1.6 90.5 1.3 91.5 2 92.1 2
rot 8.2 98.4 9.5 98.7 8.5 98 7.8 98

5pers 1s 2s 3s 4s
push 80 34.4 83.3 27.8 83.3 19 87.8 30
rot 20 65.6 16.7 72.2 16.7 81 12.2 70

12pers 1s 2s 3s 4s
push 79.6 18.5 74.5 14.8 82.4 18 82.4 14.8
rot 20.4 81.5 25.5 85.2 17.6 82 17.6 85.2

20pers 1s 2s 3s 4s
push 83 14.7 91.4 16.7 92.5 11.9 93.1 10.8
rot 17 85.3 8.6 83.3 7.5 88.1 6.9 89.2

3 clusters
20pers 1s 2s 3s 4s
push 89.7 28.9 88.6 21.7 93.1 26.4 91.7 21.1
rot 10.3 71.1 11.4 78.3 6.9 73.6 8.3 78.9

8 clusters
20pers 1s 2s 3s 4s
push 88.1 15.6 86.9 12.5 90.6 10.6 91.1 8.9
rot 11.9 84.5 13.1 87.5 9.4 89.4 8.9 91.1

TABLE I: Classification rates two actions (push, rotate) when the training
and testing was done under same conditions (object height, persons

orientation) using k-means clustering using different number of sensors
(1-4s is 1 to 4 sensors).

1 pers 1 sensor 2 sensors 3 sensors 4 sensors
average 91.4 91.1 90.2 90
5 pers 1 sensor 2 sensors 3 sensors 4 sensors

average 61.9 65 68.6 61.1
12 pers 1 sensor 2s 3 sensors 4 sensors
average 60.8 60.8 63.1 61.7

TABLE II: Classification rates for four actions trained and tested in same
conditions (height and orientation), with varying size of the training

set.The number of clusters in k-means is 5.

3 clusters 1 sensor 2 sensors 3 sensors 4 sensors
average 59.4 61.4 62.2 64.1

5 clusters 1 sensor 2 sensors 3 sensors 4 sensors
average 64.7 68.4 70.6 69.8

8 clusters 1 sensor 2 sensors 3 sensors 4 sensors
average 66.5 68 68.9 70

TABLE III: Classification rates for four actions and 20 people trained and
tested in the same conditions (height and orientation), with varying

number of clusters.

are summarized in Table IV. It is obvious that, with the



1 pers 1 sensor 2 sensors 3 sensors 4 sensors
average 37.5 30.6 37.5 37.5
5 pers 1 sensor 2 sensors 3 sensors 4 sensors

average 34.7 33.9 38.1 38.9
12 pers 1 sensor 2 sensors 3 sensors 4 sensors
average 34.3 33.7 37.5 35.6
20 pers 1 sensor 2 sensors 3 sensors 4 sensors
average 35.4 37.2 37.3 37.4

TABLE IV: Classification rates for four actions trained and tested in
different conditions, with varying size of the training set. The number of

clusters used in k-means is fixed to five.

the recognition rates of about 40%, the simple approach
considered here is not able to scale accordingly with the
variation in the data. The next section presents the results of
the method where temporal dependencies between the data
points are taken into account.

B. Temporal PCA

We present the results with all four actions, where the
training and testing was performed given all 20 people and
actions performed in all combinations of orientations and
heights. As above, as each action sequence was performed
three times in all conditions, we evaluated the system taken
all combinations of two testing and one training action sets.
Table V summarizes the results for one (1s, hand), two (2s,

1 sensor 2 sensors
P R PD PU P R PD PU

P 50.1 42.5 12.5 29.2 50 43.3 12.5 32.5
R 8.3 33.3 3.3 10 9.2 35 3.3 15

PD 15 3.3 69.2 22.5 15 5.8 69.2 20
PU 25.8 20.8 15 38.3 25.8 15.8 15 32.5

3 sensors 4 sensors
P R PD PU P R PD PU

P 51.7 42.5 12.5 30 51.7 42.5 12.5 29.2
R 7.5 35 3.3 1.5 8.3 30 3.3 11.7

PD 14.2 5 69.2 21.7 14.2 4.2 66.7 25
PU 26.7 17.5 15 35.8 25.8 23.3 17.5 34.2

TABLE V: Classification rates for PCA with temporal dependencies for
four actions and 20 people in the training set.

