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a b s t r a c t

The point process N = {(Tk, Xk), k = 0, 1, 2, 3 . . .} defines the sequence of maxima
M(t) =

∨
{k:Tk≤t}

Xk. Using time and space scaling it is possible to define different
sequences of random time changed extremal processes. The convergence of such sequences
to nondegenerate extremal processes is proved in case where the time and space
components of the point process are correlated.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Let us consider the point process N = {(Tk, Xk), k = 0, 1, 2, 3 . . .} where the time points Tk form an ordinary renewal
process determined by the sequence of iid positive random variables (r.v.) Yk, k = 1, 2, . . ., i.e.

T0 = Y0 = 0, a.s. and Tk+1 = Tk + Yk+1, k = 0, 1, 2, . . . .

Denote by N(t) = max{n : Tn ≤ t}, t ≥ 0 the corresponding counting process.
The space points Xk, k = 1, 2, . . . are assumed to be iid nonnegative random variables, and X0 = 0 a.s. Thus, the

random vectors {(Xk, Yk), k = 1, 2, . . .} are independent and identically distributed but the random variables in each
pair are correlated. Denote the joint cumulative distribution function (cdf) FXY (x, y) = P(Xk ≤ x, Yk ≤ y) and the
marginal cdfs by FX (x) = FXY (x,∞) and FY (y) = FXY (∞, y). Denote also F̄X (x) = 1 − FX (x), F̄Y (y) = 1 − FY (y), and
F̄XY (x, y) = 1− FX (x)− FY (y)+ FXY (x, y).
Define the sequence of maxima of the space variables Xk

Mn =
n∨
k=0

Xk, n = 0, 1, 2, . . . (1)

and the random time changed extremal process

M(t) = MN(t) =
N(t)∨
k=0

Xk, t ≥ 0.
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Theweak convergence of sequences of extremal processes and extremal processes subordinated to random timehas been
studied extensively in the recent years. Different functional limits are obtained in rather general settings, like multivariate
space components and nonlinear normalization, see e.g. Balkema and Pancheva (1996), Silvestrov and Teugels (1998),
Pancheva (1998), Pancheva et al. (2006), Meerschaert and Stoev (submitted for publication) and the references therein.
In most of the studies concerning the extremal processes the main assumption is the independence of the time process and
the space (or magnitude) variables. The aim of this note is to prove limit theorems (Theorems 4 and 5) for suitably scaled
sequences of random time changed extremal processesMn(.), n = 0, 1, 2, . . . in case where the time and space components
are correlated. In order to do this we use the duality between the process {M(t), t ≥ 0} and the first hitting time process
{T (x), x ≥ 0} defined by T (x) = inf{t :M(t) > x}, x ≥ 0, or equivalently

{T (x) ≤ t} ⇐⇒ {M(t) > x}. (2)
The pair of processesM(t) and T (x) arises naturally in the investigations of stochastic systems that are subject to random
shocks at random times. The random variable Xn represents the magnitude of the nth shock which occurs at time Tn.
Assuming that the system fails when the magnitude of the shock is greater than the level x, the time T (x) is then the
failure time of the system. This model is well known as the general shock model. It is widely studied in the literature, see
e.g. Shanthikumar and Sumita (1983), Anderson (1987), Gut and Huesler (1999), Gut (2001) and the references therein. In
these investigations the main object of study is the process {T (x), x ≥ 0} and its limiting distributions as x → xF . Here
and later xF denotes the right endpoint of the support of the r.v.’s Xk, i.e. xF = sup{x : FX (x) < 1} ≤ ∞. We continue the
investigation of the process T (x) by proving a functional limit theorem for it (Theorem 3).

2. Conditions and preliminaries

We assume one of the following conditions for the interarrival times of the renewal sequence.

Condition 1. The mean of the interarrival times Yk is finite,

µY = E[Yn] =
∫
∞

0
F̄Y (y)dy ∈ (0,∞).

Condition 2. The interarrival times Yk have an infinite mean, and

µY (t) =
∫ t

0
F̄Y (y)dy ∼

t1−βL(t)
Γ (2− β)

, t →∞, β ∈ (0, 1],

where L(.) is a function slowly varying at infinity (s.v.f.).

