
A Framework for Formal Reasoning about Open

Distributed Systems?

Lars-̊ake Fredlund and Dilian Gurov

Swedish Institute of Computer Science,
Box 1263, SE-164 29 Kista, Sweden,

fred|dilian@sics.se

Abstract. We present a framework for formal reasoning about the be-
haviour of distributed programs implementing open distributed systems
(ODSs). The framework is based on the following key ingredients: a spec-
ification language based on the µ-calculus, a hierarchical transitional se-
mantics of the implementation language used, a judgment format allow-
ing parametrised behavioural assertions, and a proof system for proving
validity of such assertions which includes proof rules for property de-
composition. This setting provides the expressive power for behavioural
reasoning required by the complex open and dynamic nature of ODSs.
The utility of the approach is illustrated on a prototypical ODS.

1 Introduction

For a few years now, the Formal Design Techniques group at the Swedish Insti-
tute of Computer Science has pursued a programme aimed at enabling formal
verification of complex open distributed systems (ODSs) through program code
verification. While previous work by the group has been predominantly directed
towards establishing the mathematical machinery [5], basic tool support [3], and
performing case studies [2], the present paper focuses on methodological aspects
by motivating the chosen verification framework and by showing on an example
proof how suitable this framework is in practice for formal reasoning about the
behaviour of ODSs.

A central feature of open distributed systems as opposed to concurrent sys-
tems in general is their reliance on modularity. Large-scale open distributed
systems, for instance in telecom applications, must accommodate complex func-
tionality such as dynamic addition of new components, modification of inter-
connection structure, and replacement of existing components without affecting
overall system behaviour adversely. To this effect it is important that component
interfaces are clearly defined, and that systems can be put together relying only
on component behaviour along these interfaces. That is, behaviour specification,
? Work partially supported by the Computer Science Laboratory of Ericsson Utveck-

lings AB, Stockholm, the Swedish National Board for Technical and Industrial De-
velopment (NUTEK) through the ASTEC competence centre, and a Swedish Foun-
dation for Strategic Research Junior Individual Grant.

P.S. Thiagarajan, R. Yap (Eds.): ASIAN’99, LNCS 1742, pp. 87–100, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

88 Lars-̊ake Fredlund and Dilian Gurov

and hence verification, needs to be parametric on subcomponents. But almost
all prevailing approaches to verification of concurrent and distributed systems
rely on the assumption that process networks are static, or can safely be approx-
imated as such, as this assumption opens up for the possibility of bounding the
space of global system states. Clearly such assumptions square poorly with the
dynamic and parametric nature of open distributed systems.

The decision to focus on verification of actual program code rather than
addressing the easier task of verifying specifications comes from the observation
that still, after all these years of advocating formalised specifications as a means
to improve the quality of products, in industry today only rarely does one find
such formalised specifications.

We summarise the framework in Section 2 as it has developed throughout the
project, and then illustrate its merits in Section 3 by focusing on a prototypical
distributed systems example where a set data structure is implemented through
the coordination of a dynamically changing number of processes. The example is
programmed in the Erlang language [1], a functional programming language with
support for distribution and concurrency, that is nowadays used in numerous
telecommunication products developed by the Ericsson corporation. To illustrate
the verification method we formulate and sketch a proof of a key property of the
set implementation.

2 Verification of Open Distributed Systems

First we examine the characteristics of programming platforms for open dis-
tributed systems, and from this description derive requirements on the formal
machinery necessary to permit verification of open distributed systems.

2.1 Programming Platforms for ODSs

Programming platforms provide the necessary functionality for open distributed
systems. To name but a few services typically provided:

1. The basic building blocks that can execute concurrently (processes and/or
threads, concurrent objects).

2. Facilities for dynamically creating new executing entities.
3. Means for coordination of, and communication between, concurrently exe-

cuting entities. For example through semaphores, a shared memory, remote
method calls, or asynchronous message passing.

4. Support for implicitly or explicitly grouping executing entities into more
complex structures such as process groups, rings of processes or hypercubes.

5. Support for fault detection and fault recovery.

Like large software systems in general, ODSs are usually built from libraries
of components. These ideally use encapsulation to provide clean interfaces to the
components to prevent their improper use.

