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Abstract— We are investigating the problem of predicting
how objects behave under manipulative actions. In particular,
we wish to predict the workpiece motions which will result
from simple pushing manipulations by a single robotic fingertip.
Such interactions are themselves fundamental components of
multi-fingered grasping and other complex interactions. Physics
simulators can be used to do this, but they model many
kinds of object interactions poorly, being dependent on detailed
scene descriptions and parameters, which in practice are often
difficult to tune. Additionally, we have previously investigated
ways of learning to predict, by employing density estimation
techniques to learn, from many example pushes, a probabilistic
mapping between applied pushing motions and resulting work-
piece motions. In contrast, this paper presents an alternative
approach to prediction, which does not rely on learning but
infers the likelihood of possible workpiece motions by using the
simple physics principle of minimum energy. This approach is
advantageous in situations where insufficient prior knowledge is
available for training our learned predictors. In such situations,
possible strategies include either training learned predictors on
unrealistic simulation data, or making use of the simple physics
approach which requires no training. We show that the second of
these strategies performs significantly better, and approaches the
performance of learned predictors are trained on observations
of real object motions.

I. INTRODUCTION

Pushing operations are encountered frequently in robotics,
but have received relatively little attention in the research com-
munity. Push manipulations are interesting and challenging in
that (especially in 3D problems) they provide a large number
of unstable positions. They are also important in that push
contacts are fundamental to more complex tasks such as grasp-
ing [1]. When a two fingered gripper or a multi-fingered hand
approaches a grasp configuration, uncertainty (object geometry
and pose subject to sensing accuracy, fingertip pose subject to
robot accuracy) means that one finger will typically contact
the workpiece before the others, resulting a in a single finger
pushing phase before a stable grasp is achieved. Furthermore,
any grasp is achieved as a combination of pushing forces
from the grasping fingers, and in-hand dexterous manipulation
motions are essentially the (non-linear) superposition of the
effects on a workpiece of pushing motions due to each of the
contacting fingers.

Our previous work [2][3] has presented and compared
several algorithms which can learn to predict the motions
of a rigid object that result from an applied robotic pushing
action. These algorithms do not rely on any understanding
or encoding of Newtonian mechanics, but can be trained
in simple online experiments in which a robot arm applies

random pushes to objects of interest and extracts the resulting
motions using a vision system. Properties of objects, and
their interactions, are learned as distributions. Distributions
are important, firstly because they cope with uncertainty of
many kinds, and secondly because they enable the opinions
of multiple “expert” predictors to be meaningfully combined
by a simple product of densities.

This paper presents an alternative approach, in which simple
physics principles are used to infer the likelihood of candi-
date rigid body motions, without the need for learning. This
approach is useful, in that it can provide information about
the motions of new objects, without having to learn on prior
training data for those objects. Furthermore, by expressing the
minimum energy principle in terms of a Boltzmann distribu-
tion, this simple physics approach can produce, not only a
single prediction, but a probability distribution over possible
future motions of a workpiece. This means that the opinion of
the simple physics predictor can be usefully combined with
the opinions of learned density estimators (see above) using
the same product of densities scheme. Powerful capabilities
for generalization to new objects can now result, by using
the simple physics predictor to make overall predictions about
gross body motion, while combining with the predictions of
learned local predictors which have been trained on informa-
tion about the motions of small parts or surface patches which
are common to many objects.

An advantage of the simple physics approach, based on the
minimum energy principle, is that it can be applied to pre-
viously unencountered objects of arbitrary geometry, and can
make relatively robust predictions without exact knowledge
of many physical parameters in the scene. In contrast, con-
ventional physics simulation software (e.g. NVIDIA PhysX)
might also be applied to these prediction problems, however
such techniques are very sensitive to uncertainty in workpiece
and scene geometry, and are also dependent on a large number
of physical parameters (e.g. frictional constants) which must
be very precisely tuned if accurate predictions are to result. In
practice, it can be prohibitively difficult or even impossible
to tune the parameters of conventional physics simulators
such that their predictions match the observed motions of
real objects [4]. Furthermore, such simulators make only a
single prediction about the future pose of the workpiece,
and cannot output a probability distribution over a space of
candidate motions. This means that there is no elegant way to
combine such physical predictions with our learned predictor
techniques, in which we find it useful to combine the opinions



