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Abstract

In this note we discuss upper and lower bound for the ruin probability in an insurance model with
very heavy-tailed claims and interarrival times.
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1 Functional Transfer Theorem for Extremes

The framework of our study is set by a given Bernoulli point process (Bpp)N = {(Tk, Xk) :
k ≥ 1} on the time-state space S = (0,∞) × (0,∞). By definition (cf. Balkema and
Pancheva 1996) N is simple in time (Tk 6=Tj a.s. for k 6= j), its mean measure is finite
on compact subsets of S and all restrictions of N to slices over disjoint time intervals are
independent. We assume that:
a) the sequences {Tk} and {Xk} are independent and defined on the same probability
space;
b) the state points {Xk} are independent and identically distributed random variables
(iid rv’s) on (0,∞) with common distribution function (df) F which is asymptotically
continuous at infinity;
c) the time points {Tk} are increasing to infinity, i.e. 0 < T1 < T2 < ..., Tk →∞ a.s.

The main problem in the Extreme Value Theory is the asymptotic of the extremal

process {∨
k
Xk : Tk ≤ t} =

N(t)
∨

k=1
Xk, associated with N , for t → ∞. Here the maximum

operation between rv’s is denoted by ” ∨ ” and N(t) := max{k : Tk ≤ t} is the counting
process of N . The method usually used is to choose proper time-space changes ζn =
(τn(t), un(x)) of S (i.e. strictly increasing and continuous in both components) such that
for n→∞ and t > 0 the weak convergence

Ỹn(t) := {∨
k
u−1

n (Xk) : τ−1
n (Tk) ≤ t} =⇒ Ỹ (t) (1)

to a non-degenerate extremal process holds. (For weak convergence of extremal processes
consult e.g. Balkema and Pancheva 1996.)

In fact, the classical Extreme Value Theory deals with Bpp’s {(tk, Xk) : k ≥ 1} with
deterministic time points tk, 0 < t1 < t2 < ..., tk → ∞. One investigates the weak
convergence to a non-degenerate extremal process

Yn(t) := {∨
k
u−1

n (Xk) : tk ≤ τn(t)} =⇒ Y (t) (2)
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under the assumption that the norming sequence {ζn} is regular. The later means that
for all s > 0 and for n→∞ there exist point-wise

lim
n→∞

u−1
n ◦ u[ns](x) = Us(x)

lim
n→∞

τ−1
n ◦ τ[ns](t) = σs(t)

and (σs(t),Us(x)) is a time-space change. As usual ” ◦ ” means the composition and
[s] the integer part of s. The family L = {(σs(t),Us(x)) : s > 0} forms a continuous
one-parameter group w.r.t. composition.

Let us denote the (deterministic) counting function k(t) = max{k : tk ≤ t}, and put
kn(t) := k(τn(t)), kn := kn(1). The df of the limit extremal process in (2) we denote by
g(t, x) := P(Y (t) < x), and set G(x) := g(1, x). Then necessary and sufficient conditions
for convergence (2) are the following
1. F kn(un(x)) w−→G(x), n→∞

2. kn(t)
kn

−→ λ(t), n→∞, t > 0.
The regularity of the norming sequence {ζn} has some important consequences (cf.

Pancheva 1998). First of all, the limit extremal process Y (t) is self-similar w.r.t. L, i.e.

Us ◦ Y (t) d= Y ◦ σs(t), ∀s > 0 .

Furthermore:
0. k[ns]

kn
−→ sa, n→∞, for some a > 0 and all s > 0;

1’. the limit df G is max-stable in the sense that

Gs(x) = G(L−1
s (x)) ∀s > 0, Ls := U a√s; (3)

2’. the intensity function λ(t) is continuous.
Thus, under conditions 1. and 2. and the regularity of the norming sequence, the

limit extremal process Y (t) is stochastically continuous with df g(t, x) = Gλ(t)(x) and the
process Y ◦ λ−1(t) is max-stable in the sense of (3).

Let us come back to the point process N with the random time points Tk. The
Functional Transfer Theorem (FTT) in this framework gives conditions on N for the weak
convergence (1) and determines the explicit form of the limit df f(t, x) := P(Ỹ (t) < x).
In other words, the weak convergence (2) in the framework with non-random time points
can be transfer to the framework of N if some additional condition on the point process
N is met. In our case this is condition d) below.