A Framework for Formal Reasoning about Open Distributed Systems 89

2.2 A Framework for Formal Reasoning about ODS Behaviour

Semantics of ODSs. To reason in a formal fashion about the behaviour of
an ODS, a formal semantics of the design language in which the system is de-
scribed is needed. This can be done in different styles, depending on the intended
style of reasoning. Our methodology is mainly tailored to operational seman-
tics, although other formal notions of behaviour are derivable in our framework,
supporting reasoning in different flavours. Operational semantics are usually
presented by transition rules involving labelled transitions between structured
states [11]. A natural approach to handling the different conceptual layers of
entities in the language, supporting modular (i.e. compositional) reasoning, is to
organise the semantics hierarchically, in layers, using different sets of transition
labels at each layer, and extending at each layer the structure of the state with
new components as needed. This approach will be illustrated in the example of
the Erlang programming language in Section 2.3.

Specification Language. Reasoning about complex systems requires composi-
tional reasoning, i.e. the capability to reduce arguments about the behaviour of
compound entities to arguments about the behaviours of its parts. To support
compositional reasoning, a specification language should capture the labelled
transitions at each layer of the transitional semantics. Poly-modal logic is par-
ticularly suitable for the task, employing box and diamond modalities labelled
by the transition labels: a structured state s satisfies formula 〈α〉Φ if there is

an α-derivative of s (i.e. a state s′ such that s
α−→ s′ is a valid labelled transi-

tion) satisfying Φ, while s satisfies [α]Φ if all α-derivatives of s (if any) satisfy
Φ. Additionally, state predicates are needed to capture the “local”, unobservable
characteristics of structured states, such as e.g. the value of a local variable. The
presence of recursion on different layers requires also the specification language
to be recursive. Adding recursion in the form of least and greatest fixed-points
to the modalities described above results in a powerful specification language,
broadly known as the µ-calculus [10, 8]. Roughly speaking, least fixed-point for-
mulas µX.φ express eventuality properties, while greatest fixed-point formulas
νX.φ express invariant properties. Nesting of fixed points allows complicated
reactivity and fairness properties to be expressed.

Parametricity. As explained above, reasoning about open systems requires
reasoning about their interface behaviour relativised by assumptions about cer-
tain system parameters. Technically, this can be achieved by using Gentzen-style
proof systems, allowing free parameters to occur within the proof judgments of
the proof system. The judgments are of the form Γ ` ∆, where Γ and ∆ are sets
of assertions. A judgment is deemed valid if, for any interpretation of the free
variables, some assertion in ∆ is valid whenever all assertions in Γ are valid. Pa-
rameters are simply variables ranging over specific types of entities, such as mes-
sages, functions, or processes. For example, the proof judgment x : Ψ ` P (x) : Φ

90 Lars-̊ake Fredlund and Dilian Gurov

states that object P has property Φ provided the parameter x of P satisfies
property Ψ .

Compositionality. Reducing an argument about the behaviour of compound
entities to arguments about the behaviours of its parts can be achieved through
parametricity: We can relativise an assertion P [Q/x] : Φ about the compound
object P to a certain property Ψ of its component Q by considering Q as a
parameter for which property Ψ is assumed, provided we can show that Q indeed
satisfies the assumed property Ψ . Technically this can be achieved through a
term-cut proof rule of the shape:

Γ ` Q : Ψ, ∆ Γ, x : Ψ ` P : Φ, ∆
Γ ` P [Q/x] : Φ, ∆

Recursion. When reasoning about programs in the presence of recursion on
different layers, one traditionally relies on different forms of inductive reason-
ing, such as mathematical induction, complete induction and well-founded in-
duction. Of these, the latter is the most general one. Through a sophisticated
mechanism for generalized-loop detection, fixed-point approximation, and dis-
charge, our proof method supports well-founded inductive reasoning, as well as
proofs by co-induction [9] which is needed when reasoning about entities of non-
well-founded nature such as infinite streams. Recursion on any layer like data,
functions, and processes is treated uniformly in this framework.

