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Abstract— In this paper, we present a novel method for learn-  generation and contraints identification methodologies based
ing robot tasks from multiple demonstrations. Each demon- gn multiple human demonstrations.
strated task is decomposed into subtasks that allow for segmen- | this work. the proposed methodologies are evaluated in
tation and classification of the input data. The demonstrated he f k, f robotic obiect inulation tasks. L .
tasks are then merged into a flexible task model, describing the the ramewqr 0 r‘? ouc object manipula 'Or_‘ asks. Learning
task goal and its constraints. The two main contributions of ~Such tasks is considered a hard problem since robots have a
the paper are the state generation and contraints identification very limited world knowledge to start with and are mainly
methods. We also present a task level planner, that is used to constrained by the type of available sensory modalities. For
assemble a task plan at run-time, allowing the robot to choose 1, mans. much of the background knowledge is innate and
the best strategy depending on the current world state. ' . . . N

one demonstration is often sufficient. This is not a case

when considering a robot. There are two possible directions
here: either we let the robot assume that the actions can be
executed in any order, or that the actions have to be executed

Robot task teaching has during the past years received Si@_the same order as the demonstration. The first alternative
nificant attention [1]-[8] and it has been recognized that morf@auires that the human instructs the robot of the possible
natural teaching methods are necessary so to allow ordind@#k constraints during the demonstration. In this paper, we

users to teach robots new tasks by simply demonstratifgvé chosen the latter alternative since it allows the robot to
them. From the viewpoint of task learning in humans it i¢éarn from multiple observations and improve the task model

known that such a strategy where a teacher’s demonstratiBker time.
is used as a starting point of learning significantly speeds up
the process and reduces the amount of trial-and-error steps. i
In robotics, such an approach to learning has been consideredn our work we would like to teach the robot of how to
in frameworks of Learning by Imitation or ProgrammingS€t-up a dinner table, slice a cucumber or put in dishes into a
by Demonstration (PbD) In our previous Work’ we haV@iShWaSher. Settlng up a dinner table task can be viewed as
considered the integration of different sensory modalities fd¢ Seéquence of pick-and-place object manipulation subtasks,
task model generation in a PbD framework, [8]. [9]. For this task, the robot is required to recognize objects,
An important issue to consider is that the initial taskdrasp them and put them on the table in specific geometric
setting will change between the demonstration and executi¢@lation to each other. The relationship between objects can
time. A robot that has to set-up a dinner table may havee representgd relative to one iject, e.g. main plate. Cutting
to plan the order of handling plates, cutlery and glasses fa cucumber is more difficult since the robot has to learn
a different way that previously demonstrated by a humafat & knife should be held in a specific way related to
teacher. Hence, it is not sufficient to just replicate th&1® cucumber. Different from the first example, the relative
human movements but the robot i) must have the ability ti#lationship between objects changes during task execution.
recognize what parts of the whole task can be segmented aM@bile manipulation tasks such as mail delivery [10] include
considered as subtasks so to ii) perform online planning f&enstraints, for example that the mail has to be collected
task execution given the current state of the environmerfl€fore it can be delivered but the order of delivery may be
The important problem here is how to instruct or teacirelevant. In summary, for some of the tgsks a specific order
the robot the essential order of the subtasks for which trff Subtasks is required and for some it is not. Here, the
execution order may or may not be crucial. As an examplé’,mblem of Iear.nlrjg object or mobile manlpulathn tasks is
the main dish plate should always be under the appetiz&p/ved by identifying the goal state and the spatio-temporal
or a soup plate and the order in which these are placed §fnStraints of the task. _ _
the table is important. One way of addressing this problem Many .of the _cu_rre_nt robot instruction systgms concentrate
is to demonstrate a task to the robot multiple times and 1" €arning by imitation or PbD based on a single demonstra-
the robot learn which order of the subtasks is essential. fiPn- However, the robot should be able to update the initial

relation, the two main contributions in this paper are the staf@Sk model by observing humans or another robot performing
the task. In other words, we need a task level learning system
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This problem has been studied for robot navigation andctions,primitives which can be easily recognized.
mobile pick-and-place tasks, [11] where a task is represent&date Generation- To enable generalization over multiple
by the alternate paths shown during the teaching phas#emonstrations, the subtasks are modeled as states, describ-
Compared to our work, the robot is still required to following the impact of a certain action to the current world state,
one of the human demonstrations unless the task is refinadg.,“Knife moved 10 cm to the right of the plateThestate
In this paper, we focus on object manipulation tasks whichenerationblock takes all demonstrations into account and
require that objects are represented in relation to each othsearches for similar subtasks which are represented by the
Thus, our work differs both in the state representation anghme state. The similarity is measured in terms of effects on
the task generalization. the world state.

