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Abstract

Erlang is a functional programming language with sup-
port for concurrency and message passing communication
that is used at Ericsson for developing telecommunication
applications. We consider the challenge of verifying tem-
poral properties of systems programmed in Erlang with dy-
namically evolving process structures. To accomplish this a
rich verification framework for goal-directed, proof system–
based verification is used. This paper investigates the prob-
lem of semi–automating the verification task by identifying
the proof parameters crucial for successful proof search.

I. Introduction

The Erlang programming language [1] is used at Er-
icsson for programming telecommunication applications.
Such software is usually of a highlyconcurrentand dy-
namicnature, and is therefore hard to debug and test. We
explore the alternative of proof system-based Erlangcode
verification. Verifying temporal properties of systems with
dynamically evolving process structures and unbounded
data is hard, requiring a framework [2], [3] which
� is parametric on components andrelativised on their
properties, i.e., does not necessarily require all parts of the
Erlang system in question to be fully specified;
� is compositional, i.e., allows to reduce a property of a
compound Erlang program to arguments about the proper-
ties of its components; and
� provides support forinductiveandco-inductivereasoning
about the infinitary behaviour of components.

Due to the concurrency and dynamism inherent in the
systems addressed, a variety of induction schemes are re-
quired. However, it is often difficult to foresee which of
these might work. We therefore employsymbolic program
executionand instance checkingto “discover” induction
schemes lazily. Our machinery is based on ordinal approx-
imation of fixed points and on well-founded ordinal induc-
tion, and on a global discharge proof rule for ensuring con-
sistency of the mutual inductions in a proof structure.

A. The Erlang Programming Language

We consider a core fragment of the Erlang programming
language with dynamic networks of processes operating on
data types using asynchronous, call–by–value communica-
tion. Besides Erlangexpressionse the syntactical categories
of matchesm, patternsp, andguardsg are considered:
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The Erlang values consists of a set of atom literals (with an
initial lowercase letter), the numbers, pid constants ranged
over bypid, tuples, and lists. The variables (ranged over by
var) are symbols starting with an uppercase letter. An Er-
langprocess, here writtenproc<e,pid,q>, is a container
for the evaluation of an expressione. A process has a unique
process identifier (pid) which is used to identify the recipi-
ent process in communications. Communication is binary,
with one process sending a message to a second process
identified by its pid. Messages sent to a process are put in
its mailboxq, queued in arriving order. Non-lossy commu-
nication channels of an unbounded size are assumed. The
empty queue iseps,[[v]] is the queue containing the one
elementv, andq
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The value thate evaluates to is matched sequentially
against patterns (values that may contain unbound vari-
ables)p
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, respecting the optional guard expressionsg
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m end inspects the process mailboxq and retrieves the first
elementv in q that matches any pattern inm. Then evalu-
ation proceeds analogously tocase v of m. Expressions
are interpreted relative to an environment of “user defined”
function definitions of the shape:
f(p

11

; : : :) when g

1

-> e
1

; : : :; f(p
n1

; : : :) when g

n

-> e
n

:

The operational semantics for Erlang developed in [4]
forms the basis for program verification.

B. The Property Specification Language

Behavioural properties of Erlang programs, and the struc-
ture of program data, are characterised in a many-sorted
first-order logic with explicit fixed point operators. To
reason about behaviour the modalitiesh�i � and [�℄� are
available. The addition of least and greatest fixed point op-
erators results in a powerful specification language, known
as the�–calculus[5]. In the following we let� range over
a set of program actions,t range over general terms,T over
sort names andX ranges over the term and fixed point vari-
ables. The abstract syntax of logic formulae� is:
� ::= t
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The syntactic formt:� is an alternative for an application
� t. Fixed point formulas can be named, e.g.,name ( �

abbreviates the least fixed pointlfp X.�fX=nameg and
name ) � abbreviates a greatest fixed point.

