
1

Tracking Unobservable Rotations by Cue Integration
Ville Kyrki Lappeenranta University of Technology

Email: kyrki@lut.fi Danica Kragic Centre for Autonomous Systems
Royal Institute of Technology

Stockholm, Sweden
Email: danik@nada.kth.se

Abstract— Model based object tracking has earned significant
importance in areas such as augmented reality, surveillance,
visual servoing, robotic object manipulation and grasping. Al-
though an active research area, there are still few systems that
perform robustly in realistic settings. The key problems to robust
and precise object tracking are outliers caused by occlusion,
self-occlusion, cluttered background, and reflections. Two most
common solutions to the above problems have been the use of
robust estimators and the integration of visual cues.

The tracking system considered in this paper achieves robust-
ness by integrating model-based and model-free cues. As model-
based cues, we consider a CAD model of the object known a
priori and as model-free cues, automatically generated corner
features are used. The main idea is to account for relative object
motion between consecutive frames using integration of the two
cues. The particular contribution of this work is the integration
framework where not only polyhedral objects are considered. In
particular, we deal with spherical, cylindrical and conical objects
for which the complete pose cannot be estimate using only CAD
like models. Using the integration with the model-free features,
we show how a full pose estimate can be obtained. Experimental
evaluation demonstrates robust system performance in realistic
settings with highly textured objects.

I. INTRODUCTION

Methods for real-time 3-D tracking of objects based on
vision sensor data as well as the required hardware have
recently been developed far enough to be applied in real-
world applications. Possible tasks range from robot-control
to augmented reality and medical applications [1], [2], [3],
[4], [5], [6], [7]. Critical characteristics of such systems
include their robustness to occlusion, image-noise and miss-
tracking. Tracking based on a 3-D model of the target (e.g. [3])
provides robustness to some degree and avoids the drift in
tracking. Another recently introduced method for increasing
the robustness is the integration of model-free features together
with model-based tracking [8].

Typically the object models used in 3-D tracking are edge-
based, composed of line segments and planar surface patches.
While these primitives are useful for many applications, some
objects such as spheres are inconvenient to describe using
them. Higher-order primitives, such as spheres, cylinders, and
truncated cones, are still very useful models because they are
efficient simplifications for many real-world objects.

A problem in the use of the higher order primitives is that
if an object is described using a single primitive, such as a
sphere, one or several degrees of freedom (dof) of the motion
remains unobservable. For example, tracking a sphere using
the edges leaves all rotational dofs unknown. In addition, even
if CAD models have been effective for tracking due to their

simple geometry, the problem of arbitrary textures and how to
deal with these have not been thoroughly investigated.

As the main contribution of this paper, we present how
the unobservable dofs can be observed in the model-based
tracking by incorporating model-free features. The model-free
features are automatically initialized and the two types of cues
are integrated in a Kalman filter framework. The model-free
measurements can be integrated as such, or they can be used
to solve the full pose by optimization. The final system does
not suffer from drift in any of the dofs which can be observed
using the model, which greatly increases the stability of the
tracking process.

In Section II some of the related work is reviewed. In Sec-
tion III, the basic approach used for model based tracking is
presented. Initialization of model-free features is described in
Section IV, followed by the integration approach in Section V.
Experimental evaluation is presented in Section VI and final
discussion given in Section VII.

II. RELATED WORK

3-D object tracking is typically performed by considering
only object boundaries. In addition, most of the current sys-
tems concentrate on tracking of polyhedral or locally-planar
objects. RAPID system, presented in [9], uses the dynamic
vision approach presented by Dickmanns et al. [10], which
is based on the use of extended Kalman filtering to integrate
image measurements through a non-linear measurement func-
tion for pose estimation. A method that chains together edges,
which are then matched and fitted to model, was presented by
Lowe in [11]. An approach based on iterative minimization for
finding the pose transformation that aligns a set of lines and
ellipses, after which the pose is integrated in a linear Kalman
filter over time, was presented in [12].