thumb and hand), three (3s, thumb, hand, forearm) and all
four (4s) sensors considered. Important to note is that the
recognition rate is somewhat higher compared to the results
in the previous section but the system still has the difficulty of
discriminating between some of the actions. We believe that
this is an important result. Implementing PCA with temporal
dependencies requires aligned and equal length sequences
which may be difficult to obtain in an online process where
we would like to perform recognition during and not after
an action has been executed. A simple “voting” approach
presented in the previous section may be as suitable. Another
issue that we have investigated was if the number of sensors
affects the classification rate. The results are summarized in
Fig. 4. We note that the difference is only marginal and that
almost equal results are obtained with a single or all four
sensors. This means that for actions which are very similar
using only a single sensor on the hand or tracking only the
pose of the hand may be sufficient.

Fig. 4. The effect of number of sensors used to the classification rate.

C. ISOMAP

A non-linear dimension reduction, ST-Isomap was applied
to extract a low dimensional representation for the activities.
Shepard interpolation [15] was used map a query sequence
to the estimated embedding and Euclidean distance was
used for classification. From the training set of 20 people,
we formed subsets of one, two and three persons. For
each person, all four activities were considered using three
trials for all combinations of three orientations and two
heights. The classification was performed with the queries
not included in the training set. As before, we have evaluated
the system with different numbers and sensors placements. In
the forthcoming tables, this is denoted as: sensors placed on
the i) hand (s1), ii) hand and thumb (s14), iii) hand, thumb
and forearm (s142). Thorough experimental evaluation with
different values for cCT N parameter and dimensionality of
the embedding space was conducted.
Fig.5 shows the results obtained by ST-Isomap with train-
ing based on a single person. The results show how the
dimension of the embedding and sensor number affect the
classification result. Here, parameter cCT N = 2. Fig.6 shows
a similar experiment, but here the size of the training set was
three. It is interesting to notice that best results are obtained
based on the sensor placed on the hand. For the future, this
would motivate that only the position of the user’s hand and
not the complete arm joint motion is needed to recognize
object manipulation sequences when ST-Isomap is used. The
effect of changing the values of parameter cCT N is shown in
Table VI. It can be seen that, compared to the PCA, ST-
Isomap gives better classification results.

push rot pd pu
ct = 2 push 88.9 22.2 29.2 36.1
ct = 2 rot 11.1 70.9 8.3 16.7
ct = 2 pd 0 0 51.4 16.7
ct = 2 pu 0 6.9 11.1 30.5
ct = 5 push 88.9 6.9 19.4 25
ct = 5 rot 0 79.2 4.2 9.7
ct = 5 pd 1.3 0 62.5 27.8
ct = 5 pu 9.7 13.9 13.9 37.5

ct = 10 push 90.3 18.1 25 29.2
ct = 10 rot 1.4 72.2 8.3 13.9
ct = 10 pd 2.8 2.8 50 30.5
ct = 10 pu 5.5 6.9 16.7 26.4

ct = 100 push 84.7 8.3 6.9 23.6
ct = 100 rot 5.6 80.6 5.6 4.2
ct = 100 pd 2.8 6.9 65.3 36.1
ct = 100 pu 6.9 4.2 22.2 36.1

TABLE VI: Classification results using a single sensor placed on the
hand. Training was performed with 3 persons. The recognition rates show

the dependency on the parameter cCT N .