C. The Proof System

Program verification uses a Gentzen–style proof system,
allowing free parameters to occur within theproof judg-
mentsof the proof system. The judgments are of the form
�|-�, where� and� are sequences of assertions. A judg-
ment isvalid if, for any interpretation of the free variables,
some assertion in� is valid whenever all assertions in� are
valid. Parameters are variables ranging over specific types
of entities, such as messages, functions, or processes. The
proof rules of the proof system are standard from first-order
logic, with the addition of rules for fixed point manipula-
tion, a cut–like rule for decomposing proofs about a com-
pound system to proofs about the components, and a rule
for discharging loops in a proof, via fixed point induction.

The fixed point rules govern the unfolding of fixed points,
and the annotation of fixed points with ordinal variables
to represent the number of such unfoldings. These ordinal

variables are examined by the global discharge rule to deter-
mine whether a proof structure contains a proper inductive
or co-inductive argument. Consider two example rules
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The ruleApprx
R

commences a co-induction (on the unfold-
ing of the fixed point) and introduces a fresh ordinal variable
�. The ruleUnf1

R

unfolds the fixed point and records the ex-
istence of a lesser ordinal as the inequation�

0

< �. As a
side-effect the term vectort

1

: : : t

n

is recorded and used in
proof search to heuristically determine whether unfolding is
a progressing proof step.

In compositional verification an argument about the be-
haviour of a compound system is reduced to arguments
about the behaviour of its components, which is achieved
through aterm–cutproof rule of the shape

TermCut
� |- p: ;� �;X: |- s:�;�

� |- sfp=Xg:�;�

The global discharge rule is the crucial proof rule on which
inductive and co-inductive reasoning relies. Roughly, the
goal is to identify situations where a latter proof node can
be discharged since is an instance of an earlier one on the
same proof branch, and since appropriate fixed points have
been unfolded [2].

D. The Erlang Verification Tool

The proof system is realised in the Erlang Verification
Tool (EVT) proof assistant [6].1 EVT has been tailored
to the underlying proof system; rather than working with
a set of open goals, the underlying data structure is an
acyclic proof graph to account for the checking of the dis-
charge rule. Proving a property of an Erlang program in-
volves goal-directed construction of a proof graph. The ba-
sic proof rules are implemented astactics, which are func-
tions from a sequent (the current goal, forming the conclu-
sion of the rule) to a list of sequents (the subgoals, given
by the premises of the rule). As most proof assistants, EVT
providestactic combinatorsor tacticals, for deriving new
tactics. A number of higher-level tactics provide practical
proof rules for deriving transitions of Erlang components.

II. Proof Organization and Automation

The general verification problem of proving that an Er-
lang system satisfies a�-calculus property is not decidable.
Therefore, it is crucial to identify the proof tasks that can be
automated, and to organize proofs in a manner which com-
bines in the most suitable way the automatable activities
with the human-guided ones.
1Seehttp://www.sics.se/fdt/VeriCode/evt.html



A. Proofs and Proof Discovery

In EVT a proof is a tree with some leaves being axiom in-
stances, and the rest being instances of predecessor sequents
and satisfying the global discharge condition. In practice,
searching for such proofs is computationally too expensive,
and moreover the search is not likely to terminate. Instead,
we consider here a more relaxed notion of a proof, which
is, intuitively, a proof tree that exhibits the essential struc-
ture of a complete proof, but where not all proof-branches
necessarily are completed or even valid. As we have found
in practice, such a “pre-proof” forms a good starting point
for obtaining a successful proof, and is relatively cheap to
search for; in particular, proof-search can terminate.