The mechanism itself is presented and studied in detail in [5]; here we only
give an idea of the approach. Assume that we are to prove that repeated pop-
ping of elements from a stack must eventually fail unless interleaved with the
pushing of new elements. The initial proof goal will roughly have the shape
s:stack ` reppop(s):terminates, where stack is the type of stack expressed as
a formula describing the transitional semantics of stacks, reppop is a function
implementing repeated popping, and terminates is a formula expressing termi-
nation of computation. Since the stack definition and the formulas are recursive,
in the process of proof construction we will eventually reach a point where we
have to prove the same termination property, but for a modified stack. In fact,
this new proof goal will be an instance of the more general initial goal, and in
this way we will have discovered a generalised loop in the proof tree. But along
this loop we will have made progress in that we will have decreased the value of
an ordinal approximating a least fixed-point formula describing the stack. This
fact will allow the new goal to be discharged with respect to the initial goal,
analogously to the way assumptions are discharged in natural deduction, thus
terminating successfully the respective branch in the proof tree.

2.3 Programming ODSs in Erlang

Erlang [1] is at its core a functional programming language, extended with a
notion of processes and primitives for message passing. Erlang has a small set of

A Framework for Formal Reasoning about Open Distributed Systems 91

powerful constructs, and is therefore suitable as both a modeling as well as an
implementation language for ODSs consisting of a high number of light-weight
processes. It is especially suitable for telecommunications software. In contrast
to most other functional programming languages, Erlang has seen heavy use
in industry. In a recent project at Ericsson where a state-of-the-art high-speed
ATM switch was developed [4], figures of 480 000 lines of Erlang source code
have been reported, compared to 330 000 lines of C code (most of it in the form
of imported protocol libraries), and approximately 5 000 lines of Java code. A
frequently voiced opinion is that a chief reason for the quick development of this
product, and with resulting excellent quality, is the fast code-debug-replace cycle
made possible through the introduction of Erlang. Another important reason
for the success of Erlang in such projects clearly are the accompanying libraries
which provide support for many aspects of developing and maintaining large
telecommunications applications. There is for instance support for distributed
data base access, error recovery, and code replacement during runtime. A brief
overview of the Erlang fragment used in this paper can be found in Appendix A.1.

Formal Semantics Our semantics for Erlang is a small-step operational one [6].
The basic message of the previous section with respect to language semantics
was the desirability to mimic the conceptual view that a programmer has of a
system built using Erlang in the language semantics. The semantics developed
here matches closely the hierarchic structure of the Erlang language. First the
Erlang expressions are provided with a semantics that does not require any
notion of processes. The actions here are a computation step τ , an output pid !v,
read(q, v) for reading a value v from the queue of the process in which context
the expression executes, and f(v1, . . . , vn) ; v for calling a builtin function
(like spawn for process spawning) with side-effects on the process level state. An
example of an expression level transition rule is:

fun1
f(ṽ)

f(ṽ); v−−−−−−−→ v

The transitional behaviors of Erlang systems are captured separated into two
cases: (i) a single process constraining the behaviors of an Erlang expression as
illustrated in the following rule for process spawning:

spawning
e
spawn(module, f, v); pid ′
−−−−−−−−−−−−−−−−−−−−−→ e′ pid ′ 6= pid

proc 〈e, pid , q〉 −→ proc
〈
e′, pid , q

〉
‖ proc

〈
module : f(v), pid ′, eps

〉

and (ii) the (parallel) composition of two Erlang systems into a single one ex-
emplified in the following rule for interleaving:

interleave0
s1

τ−→ s1
′ wellformed(s1

′ ‖ s2)

s1 ‖ s2
τ−→ s1

′ ‖ s2

where wellformed(s) requires that process identifiers of processes in s are unique.
The system actions are computation steps τ , input pid?v and output pid !v.

92 Lars-̊ake Fredlund and Dilian Gurov

2.4 Verifying ODSs in EVT

The Erlang Verification Tool (EVT for short) is a proof editing tool implementing
the above described framework: providing a property specification language and
an embedding of an operational semantics for Erlang, combined with a general
proof system based on the classical first-order sequent calculus.

F ::= tt ff T = T F /\ F F => F F \/ F not F

forall Var : Type . F exists Var : Type . F

λVar:Type.F F T T : F

[Action]F <Action>F

PredicateDef ::= Name : PropType DefSymbol F

PropType ::= prop Type -> PropType

DefSymbol ::= => <= =

Fig. 1. The syntax of logic formulae and definitions

The syntax of the specification logic of EVT is illustrated in Figure 1. In
addition to the usual connectives of predicate logic the 〈α〉F and [α]F modalities
are available with their usual meaning, defined by referring to the transition
relations of the embedded operational semantics. The T : F construct expresses
the proposition “T satisfies F” (or “T has type F”). In the following we will
refer to a number of predefined types such as erlangValue (ground values),
erlangExpression (expressions), erlangSystem (systems), erlangAction (ac-
tions ranging over computation steps tau, output pid!v and input pid?v), etc.
In the definition of a predicate (PredicateDef) the => symbol selects the greatest
fixed point, the <= symbol the least fixed point, while = is for non-recursive
definitions (shorthands). Recursive occurrences of predicates are only permitted
under an even number of negations to ensure monotonicity.