In [4], generation of task models based on multiple huTask Generalization - This block is used to identify which
man is presentedzssential interactionghat represent the states must occur before others and possibly which states that
important hand movements during a manipulation task ame irrelevant for the task goal. From a single demonstration,
identified. Compared to our approach, the above systethe task is carried out in the exact same order unless some
represents the task using generalized trajectories. This make®r knowledge is available. From multiple demonstrations,
the method easier to adapt to different situations, but also les® robot acquires more knowledge about the task and
flexible, as it requires the world state to be roughly the samachieves the goal by assembling its own action sequence
as during the demonstration. In our work, we do not store thfeom a combination of all demonstrations. An example of a
hand trajectories, but instead what has been done. The rolsonstraint is that the plate has to be moved first, before food
can then reproduce the results of the human demonstratioan be served on it.
at execution time by planning a sequence of actions to reaétilanning - The robot has to be able to plan task execution
the goal state. and reaching the goal state given the current state of the

environment. Planning is also needed when a failure is
I1l. SYSTEM OVERVIEW detected and the task execution has to be replanned. In the
sk space, the robot first plans and then executeich
jects must be movedhereto achieve the goal given the

k constraints.
xecution - Once a plan of how to reach the goal state has
&EN generated, the execution of the task commences. Here,

strations are available. The system is designed so that sev ; ) . .
independent building blocks work together to produce thd"aspP planning and robust visual servaing play an important
ole for the task success. Currently there is no robot even

desired results. Figure 1 illustrates the program flow from . . .
demonstration to final execution near having the human capabilities of grasping objects, much

because our superior sensory feedback. In our current work,

In a PbD framework, the robot learns the task by observin
a human or another robot. In most systems, the user on
demonstrates the task a single time. A more complete ta
model can be made if recordings from several user demo

we consider grasping of simple objects since the main focus
is on planning and task model generation.

Perception - The level of task complexity that the robot
is able to perform is strongly dependent on the sensory
perception and modeling and it is usually a bottleneck of
any PbD system. Pose estimation in general is a difficult
problem, and in this work we settled for a simple vision
system able to estimate the pose of cubic blocks.

Perception

IV. IMPLEMENTATION

For easier understanding of the system implementation
4 details, let us study a specific task we want to teach a robot,
cutting-a-cucumberThe follwing objects are considered in
77’ the task: a cutting board, a cucumber and a knife. Given
that the objects’ poses estimated, this tasks can be learned
incrementaly as shown in Table. I. Here, object positions
Fig. 1. The building blocks of our system. can be represented given either absolute coordinates or
relatively to other objects already moved. This allows tasks
We shortly summarize each of the building blocks of théo be executed with greater precision compared to a method
system. based only on absolute coordinates. The demonstrated tasks
Segmentation- The segmentation of the task into isolatedare segmented, and each subtask is quantized to a state.
operations is an important research issue, [1]-[3], [12]. Th& demonstration is then represented as a state sequence.
task as a whole is unlikely to be observed again becaugeother example task used later on in the papeseging
of the minor variations that occur from demonstration tap a dinner table This task consists of placing plate, knife,
demonstration. We view the task as a composite of specifiork, spoon, glass, food and napkin on a dinner table.

/! Grasp Plamning | -~
I \‘
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TABLE |
TASK cut cucumbeRs MODELED IN OUR SYSTEM(Z-AXIS

ANTIPARALLEL TO GRAVITY )

B. Task Generalization

After the demonstrations have been abstracted to state
sequences, the robot can analyze all sequences to build a
general task model. Fig. 2 illustrates how this is done.

Object Relative Relative x,y,28,0,0)
Position Orientation Pose [cm, degrees]
Cutting board None None (393, 123, 0, 0, 0, O)) Demonstration 1 ®’@¢@
Cucumber | Cutting board| CuttingBoard | (10, 15, 1, 90, 0, 0)
Knife Cucumber Cucumber (25, 0, 6, 90, 90, 0)
Knife Cucumber Cucumber (25,0, 0, 90, 90, 0)| Demonstration 2 ®$@,$@—»@
Knife Cucumber Cucumber (25, 0, 6, 90, 90, 0)
Knife Cucumber Cucumber (24, 0, 6, 90, 90, 0)
Knife Cucumber Cucumber | (24, 0, 0, 90, 90, 0) Constraints A<B A<E A<G F<G E<F
A<F B<F B<G E<G
Possible
e NONONONO

To decompose the task into subtasks, a method for auto- Sequence
matic detection of a subtasks beginning and end is required.
This is a largely open reasech problem and it is not consigyy .
ered in this work.