Consider the usual shape of a proof goal about Erlang
programs�|-s : � wheres is an Erlang behavioural com-
ponent (e.g., process, system, expression),� is the be-
havioural property the component should satisfy,� are as-
sumptions about program parameters. The proof structure
representing the proof of such a sequent is governed mainly
by two parameters: (i) the behavioural patterns of the Erlang
components (e.g., for a system its communication and net-
work topology, for a functional expression its call graph),
and (ii) the fixed point structure of the formula�. Thus
the following proof parameters crucial for successful semi-
automatic (pre-)proof search can be identified:
1. Setting up the main (co-)induction structure: deciding
when to approximate and unfold fixed points.
2. Combatting state-explosion in the proof structure: decid-
ing where to apply thetermcut rule, either as a mechanism to
abstract away from a concrete program term to reduce the
proof-state space, or to continue an inductive argument.
3. Terminating (pre-)proof search:here one has to bal-
ance between how often to invoke human intervention and
the need to avoid non-terminating or large redundant com-
putations. A good heuristic is to terminate proof search
when “growing” program components are detected (and no
termcut policy is in place), notably after process spawning,
which cause the instance checking to fail and can thus give
rise to non-terminating proof branches. Function calls are
yet another place to stop proof search, usually to allow for
better structuring and reuse of proofs, but also indispensable
in the analysis of non-tail-recursive Erlang functions.
Proof search should also be terminated whenever a leaf
is encountered which is either a “pre-axiom” (for exam-
ple suspected to be propositionally valid), or it is a “pre-
instance” of some predecessor sequent (for example the
main assertion in the sequent is an instance of the corre-
sponding assertion in the predecessor). The second case
represents a strong indication that an (co-)inductive argu-
ment should be performed, and thus indicates how to trans-
form the pre-proof to a proper proof.
4. Choosing locally the next proof rule to be applied:under
this item any non-strategic proof rule application falls such

as reasoning about the transitions of an Erlang component
using the operational semantics.
5. Maintaining proof invariants:in an Erlang proof sequent
assumptions record facts about unknown program parame-
ters, or relationships between program variables, in the form
of program invariants. During an automated proof search
such assumptions need to be updated, after a symbolic pro-
gram step has been taken.

Once a pre-proof has been found, the task of converting it
into a proper proof remains. In this paper it is left to the user,
who should modify the parameters of the proof search (the
proof schema) by, for instance, adding additional inductions
(1), or by adding and maintaining proof invariants (5), and
then repeat the search for a pre-proof.

B. Proof Search Facilities

We describe some of the tactics and scripts supporting
the approach to proof search outlined above. Their use is
illustrated in the next subsection. Given an indexi, tactic
(t_choiceless_r i) is used for local proof search. It
begins with thei-th formula to the right, and recursively ap-
plies the tactic corresponding to the outermost connective of
the formula as long as no choice and no fixed-point unfold-
ing or approximation is involved. Thet_gen_unfold_r
tactic combines one unfolding witht_choiceless_r.

Sequent predicates are functions from sequents to
booleans. These can be combined using the functors
sp_not, sp_or andsp_and. An important use of se-
quent predicates is to capture proof-search termination con-
ditions. For example, (sp_unfoldable_r i) checks
whether the term appearing as the first component of the
satisfaction pair at positioni is not an instance of some term
at which the fixed-point formula, which is the second com-
ponent, has already been unfolded. This is a much weaker
condition than the instance condition of the discharge rule,
and is very useful in practice. The approach is inspired by
the fixed-pointtaggingtechnique of Winskel [7].

The case_by script takes as argument a list of pairs
consisting of a sequent predicate and a tactic. It executes
the tactic corresponding to the first predicate (if any) which
holds for the current sequent. Theloop script takes as an
argument a script such ascase_by and applies it recur-
sively until no new nodes are generated. As an example for
invariant maintenance, the (t_queue_invar i
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i

r

) tactic
transfers the queue assumption residing at the left indexi

l

to the queue term of the process at the right indexi

r

.

C. Example

We shall illustrate the ideas presented above on a simple
but typical example. Consider a concurrent server which re-
peatedly takes a request from its message queue and spawns
off a process to serve it by handling the request, here always



assumed to succeed, and responding with the obtained re-
sult to the client specified in the request:

central_server() ->
receive {request,Request,ClPid} ->

begin
spawn(serve,[Request,ClPid]),
central_server()

end
end.

serve(Request,ClPid) -> ClPid!{response,ok}.