Recently, an approach for model based tracking related
to bundle adjustment has been presented [13]. It relies on
the use of a CAD model of the object and requires off-
line matching of model points to their 2-D projections in a
set of reference keyframes. Here, a keyframe methodology is
applied to a set of local image patches in order to achieve
viewpoint invariance by capturing the appearance of an object
part in several views. Matching between the current and a
keyframe is based on homographies, which is suitable for
locally planar (polyhedral) objects. Compared to this approach,
in our work we are interested in integrating CAD models with
on-line generated surface features for tracking non-polyhedral
objects. By generating the features on-line, we skip the off-line
learning process required in the above work.



Work presented in [14] demonstrates a tracking system
based on integration of visual and inertial sensors. A good
performance for fast camera movements is achieved due to
the integration with an inertial sensor but it is argued that,
in order to have a robust system, more stable visual features
(beacons) should be considered. We believe that our approach
provides a suitable framework for retrieving such features.

Integration of vision based cues has been found to provide
robustness in tracking and has been used successfully in many
applications [15], [16]. Nevertheless, multiple cues have been
applied mostly in 2-D tracking applications. Only recently they
have been proposed for 3-D tracking [17], [8]. While the above
demonstrate the integration only for case of polyhedral objects,
we concentrate here on the problem formulation for solids of
revolution and spherical objects.

III. MODEL-BASED TRACKING

Our approach is based on the tracking method presented in
[3] which is uses a Lie algebra framework to estimate the six-
dimensional pose of an object in a camera/world coordinate
frame. Shortly, this is a full scale non-linear pose computation
algorithms based on a 1D search along the projected edge
normals in subsequent frames.

Let us now consider the case of an object with various
3-D features S where oS represents the 3-D parameters of
these features in the object frame. A camera reference frame
is defined with its pose relative to the object frame defined
by r = (t,Ω)T representing the position and orientation of
the camera relative to the object. Here, t = (tx, ty, tz) is a
vector of translation parameters along the x, y and z axes and
Ω = (Ωx,Ωy,Ωz) is the rotation parameters around the x, y
and z axes.

A. Tracking using a Lie group formulation

Here, the estimation of relative pose change between two
consecutive frames, is based on the distance of sample point
features generated in the image given the current pose estimate
to the closest edge. This normal flow is then projected in the
direction of the contour normal so as to represent an error we
wish to minimize, see Fig. 1.

Fig. 1. Estimation of normal flow.

For the simple case of a point in 3-D, a projection matrix is
defined as P = KM in the coordinate system of the struc-
ture, where K is composed of the intrinsic camera parameters
and M is composed of the extrinsic pose parameters.

The projective coordinates of a point are then given by: u
v
w

 = P


x
y
z
1

 (1)

where the 2-D point p = (x,y) of the 3-D point P in image
pixel coordinates coordinates is given by x = (u/w) and y =
(v/w)

To estimate the relative change in pose between two con-
secutive frames, the derivative of SE(3) corresponding to
the tangent velocity vector space or Lie Algebra is used.
Here, velocity basis matrices, called generators, are chosen
in a standard way to represent translations in the x, y and z
directions along with rotations around the x, y and z axes.
These six generators are given as:

G1 =

264 0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

375 , G2 =

264 0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

375 ,

G3 =

264 0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

375 , G4 =

264 0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

375 ,

G5 =

264 0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

375 , G6 =

264 0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

375 ,

(2)

These generators form a basis for the vector space of deriva-
tives of SE(3) at the identity. The Lie Group of displacements
is related to the Lie Algebra of velocities via the exponential
map, so that:

A = exp(A) = exp(
∑

αiGi) (3)

where each αi corresponds to an element of the kinematic
screw or twist representing the inter-frame transformations.

The motion in the image is related to the twist in 3-D by
taking the partial derivative of projective image coordinates
with respect to the ith generating motion: u

′

v
′

w
′

 = PGi


x
y
z
1

 (4)

with the motion in pixels being equivalent to the well known
optical flow equation as:

Li =
(
ũ

′

ṽ
′

)
=

(
u

′

w − uw
′

w2

v
′

w − vw
′

w2

)
(5)

Continuing with the determination of the inter-frame move-
ment, the different generating motions are projected in the
direction of the normal of the contour as:

fi = Li.n̂ (6)



where n̂ is the normal direction.