of multiple experts as a product of densities.
The simple physics approach does not generally perform as

well as a combination of learned expert predictors which have
been trained on real observations of real objects. However, the
advantage of the simple physics predictor is that it can be used
to enhance predictions in situations where insufficient prior
knowledge or training data are available for training learned
predictors. In such situations our alternative options are: firstly
train a combination of learned experts on synthetic training
data from simulation environments which do not correspond
well to the real world; or secondly, replace the “gross body
motion” expert (in the product of experts) with an untrained
expert based on simple physics. In this paper we show how
the second option, making use of simple physics, significantly
outperforms the first option, and can bring the performance of
a system (equipped with no prior observations of a new object)
closer to the ideal situation, in which a combination of learned
experts has been trained on a large body of observations of
that object.

The paper proceeds as follows. Section II provides an
essential overview of our previous work. We first explain
how the motions of the workpiece and pushing fingertip are
described by coordinate frames and rigid body transformations
between these frames, and show how predictors can be learned
from many examples of the rigid body transformations that
result from applied pushes. We further explain how objects and
their motions can be decomposed, by using several different
coordinate frames to encode information about the relative
motions of small parts or surface patches of objects. We show
how the motions of each of these parts can be learned by
multiple local experts, and how the opinions of these experts
can be meaningfully combined as a product of probability
densities.

Section III presents the main focus of this paper, which is an
additional or alternative approach to predicting the motions of
manipulated objects by making use of basic physics principles.
We first describe the principle of minimum energy, and then
show how future workpiece poses can be computed as those
which minimise the work that was done in reaching them.
We further show how a Boltzmann distribution can be used to
assign probabilities to a distribution over a space of multiple
candidate workpiece motions, and how this description in
terms of a distribution enables the opinion of the simple
physics predictor to be conveniently combined with the opin-
ions of learned predictors as a product of densities.

Section IV presents experimental test results in which a
series of pushes are applied to objects and both learned
and physics based predictors are tasked with predicting the
resulting motions. Performance is evaluated through a combi-
nation of virtual experiments in a physics simulator, and real
experiments with a 5-axis arm equipped with a simple, rigid
finger, and a vision system which can capture the motions of
pushed objects.

For a detailed review of the robotic pushing manipulation
literature, and a more detailed exposition of our previous work
on learning push predictors via density estimation, see [3].

II. PREDICTION LEARNING

A. Representations

Fig. 1. A system consisting of two interacting bodies with frames A and
B in some constant environment with frame O can be described by six rigid
body transformations T At,Bt , T Bt,O , T At−1,At , T At,At+1 , T Bt−1,Bt ,
and T Bt,Bt+1 .

Consider three reference frames A, B and O in a 3-
dimensional Cartesian space (see Figure 1). While frame O
is fixed, A and B change in time and are observed at discrete
time steps ..., t− 1, t, t + 1, ... every non-zero ∆t. A frame X
at time step t is denoted by Xt, a rigid body transformation
between a frame X and a frame Y is denoted by TX,Y .

From classical mechanics we know that in order to predict
a state of a body, it is sufficient to know its mass, velocity
and a net force applied to the body. We do not assume
any knowledge of the mass and applied forces, however the
transformations of a body, with attached frame B, over two
time steps TBt−1,Bt and TBt,Bt+1 encode its acceleration -
the effect of the applied net force. Therefore, if the net force
and the body mass are constant, the transformations TBt−1,Bt

and TBt,Bt+1 provide a complete description of the state of
a body at time step t in absence of other bodies. A triple
of transformations TBt,O, TBt−1,Bt and TBt,Bt+1 provide a
complete description of a state of a body in some fixed frame
of reference O which accounts for a constant or stationary
environment. Similarly, transformations TAt,O, TAt−1,At and
TAt,At+1 provide such a description for some other body with
frame A.

The state of a system consisting of three bodies with frames
A and B in some constant environment with frame O can be
described by the six transformations as it is shown in Figure 1,
where TAt,O has been replaced by a relative transformation
TAt,Bt . The transformation TBt,O can be omitted, if the
environment does not affect the motion of the bodies or it
is explicitly modelled by one of them.