C.1 Stabilization

The first formula we consider gives a liveness property
of the server, namelystabilization, i.e. the convergence on
output and silent (estep) actions. It expresses that, as-
suming that no input is being received, the process is able
to execute only a finite number of output and silent steps:

stabilizes: erlang_system -> prop <=
(forall Pid:erlangPid. forall V:erlangValue.
[Pid!message(V)]stabilizes)

/\ ([estep] stabilizes);

So, the initial proof goal is declared as:

declare P:erlangPid, Q:erlangQueue in
|- proc<central_server(), P, Q> : stabilizes

In the proof sketch below we illustrate the interplay be-
tween automated proof search - leading to discovery of
proof structures such as induction strategies - and manual
proof steps realising the discoveries in a revised proof at-
tempt. The following proof search script results in a sym-
bolic execution of the process until either a system which is
not a singleton process, or a repetition of the same control
state is encountered:

loop (case_by [
(sp_and (sp_sat_sysproc_r 1)

(sp_not (sp_sat_is_queue_var_r 1)),
t_queue_flat_r 1),

(sp_and (sp_sat_sysproc_r 1)
(sp_unfoldable_r 1),

t_gen_unfold_r 1) ]);

In the first case, if the first right–hand side formula is
a satisfaction pair the first part of which is a single
process the queue term of which is not a variable, the
t_queue_flat_r tactic is applied which replaces the
term with a fresh variable and adds an equation to the left
equating this fresh variable with the queue term. This is
done to insure that, in the second case, the pre-instance
checking mechanism based onsp_unfoldable_r de-
tects control-point repetition. Execution of the above
proof search script terminates because a new process was
spawned (and thussp_sat_sysproc_r failed). The re-
sult is the sequent:

Q=Q2@[[{request,Req,ClPid}]]@Q3, Q1=Q2@Q3, not(P=P1)
|- proc<begin P1, central_server() end, P, Q1> ||

proc<serve(Req, ClPid), P1, eps> : stabilizes

The queueQ2@[[{request,Req,ClPid}]]@Q3 is
built from the concatenation of three parts:Q2, the value
[[{request,Req,ClPid}]], andQ3. We have now a
clear indication that the number of processes in the system
will grow without bound, so a blind proof search is bound to
fail. Rather, one has to proceed byinduction on the system
structure. This is achieved through compositional reasoning
by abstracting away the first process component which is re-
sponsible for the unbounded dynamic process creation, and
relativising the argument on a property of this component.
The choice of a suitable property is crucial, of course, for
the induction to succeed. In our particular example it hap-
pens thatstabilizes composes. We apply thetermcut

rule to obtain the two new goals:

|- proc<begin P1, central_server() end, P, Q1> :
stabilizes

X : stabilizes |-
X || proc<serve(Req,ClPid), P1, eps> : stabilizes

the first of which corresponding to the induction basis, and
the second corresponding to the induction step. The first of
these can be analysed by the script presented above, termi-
nating with the goal

|- proc<central_server(), P, Q1> : stabilizes

because of detecting a pre-instance (we looped back to the
initial control point), causingsp_unfoldable_r to fail.
One might expect to be able to discharge here w.r.t. the ini-
tial goal, but this fails. The reason is that no ordinal has been
decreased. However, by inspecting the proof state we real-
ize that the length of the queue of the process has decreased,
and that indeed stabilization of the server is a consequence
of the well-foundedness of message queues. Therefore we
add an explicit assumption on the well-foundedness of the
queue, which will be maintained throughout the proof:

declare P:erlangPid, Q:erlangQueue in Q : queue
|- proc<central_server(), P, Q> : stabilizes

given the definition

queue: erlangQueue -> prop <=
\Q:erlangQueue .

