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Abstract

Initialization and choice of adequate motion models are
two important but seldom discussed problems in 3D model-
based pose (position and orientation) tracking. In this pa-
per, we propose an automatic initialization approach suit-
able for textured objects. In addition, we define, study
and experimentally evaluate three motion models commonly
used in visual servoing and augmented reality.

1. Introduction

During the last few years, different pose tracking algo-
rithms have been proposed for visual servoing, augmented
reality (AR), activity interpretation. One reason for the
multitude of approaches are camera-object configurations:
moving camera/static object (visual servoing, visual navi-
gation, AR), static camera/moving object (activity interpre-
tation, surveillance), moving camera/moving object(visual
servoing, AR). Some of the proposed approaches are more
suitable for textured objects [11, 9] while others assume
objects of uniform color [12, 5, 2]. However, most meth-
ods still fail in case of drift or jitter, or if the geometrical
model of the object is simple and appearance of the ob-
ject and background complex. Also, initialization of the
tracking process and the modeling of motion have received
little attention. One of the problems of wireframe based
approaches [2, 4] is that they are not suitable for textured
objects and realistic background, since it is difficult to dis-
tinguish between the background and object edges, as well
as multiple edges on the object itself. Classical methods
of camera registration in image sequences produce accurate
tracking over short sequences, but suffer from drift and de-
creased performance for significant view changes. To avoid
the problems, object modeling using several pre-registered
views has been proposed [11]. Another idea is to com-
bine the edge-based tracking with automatically initialized
model-free point trackers [6]. The latter approach uses ex-

tended Kalman filter in integrating the measurements, as
originally proposed in [1]. We use it as the base for our
motion modeling study as the Kalman filtering approach is
also well suited for integrating the predictions made by the
motion model.

2. Tracking System

Our tracking system is based on Kalman filter with al-
ternating system modeling (prediction) and measurement
modeling (update) phases, Fig.1. The initialization stage
estimates the initial system state (initial object pose). The
measurement modeling part includes the actual visual track-
ing algorithms. In this work, we are using the integration
approach proposed in [6] and the main focus is on the sys-
tem modeling and initialization steps.

Measurement
modeling

System
modeling

Initialization

Imaging

Figure 1. Tracking framework.
A number of effective model-based tracking methods

have been proposed during the last few years. Many of them
still assume manual initialization of the pose. The objects
considered for manipulation in our framework are highly
textured and therefore not suited for matching approaches
based on, for example, line features [5, 12]. Techniques
based on feature matching, [8, 10] are more suitable for our
purposes. Similar to the work presented in [10], to initial-
ize the pose in general settings, wide baseline matching has
to be performed. Our approach considers two stages: an
offline learning stage and an online matching stage.

The object recognition is based on Receptive Field Cooc-
currence Histogram (RFCH) method, [3]. A RFCH is a sta-
tistical representation of the occurrence of several descrip-
tor responses within an image. In our approach, image de-
scriptors used are color intensity, gradient magnitude and



Laplace response. Instead of just counting the descriptor re-
sponses, RFCH is built from pairs of descriptor responses.
The pixel pairs can be constrained based on, for example,
their relative distance. This way, only pixel pairs separated
by less than a maximum distance are considered. Thus, the
histogram represents not only how common a certain de-
scriptor response is in the image but also how common it
is that certain combinations of descriptor responses occur
close to each other. For a set of tracked objects, histograms
are first generated offline and during recognition stage, the
whole image is parsed with overlapping windows for which
a RFCH is estimated. These are then compared with the
stored histogram of the object using the χ2 metric. An ex-
ample of a recognition result can be seen in Fig. 2.

Figure 2. Object recognition based on RFCH
Once the object is localized, pose initialization step is

performed. Here, SIFT features proposed in [7] are used
for matching. Similar to the work presented in [10], in the
training stage a viewset is defined for each object. How-
ever, instead of having each viewset represent all possible
appearances of a feature under different viewing conditions,
our viewset represents a set of points related to a particular
object pose taken from one view. At run time, given a part
of the image occupied by the object, SIFT feature detector
is applied to extract scale invariant features. The detected
features are matched to points at each viewset using a Near-
est Neighbor search. The viewset for which the number of
matches is maximal is then used to estimate the current pose
of the object.