B. Minimization

Computing the motion is performed by solving a weighted
least-squares algorithm as follows:

vi =
∑

ξ

s(dξ)dξfξ
i , (7)

Cij =
∑

ξ

s(dξ)fξ
i f

ξ
j , (8)

αi =
∑

j

C−1
ij vj , (9)

where dξ is a distance measured normal to a contour in the
image and αi is an estimated velocity corresponding to one
of the six basis generators i. Here, the fi represent elements
of the interaction matrix for a distance to a point and s(dξ) is
a robust weighting function.

Rodriguez’s formula is then used for the exponential map-
ping of the velocity parameters to the corresponding instan-
taneous displacement and hence pose update. To apply the
update to the displacement between the object and camera
the exponential map is applied using homogeneous matrices
resulting in:

cMo,t+1 = Mo,t exp

(∑
i

αi Gi

)
(10)

C. Unobservable degrees of freedom

As mentioned previously, we concentrate mainly on model
based tracking of solids of revolution and spherical objects.
Solids of revolution, such as cylinders and truncated cones,
have one unobservable degree of freedom, namely the axis of
revolution. With an assumption that Lie generators, (2), are
aligned with the coordinate system attached to the object, the
effect of the generator corresponding to this rotation can be
removed (in our case G5 as the axis of revolution corresponds
to y). We note here that the expressions (9)-(10) only lose one
dimension of i, and otherwise the estimation of the object pose
remains the same. A spherical object has three unobservable
degrees of freedom, as no rotations can be detected. In this
case, all three generators related to the rotational motion
(G4, G5, G6) are disregarded.

IV. INITIALIZATION OF MODEL-FREE FEATURES

For tracking of model-free features, we have adopted the
approach suggested in [8], which uses Harris corner detector
for point initialization and SSD (sum of squared differences)
for tracking. Here, we will only present the modifications to
the point initialization due to the more complex geometric
primitives used.

When a new model-free point is initialized, its 3-D location
in the object coordinate frame is recorded. If the point lies on a
planar patch, determining the location corresponds to calculat-
ing the intersection of the plane and the line corresponding to
the point where the 3-D point projects onto the camera image

plane. In this case the solution is unique. Contrary to this, if
the object model is a sphere or a truncated cone, there may
be several intersections.

Consider the sphere in Fig. 2. Let r be the radius of a
sphere, t the location of its origin (located at its center), R
the rotation matrix corresponding to its current orientation, and
p be the homogeneous coordinates of the point in the camera
frame, that is, the intrinsic calibration of the camera has been
taken into account. Then, the intersection of the sphere and
the image ray is of form kp where k is a solution of

(kpx − tx)2 + (kpy − ty)2 + (kpz − tz)2 − r2 = 0. (11)

When the ray passes through the sphere, there are two so-
lutions, corresponding to the two intersections. The solutions
are

k1 =
p · t +

√
(p · t)2 − ‖p‖2(‖t‖2 − r2)

‖p‖2

k2 =
p · t−

√
(p · t)2 − ‖p‖2(‖t‖2 − r2)

‖p‖2

(12)

and the smaller one, k2, corresponds to the desired closest
intersection. Finally, the intersection in object frame is

q = RT (k2p− t). (13)

r
x

y

z
CAMERA

y
R,t

z

x
p

Fig. 2. Sphere model.

For a truncated cone, let rb and rt be the radiuses of the
bottom and top, correspondingly, and let h be the height (see
Fig. 3). Note that this model applies also to cylinders, for
which rb = rt. Let the origin of the object frame be at the
center of the bottom, and t and R describe its position and
orientation. The line corresponding to the image point p can
then be written in object frame as l = −RT t + kRT p ≡
w + kv. Defining a = rt−rb

h as the unit change of the radius,
and fixing the y-axis of the object coordinate system to the
axis of revolution, the intersection can be found from

l2x + l2z = (rb + aly)2, (14)

which results in

k2(v2
x + v2

z − a2v2
y) + 2k(vxwx + vzwz − a2vywy − 2arbvy)

+w2
x + w2

z − a2w2
y − 2arbwy − r2b = 0.

(15)



This second order polynomial has again up to two solutions,
k1, k2, giving the intersections −RT t + kiRT p. Now the
intersections are directly expressed in the object frame as
desired, but to select the closest one to the camera, the
intersections must be transformed to camera frame, and then
the closest one can be chosen.

yh

x

z r b

r t

Fig. 3. Cone model.