Top: Two demonstrations given to the robot. Center: Nine
constraints are identified. Note that state B and E are not constrained.
Bottom: One of the possible sequences to follow at execution time

A. State Generation , )
In this example, there are two demonstrations. From

h Here, th_e contlnuorl:s melilsureme_gts Zr? quantlzecli( frotmese, nineonstraintsare identified. Initially, all actions are
the operations. For the tasks considered in our work, thg,,qirained to the order they were demonstrated. When two

plqcement of certain objects can be defingd relatively to OthSF more constraints contradict each other, they are removed.
objects Place glass to the left of the main plateut some g i the example above the constraits E andE < B
ObJeCt,S are to be plaged tp a specm.c. point defined in absolylg, o ‘heen removed. The robot is then free to reach any of
coordinates. To_deC|de if the posmon_ S_hOUId be_ regard_etﬂe goal states demonstrated, as long as it does not violate
absolute or relative, we compute the minimum variance Wltgny of the constraints. As more demonstrations are added,
respect to already placed objects: the list is modified. It is important to note that this approach
(1) requires gplanner, that calculates a sequence to achieve the
goal under the constraints. However, this is not a drawback
wherex; is the position of object. If relobj =i, then the as the planner is needed anyway if an operation cannot be
position should be regarded as absolute. The same procedpgsformed directly (target position may be blocked). Also
is done for the orientation, meaning that an object can haw®te that as the sequence is calculated at run-time, the robot
a relative position to one object and a relative orientation tdoes not have to follow any of the human examples.
another object. For some tasks, there may be several positioné\nother method for task generalization is presented in
that are valid for a certain object. A difficult problem is how[11]. The method is based on the longest common subse-
to automatically decide when a position should be regardetience (LCS) of the state sequences, and the LCS of several
as a new state, and when it should be regarded as a variatigmonstrations constitute the generalize task model, in which
of an existing state. We use K-means clustering, [13], téhe other actions appear as alternate paths. However, this
quantize the position and orientation for a specific objed@pproach is not suitable for manipulation tasks. Many pick-
into a number of subgroups. This quantization method i@nd-place tasks can be performed in arbitrary order, so the
good even though the amount of data is low which is generklCS for those tasks may be as short as a single state. Instead,
the case in PbD systems. The optimal number of subgroup® propose to build up a list of constraints that describes
are the one which yields the lowest maximum variancavhich states must occur before others.
However, the clusters are not allowed to lie closer than a Among the constraints generated in the example above,
certain threshold to each other, to prevent the scenario ofs@me are unnecessary, e G, when the constrainta <
single cluster for each measurement. The improved algoriththand B < G are present. These types of constraints can be

relobji = argmin |cou(x; —X;)|
Vj moved

becomes: removed, but they actually serve a purpose: they make the
. . c planning go faster. The planner does not have tdaryA—
relobj = argmin maxcoux —x)| (@) g which is a dead end.

vj moved ¢ € [1,Ngemd k=1

The minimum maximum covariance is sought over all objects ]

and cluster possibilities. Here¢ denotes subsek when C- Planning

objecti is clustered inta clusters. With this approach, we are At execution time, the robot must be able to plan a
able to identify multiple possible positions and orientationsequence of actions to reach the demonstrated goal state. The
for a single object, e.g., for set tabletask, the spoon can objects to be manipulated are not necessarily at the same po-
be either above or to the right of the plate. sitions as during the demonstrations. Inspired by the STRIPS