3 Verifying a Prototypical Open Distributed System

Active data structures, i.e., collections of processes that by coordinating their
activities mimic in a concurrent way some data structure, are frequently used
in telecommunication software. In a previous study [2] a protocol for respond-
ing to database queries, directed to the distributed database manager Mnesia,
was verified. Internally the protocol built up a ring like structure of connected
processes in order to answer queries efficiently. In the current example we ex-
amine a scheme for a set implementation inspired by a set-as-process example
of Hoare [7]. Here the active data structure is a linked list, but the similarities
with the database query example are striking.

A Framework for Formal Reasoning about Open Distributed Systems 93

3.1 An Implementation of a Persistent Set

As an abstract mathematical notion, a set is simply a collection of objects (taken
out of an universe of objects), characterized by the membership relation “∈”: if
s is an object and S is a set, then the statement s ∈ S is either true or false.
Using the membership relation, one can define sets as unions, intersections, or
differences of other sets, or in other ways.

Computer scientists have also another view of sets, namely as mutable ob-
jects: a set, when manipulated by adding or removing elements, still keeps its
“identity”, e.g. through an identifier. Any data-structure for manipulating col-
lections of objects, which does not impose an order on its elements (i.e. hides
this order through its interface), can be understood as implementing a set.

The objects to be manipulated can be distributed in space, and if the objects
themselves are large, it is conceivable, that we might want each object to be
maintained by a separate process. A further reason for implementing a set as an
active data structure is to permit concurrent access to multiple elements.

A complete implementation of a set, without a possibility to remove elements,
by means of a collection of interacting processes is given in Appendix A.2, where
a module persistent_set_adt is defined. Internally the module implements
two functions - one for maintaining of single elements, and one for the empty
set. A set is identified by an Erlang process identifier. When creating a new set,
it initially consists of a single process executing the empty_set function; it is the
process identifier of this process by which the set is to be identified from hence
on. When an element is added, a new process is spawned off to store the element
if it is not already present in the set. Internally, when a new element is added
to a set, it is “pushed downwards” through the list of processes representing
set elements, until it reaches the emptyset process, which spawns off another
emptyset process, and becomes itself a process maintaining the new element. So,
as a result, a set is implemented as a unidirectional linked collection of processes
referenced by a process identifier.

To encapsulate the set against improper use, we provide a controlled interface
to the set module, consisting of a function for set creation mk_empty, testing for
membership is_member, addition of elements add_element, etc. The set creation
function, for example, spawns off a process executing the empty_set function,
and returns the process identifier of the newly spawned process. This process
identifier has then to be provided as an argument to all the other interface func-
tions. The implementation of the two set functions and the interface prevents
the user of the set module from having to notice that sets are internally repre-
sented by processes, and moreover prevents direct access to any other process
identifiers created internal to the linked list of processes.

Note however that any process, given knowledge of the process identifier of
a persistent set, can choose to circumvent the interface functions and directly
communicate (through message passing) with the set process. As we shall see in
the proof such “protocol abuse” can lead to program errors.

94 Lars-̊ake Fredlund and Dilian Gurov

3.2 A Persistent Set Property

To check the correctness of a persistent set implementation, we have to specify
those properties of sets which we consider paramount for correct behaviour.
Ideally, one would like such a specification to be complete, i.e. a system should
satisfy the specification exactly when it implements such a set. Completeness,
however, is usually difficult to achieve in practice, since such a specification would
be very detailed and the resulting proofs could easily become unmanageably
complex.

One crucial property of persistent sets is naturally that they retain any ele-
ment added to them. For simplicity, we will here prove a simpler property, that
once any element has been added to such a set the set will forever be non-empty.
The main predicates are:

ag_non_empty: erlangPid -> erlangSystem -> prop =>
\SetPid:erlangPid. \SetSys:erlangSystem.