s1 s14 s142
p r pd pu p r pd pu p r pd pu

ct=2 p 55,6 0,0 11,1 11,1 61,1 11,1 5,6 22,2 50,0 50,0 33,3 50,0

3dimensions r 5,6 77,8 0,0 0,0 5,6 61,1 61,1 38,9 44,4 50,0 50,0 16,7

3dimensions pd 16,7 11,1 38,9 44,4 16,7 27,8 5,6 38,9 5,6 0,0 16,7 33,3

3dimensions pu 22,2 11,1 50,0 44,4 16,7 0,0 27,8 0,0 0,0 0,0 0,0 0,0

ct=5 p 77,8 0,0 0,0 0,0 33,3 0,0 0,0 0,0 50,0 55,6 5,6 44,4

3dimensions r 0,0 88,9 5,6 5,6 5,6 94,4 22,2 16,7 33,3 44,4 66,7 38,9

3dimensions pd 22,2 0,0 66,7 11,1 61,1 5,6 33,3 33,3 0,0 0,0 0,0 0,0

3dimensions pu 0,0 11,1 27,8 83,3 0,0 0,0 44,4 50,0 16,7 0,0 27,8 16,7

ct=10 p 83,3 0,0 11,1 27,8 38,9 33,3 11,1 5,6 77,8 33,3 55,6 83,3

3dimensions r 16,7 61,1 5,6 0,0 0,0 50,0 5,6 16,7 5,6 44,4 22,2 16,7

3dimensions pd 0,0 0,0 0,0 0,0 61,1 0,0 38,9 33,3 5,6 22,2 5,6 0,0

3dimensions pu 0,0 38,9 83,3 72,2 0,0 16,7 44,4 44,4 11,1 0,0 16,7 0,0

ct=100 p 100,0 0,0 0,0 0,0 27,8 11,1 0,0 22,2 61,1 11,1 50,0 50,0

3dimensions r 0,0 88,9 0,0 11,1 0,0 50,0 5,6 0,0 33,3 50,0 0,0 0,0

3dimensions pd 0,0 5,6 61,1 16,7 33,3 0,0 5,6 0,0 0,0 0,0 11,1 0,0

3dimensions pu 0,0 5,6 38,9 72,2 38,9 38,9 88,9 77,8 5,6 38,9 38,9 50,0

s1 s14 s142
p r pd pu p r pd pu p r pd pu

ct=2 p 94,4 5,6 11,1 5,6 94,4 0,0 0,0 11,1 94,4 44,4 33,3 44,4

6dimensions r 0,0 94,4 0,0 5,6 5,6 100,0 72,2 72,2 0,0 55,6 16,7 27,8

6dimensions pd 0,0 0,0 38,9 0,0 0,0 0,0 0,0 0,0 5,6 0,0 50,0 22,2

6dimensions pu 5,6 0,0 50,0 88,9 0,0 0,0 27,8 16,7 0,0 0,0 0,0 5,6

ct=5 p 94,4 0,0 11,1 0,0 77,8 0,0 0,0 0,0 11,1 0,0 5,6 0,0

6dimensions r 0,0 88,9 11,1 33,3 11,1 100,0 0,0 22,2 5,6 55,6 16,7 0,0

6dimensions pd 0,0 0,0 27,8 0,0 11,1 0,0 50,0 38,9 0,0 0,0 50,0 50,0

6dimensions pu 5,6 11,1 50,0 66,7 0,0 0,0 50,0 38,9 83,3 44,4 27,8 50,0

ct=10 p 83,3 0,0 0,0 0,0 100,0 0,0 11,1 5,6 55,6 22,2 0,0 0,0

6dimensions r 0,0 88,9 0,0 50,0 0,0 83,3 5,6 22,2 11,1 77,8 33,3 77,8

6dimensions pd 0,0 0,0 11,1 0,0 0,0 0,0 38,9 0,0 0,0 0,0 44,4 16,7

6dimensions pu 16,7 11,1 88,9 50,0 0,0 16,7 44,4 72,2 33,3 0,0 22,2 5,6

ct=100 p 100,0 0,0 0,0 0,0 72,2 0,0 0,0 0,0 83,3 0,0 0,0 0,0

6dimensions r 0,0 100,0 0,0 16,7 0,0 55,6 0,0 0,0 11,1 77,8 11,1 0,0

6dimensions pd 0,0 0,0 38,9 22,2 0,0 0,0 33,3 5,6 5,6 0,0 33,3 0,0

6dimensions pu 0,0 0,0 61,1 61,1 27,8 44,4 66,7 94,4 0,0 22,2 55,6 100,0

Fig. 5. ST-Isomap results with training based on one person and testing it with another one. The results show how the dimension of the embedding and
sensor number affect the classification result.