3. System Modeling

Pose measurements are integrated with the prediction
given by the system model using an extended Kalman fil-
ter (EKF). EKF estimates the state x of a system by using
a system model f(x), which models the time dependencies
of the system. A measurement model h(x) is used to link
the internal state to a set of measurable quantities y. The
uncertainties are modeled with Gaussian random variables.
Let P denote the covariance of the internal state, Q be the

covariance of the model error, and S be the covariance of
the measurement error.

The EKF estimation consists of two steps. In the predic-
tion step, the evolution of the system is predicted using the
system model by

xi+1|i = f(xi) Pi+1|i = FiPiF
T
i + Qi, (1)

where Fi is the gradient of f(·) evaluated at xi. In the up-
date step, the Kalman gain is first computed as

Ki+1 = Pi+1|iH
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(2)

where Hk
i is the gradient of the measurement function h(·)

evaluated at xk
i+1,x

0
i+1 = xi+1|i. Then, the state and state

covariance are updated as
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Pi+1 = Pi+1|i − Ki+1H
N
i Pi+1|i. (4)

We study three different motion models. The first two
are zeroth order, with no predictive capability. The differ-
ence between the models is the center point of the rotation.
In Model 1, the object rotates around its own origin, which
corresponds to a moving object and stationary camera. In
Model 2, the rotation is around the camera frame origin,
corresponding to a moving camera and stationary object. It
is important to note that these models indeed provide differ-
ent predictions, because their covariances differ. Model 3
is a constant velocity model. We study here how much the
choice of a model affects the tracking accuracy. All models
are linear, but have differences in the gradient of the predic-
tion function F and the prediction covariance Q. It should
be noted that the differences in Q have considerable effect
on system characteristics.

Models 1 and 2 use the 6DOF pose vector as the system
state, i.e., x = (X,Y, Z, φ, θ, ψ)T . Due to the well-known
problems with the non-uniqueness of Euler angles [9], we
adopt the approach proposed in [13], where the orientation
is represented externally, outside the Kalman filter state, and
the angles φ, θ, ψ only describe incremental changes. Un-
like their quaternion based approach, we represent the ex-
ternal orientation using a rotation matrix. Thus, after each
time step the rotation angles are integrated into matrix R0

and reset to zero. Models 1 and 2 predict the internal state
according to xi+1|i = xi. Thus, the gradient of the state up-
date is the identity matrix, F = I6. The motion is modeled
as a Wiener process, with independent uncorrelated noise
sources for both translational and rotational motion. Thus,
for Model 1, where the motion is with respect to the object
origin, the state prediction covariance is

Q1(∆t) =

(

∆t σ2
p I3 0

0 ∆t σ2
φ I3

)

(5)



where ∆t is the time step, σ2
p and σ2

φ are the variances of the
translational and rotational motion, respectively. In Model
2, the translation is affected by the rotation around the cam-
era center and the system can be written as

pi+1 =R(wφ)pi − wp

φi+1 =φi − wφ

(6)

where wp and wφ are the noise sources for camera transla-
tion and rotation. Writing R(wφ,pi) ≡ R(wφ)pi, we can
then approximate it with a first order Taylor series as

R(wφ,p) = R(0,p) +
∂R(wφ,p)

∂wφ

wφ = p + Awφ (7)

where

A =

(

0 pz −py

−pz 0 px

py −px 0

)

. (8)

(6) and (7) allow us to write Q2 as

Q2 =

(

Qpp Qpφ

Qφp Qφφ

)

(9)

where

Qpp = ∆t σ2
p I3 + ∆t σ2

φ AAT Qpφ = −∆t σ2
φ A

Qφp = −∆t σ2
φ AT Qφφ = ∆t σ2

φ I3.