((SetSys : non_empty SetPid) /\
(SetSys : forall Alpha:erlangAction.[Alpha](ag_non_empty SetPid)));

persistently_non_empty: erlangPid -> erlangSystem -> prop =>
\SetPid:erlangPid. \SetSys:erlangSystem.

(((SetSys : non_empty SetPid) /\ (SetSys : ag_non_empty SetPid)) \/
(SetSys : empty SetPid) /\ (SetSys : forall Alpha:erlangAction.

[Alpha](persistently_non_empty SetPid)));

Intuitively the persistently_non_empty predicate expresses an automa-
ton that, when applied to a process identifier SetPid and an Erlang sys-
tem SetSys representing a set, checks that empty SetPid remains true until
non_empty SetPid becomes true, after which non_empty SetPid must remain
continuously true forever (definition ag_non_empty). Note that this is, in some
respect, a challenging property since it contains both a safety part (non-empty
sets never claim to be empty) and a liveness part (all sets eventually answer
queries whether they are empty).

We advocate an observational approach to specification, through invocation
of the interface functions, as evidenced in the definition of the empty predicate:

empty: erlangPid -> erlangSystem -> prop =
\SetPid:erlangPid. \SetSys:erlangSystem.

(forall Pid:erlangPid.
((not (Pid = SetPid)) =>
(proc<is_empty(SetPid), Pid, eps> || SetSys : (evaluates_to Pid true))));

The empty predicate expresses that proc<is_empty(SetPid), Pid, eps>,
an observer process, will eventually (in a finite number of steps) terminate with
the value true, if executing concurrently with the observed set SetSys. For lack
of space the definition of the evaluates_to predicate has been omitted.

3.3 A Proof Sketch

Expressed in the syntax of EVT the main proof obligation becomes:

prove "declare P:erlangPid in |- proc<empty_set(), P, eps> : persistently_non_empty P";

A Framework for Formal Reasoning about Open Distributed Systems 95

That is the Erlang system proc<empty_set(), P, eps>, an initially empty
set, satisfies the persistently_non_empty P property. In fact we will prove a
slightly stronger property:

Goal #0: not(add_in_queue Q) |- proc<empty_set(), P, Q> : persistently_non_empty P;

where the not(add_in_queue Q) assumption expresses that the queue Q does
not contain an add_element message. This proof goal is reduced by unfolding
the definition of the persistently_non_empty predicate, choosing to show that
the set process will signal that it is empty when queried, and performing a few
other trivial proof steps. There are two resulting proof goals:

#1: not(add_in_queue Q) |- proc<empty_set(), P, Q> : empty P
#2: not(add_in_queue Q) |- proc<empty_set(), P, Q> :

forall Alpha:erlangAction. [Alpha](persistently_non_empty P)

Goal #1 reduces to (after unfolding empty and rewriting):

not(add_in_queue Q), not(P=P’) |- proc<is_empty(P), P’, eps> || proc<empty_set(), P, Q> :
evaluates_to P’ true

That is, an observer process calling the interface routine is_empty with the
set process identifier P as argument will eventually (in a finite number of steps)
evaluate to the value true (meaning that the set is empty). Here the proof
strategy is to symbolically “execute” the two processes together with the formula,
and observe that in all possible future states the observer process terminates with
true as the result. Note however that the assumption not(add_in_queue Q) is
crucial due to the Erlang semantics of queue handling. If the queue Q contains an
add_element message the observer process will instead return false as a result,
since its is_empty message would be stored after the add_element message in
the queue and thus be serviced only after an element is added to the set.

The second proof goal #2 is reduced by eliminating the universal quantifier,
and computing the next state under all possible types of actions. Since the
process is unable to perform an output action there are two resulting goals, one
which corresponds to the input of a message V (note the resulting queue Q@V)
and the second a computation step (applying the empty_set function).

#3: not(add_in_queue Q) |- proc<empty_set(), P, Q@V> : persistently_non_empty P
#4: not(add_in_queue Q) |- proc<receive ... end, P, Q> : persistently_non_empty P

Proceeding with goal #4 either the first message to be read from the queue
is is_empty or is_member (the possibility of an add_element message can be
discarded due to the queue assumption). Handling these two new goals presents
no major difficulties.