If Condition 1 holds then from the well-known results of renewal theory it follows that for every t > 0,

N(tn)
n/µY

a.s.
→ t, n→∞. (3)

If Condition 2 holds let us denote the function

r̃(t) :=
t

µY (t)Γ (2− β)
∼
tβ

L(t)
, as t →∞.

Its asymptotic inverse r(t), t > 0 is defined as follows (see Bingham et al. (1987), Theorem 1.5.12)

r(r̃(t)) ∼ r̃(r(t)) ∼ t as t →∞. (4)
The function r(t) is regularly varying with exponent 1/β ≥ 1.
These two functions provide the proper normalizations for the following limits (see e.g.Meerschaert and Scheffler (2004))
T[nt]
r(n)
⇒ Dβ(t) and

N(nt)
r̃(n)

⇒ Wβ(t), as n→∞, for t ≥ 0

in the Skorohod topology. Here and later⇒ denotes the weak convergence in the space D([0,∞)).
The process Dβ(t) is a one-sided β-stable Lévy motion, Dβ := Dβ(1) is almost surely positive r.v. and E

[
e−λDβ

]
=

e−λ
β
, λ > 0. The process Wβ(t) is the first hitting time process of Dβ(t), i.e. Wβ(t) = inf{s : Dβ(s) > t}. Its Laplace

transform is

E[e−λWβ (t)] =
∞∑
n=0

(−λtβ)n

Γ (1+ nβ)
. (5)

For more details about these processes see e.g. Meerschaert and Scheffler (2004).
In the case when the mean interarrival time is finite there are no restrictions on the correlation between Xk and Yk,

whereas in the case when the mean interarrival time is infinite the correlation between Xk and Yk will be specified by the
following condition (Anderson, 1987).
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Condition 3. There exists a function m(x) such that m(x) → 1, x → xF , and for every x sufficiently close to xF , the following
relation holds

F̄Y (y)− F̄XY (x, y) ∼ m(x)F̄Y (y), as y→∞.

Proposition 1. (i) ( Shanthikumar and Sumita, 1983; Gut and Huesler, 1999) Assume Condition 1. Then

T (x)
µY/F̄X (x)

d
→ ξ, as x→ xF ,

where ξ is a standard exponential random variable.
(ii) ( Anderson, 1987) Assume Conditions 2 and 3. Then

T (x)
r(1/F̄X (x))

d
→ ξ 1/βDβ , as x→ xF ,

where ξ is a standard exponential random variable independent of Dβ .

The last condition concerns the extremal limit laws for the sequence {Mn, n = 0, 1, 2, . . .} defined by (1).

Condition 4. The sequence of random variables Xk, k = 0, 1, 2, . . . belongs to the domain of attraction of the max-stable law
G(x), i.e. there exist sequences A(n) > 0 and B(n) such that

FX (A(n)x+ B(n))n → G(x), as n→∞,

for every x > 0.

It is well known that the limiting distribution G(x) can take one of the three standard forms (Gumbel, Frechet or Weibull).
Further, the following limit exists

M[nt] − B(n)
A(n)

⇒ E(t), as n→∞, (6)

where E(t) is a G-extremal process, whose one-dimensional distributions are P(E(t) ≤ x) = G(x)t , t > 0 (see e.g.
Resnick (1987) or Lamperti (1964), Theorem 3.2).
Assume that independent copies of the G-extremal process E(t), t > 0, and the process Wβ(t), t > 0 are given on a

common probability space. SinceWβ(t) has nondecreasing sample paths then the subordinated process

E(t) = E(Wβ(t)), t > 0 (7)

is well defined.

Proposition 2. The subordinated process E(t), t > 0 has the following one-dimensional distributions

P(E(t) ≤ x) = E[G(x)Wβ (t)] = 1+
∞∑
n=1

(logG(x))ntnβ

Γ (1+ nβ)
. (8)

Proof. The proof follows immediately from the independence and (5), applying the total probability formula. �

3. Limit theorems

Now we are ready to prove limit theorems for the processes T (x) andM(t) under the conditions stated in the previous
section. The first theorem extends the result of Gut and Huesler (1999) (Section 4.3) to the case where the interarrival times
have infinite mean.