Denote by M([0,∞)) the space of all strictly increasing, cadlac functions y : [0,∞) →
[0,∞), y(0) = 0, y(t) → ∞ as t → ∞. We assume additionally to a) - c) the following
condition

d) θn(s) := τ−1
n (T[skn]) =⇒ T (s)

where T : [0,∞) → [0,∞) is a random time change, i.e. stochastically continuous
process with sample paths in M([0,∞)). Let us set Nn(t) := N(τn(t)). In view of
condition d) the sequence

Λn(t) :=
Nn(t)
kn

=
1
kn

max{k : Tk ≤ τn(t)}

= sup{s > 0 : τ−1
n (T[skn]) ≤ t}

= sup{s > 0 : θn(s) ≤ t}
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is weakly convergent to the inverse process of T (s). Let us denote it by Λ and let Qt(s) =
P (Λ(t) < s).

Now we are ready to state a general FTT for maxima of iid rv’s on (0,∞).

Theorem 1 (FTT): Let N = {(Tk, Xk) : k ≥ 1} be a Bpp described by conditions a)
- d). Assume further that there is a regular norming sequence ζn(t, x) = (τn(t), un(x)) of
time-space changes of S such that for n→∞ and t > 0 conditions 1. and 2. hold. Then
i) Nn(t)

kn

d−→Λ(t)

ii) P(
Nn(t)
∨

k=1
u−1

n (Xk) < x) w−→E[G(x)]Λ(t)

Indeed, we have to show only ii). Observe that for n→∞

Nn(t) = kn.
Nn(t)
kn

∼ kn.Λ(t) ∼ kn(λ−1 ◦ Λ(t))

Then by convergence (2)

Ỹn(t) =
Nn(t)
∨

k=1
u−1

n (Xk) =⇒ Y (λ−1 ◦ Λ(t))

and

P(
Nn(t)
∨

k=1
u−1

n (Xk) < x) −→ f(t, x) =

∞∫
0

Gs(x)dQt(s) = E[G(x)]Λ(t)

Let us apply these results to a particular insurance risk model.

2 Upper and Lower Bound for the Ruin Probability

The insurance model, we are dealing with here, can be described by a particular Bpp
N = {(Tk, Xk) : k ≥ 1} where

a) the claim sizes {Xk} are positive iid random variables which df F has a regularly
varying tail, i.e. 1 − F ∈ RV−α. We consider the ”very heavy tail case” 0 < α < 1 when
EX = ∞ ;

b) the claims occur at times {Tk} where 0 < T1 < T2 < ... < Tk →∞ a.s. We denote
the inter-arrival times by Jk = Tk−Tk−1, k ≥ 1, T0 = 0 and assume the random variables
{Jk} positive iid with df H. Suppose 1−H ∈ RV−β , 0 < β < 1 ;

c) both sequences {Xk} and {Tk} are independent and defined on the same probability
space.

The point process N generates the following random processes we are interested in.
i) The counting process N(t) = max{k : Tk ≤ t}. It is a renewal process with

N(t)
t → 0 as t → 0 for EJ = ∞. By the Stable CLT there exists a normalizing se-

quence {b(n)}, b(n) > 0, such that
∑[nt]

k=1
Jk

b(n) converges weakly to a β- stable Levy

process Sβ(t). One can choose b(n) ∼ n1/βLJ(n), where LJ denotes a slowly varying
function. Let us determine b̃(n) by the asymptotic relation b(b̃(n)) ∼ n as n → ∞. Now
the normalized counting process N(nt)

b̃(n)
is weakly convergent to the hitting time process
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E(t) = inf{s : Sβ(s) > t} of Sβ, see Meerschaert and Scheffler (2002). As inverse of Sβ,
E(t) is β-selfsimilar.

ii) The extremal claim process Y (t) = {∨Xk : Tk ≤ t} =
N(t)
∨

k=1
Xk. In view of assump-

tion a) there exist norming constants B(n) ∼ n1/αLX(n) such that
[nt]
∨

k=1

Xk
B(n) converges

weakly to an extremal process Yα(t) with Frechet marginal df, i.e. P (Yα(t) < x) =
Φt

α(x) = exp−tx−α. Consequently,

Yn(t) :=
N(nt)
∨

k=1

Xk

B(b̃(n))
=⇒ Yα(E(t)).