Thus, the translation is additionally affected by the rotation
around the camera center.

In Model 3 the system state includes also velocities, x =
(X,Y, Z, φ, θ, ψ, Ẋ, Ẏ , Ż, φ̇, θ̇, ψ̇)T with prediction

xi+1|i =
(

I6 ∆tI6
0 I6

)

xi. (10)

The noise is considered to only affect the velocities and the
noise covariance is thus
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4. Experimental evaluation
Experiments were performed on a recorded sequence to

allow repeated tests and two example images are shown in
Fig. 3. The length of the sequence is 173 seconds. It has
been recorded by moving a camera mounted on a robot arm
and therefore the ground truth has been generated by record-
ing the robot trajectory. This is important since most pose
tracking results are usually presented only qualitatively.

Figure 3. Two images from the test sequence.

4.1. Initialization

The initialization accuracy was examined using all the
images in the sequence. An initialization attempt was con-
sidered failed if the translation error exceeded 15cm or if
the rotation error was above 15 degrees. The errors for suc-
cessful initializations are seen in Fig. 4. Only 1.5% of the
attempts failed, and no two consecutive frames were fail-
ures. The mean translation error for the successful attempts
was approximately 2 cm and rotation error 4 degrees, which
demonstrates that the approach is valid for initializing the
tracker.
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Figure 4. Initialization accuracy.

4.2. Motion models

Fig. 5–7 show the error magnitudes for system mod-
els described in Sec. 3.. At around 50 sec, an interesting
phenomena occurs, resulting from a temporarily erroneous
measurements of rotation. Models 1 and 3 have increasing
but smooth error, while Model 2 has a different kind, oscil-
lating error. This is the result of Model 2 restricting the rota-
tion of the object to co-occur with suitable translations. All
models had similar average errors, Model 1 having slightly
lower error of 1.7 cm in translation and 3.8 degrees in rota-
tion compared to 1.9 cm and 3.9 degrees for Model 2, and
1.7 cm and 4.0 degrees for Model 3.

The effect of the sampling rate was inspected by lower-
ing the sample rate to 1/2, 1/3, etc. The errors for different
sampling rates are shown in Table 1. The sudden increase
in the errors at 1/3 sampling rate for Models 1 and 2 oc-
curs because at that rate the object motion at one point of
the sequence is fast enough so that one of the tracked edges
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Figure 5. Model 1 (moving object).
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Figure 6. Model 2 (moving camera).

is confused with another. Constant velocity prediction of
Model 3 allows it to run without this breakdown even for
1/4 sampling rate, but the breakdown happens at 1/5 sam-
pling. This demonstrates the importance of having a good
predictive system model in high speed tracking.

5. Summary and Conclusions
We have presented a method for initialization of pose

tracking based on robust feature matching and object recog-
nition. In addition, we have implemented and evaluated
three different motion models. An important observation
is that even when a model is not predictive, the model poses
constraints on the motion through the structure of the pre-
diction covariance. It should be noted that these results are
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Figure 7. Model 3 (constant velocity).

Table 1. Errors with lower sampling rates.
Model 1 Model 2 Model 3

1/1 0.017 / 3.8 0.019 / 3.9 0.018 / 4.0
1/2 0.019 / 4.4 0.020 / 4.8 0.019 / 4.5
1/3 0.038 / 13.8 0.037 / 13.4 0.019 / 4.8
1/4 0.038 / 13.8 0.038 / 13.6 0.020 / 5.1
1/5 0.039 / 13.9 0.041 / 17.6 0.038 / 13.8

not restricted to the particular model-based tracking meth-
ods used in this study, but they are applicable to all Kalman
filter based tracking. Experimental results present an eval-
uation of the accuracy of the proposed models. We found
that while the overall accuracy of the system did not heav-
ily depend on the motion model, the model choice had a
remarkable effect on other characteristics, such as the re-
quired sampling rate. Also, the frame of reference for mo-
tion must be selected carefully in order to guarantee desired
behavior.
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