planner, [14], our planner is based on operations which <arg name="food loc15"/>
contain several preconditions and effects. These describe thég;g opaond :gggg 4’,?/>
changes on the world state if the operator is executed. The
second part of a planner is the problem file, which is designed 9 name=ffork grasp1’>
§ ; A arg name="food grasp2"/>
to reflect the current world state. The file contains all objects <arg name="food grasp3"/>
; ; : i : <arg name="cup grasp4'/>
in the current scene and their locations and destinations. The o 007,00 (0C0c.,”
grasp type for an object is selected automatically at run-time.<arg name="box grasp6"/>
We Ie_t each object have a couple of predefmed grasps. For<alrg name="loc10 loc15 grasp1’/>
planning, a grasp must be chosen so that is does not causeéirg name="loc15 loc15 grasp4"/>
el ; H H ; <arg name="loc15 loc22 grasp5"/>
coII|S|on§ W|t_h the ot_her objects. A gras;pat Io_c:auona is <arg name="l0c264 10023 grasp1’l>
not possible if there is a nearby locatibroccupied with an  <arg name="loc264 10c293 grasp2"/>
P i : ; <arg name="loc264 loc293 grasp4"/>
object, that Woulql cause a collision when grasis applied ~ <arg name="l0c264 10c293 grasp6'/>
to a. For all location pairs, the robot tests all grasps against

all objects using gath planner A path planner works at a _, 219 name="hand-empty’/>

!ower Ieyel compared to a task planner, see [15]-for MOT€ The last part of the problem file describes the desired goal
information. If the path planner fails to find a solution, thenstate:

the location pair is marked with the grasp type that is NSy ot
possible. The other objects are provided to the path plannekarg name="fork loc35"/>

. . . . ="food | "
as obstacles, with a slightly bigger size to account for motor 3 pame=food locZb%/>
inaccuracies in the execution phase. As the isolated grippirgoal>
task is relatively simple, the planner quickly returns the

solution if there is any. Using a path planner for plannin To solve the problem, the planner uses two operators:
. . y- Using a p P . P RASP and PUIDOWN. Using a breadth-first search, the
the entire task is not feasible as the complexity of the tas

; % ortest solution that does not cause any collisions is found:
would make the planner search a very long time. Also, i
FASP box loc264 grasp6

is harq tol accurately incorporate the dynamics of the actuﬁUT_DoWN box freespacel graspé
grasping into the path planner. GRASP food loc15 grasp2

This approach allows the robot to select the best gra oW fggfo"’gﬁiiglgr“pz
depending on the target pose of the object. The robot reasong_bowN fork loc35 graspl

H H ; H H H RASP cup loc22 grasp4

much like a human bemg in this sense - if the object quIQUT_DOWN cup 106293 graspd
be at the target location, would it then be graspable with
the current grasp? If the workspace is cluttered with other V. EXPERIMENTAL RESULTS

objects, it may happen that to reach the goal state only oneW luate th ¢ f1h tem in two diff t
grasp position is possible. Below is an example of a problem ¢ evaluate the performance ot the system In two ditteren

described to our planner in XML. Each problem file Startg_xperimental settings. The first experiment .iS in a virtual en-
with declaring all variables. The variable types are objectél,'ronrne.nt and shows h.OW the state generation block oper_ates
locations and grasps. The objects are declared first: on multiple demonstrations to generate state representations.

_ e o The second experiment is shown in a reaicro-world
Db (b it consisting of cubic blocks. The experiment shows the task
<object name="cup" type="Object’/> generalization over multiple demonstrations, and also the
<object name="box" type="Object’/> robot execution and planning capabilities.

Then several locations are declared. These correspond to
both the starting and end poses of each object found durirg Experiment 1: Virtual Environment

the demonstration. Also, a couple of free-space locations are|, this experiment, theset table taskdescribed in Sec-

given. tion IV is considered. The task was demonstrated by the user
<object name="loc264" type="Location"/> three times in a virtual environment where each object was
<object name="loc293" type="Location"/>

<object name="freespacel” type="Location"/> only allowed to be moved, not rotated. The state of each
object can then be represented using only two degrees of

objects were found present in the scene: experiment easy to analyze. '
) . . L . Fig. 3 shows the result of each demonstration. Demonstra-
<object name="graspl" type="Grasp"/>

<object name="grasp2" type="Grasp"/> tion 1 and 3 were similar but the objects were not moved in
the same order. Demonstration 2 was different because of the

After the variable declarations, the current state at run-tim@P00n being put to the right of the plate, instead of behind
is provided. The state consists of the location and grasp typls Table 1l shows the states generated by the system. As

of each object, and the list of location pairs that may be igxpected, the knife, fork and napkin are specified relative to
collision for certain grasp types. the plate. Because the glass position varied too much relative

<state> to the plate, its position is specified in absolute coordinates.
<arg name="fork loc10"/> The system correctly identifies the two possible placements
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Fig. 3. The three demonstrations in Experiment 1.