Goal #3 is reduced by analysing the value of V. If it is not an add_element
message then we can easily extend the assumption about non-emptiness of Q:

#5: not(add_in_queue Q@V) |- proc<empty_set(), P, Q@V> : persistently_non_empty P

96 Lars-̊ake Fredlund and Dilian Gurov

Goal #5 is clearly an instance of goal #0, i.e., we can find a substitution of
variables that when applied to the original goal will result in the current proof
goal (the identity substitution except that it maps the queue Q to the queue
Q@V). Since we have at the same time unfolded a greatest fixed point on the
right hand side of the turnstile (the definition of persistently_non_empty) we
are allowed to discharge the current proof goal at this point. If, on the other
hand, V is an add_element message the next goal becomes:

#6: add_in_queue Q@V |- proc<empty_set(), P, Q@V> : persistently_non_empty P

At this point we cannot discharge the proof goal, since there is no substitution
from the original proof goal to the current one. Instead we repeat the steps of
the proof of goal #0 but taking care to show non_empty P instead of empty P.
Also, we cannot discard the possibility of receiving an add_elementmessage and
the resulting goal is (after weakening out the queue assumption):

#7: |- proc<set(Element,mk_empty(...)),P,Q’> : ag_non_empty P

By repeating the above pattern of reasoning with regards to goal #7 we
eventually reach the proof state:

#8: not(P=P’) |- proc<set(Element,P’),P,Q’’> || proc<empty_set,P’,eps> : ag_non_empty P

The Erlang components of the proof states of the proof, up to the point of
the spawning off of the new process, are illustrated in Figure 2.

proc<empty set(),P,Q1>

?

proc<receive...end,P,Q2>

?

V = {add element, ...}

�����9

V = {is empty, P ′′}

P’’!{is empty,false}

XXXXXz

V = {is member, ..., P ′′}

P’’!{is member,...,false}
� - ��

proc<set(Element,mk empty()),P,Q3>

proc<Client!{is empty,true},...,P,Q3> proc<Client!{is member,Element,false},...,P,Q3>

?

proc<set(Element,spawn(...)),P,Q4>

?

proc<set(Element,P’),P,Q5> || proc<empty set(),P’,eps>

Fig. 2. Erlang components of initial proof states

At this point we have reached a critical point in the proof where some man-
ual decision is required. Clearly we can repeat the above proof steps forever,

A Framework for Formal Reasoning about Open Distributed Systems 97

never being able to discharge all proof goals, due to the possibility of spawning
new processes. Instead we apply the term-cut proof rule, to abstract the freshly
spawned processes with a formula psi ending up with two new proof goals:

#9: not(P=P’) |- proc<empty_set(), P’, eps> : psi P P’
#10: not(P=P’), X:psi P P’ |- proc<set(Element,P’), P, Q’’> || X : ag_non_empty P

How should we choose psi? The cut formula must be expressive enough to
characterise the proc<empty_set(), P’, eps> process, in the context of the
second process and for the purpose of proving the formula ag_non_empty P.
Here it turns out that the following formula is sufficient:

psi: erlangPid -> erlangPid -> erlangSystem -> prop =>
\P:erlangPid . \P’:erlangPid .
((forall P:erlangPid . forall V:erlangValue . [P?V]((not(is_empty V)) => psi P P’))
/\ (forall P:erlangPid . forall V:erlangValue . [P!V](not(is_empty V)))
/\ (converges P P’) /\ (foreign P) /\ (local P’));

Intuitively psi expresses:

– Whenever a new message is received, and it is not an is_empty message
then psi continues to hold.

– An is_empty reply is never issued.
– The predicated system can only perform a finite number number of internal

and output steps (definition of converges omitted).
– Process identifier P is foreign (does not belong to any process in the predi-

cated system) and process identifier P’ is local (definitions omitted).

The proof of goal #9 is straightforward up to reaching the goal:

#11: not(P’=P’’) |- proc<set(Element,P’’), P’, Q’’’> || proc<empty_set(), P’’, eps>: psi P P’

Here we once again apply the term-cut rule to obtain the following goals:

#12: not(P’=P’’) |- proc<empty_set(), P’’, eps> : psi P’ P’’
#13: Y:psi P’ P’’ |- proc<set(Element,P’’),P’,Q’’’>||Y : psi P P’

Goal #12 can be discharged immediately due to the fact that it is
an instance of goal #9. Goal #13 involves symbolically executing the
proc<set(Element,P’’),P’,Q’’’> process together with the (abstracted) pro-
cess variable Y, thus generating their combined proof state space. Since both
these systems generate finite proof state spaces this construction will eventually
terminate. The proof of goal #10 is highly similar to the proof of goal #13 above,
and is omitted for lack of space.