s1 s14
p r pd pu p r pd pu

ct=2 p 72,2 33,3 33,3 16,7 16,7 33,3 27,8 11,1

3dimensions r 27,8 55,6 11,1 44,4 83,3 55,6 44,4 72,2

3dimensions pd 0,0 0,0 50,0 11,1 0,0 5,6 11,1 0,0

3dimensions pu 0,0 11,1 5,6 27,8 0,0 5,6 16,7 16,7

ct=5 p 77,8 5,6 22,2 33,3 61,1 50,0 27,8 50,0

3dimensions r 0,0 77,8 5,6 16,7 0,0 11,1 5,6 5,6

3dimensions pd 5,6 0,0 50,0 33,3 38,9 16,7 50,0 11,1

3dimensions pu 16,7 16,7 22,2 16,7 0,0 22,2 16,7 33,3

ct=10 p 94,4 50,0 50,0 44,4 77,8 22,2 22,2 16,7

3dimensions r 0,0 38,9 11,1 11,1 0,0 50,0 0,0 0,0

3dimensions pd 0,0 0,0 33,3 27,8 11,1 22,2 55,6 44,4

3dimensions pu 5,6 11,1 5,6 16,7 11,1 5,6 22,2 38,9

ct=100 p 77,8 16,7 16,7 38,9 77,8 11,1 61,1 50,0

3dimensions r 16,7 66,7 11,1 11,1 5,6 55,6 33,3 16,7

3dimensions pd 5,6 11,1 50,0 27,8 16,7 22,2 5,6 22,2

3dimensions pu 0,0 5,6 22,2 22,2 0,0 11,1 0,0 11,1

s1 s14
p r pd pu p r pd pu

ct=2 p 100,0 22,2 16,7 50,0 66,7 22,2 16,7 11,1

6dimensions r 0,0 77,8 0,0 0,0 16,7 61,1 5,6 27,8

6dimensions pd 0,0 0,0 66,7 27,8 5,6 16,7 55,6 22,2

6dimensions pu 0,0 0,0 16,7 22,2 11,1 0,0 22,2 38,9

ct=5 p 100,0 5,6 11,1 22,2 27,8 0,0 0,0 11,1

6dimensions r 0,0 88,9 5,6 5,6 0,0 61,1 38,9 27,8

6dimensions pd 0,0 0,0 72,2 27,8 50,0 5,6 44,4 11,1

6dimensions pu 0,0 5,6 11,1 44,4 22,2 33,3 16,7 50,0

ct=10 p 88,9 11,1 16,7 22,2 55,6 0,0 0,0 5,6

6dimensions r 0,0 77,8 5,6 11,1 0,0 44,4 0,0 0,0

6dimensions pd 11,1 5,6 50,0 27,8 38,9 27,8 44,4 0,0

6dimensions pu 0,0 5,6 27,8 38,9 5,6 27,8 55,6 94,4

ct=100 p 88,9 5,6 0,0 11,1 83,3 5,6 0,0 16,7

6dimensions r 0,0 83,3 0,0 0,0 0,0 61,1 55,6 5,6

6dimensions pd 0,0 5,6 61,1 33,3 16,7 16,7 5,6 22,2

6dimensions pu 11,1 5,6 38,9 55,6 0,0 16,7 38,9 55,6

Fig. 6. ST-Isomap results with training based on 3 persons and testing it with another one. The results show how the dimension of the embedding and
sensor number affect the classification result.

VI. CONCLUSION

We have presented a study on recognition of object ma-
nipulation actions: pick up, put down, rotate and push. The
first contribution of the work is that training and testing are
performed with 20 people where the manipulated object was
placed on two different heights with people performing the
actions multiple times at three different orientations. Most of
the current systems that utilize robot imitation learning use
a single person to train or teach tasks to the robot. Since the
intention for the future is that robots will be able to learn
from observing different and multiple people, we believe that
it is important to study how different methods scale with
respect to this.

In this work, we have concentrated on evaluation of di-
mensionality reduction using linear and nonlinear techniques.
Although the techniques have been known for sometime,
we have shown how the number of sensors, their placement
and different modeling parameters affect the classification
rate. PCA and nearest neighbor classification have been used
frequently for action classification but our study shows that
this techniques are not suitable for cases where the actions
are very similar to each other. We believe that for recognition
of such actions, dimensionality reduction has to be performed
with care in order to preserve the true variance in the data.
Even if the non-linear dimensionality reduction is more
appropriate, the number of common and adjacent temporal
neighbors have to be chosen carefully. The results also show
that using the explicit knowledge of kinematic chains (arm
model) may not be necessary in order to achieve satisfactory
recognition rates. Finally, for most actions it is enough to
provide only the measurements of the hand motions while
distinguishing between pick-up and put-down would gain
from including the knowledge of the object as well.
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