The prediction problem can be stated as: given we know
or observe the starting states and the motion of the pusher,
TAt,At+1 , predict the resulting motion of the object, TBt,Bt+1 .
This is a problem of finding a function:

f : TAt,Bt , TBt,O, TAt−1,At , TBt−1,Bt , TAt,At+1 → TBt,Bt+1

(1)



Function 1 is capable of encoding all possible effects of
interactions between rigid bodies A and B, providing their
physical properties and applied net forces are constant in time.
Furthermore, it can be learned purely from observations for
some fixed time delta ∆t.

In many robotic operations, manipulations are slow, we
can assume quasi-static conditions, and it is often possible
to ignore all frames at time t − 1. This conveniently reduces
the dimensionality of the problem, giving:

f : TAt,Bt , TBt,O, TAt,At+1 → TBt,Bt+1 (2)
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Fig. 2. In the above two scenes a pose change between time step t and t+1
as observed in instantaneous object body frame A(1) and the same object in
another instantaneous body frame A(2) given inertial frame I are both the
same. However because transformations T I,A(1)

and T I,A(2)
are different,

the corresponding transformations in the inertial frame are also different, i.e.
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We expect that the behaviour of interacting bodies repre-
sented by rigid body transformations as in Figure 1 shares
some statistical similarities independently on their global poses
with respect to some current inertial frame I [3]. Instead
of using inertial frame-dependent transformation T

At,At+1
in ,

one can represent object transformations as observed in the
object body frame (see Figure 2). Body frame transformation
T

At,At+1
body is obtained by moving instantaneous frame A, so that

at time t it overlaps with inertial frame I . Given some instanta-
neous object frame At at time t, transformation T

At,At+1
in and

because T I,At+1 = T
At,At+1
in T I,At = T I,AtT

At,At+1
body , one can

obtain transformation T
At,At+1
body in the body frame as follows:

T
At,At+1
body = (T I,At)−1T

At,At+1
in T I,At (3)

Similarly from a given transformation in body frame, instan-
taneous object frame At at t and using Equation 3, one can
obtain expression for transformation T

At,At+1
in in the inertial

frame

T
At,At+1
in = T I,AtT

At,At+1
body (T I,At)−1 (4)

In further discussion we will keep subscripts in while
dropping subscripts body assuming that all transformations
TX,Y are transformations in the body frame X obtained from
TX,Y ≡ TX,Y

body = (T I,X)−1TX,Y
in T I,X .

B. Learning global and local experts as density estimation
Prediction learning with using Functions 1 or 2 is limited

with respect to changes in shape [3]. Consider two objects
lying on a table top. Figure 3 shows two situations that are
identical except for the shape of object A. It is clear that
the same transformation of A’s position will lead to different
motions for object B in each case. How can we encode the way
in which the shapes of A and B alter the way they behave? We
use a product of several densities to approximate the density
over the rigid body transformation given in the function 2.
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Fig. 3. Two scenes, each with two objects on a table top, viewed from
above. Between the two scenes only the shape of A is different. Yet when
A moves the resulting transformation T Bt,Bt+1 will be quite different. This
shows that our predictors must take some aspect of the shape of A and B
into account.

In the simplest case one can approximate two densities,
conditioned on local and global information respectively [3].
We define the global information to be the information about
changes of the pose of the whole object. The local information
is specified by changes of the pose of the surfaces of A and B
at the contact point, or the point of closest proximity, between
the object and the finger. We model this local shape as a pair
of planar surface patches, of limited extent (see Figure 4).
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Fig. 4. 2D projection at time t of a robotic finger with global frame At, an
object with global frame Bt, and a ground plane with constant global frame
O. Local frames Al

t and Bl
t describe the local shape of the finger and an

object at their point of closest proximity.

Consider a 2D projection at time t of a robotic finger with
global frame At, an object with global frame Bt, and a ground
plane with constant global frame O (Figure 4). Similarly, local
frames At

l and Bl
t describe local shapes belonging to a finger

and an object. We define a global conditional density function
as [3]:

pglobal(TBt,Bt+1 |TAt,At+1 , TAt,Bt , TBt,O) (5)



and similarly a local conditional density function as:

plocal(TBl
t,B

l
t+1 |TAl

t,A
l
t+1 , TAl

t,B
l
t) (6)

To predict the rigid body transformation of an object when
it is in contact with others we are faced with how to represent
the constraints on motion provided by the contacts. We do this
using a product of experts [3]. The experts represent by density
estimation which rigid body transforms are (in)feasible for
each frame of reference. In the product, only transformations
which are feasible in both frames will have high probability.