3.4 A Discussion of the Proof

The proof itself represented a serious challenge in several respects:

– The modelled system is an open one in which at any time additional set
elements can be added outside of the control of the set implementation itself.
The state space of the set implementation is clearly non finite state: both
the number of processes and the size of message queues can potentially grow
without bound.

98 Lars-̊ake Fredlund and Dilian Gurov

– The queue semantics of Erlang has some curious effects with regards to
an observer interacting with the set implementation. It is for instance not
sufficient to consider only the program states of the set process to determine
whether an observer will recognise a set to be empty or not; also the contents
of the input message queue of the set process has to be taken into account.

Although the correctness of the program may at first glance appear obvi-
ous, a closer inspection of the source code through the process of proving the
implementation correct revealed a number of problems.

For instance, in an earlier version of the set module the guards pid(Client)
in the empty_set and set functions were missing. These guards serve to ensure
that any received is_empty or is_member message must contain a valid process
identifier. Should these guards be removed a set process will terminate due to a
runtime (typing) error if, say, a message {is_empty,21} is sent to it.

In most languages adding such guards would not be needed since usage of
the interface functions should ensure that these kinds of “typing errors” can
never take place. In Erlang, in contrast, it is perfectly possible to circumvent the
interface functions and communicate directly with the set implementation.

4 Conclusion

We have introduced an ambitious proof system based verification framework
that enables formal reasoning about complex open distributed systems (ODSs)
as programmed in real programming languages like Erlang. The proof method
was illustrated on a prototypical example where a set library was implemented as
a process structure, and verified with respect to a particular correctness property
formulated in an expressive specification logic. Parts of the proof were checked
using the Erlang Verification Tool, a proof editing tool with specific knowledge
about Erlang syntax and operational semantics.

In conclusion we have clearly illustrated the great potential of the approach:
we were able to verify non-trivial properties of real code in spite of difficulties
such as the essentially non-finite state nature of the class of open distributed
systems studied in the example. In addition the approach is promising because
of its generality: we are certainly not tied for all future to the currently studied
programming language (Erlang) but can, by providing alternative operational
semantics, easily target other programming languages. Still numerous improve-
ments of the framework are necessary, perhaps at the moment most importantly
with respect to the interaction with the proof editing tool. We are currently
forced to reason at a detail level where too many manual proof steps are re-
quired to complete proofs. How to rectify this situation by providing high-level
automated proof tactics remains an area of active research.

Acknowledgements Many thanks are due to Thomas Arts at the Ericsson
Computer Science Laboratory and Gennady Chugunov and Mads Dam at the
Swedish Institute of Computer Science.

A Framework for Formal Reasoning about Open Distributed Systems 99

References

[1] J. Armstrong, R. Virding, C. Wikström, and M. Williams. Concurrent Program-
ming in Erlang (Second Edition). Prentice-Hall International (UK) Ltd., 1996.

[2] T. Arts and M. Dam. Verifying a distributed database lookup manager written
in Erlang. To appear in Proc. Formal Methods Europe’99, 1999.

[3] T. Arts, M. Dam, L.-̊a. Fredlund, and D. Gurov. System description: Verification
of distributed Erlang programs. In Proc. CADE’98, Lecture Notes in Artificial
Intelligence, vol. 1421, pp. 38–41, 1998.

[4] S. Blau and J. Rooth. AXD 301 - a new generation ATM switching system.
Ericsson Review, 1:10–17, 1998.

[5] M. Dam, L.-̊a. Fredlund, and D. Gurov. Toward parametric verification of open
distributed systems. In Compositionality: the Significant Difference, H. Lang-
maack, A. Pnueli and W.-P. de Roever (eds.), Springer, 1536:150–185, 1998.

[6] L. Fredlund. Towards a semantics for Erlang. Unpublished manuscript, Swedish
Institute of Computer Science, 1999.