V. INTEGRATION

The information from the two types of cues are integrated
in an iterated extended Kalman filter (IEKF) framework. The
system state x, describing the 6 dofs of SE(3), is modeled as

xi+1 = xi + wi (16)
yi = h(xi) + vi

where y is the measurement, h(·) is the measurement model,
and wi and vi are zero-mean Gaussian sequences describing
model and measurement errors. Additional system parameters
include the covariances of the system state Pi = E[xixT

i ],
model error Qi = E[wiwT

i ], and measurement error Si =
E[vivT

i ].
In a Kalman filter, the state estimation is a two-step process:

First the state is predicted, then updated according to new
measurements. In our case the system prediction step does
not change the state (see Eq. 16), but the state covariance
is updated, corresponding to the growing uncertainty in the
estimation as time passes.

To avoid the pitfalls due to discontinuities and non-
uniqueness of three angle representations of rotation, we
have followed the approach of Welch and Bishop [18] to
represent the accumulated rotation outside the state vector x =
(X,Y, Z, φ, θ, ψ)T so that the angles φ, θ, ψ only represent
incremental rotations around the coordinate axes, and the
accumulated rotation is stored in matrix R0. Thus, after each
measurement update of the Kalman filter, the angles are used
as immediate angles to update R0, after which the angles in
the state vector are set to zero.

We will present first how the symmetric axes have to be
taken into account in the measurement model of the Kalman
filter for model-based cues. After that, two different ap-
proaches for the integration of model-free cues are described.

A. Measurements with unobservable DOF

The measurement model h(·) describes how the measure-
ments are related to the system state. In the case when all dofs
are observable using the model, the measurement model for
the model-based tracking can be written simply as

hF (x) = x =
(
X Y Z φ θ ψ

)T
. (17)

It should be noted that in (17) and all following measurement
models, the additive measurement error v has been left out
to make the expression more readable, but it is assumed to
be present as in (16). To convert the measured translation t̂
and rotation R̂ into the same form, function gF (t̂, R̂) can be
defined as

gF (t̂, R̂) =

(
t̂

α(R̂R
T

0 )

)
. (18)

where α(R) is a function making the conversion from matrix
representation of rotation to immediate angles. Using this
formulation, the gradient of the measurement function, needed
to compute the Kalman gain, becomes simply an identity
matrix:

∂hF (x)
∂x

= I6. (19)

When all rotational dofs are unobservable using the model,
they can be ignored, and the measurement functions become

hS(x) =
(
X Y Z

)T
gS(t̂) = t̂ (20)

and the gradient is

∂hS(x)
∂x

=
(
I3 03

)
. (21)

When there is only one unobservable dof, such as in the
case of a truncated cone, the conversion functions become
more complex. The measurement function for the cone model
presented in Sec. IV is

hC(x) =
(
X Y Z αx(RT

0 Rp) αz(RT
0 Rp)

)T
(22)

where Rp is the predicted rotation. Thus, only rotations
around x and z axes of the object frame can be measured.
These angles are also represented as instantaneous, that is,
as incremental angles compared to the previous time instant.
It should be also noticed that, because the model has no
predictive function, Rp = R0, both αx and αz are zero.
While only two dofs of rotational motion are measured, these
two do not necessarily correspond to the rotations around
particular two coordinate axes of the camera frame, but instead
to some combination of the three axes. As a Kalman filter is
a linearized model of the system, this is taken into account by
linearization. In addition, the orientation of the object must be
transformed from the camera frame to object frame. Therefore,
the conversion function for the measurement is

gC(x) =

 t̂
αx(RT

0 R̂)
αz(RT

0 R̂)

 . (23)

While the absence of prediction caused both of the measured
angles to be zero, the form of the function in (22) is still
necessary for the calculation of the measurement gradient. The



gradient of the measurement function at Rp = R0 becomes
then

∂hC(x)
∂x

=

I3 03

0 Rp(1, 1) Rp(2, 1) Rp(3, 1)
0 Rp(1, 3) Rp(2, 3) Rp(3, 3)

 , (24)

where Rp(i, k) is the (i, k) element of Rp.