The only problem is to find relations between transfor-
mations in the body frame of the local shapes and the
corresponding transformations in the inertial frames. For a
particular situation shown in Figure 4 from object rigidity and
using Equation 3 we have:

TAl
t,A

l
t+1 = (T I,Al

t)−1T
At,At+1
in T I,Al

t (7a)

TBl
t,B

l
t+1 = (T I,Bl

t)−1T
Bt,Bt+1
in T I,Bl

t (7b)

where I is the inertial frame. TAl
t,B

l
t can be determined

directly from the shape frame:

TAl
t,B

l
t = (T I,Al

t)−1T
Al

t,B
l
t

in T I,Al
t (8)

For the finger-object scenario a prediction problem can
then be defined as finding that transformation T

Bt,Bt+1
in in

the inertial frame which maximizes the product of the two
conditional densities (experts) 5 and 6:

max
T

Bt,Bt+1
in

plocal((T I,Bl
t)−1T

Bt,Bt+1
in T I,Bl

t |TAt,At+1 , TAl
t,B

l
t)×

pglobal((T I,Bt)−1T
Bt,Bt+1
in T I,Bt |TAt,At+1 , TAt,Bt , TBt,O)

(9)

Starting with some initial state of the finger TA0 and the
object TB0 , and knowing a trajectory of the finger A1, . . . AN

over T time steps, one can now predict a whole trajectory
of an object B1, . . . BN by sequentially solving a problem of
maximization of the product 9.

C. Incorporating information from additional experts

In addition to learning how an object moves in response
to a push, it is desirable if we can also incorporate learned
information about the inherent tendencies of parts of an object
to move in various directions with respect to the environment
or any other objects, but regardless of whether it is being
pushed or not. This additional information may help when
predicting the motions of previously unseen objects, because
it provides some prior knowledge about what kinds of motions
are possible and which are not.

We can incorporate this additional information by attaching
an arbitrary number of additional coordinate frames Bsnt to
various parts of the object. We then learn densities for the
future motions of each of these frames, conditioned only on
their relative pose TESk
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Fig. 5. Inputs and outputs of learned prediction system. The 2-expert
approach can be extended to include opinions from multiple local shape
experts represented by coordinate frames SN .
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Fig. 6. Co-ordinate frames can be attached to an arbitrary number of local
shapes, and local experts can be learned for each of these frames, predicting a
distribution of how the frame may move next, given where it is at the present
time step.

pose ESk
t of a patch on a ground plane at the present time step,

ignoring any information about the motions of the pushing
finger. For the k-th such frame, we estimate the local contact
conditional density:

p(TBSk
t ,B

Sk
t+1 |TESk

t ,BSk
t ) (10)

which represent probability density over possible rigid body
transformations in the body frame of the k-th local contact.
The subsequent motion of the object in the inertial frame can
now be predicted as:

max
T

Bt,Bt+1
in

plocal((T I,Bl
t)−1T

Bt,Bt+1
in T I,Bl

t |TAt,At+1 , TAl
t,B

l
t)×

pglobal((T I,Bt)−1T
Bt,Bt+1
in T I,Bt |TAt,At+1 , TAt,Bt , TBt,O)×∏

k=1...N

p((T I,BSk
t )−1T

Bt,Bt+1
in T I,BSk

t |TESk
t ,BSk

t )

(11)

All joint and conditional densities are approximated by
a variant of kernel density method with Gaussian kernels
described in details in [2]. For simplicity, the density product
11 is maximised using the differential evolution optimization
algorithm [6].



III. SIMPLIFIED PHYSICS APPROACH

A. Principle of minimum energy

The previous section presented a set of methods for learning
to predict the behaviour of objects in simple robotic manipula-
tion tasks. The methods incorporate information about objects’
shapes and other physical properties in terms of distributions.
The local distributions encode information about the behaviour
of objects’ local shape parts during interactions and can be
shared among many objects. However, the global distribution
is unique to a particular object or object category, therefore
the generalization capabilities of such global distributions are
limited, in particular with respect to objects of different shapes.