Q = eps \/
(exists V:erlangValue, Q1,Q2:erlangQueue .
Q = Q1@[[V]]@Q2 /\ (is_queue Q1@Q2))

The revised proof will turn out to be, at least partly, byin-
duction on the queue-term structure. All we have to change
in the beginning is to approximate the left formula, result-
ing inQ:queue being replaced byQ:queue(K)whereK
is an approximation ordinal, and to proceed as before. This
eventually results in:

Q2@[[{request,Req,ClPid}]]@Q3:queue(K), Q1=Q2@Q3
|- proc<central_server(), P, Q1> : stabilizes

in place of the unsuccessful goal we ended up with
earlier. This goal is “almost” dischargable w.r.t. the



initial goal after approximation. For the instance
check to go through, one needsQ1:queue(K1),
for some ordinal variable K1<K, instead of
Q2@[[{request,Req,ClPid}]]@Q3:queue(K)
to appear as an assumption in the sequent. We there-
fore unfold queue(K) via t_gen_unfold_l, fol-
lowed by transferring the queue-term assumption via
t_queue_invar_l to obtain a dischargable goal.

The important goal we are left with is the sequent corre-
sponding to the induction step. Fortunately, it can be dealt
with by the same proof script as the initial goal, with the im-
portant difference that no new processes will be spawned.
Parameter-assumption transfer, however, concerns in this
case not the queue but the process parameterX. And the
number of control states will grow due to the presence of
two concurrent processes.

C.2 Absence of Exceptions

The second property we consider is a safety property,
namely, that calls to thecentral_server function do
not cause runtime exceptions, terminating the execution of
the process in whose context the call is executed (unless the
exception is explicitly handled). Exceptions are caused by
e.g., typing errors discovered at runtime, invocation of un-
defined functions, etc. The property can be specified as

no_exceptions : erlangExpression -> prop =>
forall A:erlangIntAction .
[A](not(exists V:erlangValue . A=exiting(V)) /\

no_exceptions);

whereexiting(V) represents a runtime exception ac-
tion. The goal to prove is:

|- central_server() : no_exceptions

The main proof structure (1) will be a co-induction on the
no_exceptions property (a greatest fixed point). Thus,
first theno_exceptions property is approximated with
an ordinal variableK. The reason for the state explosion
(proof parameter 2) in this example are non-tail recursive
function calls, in particular the call tospawn. Here we sim-
ply cut all function calls using the current approximation of
no_exceptions, which is always a good first approxi-
mation. That is, the goal

K1<K,K2<K1 |-
begin
spawn(serve,[Request,ClientPid]),central_server()
end : no_exceptions(K2)

is reduced by an automated tactic (applyingtermcut) to

K1<K,K2<K1 |- spawn(serve, [Request, ClientPid])
: no_exceptions(K2)

K1<K,K2<K1 |- central_server() : no_exceptions(K2)

K1<K,K2<K1,
X1 : no_exceptions(K2), X2 : no_exceptions(K2)
|- begin X1, X2 end : no_exceptions(K2)

Pre-proof search (3) is terminated when a pre-instance is
found, i.e., an instance of the current expression has already
been considered. In this case the discharge rule is applied.
For local reasoning (4) we apply a simple tactic similar to
t_choiceless_r to reduce the proof state. The proof
state invariants to maintain (5) are the result of applications
of termcut. For instance, when reducing the third goal the
assumptions

X1 : no_exceptions(K2), X2 : no_exceptions(K2)

act as invariants that have to be maintained in order to com-
plete the proof. With this machinery in place the resulting,
automatically obtained, proof tree has 12 nodes, of which
3 are discharged with respect to ancestor proof node in-
stances. Moreover the proof is linear in the size of the pro-
gram (the functions) – when one employs a clever represen-
tation of the ordinal inequations. To scale up this example,
a more involved cut-formula is needed, to take into account
the return values of function applications.

III. Conclusion

We have demonstrated an approach to semi-automated
verification of program code – for a language used in critical
industrial applications – which combines proof discovery
(finding induction schemes, perhaps partly manually) with
proof automation. The setting is general and rich, admitting
the use of the same machinery for addressing both program
and data behaviours. Previous experiences [8], [2] indicate
that proof graphs of a size up to105 nodes can be handled.
In our experience, larger programs do usually not lead to
more difficult proof structures, but rather just to additional
proof obligations.
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