B. Integration of model-free cues

For the integration of point measurements, two approaches
are considered: 1) directly integrating the point measurements
in the Kalman filter using a non-linear measurement model
corresponding to the perspective projection, and 2) using M-
estimators to robustly estimate the current pose and integrating
the pose measurement using a linear measurement model.
The two approaches have different computational complexities
and error characteristics. It should be noted that in both
approaches the following simplification is made compared
to full structure-from-motion: For all point features, the 3-
D object frame location is recorded during the initialization
using the current pose estimate, as presented in Sec. IV.
Therefore, the point location is not included in the Kalman
filter state, but the associated uncertainty is modeled as part
of the measurement uncertainty. This choice makes real-time
operation possible even with a large number of points.

1) Direct integration: In the direct integration approach,
the measurement function is the perspective projection of a
known 3-D point qi:(

Xj Yj Zj

)T = Rp(x,R0)qj + t(x)

hj(x) =
(
Xj/Zj Yj/Zj

)T (25)

where Rp(x,R0) is the rotation matrix taking into account the
accumulated rotation R0 and the rotational dofs of the state
x, and t(x) represents the translational dofs of the state. The
same function is used for each of the measured points. The
gradient of the measurement function can be calculated from
(25), but is not shown here for the sake of brevity.

The measurement errors are assumed to be independent with
respect to the coordinate axes. They are also assumed to be
independent for each point. Thus, the measurement covariance
matrix for point measurements can be written as SI = σ2

i I
where σ2

i is the image measurement variance.
2) M-estimators: The direct integration approach above

suffers from measurement outliers. To increase the outliers
tolerance, a robust M-estimator can be used [19]. To outline
the approach, the M-estimator is first used to find the best pose
corresponding to current measurements. Then, the model-free
pose measurement is integrated in the Kalman filter with the
model-based measurement.

The M-estimators are used to minimize a robust error
function, based on the sum of the squared errors between
image measurements and the recorded 3-D points. The sum
of squared errors measure of the 3D-2D projection error can
be written as

d =
∑

j

e2j ej =

√(
xj −

Xj

Zj

)2

+
(
yj −

Yj

Zj

)2

(26)

where (xj , yj) is the measured position, and (Xj , Yj , Zj) are
its coordinates in the camera frame, from (25).

Instead of solving the optimization problem for the squared
error criterion in (26), the squared residual is replaced with
a robust weighting function. A Tukey weight function [20] is
used and thus the optimization problem can be written

min
R,t

∑
j

wTUK(ej)e2j (27)

with the weight function defined as

wTUK(x) =

{(
1− (x/c)2

)2
if x ≤ c

0 if x > c
(28)

where c is a parameter describing the outliers rejection thresh-
old. The problem is solved as iteratively reweighted least
squares, such that for each measurement, a weight is first
determined, then a weighted least squares optimization is
performed, and these two steps are repeated until convergence.
The least squares optimization is performed by a Polak-Ribiere
variant of the conjugate gradient method [21]. Each line
search along the gradient is performed by first bracketing the
minimum by golden section bracketing, and then locating it
by Brent’s method [22].

The estimated pose (R, t) is finally integrated in the Kalman
filter using the measurement function identical to that of
model-based tracking without unobservable dofs presented
in (17). The conversion function is also identical to (18).
The measurement uncertainty can be written as SM =(

σ2
t I3 03

03 σ2
φI3

)
. By adjusting the translational and rotational

uncertainties σt and σφ, the effect of model-free measurements
can be controlled. For example, using a very large σt makes
the effect of model-free measurements negligible with respect
to the translation of the object, such that only rotational dofs
are estimated using them.

VI. EXPERIMENTAL EVALUATION

Experiments were performed to inspect both the applicabil-
ity of the proposed methods, and to inspect the computational
feasibility. Two test sequences are presented in Figs. 4 and 5,
one for tracking a truncated cone and another for a sphere.
The sequences are overlayed with the projected model edges,
using the M-estimator approach for integration.

Figures 6 and 7 present the tracked angles for the sphere
model undergoing the motion shown in Fig. 5 for both M-
estimators and direct integration. The three curves correspond
to the rotations around the three principal axes of the camera
frame. For that reason, the rotation is not exactly around
the vertical axis of the camera during the beginning of the
scene, where the object is rotated around the world vertical
axis. The rotation reaches its maximum near the 400th frame,
corresponding to the fourth image in the first row of Fig. 5.
After that the object is rotated backwards until frame 700, after
which the object is moved and rotated along a more complex
trajectory.