A simplified physics approach is an alternative method for
predicting the motion of an object subjected to pushing action.
The approach relies on the principle of minimum energy known
from thermodynamics as a consequence the second law of
thermodynamics applied to closed systems. The principle of
minimum energy states that the total energy of a closed system
decreases and reaches a local minimum value at equilibrium,
where a closed system is a system with fixed entropy and other
parameters such as volume or mass, but which can exchange
energy with other connected systems [5].

A system consisting of a robot, an object and a ground
plane can also be considered as a closed system. From the
principle of minimum energy we know that the total energy
of our system must reach a local minimum for a given amount
of work introduced to the system. Each movement of a robotic
finger, if it touches an object, produces some amount of work,
which in the prediction scenario is unknown because the cor-
responding movement of the object is unknown. However, this
movement can be computed by searching for such movements
which minimize the produced amount of work, given known
physical properties of the system.

A simplified physics approach uses a very simple model
of physical interactions, which can be split into the physical
phenomena and the corresponding work done by moving
objects as follows:

1) Mass via work done by accelerating a given object.
2) Gravity force via work done while moving in a given

potential field.
3) Friction via work done by two objects in contact mov-

ing in tangential direction. It is the simplest case of
Coulomb’s law of sliding friction with dynamic friction
only.

4) Restitution via work done by two objects in contact
moving in directions normal to the contacting surfaces.

B. Finding a trajectory at equilibrium

The simplified physics approach represents the object body
by a set of N “volumetric” particles vi

t with index i at discrete
time step t randomly generated at time step t = 0 and then
rigidly attached to the object throughout all prediction time
steps (see Figure 7). Trajectory of an object is approximated
by a sequence of rigid body transformations q which are found

Fig. 7. A set of “volumetric” particles (yellow dots) representing the object
body (green solid shape).

by solving a problem of minimizing the energy function E(q)
at each time step t = 2, . . . , T :

min
q

E(q, t) (12)

Energy function E(q) consists of four work type-specific
functions which correspond to four ways of producing work
as described in the previous section:

E(q, t) = Ea(q, t) + Eg
i (q, t) + Ef

i (q, t) + Er
i (q, t) (13)

where each work function computes work during movement
generated by q as follows1:

Ea(q, t) = Ca‖
N∑

i=1

(qvi
t−1 − 2vi

t−1 + vi
t−2)‖ (14)

Eg
i (q, t) = −Cg

N∑
i=1

G · (qvi
t−1 − vi

t−1) (15)

Ef
i (q, t) = Cf

∑
i∈Vf

‖qvi
t−1 − vi

t−1‖ (16)

Er
i (q, t) = Cr

∑
i∈Vr

di(qvi
t−1) (17)

where C∗ ∈ R+ are work type-specific constants, G ∈ R3 is
the gravity vector, Vf is an index set of all particles which
are in contact with the ground plane, Vr is an index set of all
particles which penetrate a robotic finger or the ground plane
with the corresponding penetration depth di.

Transformation q which minimizes E(q) can be computed
using e.g. a differential evolution optimization algorithm [6].

C. Probability density over trajectories

Energies E(q) can be transformed into a probability density
function over possible transformations q by using a Boltzmann
distribution [5]:

1Work functions are only a crude approximation of real physical phenomena
and do not even preserve physical units.



pBoltzmann(E(q)) =
exp

(
−E(q)

kT

)
Z(T )

(18)

where k is Boltzmann constant and T is temperature. Z(T )
is a partition function (a normalization constant) which for a
given temperature can be computed from:

Z(T ) =
∑

q

exp
(
−E(q)

kT

)
(19)

Because a basic prediction scenario requires computation of
only the most likely trajectory, normalization constant Z(T )
need not to be estimated and can be assumed a non-zero
constant.

pBoltzmann(E(q)) can be used as an approximation of
the global conditional density function given by Equation 5
and it can be combined in a product with other experts as
was discussed in the previous section. The global conditional
density function can be replaced with pBoltzmann(E(q)) so
that Equation 11 now becomes:

max
T

Bt,Bt+1
in

pBoltzmann(E(TBt,Bt+1
in ))×

plocal((T I,Bl
t)−1T

Bt,Bt+1
in T I,Bl

t |TAt,At+1 , TAl
t,B

l
t)×∏

k=1...N

p((T I,BSk
t )−1T

Bt,Bt+1
in T I,BSk

t |TESk
t ,BSk

t )