[7] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
[8] D. Kozen. Results on the propositional µ-calculus. Theoretical Computer Science,

27:333–354, 1983.
[9] R. Milner and M. Tofte. Co-induction in relational semantics. Theoretical Com-

puter Science, 87:209–220, 1991.
[10] D. Park. Fixpoint induction and proof of program semantics. Machine Intelli-

gence, 5:59–78, 1970.
[11] G. D. Plotkin. A structural approach to operational semantics. Aarhus University

report DAIMI FN-19, 1981.

A Appendix

A.1 A Short Introduction to Erlang

An Erlang process, here written proc 〈e, pid , q〉, is a container for evaluation of
functional expressions e, that can potentially have side effects (e.g., communi-
cate). A process has a unique process identifier (pid) which is used to identify
the recipient process in communications. Communication is always binary, with
one (anonymous) party sending a message (a value) to a second party identified
by its process identifier. Messages sent to a process are put in its mailbox q,
queued in arriving order. The empty queue will be denoted with eps, and q@v is
a queue composed of the subqueue q and the value v. To express the concurrent
execution of two sets of processes s1 and s2, the syntax s1 ‖ s2 is used.

The functional sublanguage of Erlang is rather standard: atoms, integers, lists
and tuples are value constructors; e1(ẽ2) is a function call; e1, e2 is sequential
composition; case e of p1[when e1g]->e1; . . . ; pn[when e1g]->en end is matching:
the value that e evaluates to is matched sequentially against patterns (values that
may contain unbound variables) pi, respecting the optional guard expressions
eig. e1!e2 is sending whereas receive m end inspects the process mailbox q and
retrieves (and removes) the first element in q that matches any pattern in m.
Once such an element v has been found, evaluation proceeds analogously to case
v of m. Finally if e1->ẽ′1; · · · en->ẽ′n end is sequential choice.

100 Lars-̊ake Fredlund and Dilian Gurov

Expressions are interpreted relative to an environment of “user defined” func-
tion definitions f(p̃1) ->ẽ1; · · · ; f(p̃k) ->ẽk. The Erlang functions are placed in
modules using the -module construct. Functions not explicitly exported using
the -export construct are unavailable outside the body of the module.

A number of builtin functions are used in the paper. self returns the pid of
the current process. spawn(e1, e2, e3) creates a new process, with empty mailbox,
executing the expression e2(ẽ3) in the context of module e1. The pid of the new
process is returned. pid(e) evaluates to true if e is a pid and false otherwise.
Syntactical equality (inequality) is checked by == (/=).

A.2 The Set Erlang Module

-module(persistent_set_adt).
-export([mk_empty/0, is_empty/1, is_member/2, add_element/2, empty_set/0]).

empty_set () ->
receive

{is_empty, Client} when pid(Client) ->
Client ! {is_empty, true}, empty_set ();

{is_member, Element, Client} when pid(Client) ->
Client ! {is_member, Element, false}, empty_set ();

{add_element, Element}->
set (Element, mk_empty ())

end.

set (Element, Set) ->
receive

{is_empty, Client} when pid(Client) ->
Client ! {is_empty, false}, set (Element, Set);

{is_member, SomeElement, Client} when pid(Client) ->
if

SomeElement == Element ->
Client ! {is_member, SomeElement, true}, set (Element, Set);

SomeElement /= Element ->
Set ! {is_member, SomeElement, Client}, set (Element, Set)

end;
{add_element, SomeElement} ->

if
SomeElement == Element ->

set (Element, Set);
SomeElement /= Element ->

Set ! {add_element, SomeElement}, set (Element, Set)
end

end.

%% MODULE INTERFACE FUNCTIONS

mk_empty () -> spawn (persistent_set_adt, empty_set, []).

is_empty (Set) ->
Set ! {is_empty, self ()},
receive

{is_empty, Value} -> Value
end.

is_member (Element, Set) ->
Set ! {is_member, Element, self ()},
receive

{is_member, Element, Value} -> Value
end.

add_element (Element, Set) -> Set ! {add_element, Element}.

	Introduction
	Verification of Open Distributed Systems
	Programming Platforms for ODSs
	A Framework for Formal Reasoning about ODS Behaviour
	Programming ODSs in Erlang
	Verifying ODSs in EVT

	Verifying a Prototypical Open Distributed System
	An Implementation of a Persistent Set
	A Persistent Set Property
	A Proof Sketch
	A Discussion of the Proof

	Conclusion
	Appendix
	A Short Introduction to Erlang
	The Set Erlang Module