The graph in Fig. 6 represents the true motion relatively
well while the direct integration approach presented in Fig. 7
detects rotation around z-axis which is not present. This



Fig. 4. Cone test sequence.

Fig. 5. Sphere test sequence.

demonstrates qualitatively that the M-estimator approach is
able to detect the rotation even while the orientation is
unobservable from the model point of view. One particular
thing to notice is that the distance to the object is somewhat
overestimated for a short while during the tracking (see the
fourth image in Fig. 5). The distance is mostly estimated by
the model-based tracker, and at this point one of the object
edges has a gradual shadow and the edge cannot be reliably
detected, which causes the overestimation of the distance. An
important point to notice is that this does not seem to cause
significant problems for the estimation of the orientation, as
can be seen from the symmetry of the rotation trajectories in
Fig. 6. In contrast, there are spurious changes present in Fig. 7,
which are result from the bad quality of some of the tracked
points. This sequence is used here to demonstrate that the
M-estimators are important in reducing the effect of outliers,
especially when the texture of the object does not present easy
tracking targets.

Figures 8 and 9 present the tracked angles for the cone
model under the sequence shown in Fig. 4 for both integration
approaches. Consistent behavior can be seen in this sequence
for both of the methods. In this sequence, the average number
of tracked points is larger, and there are no spurious errors in
the points. It should be noticed that the model-based tracker
has here a significant contribution on the observable rotational
dofs because the model-free features are initialized on-line and
thus measure only relative changes, and for that reason they
do not suppress consistently incorrect estimates of the model-
based tracker.

0 200 400 600 800 1000
−60

−40

−20

0

20

40

X
Y
Z

Fig. 6. Estimated sphere orientation with M-estimators.

The computational feasibility of the methods was examined
by measuring the average estimation times over 1000 frames
long sequences of images. The average per frame processing
times are presented in Table I. The time required for retrieving
the images is not included in the processing time. With the
sphere sequence, tracking is slightly faster using the direct
integration model, because the number of image features is
small, keeping also the measurement of the Kalman filter low-
dimensional. When this dimensionality grows, the processing
time increases. With the cone sequence, the M-estimator
approach has lower processing time compared to the direct
integration, as its computational complexity grows slower
with respect to the number of measurements. However, both
approaches seem to be feasible for real-time use from the
computational point of view.



0 200 400 600 800 1000
−30

−20

−10

0

10

X
Y
Z

Fig. 7. Estimated sphere orientation with direct integration.

0 200 400 600 800 1000
0

20

40

60

80

100
X
Y
Z

Fig. 8. Estimated cone orientation with M-estimators.

VII. DISCUSSION AND CONCLUSION

In this paper, we have presented how model-free features
can be used in conjunction with model-based tracking to
observe the dofs which are unobservable from the model.
During the initialization step, a reference pose is established
for the unobservable dofs and all further measurements are
with respect to this pose. We have demonstrated the idea
on two types of geometric primitives, cones and spheres,
corresponding to one and three unobservable dof.

Only qualitative assessment of the accuracy was done, as no
ground truth data were available. Also, the method does not
try to “close the loop”, that is, lost points are not memorized
for possible future use. This causes drift over time in the
unobservable dofs. However, there is no drift in the observable
dofs, which is a significant advantage that results in increased
robustness.

In this work, we have presented a system which is able to
track higher order geometric primitives with textured surfaces.
We believe that such objects are important for augmented
reality and robotic grasping purposes since many of the objects
humans deal with (for example food or items of furniture) have
complex texture and can be represented at least approximately
as simple geometric primitives.

REFERENCES

[1] M. Armstrong and A. Zisserman, “Robust object tracking,” in Proceed-
ings of the Asian Conference on Computer Vision, vol. I, pp. 58–61,
1995.

[2] D. Koller, K. Daniilidis, and H. Nagel, “Model-based object tracking in
monocular image sequences of road traffic scenes,” International Journal
of Computer Vision, vol. 10, no. 3, pp. 257–281, 1993.