(20)

where symbol T stands for a rigid body transformation. The
predicted object motion is a transformation T

Bt,Bt+1
in which

maximises the value of the above product.
pBoltzmann(E(q)) depends on several constants which have

to be estimated for a particular system, but crucially it also
depends on temperature T . When temperature T → ∞,
pBoltzmann(E(q)) → 1 for any transformation q, conse-
quently pBoltzmann(E(q)) has no influence on a result of
the maximization procedure 20. On the other hand, when
temperature T → 0, pBoltzmann(E(q)) becomes very rugged,
likely with a single peak only, so that the other factors in the
product 20 have no impact on the maximization result.

IV. RESULTS

A. Experimental setup

We have tested the introduced prediction algorithms in
simulation experiments using PhysX physics engine [7], and
in real experiments using 5-axis Katana robotic manipulator
[8] equipped with a single rigid finger. We capture the motion
of an object using a vision tracking system [9].

Multiple experimental trials were performed, in which a
robotic arm equipped with a finger performs a random pushing
movement of length approximately 25 cm towards an object
placed at a random initial pose (Figure 8). In each experiment
data samples are stored over a series of such random trials.
Each trial lasts 10 seconds, while data samples are stored every
1/15th of a second.

Fig. 8. A 5-DOF robotic arm equipped with a finger performs forward
movements towards an object. Object behaviour varies depending on the initial
object pose and finger trajectory. An example image sequence shows toppling
behaviour. Orange wire frame denotes output of the vision based tracking
system. Green wire frame shows predictions made by a simplified physics
- note that the entire motion sequence is predicted before the physical push
is initiated, without any recursive correction from visual feedback during the
push execution.

B. Performance measure

In all experiments, we take the output of the tracked pose
of a real object to be ground-truth, and compare it against
predictions forecast by the simplified physics approach (Sec-
tion III) or by the learned approaches (Section II). Prediction
performance is evaluated as follows.

At any particular time step, t, a large number, N , of
randomly chosen points p1,t

n , where n = 1 . . . N , are rigidly
attached to an object at the ground-truth pose, and the corre-
sponding points p2,t

n to an object at the predicted pose. At time
step t, an average error Et can now be defined as the mean
of displacements between points on the object at the predicted
pose and points on the object at the ground-truth pose:

Et =
1
N

∑
n=1...N

|p2,t
n − p1,t

n | (21)

Note that for each robotic push action, we predict approxi-
mately 150 consecutive steps into the future, with no recursive
filtering or corrector steps, hence it is expected that errors will
grow with range from the initial object pose. We therefore find
it more meaningful to normalize all errors with respect to an
“average range”, Rt, of the object from its starting position,
defined as:

Rt =
1
N

∑
n=1...N

|p1,t
n − p1,0

n | (22)

For a test data set, consisting of K robotic pushes, each of
which breaks down into many consecutive predictions over T
time steps, we can now define an normalized average error:

Eav =
1
K

∑
k=1...K

1
T

∑
t=1...T

Et

Rt
(23)



For each set of test data, we also report an normalized final
error, Ef which represents the typical discrepancy between
prediction and ground truth that has accumulated by the end
of each full robotic push:

Ef =
1
K

∑
k=1...K

|p2,T
n − p1,T

n |
RT

(24)

We performed 10-fold cross-validation where at the begin-
ning of each experiment all the trials are randomly partitioned
into 10 subsets. Prediction was then subsequently performed
(10 times) on each single subset, while learning (only for
learned approaches) was always performed on the remaining
9 subsets of these trials. All the results were then averaged to
produce a single estimation.

C. Performance of a simplified physics approach
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Fig. 9. If only simulation data is available for training of experts, then
incorporating a simple physics predictor improves performance, approaching
that of the ideal situation in which experts are trained on real observations
of real objects. These charts compare the performance of a combination of
learned experts which have been trained only on erroneous synthetic data,
with and without the incorporation of an additional expert based on simple
physics. In each case, performance has been assessed by then attempting to
make predictions about motions of real objects which were not seen during
training. For comparison, we also show data for the ideal situation in which
experts have been exposed to examples of the real object during training.

