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Abstract

In this note we discuss upper and lower bound for the ruin probability in an insurance model with
very heavy-tailed claims and interarrival times.
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1 Functional Transfer Theorem for Extremes

The framework of our study is set by a given Bernoulli point process (Bpp) N = {(Tk, Xk) :
k > 1} on the time-state space S = (0,00) x (0,00). By definition (cf. Balkema and
Pancheva 1996) N is simple in time (73#7; a.s. for k # j), its mean measure is finite
on compact subsets of S and all restrictions of A to slices over disjoint time intervals are
independent. We assume that:
a) the sequences {T}} and {Xj} are independent and defined on the same probability
space;
b) the state points {X}} are independent and identically distributed random variables
(iild rv’s) on (0,00) with common distribution function (df) F which is asymptotically
continuous at infinity;
¢) the time points {T}} are increasing to infinity, i.e. 0 < Ty < Th < ..., T — 00 a.s.

The main problem in the Extreme Value Theory is the asymptotic of the extremal

N(t)
process {\k/Xk Ty <t} = k\/l X}, associated with A, for ¢ — oo. Here the maximum

operation between rv’s is denoted by ” V7 and N(t) := max{k : Ty, < t} is the counting
process of A/. The method usually used is to choose proper time-space changes (, =
(Tn(t), un(z)) of S (i.e. strictly increasing and continuous in both components) such that
for n — oo and ¢ > 0 the weak convergence

Vo(t) = {Vup ' (X) s 7' (Tk) < t} = Y (1) (1)
to a non-degenerate extremal process holds. (For weak convergence of extremal processes

consult e.g. Balkema and Pancheva 1996.)
In fact, the classical Extreme Value Theory deals with Bpp’s {(tx, Xx) : kK > 1} with

deterministic time points t;, 0 < t; < t3 < ..., tx — 00. One investigates the weak
convergence to a non-degenerate extremal process
Yalt) = {Y 1 (X) : th < )} = Y (1) (2)
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under the assumption that the norming sequence {(,} is regular. The later means that
for all s > 0 and for n — oo there exist point-wise

Jim w0 upg (2) = Us(a)

lim 77 0 g (8) = 04t

and (os(t), Us(x)) is a time-space change. As usual ” o” means the composition and
[s] the integer part of s. The family £ = {(os(t), Us(z)) : s > 0} forms a continuous
one-parameter group w.r.t. composition.

Let us denote the (deterministic) counting function k(t) = max{k : t; < t}, and put
kn(t) := k(1n(t)), kn := kn(1). The df of the limit extremal process in (2) we denote by
g(t,z) :==P(Y(t) < x), and set G(z) := g(1,z). Then necessary and sufficient conditions
for convergence (2) are the following
1. FFo(uy(z)) == G(z), n— oo

2. k’é—ff)—>)\(t), n—oo, t>0.
The regularity of the norming sequence {(,} has some important consequences (cf.

Pancheva 1998). First of all, the limit extremal process Y (¢) is self-similar w.r.t. £, i.e.

UsoY(t) iYoas(t), Vs > 0.

Furthermore:
0. % — s% n — oo, for some a > 0 and all s > 0;
1’. the limit df G is max-stable in the sense that
G%(x) = G(L_l(x)) Vs >0, Lg:= U%; (3)

s

2. the intensity function A(t) is continuous.

Thus, under conditions 1. and 2. and the regularity of the norming sequence, the
limit extremal process Y (t) is stochastically continuous with df g(t,z) = GA®(z) and the
process Y o A71(¢) is max-stable in the sense of (3).

Let us come back to the point process N with the random time points Tj. The
Functional Transfer Theorem (FTT) in this framework gives conditions on N for the weak
convergence (1) and determines the explicit form of the limit df f(t,z) := P(Y(t) < x).
In other words, the weak convergence (2) in the framework with non-random time points
can be transfer to the framework of N if some additional condition on the point process
N is met. In our case this is condition d) below.

Denote by M([0,00)) the space of all strictly increasing, cadlac functions y : [0, c0) —
[0,00), y(0) = 0, y(t) — oo as t — oco. We assume additionally to a) - ¢) the following
condition

d) 0, (s) := 7, (Tisr,) = T'(s)

where T : [0,00) — [0,00) is a random time change, i.e. stochastically continuous
process with sample paths in M([0,00)). Let us set N,(t) := N(7,(t)). In view of
condition d) the sequence

1
Ay(t) == . = k—max{k : T < 7(t)}

= supls > 057 (Te) < 1}
= sup{s > 0:0,(s) <t}



is weakly convergent to the inverse process of T'(s). Let us denote it by A and let Q(s) =
P(A(t) < s).
Now we are ready to state a general FTT for maxima of iid rv’s on (0, 00).

Theorem 1 (FTT): Let N = {(Tk, Xx) : k > 1} be a Bpp described by conditions a)
- d). Assume further that there is a regular norming sequence (,(t,z) = (7,(t), up(z)) of
time-space changes of S such that for n — oo and ¢ > 0 conditions 1. and 2. hold. Then

i) M@ LA

i) P(Y g (X) < ) 5 BIG()]A0

Indeed, we have to show only Observe that for n — oo

ii).
Na(t)

n

Np(t) = kp. ~ kn A(t) ~ kn(AEo A(D))

Then by convergence (2)

- Na(t) .
Tat) = V) ! (Xe) = Y(A o A()

and
No(t) 4
P( k\ll u, (X)) <z) — f(t,z) =

[ 6 @iQi(s) = BlG @)
0

Let us apply these results to a particular insurance risk model.