Theorem 3. Assume Conditions 2 and 3 and

F̄X (x) ∼ x−αLX (x), x→∞, (9)

for α > 0 and a s.v.f. LX (.). Then for x > 0,

T (xz)
r(1/F̄X (z))

⇒ xα/βξ 1/βDβ , as z →∞,

where ξ is a standard exponential random variable independent of Dβ .
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Proof. Let x > 0, y > 0 be fixed. From (9) and the fact that r(.) is regularly varying with exponent 1/β one gets that
r(1/F̄X (z)) varies regularly with exponent α/β . Therefore

y
r(1/F̄X (z))
r(1/F̄X (xz))

→ yx−α/β as z →∞.

Using this limit, the fact that the cdf of ξ 1/βDβ is continuous, and Proposition 1(ii) one obtains that ((9) yields that xF = ∞)

lim
z→∞

P
(

T (xz)
r(1/F̄X (z))

≤ y
)
= lim
z→∞

P
(

T (xz)
r(1/F̄X (xz))

≤ y
r(1/F̄X (z))
r(1/F̄X (xz))

)
= P

(
ξ 1/βDβ ≤ yx−α/β

)
= P

(
xα/βξ 1/βDβ ≤ y

)
.

Thus, the convergence of the one-dimensional distributions is proved.
The convergence of the finite-dimensional distributions follows in the same way as in Gut and Huesler (1999)

(Section 4.3) under Condition 1. Furthermore, we have also that for every fixed z > 0, the process
{

T (xz)
r(1/F̄X (z))

, x ≥ 0
}
has

nondecreasing sample paths and the limiting process
{
θ(x) := xα/βξ 1/βDβ , x ≥ 0

}
is stochastically continuous. Applying

Theorem 3 of Bingham (1971) we complete the proof. �

The next two theorems establish the convergence of the sequences of maxima of a random number of random variables
to nondegenerate random time changed extremal processes.
First we consider the case when µY <∞. Define the following sequence of maxima

Mn(t) =
M(µYnt)− B(n)

A(n)
=

N(µY nt)∨
k=1

Xk − B(n)
A(n)

, n = 0, 1, 2, . . . .

Theorem 4. Let Conditions 1 and 4 be satisfied. Then for every t > 0

Mn(t)
d
→ E(t),

where E(t) is the G-extremal process determined in (6) and
d
→means the convergence of the one-dimensional distributions.

Proof. Let t > 0 and x > 0 be fixed. Then from the duality relation (2) one has

P (Mn(t) ≤ x) = P (M(µYnt) ≤ A(n)x+ B(n))
= P (T (A(n)x+ B(n)) > µYnt)

= P
(
F̄(A(n)x+ B(n))

µY
T (A(n)x+ B(n)) > nF̄(A(n)x+ B(n))t

)
.

Condition 4 provides that

A(n)x+ B(n)→∞ and nF̄(A(n)x+ B(n))→− logG(x), n→∞.

These two relations and Proposition 1(i) give

lim
n→∞

P
(
F̄(A(n)x+ B(n))

µY
T (A(n)x+ B(n)) > nF̄(A(n)x+ B(n))t

)
= exp(−(−t logG(x))) = G(x)t . �

Comment 1. The theorem shows that the limiting process is the same as in the case without subordination (see (6)). This fact can
be explained by the SLLN which provides the almost surely linear increase of the indexing process N(t) (see (3)).

Now we turn to the case when µY = ∞. In this case we define

Mn(t) =
M(r(n)t)− B(n)

A(n)
=

N(r(n)t)∨
k=1

Xk − B(n)
A(n)

, n = 0, 1, 2, . . . ,

where r(.) is defined in (4).

Theorem 5. Let Conditions 2–4 be satisfied. Then for every t > 0

Mn(t)
d
→ E(t)

where E(t) is the subordinated process defined in (7).
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Proof. We first prove that

lim
n→∞

P(Mn(t) ≤ x) = P(ξ 1/βDβ > t(− logG(x))1/β). (10)

Let t > 0 and x > 0 be fixed. Then by the duality relation (2) it follows that

P(Mn(t) ≤ x) = P (M(r(n)t) ≤ A(n)x+ B(n)) = P (T (A(n)x+ B(n)) > r(n)t)

= P

(
T (A(n)x+ B(n))

r
(
1/F̄X (A(n)x+ B(n))

) > r(n)t
r
(
1/F̄X (A(n)x+ B(n))