0 200 400 600 800 1000
0

20

40

60

80

100

120
X
Y
Z

Fig. 9. Estimated cone orientation with M-estimators.

TABLE I
AVERAGE PROCESSING TIMES

Method Sphere Cone
Direct integration 2.8 ms 5.4 ms
M-estimators 3.1 ms 5.0 ms

[3] T. Drummond and R. Cipolla, “Real-time tracking of multiple articulated
structures in multiple views,” in Proceedings of the 6th European
Conference on Computer Vision, ECCV’00, vol. 2, pp. 20–36, 2000.

[4] D. Lowe, Perceptual Organisation and Visual Recognition. Robotics:
Vision, Manipulation and Sensors, Dordrecht, NL: Kluwer Academic
Publishers, 1985. ISBN 0-89838-172-X.

[5] P. Wunsch and G. Hirzinger, “Real-time visual tracking of 3D objects
with dynamic handling of occlusion,” in Proceedings of the IEEE
International Conference on Robotics and Automation, ICRA’97, vol. 2,
pp. 2868–2873, 1997.

[6] M. Vincze, M. Ayromlou, and W. Kubinger, “Improving the robustness
of image-based tracking to control 3D robot motions,” in Proceedings
of the International Conference on Image Analysis and Processing,
pp. 274–279, 1999.

[7] E. Marchand and F. Chaumette, “Feature tracking for visual servoing
purposes,” Robotics and Autonomous Systems, vol. 52, no. 1, pp. 53–
70, 2005.

[8] V. Kyrki and D. Kragic, “Integration of model-based and model-free
cues for visual object tracking in 3d,” in IEEE International Conference
on Robotics and Automation, ICRA’05, pp. 1566–1572, 2005.

[9] C. Harris, “Tracking with rigid models,” in Active Vision (A. Blake and
A. Yuille, eds.), ch. 4, pp. 59–73, MIT Press, 1992.

[10] E. D. Dickmanns and V. Graefe, “Dynamic monocular machine vision,”
Machine Vision and Applications, vol. 1, pp. 223–240, 1988.

[11] D. G. Lowe, “Robust model-based motion tracking through the inte-
gration of search and estimation,” Int. J. of Comp. Vis., vol. 8, no. 2,
pp. 113–122, 1992.

[12] P. Wunsch and G. Hirzinger, “Real-time visual tracking of 3-d objects
with dynamic handling of occlusion,” in IEEE Int. Conf. on Robotics and
Automation, ICRA’97, (Albuquerque, New Mexico, USA), pp. 2868–
2873, Apr. 1997.

[13] L. Vacchetti, V. Lepetit, and P. Fua, “Stable real-time 3d tracking using
online and offline information,” IEEE Trans. on Patt. Anal. and Machine
Intell., vol. 26, no. 10, pp. 1385–1391, 2004.

[14] G. Klein and T. Drummond, “Robust visual tracking for non-
instrumented augmented reality,” in In Proc. 2nd IEEE and ACM
International Symposium on Mixed and Augmented Reality, pp. 113–
122, 2003.

[15] C. Rasmussen and G. Hager, “Probabilistic data association methods
for tracking complex visual objects,” IEEE Trans. PAMI, vol. 23, no. 6,
pp. 560–576, 2001.

[16] D. Kragic and H. I. Christensen, “Cue integration for visual servoing,”
IEEE Transactions on Robotics and Automation, vol. 17, pp. 18–27,
Feb. 2001.

[17] G. Taylor and L. Kleeman, “Fusion of multimodal visual cues for
model-based object tracking,” in Australiasian Conf. on Robotics and
Automation, (Brisbane, Australia), 2003.

[18] G. Welch and G. Bishop, “SCAAT: Incremental tracking with in-
complete information,” in Proc. Computer graphics and interactive
techniques, (Los Angeles, CA, USA), pp. 333–344, August 3–8 1997.



[19] P. J. Huber, “Robust estimation of a location parameter,” Annals of
Mathematical Statistics, vol. 35, pp. 73–101, 1964.

[20] P. J. Huber, Robust Statistics. Wiley, 1981.
[21] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,

Numerical Recipes in C++. Cambridge University Press, 2002.
[22] R. P. Brent, Algorithms for Minimization without Derivatives. Prentice-

Hall, 1973.