Below we use the β
α - selfsimilarity of the compound extremal process Yα(E(t)) (see e.g.

Pancheva et al. 2003).
iii) The accumulated claim process S(t) =

∑N(t)
k=1 Xk. Using the same norming sequence

as above we observe that

Sn(t) :=
N(nt)∑
k=1

Xk

B(b̃(n))
=⇒ Zα(E(t)).

Here Zα is an α-stable Levy process and the composition Zα(E(t)) is β
α -selfsimilar.

iv) The risk process R(t) = c(t) − S(t). Here u := c(0) is the initial capital and c(t)
denotes the premium income up to time t, hence it is an increasing curve. We assume c(t)
right-continuous.

Note, the extremal claim process Y (t) and the accumulated claim process S(t) need the
same time-space changes ζn(t, x) = (nt, x

B(b̃(n))
) to achieve weak convergence to a proper

limiting process. In fact, {ζn} makes the claim sizes smaller and compensates this by
increasing their number in the interval [0, t]. Both processes Yn(t) and Sn(t) are generated
by the point process Nn = {(Tk

n ,
Xk

B(b̃(n))
) : k ≥ 1}. With the latter we also associate the

sequence of risk processes Rn(t) = c(nt)

B(b̃(n))
− Sn(t). Let us assume additionally to a) - c)

the condition

d) c(nt)

B(b̃(n))

w→ c0(t), c0 increasing curve with c0(0) > 0.

Under conditions a) - d) the sequence Rn converges weakly to the risk process (cf
Furrer et al. 1997) Rα,β(t) = c0(t)− Zα(E(t)) with initial capital u0 = c0(0). Moreover,
if one chooses c0(t) = u0 + zδt

β/α where zδ = (1− δ)-quantile of Zα(E(1)), then

P ( inf
0≤s≤t

Rα,β(s) < 0) ≤ P (Zα(E(1)) ≥ zδ) = δ

This fact inspires us to refer to condition d) as ”safety loading condition in the very heavy
tail case”.

Using the Rα,β - approximation of the initial risk process R(t), when time and initial
capital increase with n, we next obtain upper (ψ̄) and lower(ψ) bound for the ruin prob-
ability Ψ(c, t) := P (inf0≤s≤tR(s) < 0). Let Zα(1) and E(1) have df’s Gα and Q, resp.
Then we have :

ψ(c0, t) := P ( inf
0≤s≤t

Rα,β(s) < 0)
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≤ P ( sup
0≤s≤t

Zα(E(s)) > u0)

≤ P (Zα(E(t)) > u0)

=
∫ ∞
0

Q̄(
(
u0

y

)α

t−β)dGα(y) =: ψ̄(c0, t)

Here Q̄t = 1−Qt. On the other hand

ψ(c0, t) ≥ P (Yα(E(t)) > c0(t))

=
∫ ∞
0

Q̄(
(
c0(t)
x

)α

t−β)dΦα(x) =: ψ(c0, t)

Here we have used the self-similarity of the processes Zα, Yα and E. Thus, finally we get

ψ(c0, t) ≤ ψ(c0, t) ≤ ψ̄(c0, t)

Remember, our initial insurance model was described by the point process N with the
associated risk process R(t). We have denoted the corresponding ruin probability by
Ψ(c, t) with u = c(0). Then

Ψ(u, t) = P ( inf
0≤s≤t

{c(s)−
N(s)∑
k=1

Xk} < 0)

= P ( inf
0≤s≤ t

n

{ c(ns)
B(b̃(n))

−
N(ns)∑
k=1

Xk

B(b̃(n))
} < 0)

Now let initial capital u and time t increase with n → ∞ in such a way that u
B(b̃(n))

=

u0,
t
n = t0. We observe that under conditions a) - d) we may approximate

Ψ(u, t) ≈ ψ(c0, t0)

and consequently for u and t ”large enough”

ψ(c0, t0) ≤ Ψ(c, t) ≤ ψ̄(c0, t0)
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