)) . (11)

Condition 4 provides that, as n→∞,

A(n)x+ B(n)→∞ and nF̄X (A(n)x+ B(n))→− logG(x). (12)

Taking in view that r(t) is regularly varying with exponent 1/β , one gets

r(n)t
r
(
1/F̄X (A(n)x+ B(n))

) → t(− logG(x))1/β

as n→∞ from the second relation in (12). Using this and the first relation there, an application of Proposition 1(ii) to the
right-hand side of (11) yields (10).
We still have to prove that the right-hand sides of (10) and (8) are equivalent. It is known that (see Meerschaert and

Scheffler (2004) or Feller (1971), Section 13.6) Hβ(x) := P(Wβ(1) ≤ x) = P(Dβ > x−1/β). Then

P(ξ(Dβ)β > z) =
∫
∞

0
P(Dββ > z/u)dP(ξ ≤ u)

=

∫
∞

0
P(Dβ > (u/z)−1/β)dP(ξ ≤ u) =

∫
∞

0
Hβ(u/z)e−udu =

∫
∞

0
Hβ(v)ze−vzdu.

An integration by parts gives that (see also (5) with t = 1)

P(ξ(Dβ)β > z) =
∫
∞

0
e−zvdHβ(v) =

∞∑
n=0

(−z)n

Γ (1+ nβ)
.

This equation shows that

P(ξ 1/βDβ > t(− logG(x))1/β) = P(ξ(Dβ)β > − log(G(x))t
β
)

=

∫
∞

0
(G(x))t

βudHβ(u) = E
[
G(x)t

βWβ
]
= 1+

∞∑
n=1

(logG(x))ntnβ

Γ (1+ nβ)
,

which together with (8) completes the proof of the theorem. �

Corollary 6. For t > 0, the following relation holds E(t) d= G←
(
e−ξ .(Dβ/t)

β
)
, where G←(.) is the inverse function of G(.).

Proof. From (10) one has, for t > 0 and x > 0

P(E(t) ≤ x) = P
(
ξ 1/βDβ > t(− logG(x))1/β

)
= P

(
ξ(Dβ/t)β > − logG(x)

)
= P

(
−ξ(Dβ/t)β < logG(x)

)
= P

(
e−ξ(Dβ/t)

β
< G(x)

)
= P

(
G←

(
e−ξ(Dβ/t)

β
)
< x

)
. �

4. Conclusion remarks

Finally, we give some properties of the limiting process E(t) d
= E(Wβ(t)) which follows immediately from the known

properties of the G-extremal process E(t) and the hitting time processWβ(t).
1. Since both E(t) and Wβ(t) (see Meerschaert and Scheffler (2004)) have nondecreasing sample paths, the limiting

process E(t), t > 0 also has nondecreasing sample paths.
2. Recall that the processWβ(t) is β-selfsimilar (see Meerschaert and Scheffler (2004)). Then
- If G(x) = Φα(x), the G-extremal process E(t) is 1/α-selfsimilar and the compound process E(t), t > 0 is selfsimilar

with exponent β/α.
- If G(x) = Ψα(x), the G-extremal process E(t) is−1/α-selfsimilar and the compound process E(t), t > 0 is selfsimilar

with exponent−β/α.



E. Pancheva et al. / Statistics and Probability Letters 79 (2009) 390–395 395

- If G(x) = Λ(x) then it is not difficult to check directly that

P (E(tc) ≤ x) = P (E(t)+ β log c ≤ x) .

3. Since the process E(t) has nondecreasing sample paths, it is possible to define its first passage time process by the
relation {τ(x) ≤ t} ⇔ {E(t) > x}. The one-dimensional distributions of τ(z) are

P(τ (x) ≤ t) = −
∞∑
n=1

(logG(x))ntnβ

Γ (1+ nβ)
.

It is not hard to check that τ(x) d= θ(x) = xα/βξ 1/βDβ , x > 0, where θ(x) is the limiting process obtained in Theorem 3.

Comment 2. Meerschaert and Stoev (submitted for publication) considered similar processes in the case where the random
variables Xk and Yk in each pair are independent. Under this condition they proved the weak convergence in Skorohod J1 topology
in D(0,∞)× (−∞,∞) under similar normalization as above. (See also Pancheva and Jordanova (2004)).
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