Here we are interested in seeing how well our prediction
systems can do, when no examples of captured real object
motion are available for training, and instead we must rely on
synthetic training data generated by simulation environments
which do not correspond well with the real world. In all
experiments, the various prediction approaches are tested by
trying to make predictions about real objects being pushed by

a 5-axis robot arm, and the predicted motions are compared
against those captured by a vision system. We first train a
combination of learned experts on synthetic push sequences,
and then test by trying to predict the real motions of real
objects being pushed by the robot. The resulting errors are
shown in the bottom bar (virtual data + multi expert) in the
charts of Figure 9. We next show that, by replacing one
of the learned experts (the global or “gross body motion”
expert) with an untrained simple physics predictor, we can
significantly improve the predictions made about real objects.
This result is represented by the second bar from the bottom
in each chart (virtual data + sim physics). For comparison,
we show the ideal situation (real data + multi expert) where
a combination of learned experts has been trained on a large
number of observed trajectories of real objects subject to real
robot pushes.

If the reader compares the top bars of Figure 9 (real data
+ multi expert) against the second from top (real data +
sim physics), it will be noted that simplified physics does
not perform as well as a combination of purely learned
predictors in cases where plenty of real-world observations are
available for training. The advantage of the simplified physics
contribution is that, in situations where prior experience of
a real object is limited (e.g. when a robot encounters a new
object), then a simplified physics contribution can improve on
the performance of learned predictors that are merely trained
on synthesized data from erroneous physics simulators.

Figure 8 and 10 shows some examples of successful predic-
tions made by simplified physics. The toppling behaviour from
Figure 8 is also correctly predicted by NVIDIA PhysX [7]
game physics simulator. However PhysX struggles to provide
correct predictions of sliding motion which involves large
amount of rotation as it is visible in Figure 11. Similar
rotational movements are reasonably well predicted by our
simplified physics approach as it is shown in Figure 10.

Fig. 10. An example image sequence shows sliding behaviour with large
amount of rotational movement. Orange wire frame denotes output of the
vision based tracking system. Green wire frame shows predictions made by
simplified physics predictor.



Fig. 11. An example image sequence shows sliding behaviour with large
amount of rotational movement. Orange wire frame denotes output of the
vision based tracking system. Green wire frame shows erroneous predictions
made by predictor trained on virtual data provided by NVIDIA PhysX.

V. CONCLUSIONS

We have developed a number of methods for predicting
the motions of manipulated rigid bodies, and we have also
developed ways of combining these methods as a product of
experts. Conventional physics simulators are often inadequate
for making useful predictions about the interactions of real
objects, and in many cases we find that learned predictors,
trained on multiple example motions, perform much better.
Unfortunately, it is not possible to use learned predictors
for objects for which no prior training data is available, for
example when a robot encounters a new object that it has
not seen before. In such circumstances, one could attempt
to train predictors on synthetic data, generated by a physics
simulator, but the performance will be poor because such data
is a poor representation of reality. this paper has shown that,
in such situations, substantial advantage can be gained by
incorporating (into the combination of experts) an expert that
is not trained, but which infers the likelihoods of workpiece
motions by applying the simple physics principle of minimum
energy.

A useful property of the simple physics predictor is that it
does not merely predict a single future object pose. Instead,
by expressing the minimum energy principle in terms of a
Boltzmann distribution, it is possible to predict an entire
probability distribution over the space of possible candidate
object motions. This is useful because it enables the opinions
of the simple physics predictor to be combined with those of
learned predictors via a simple product of densities approach.
It is also useful in that, by supplying probabilities for candidate
object poses, this can be used in predictor-corrector type
recursive estimation problems such as vision-based tracking
of manipulated objects using particle filters.

In the present work, predictions are made in advance for
an entire 10 second push sequence, before the push is made,
without any corrector or update steps from sensory inputs

or recursive filtering. Ongoing work is exploring the use of
these predictions as part of a predictor-corrector recursive
estimation system for online visual tracking of manipulated
objects. Since visual tracking data is necessary for training
learned predictors, and the learned predictors may be useful
for enhancing tracking, a bootstrapping problem is suggested
for which the simple physics approach of this paper may prove
a useful ingredient - the simple physics predictor may be used
to enhance tracking, until sufficient data can be acquired to
train a superior set of learned predictors.
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