2 Upper and Lower Bound for the Ruin Probability

The insurance model, we are dealing with here, can be described by a particular Bpp
N ={(Ty, X) : k > 1} where

a) the claim sizes {X}} are positive iid random variables which df F' has a regularly
varying tail, i.e. 1 — F € RV_,. We consider the "very heavy tail case” 0 < o < 1 when
EX =00

b) the claims occur at times {7} where 0 < T7 < T < ... < T, — oo a.s. We denote
the inter-arrival times by Jy = T —T;_1, k > 1, Tp = 0 and assume the random variables
{Ji} positive iid with df H. Suppose 1 — H € RV_3, 0 < <1

c) both sequences { X} and {7} } are independent and defined on the same probability
space.

The point process N generates the following random processes we are interested in.

i) The counting process N(t) = max{k : T < t}. It is a renewal process with
N(t)

=~ — 0ast — 0 for EJ = oo. By the Stable CLT there exists a normalizing se-

quence {b(n)}, b(n) > 0, such that Zk":t]l b‘(]—z) converges weakly to a (- stable Levy

process Sg(t). One can choose b(n) ~ n*PL;(n), where L; denotes a slowly varying

function. Let us determine b(n) by the asymptotic relation b(b(n)) ~ n as n — oo. Now

the normalized counting process N@nt) g weakly convergent to the hitting time process

b(n)




E(t) = inf{s : Sg(s) > t} of S, see Meerschaert and Scheffler (2002). As inverse of Sg,
E(t) is [-selfsimilar.

N(t)
ii) The extremal claim process Y (t) = {V X} : T < t} = k\:/1 Xk. In view of assump-

nt]
tion a) there exist norming constants B(n) ~ n'/“Lx(n) such that k\/l B)%L) converges
weakly to an extremal process Y, (t) with Frechet marginal df, i.e. P(Y,(t) < z) =
! (z) = exp —tz~—“. Consequently,
N(nt) X
Vi k

Yo(t) := k=1 B(b(n))

Yao(E(t)).

Below we use the g - selfsimilarity of the compound extremal process Y, (E(t)) (see e.g.
Pancheva et al. 2003).

iii) The accumulated claim process S(t) = Zg:(tl) Xj.. Using the same norming sequence
as above we observe that

N (nt)

Xk
Sp(t) = _
¥ kzz:l B(b(n))

Zo(E(1))-

Here Z, is an a-stable Levy process and the composition Z,(E(t)) is g—selfsimilar.

iv) The risk process R(t) = c(t) — S(t). Here u := ¢(0) is the initial capital and c(t)
denotes the premium income up to time ¢, hence it is an increasing curve. We assume c(t)
right-continuous.

Note, the extremal claim process Y (t) and the accumulated claim process S(t) need the

same time-space changes (,(t,z) = (nt, m) to achieve weak convergence to a proper
limiting process. In fact, {(,} makes the claim sizes smaller and compensates this by

increasing their number in the interval [0, ]. Both processes Y,,(¢) and S,,(t) are generated

by the point process N;, = {(%, B(%((’;L))) : k > 1}. With the latter we also associate the
c(th)
B(b(n))

sequence of risk processes R, (t) = — Sp(t). Let us assume additionally to a) - ¢)

the condition

d) BC(%’ZQ)) 2 ¢o(t), co increasing curve with ¢y(0) > 0.

Under conditions a) - d) the sequence R,, converges weakly to the risk process (cf
Furrer et al. 1997) R, g(t) = co(t) — Zo(F(t)) with initial capital ug = co(0). Moreover,
if one chooses ¢o(t) = ug + 25t%/* where z5 = (1 — §)-quantile of Z,(FE(1)), then

P( inf Ra”g(s) <0) < P(Z,(E())>z5)=0
0<s<t
This fact inspires us to refer to condition d) as ”safety loading condition in the very heavy
tail case”.

Using the R, g - approximation of the initial risk process R(t), when time and initial
capital increase with n, we next obtain upper (¢/) and lower(z)) bound for the ruin prob-
ability W(e,t) := P(infocs<; R(s) < 0). Let Zo(1) and E(1) have df’s G, and Q, resp.
Then we have :

Yleo,t) = P(nf Rop(s) <0)



A

P(Os<11;<)t Zo(E(8)) > ug)

< P(Za(E(t) > uo)

/0°° o (?)a t7)dGaly) =: ¥(co,1)

Here Q; = 1 — Q;. On the other hand
Ulcot) = P(Ya(E(t)) > co(t))
— /Oo Q((Co(t)) t_ﬁ)dq)a(x) =: 9(co, 1)
0

Y

Here we have used the self-similarity of the processes Z,, Y, and E. Thus, finally we get

¢(607t> < w(c()vt) < @(Cg,t)

Remember, our initial insurance model was described by the point process N with the
associated risk process R(t). We have denoted the corresponding ruin probability by
U(e,t) with u = ¢(0). Then

N(s)
U(u,t) = P(Oi<r;f<t{c(s) - Z X} <0)
- - k=1
N(ns)
TR T i M . )

0<s< B(b(n)) = B(b(n))

Now let initial capital v and time ¢ increase with n — oo in such a way that —— =

B(b(n))
ug, L =to. We observe that under conditions a) - d) we may approximate

W (u,t) = 1(co, to)

and consequently for u and t ”large enough”

Y(co, to) < (e, t) < P(co, to)
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