of the spoon (state D and H). State J arises since the fo
actually has lower variance towards the glass compared
the plate. In the first demonstration the fork was put dow
before the glass and positions can only be specified towar
already placed objects. Table 1ll shows the generated stc%8
sequences for the demonstrations. From these, a total of 32

constraints were identified. In this example, the constrainfg. 4. Left: The task demonstrated by the human operator. Center: The
make sure that when an object is to be placed, its relativetate of the environment at run-time. Note that the parallel-jaw gripper can

. . . . " only grasp one of the blocks. Right: The robot is placing the final block on
object is already in desired position. mpyo? thepothers. 9 placing

TABLE Il

EXPERIMENT 1: THE STATE ENERATED FROM THE DEMONSTRATION. . . . .
STATES G © ONS ONS incorporated into the planner. The experiment will also show

the capabilities of our proposed task planner. At execution

State | Object | Relative Position xy)
A Plate (0.52, 0.42) time, the blocks were organized so that they block each other,
B Knife Plate (0.1, 0) and only one block is graspable to begin with.
c Fork Plate (-0.07, 0) In the experiment, we use an ActiveMedia PowerBot robot
D Spoon Knife (-0.08, 0.04) platform with an 6DOF arm on the top and a single camera
E Glass (0.52, 0.56) mounted on the robot gripper. The robot first moved its arm
F Food (0.62, 0.56) to a top view of the scene to estimate the pose of each block.
G | Napkin Plate (-0.01, -0.02) For this experiment it is sufficient to estimate tfey,0)
H Spoon Plate (0.02, 0.04) parameters, i.e., the position and orientation in the plane. The
[ Knife Spoon (0.08, -0.04) height of the table was known. A four-dimensional Hough
J Fork Glass (-0.07, -0.12) transform was used to estimafr y,8,s) of each block,s

being the length of a side of a block. As we do not use

stereo vision, we cannot measure thposition of blocks
TABLE Ill stacked on each other. Instead, we estimate the position of
each block every time a block is moved. If a block that was
visible change to fully or partly occluded, it is concluded

THE STATE SEQUENCES FOUND IN THE DEMONSTRATIONS

Demonstration 1| A-B-C-D-E-F-G that the last block moved was placed upon that block.
Demonstration 2| A-E-H-I-J-F-G For this experiment, a path planner was not necessary to
Demonstration 3| A-C-B-F-E-D-G check for collisions. Instead, we used a simple approach:

Location a is colliding with locationb for grasp typeg if

lbp — (@p = dp)| < r+gr, wherer is the radius of a block,

or is the space required for the robot gripper, also set, to
B. Experiment 2: Blocks World p denotes the corresponding translation vector, gnis gy

In the second experiment, the operator demonstratedretated with the same rotation vector asFor all blocks,

task in an environment consisting of colored blocks. Therthere are two valid grasps.
were three equal-sized blocks of different colors available, Two demonstrations were conducted. First in the order
which we labeled 'red’, 'green’ and 'wood’. The task waswood - green - red, then in the order green - wood - red. Ta-
to stack a pyramid of blocks according to Fig. 4, with theble IV shows the states generated from these demonstrations,
red block on top. The purpose of the experiment is to shoand Table V shows the state sequences. Note that although it
that the robot can acquire knowledge about the world frorwould be nice if the second state sequence was B-A-D, this
human demonstrations, in this case that the red block hesnot possible as state B needs the coordinates of the wood
to be placed last. Thus, such facts does not have to béock, which is not moved yet in demonstration 2.



TABLE IV

in which the training was performed. The task planner was
EXPERIMENT 2: THE STATES GENERATED FROM THE DEMONSTRATIONS

tested in a simple environment with equal sized objects. The

State | Object | Relative | Relative (x.y:29) next challenge will be to use several objects with different

Position | Orientation size and shapes, which require a more powerful perception
A | Wood (0.34, 0.04, 0.00, 0) system.

B Green | Wood Wood (0.06, 0.00, 0, 0) The system scales up well, although with more objects
c Red Wood Wood (0.03, 0.00, 0.04, 0) present, more demonstrations are needed to give the robot the

D Green (0.40, 0.04, 0.00, 0) desired flexibility. If too few demonstrations are provided,
many unnecessary constraints will be encoded in the task

TABLE V description.

In the current system, it is assumed that there is only one
object of each type. If there are two identical blocks present
in the second experiment, the system gets confused since this

EXPERIMENT 2: THE STATE SEQUENCES FOUND IN THE
DEMONSTRATIONS

Demonstration 1| A-B-C knowledge is not explicitly defined. Our current research is
Demonstration 2| D-A-C devoted to solving this problem.
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