
Constraint-Based Contract Inference
for Deductive Verification

Anoud Alshnakat1, Dilian Gurov1, Christian Lidström1,
and Philipp Rümmer2(B)

1 KTH Royal Institute of Technology, Stockholm, Sweden
{anoud,dilian,clid}@kth.se

2 Uppsala University, Uppsala, Sweden
philipp.ruemmer@it.uu.se

Abstract. Assertion-based software model checking refers to techniques
that take a program annotated with logical assertions and statically
verify that the assertions hold whenever program execution is at the
corresponding control point. While the associated annotation overhead
is relatively low, these techniques are typically monolithic in that they
explore the state space of the whole program at once, and may therefore
scale poorly to large programs. Deductive software verification, on the
other hand, refers to techniques that prove the correctness of a piece of
software against a detailed specification of what it is supposed to accom-
plish or compute. The associated verification techniques are modular and
scale well to large code bases, but incur an annotation overhead that is
often very high, which is a real obstacle for deductive verification to be
adopted in industry on a wider scale. In this paper we explore synergies
between the two mentioned paradigms, and in particular, investigate how
interpolation-based Horn solvers used for software model checking can
be instrumented to infer missing procedure contracts for use in deductive
verification, thus aiding the programmer in the code annotation process.
We summarise the main developments in the area of automated contract
inference, and present our own experiments with contract inference for
C programs, based on solving Horn clauses. To drive the inference pro-
cess, we put program assertions in the main function, and adapt our
TriCera tool, a model checker based on the Horn solver Eldarica, to infer
candidate contracts for all other functions. The contracts are output in
the ANSI C Specification Language (ACSL) format, and are then vali-
dated with the Frama-C deductive verification tool for C programs.

1 Introduction

Static approaches in program verification, including deductive verification [1,9]
and model checking [8], offer an unparalleled level of confidence that software
is indeed correct, and are receiving increasing attention in industrial applica-
tions. Static verification of a program can proceed in different ways: monolithic
approaches receive the program and some form of specification as input, and
attempt to construct a mathematical argument that the program, as a whole,
c© Springer Nature Switzerland AG 2020
W. Ahrendt et al. (Eds.): Deductive Software Verification, LNCS 12345, pp. 149–176, 2020.
https://doi.org/10.1007/978-3-030-64354-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64354-6_6&domain=pdf
http://orcid.org/0000-0002-2733-7098
https://doi.org/10.1007/978-3-030-64354-6_6

150 A. Alshnakat et al.

satisfies the specification; modular approaches successively subdivide the verifi-
cation problem into smaller and smaller parts, and thus construct a hierarchical
correctness argument. In the verification literature, many examples in this spec-
trum from monolithic to modular methods can be identified; for instance, the
state space of a concurrent program can be explored systematically by enumer-
ating possible interleavings, a monolithic approach applied in classical model
checking [21], but it is also possible to analyse the threads of a program one
by one with the help of invariants, relies, or guarantees [22,31]. Monolithic and
modular methods have complementary properties; monolithic methods tend to
be easier to automate, while modular methods tend to scale to larger programs
or systems.

In this paper, we explore synergies between monolithic and modular methods
for the verification of programs with procedures. As monolithic methods, we
consider model checkers built using the concept of constrained Horn clauses [6,
16,20]: such tools are able to verify, among others, programs with procedures and
recursion fully automatically, and can in case of success output program artefacts
including loop invariants and contracts [26]. On the modular side, we target
deductive Hoare logic-based verification tools, which besides the program also
needs detailed intermediate program annotations as input. Such specifications
are written in a richer logical language, and are in principle to be supplied
by the designer of the software, since they should express his or her intention.
For procedural programming languages, they are given by means of procedure
contracts that capture what each procedure is obliged to achieve when called,
and under what assumptions on the caller.

We argue that these two families of tools complement each other extremely
well: on the one hand, model checkers can automatically compute the program
annotations required by deductive verification tools, and thus be used as invari-
ant and contract inference tools; on the other hand, deductive verification tools
can act as proof checkers that independently validate the computation of a model
checker. Several hybrid combination approaches are possible as well: given a pro-
gram partially annotated with invariants and contracts, a model checker could
add the missing annotations, or show that the existing annotations are incon-
sistent and need corrections. For a program that is too large to be handled by
a software model checker, manually provided contracts can be used to split the
program into multiple parts of manageable size. For procedures that are invoked
from multiple programs, contracts inferred in the context of one program can
be reused for deductive verification of another program. The long-term vision of
the presented line of research is the development of a program annotation assis-
tant that applies fully automatic methods, including model checking, to infer,
augment, or repair the annotations needed in deductive verification.

The main contributions of the paper are (i) a brief survey of the main direc-
tions in automatic contract inference (Sect. 3); (ii) the definition of the required
program encoding and annotation translation to combine the Horn clause-based
software model checker TriCera with the deductive verification system Frama-
C [9] (Sects. 4 and 2); and (iii) an experimental evaluation of the performance
of this tool combination on benchmarks taken from the SV-COMP [5] (Sect. 6).

Constraint-Based Contract Inference for Deductive Verification 151

int nondet();
/∗@ contract @∗/
int mc91(int n) {

if (n > 100) {
return n − 10;

} else {
return mc91(mc91(n + 11));

}
}

int main() {
int x = nondet();
int res = mc91(x);
assert (x!=8 || res==91);
assert ((x<=102) || res==x−10);

}

Listing 1.1. TriCera input for the
McCarthy 91 function

/∗@
//Function: mc91

requires \true;
assigns \nothing;
ensures (n <= 100 ==>

\ result == 91)
ensures (n > 100 ==>

\ result == n − 10);
∗/
int mc91(int n) {

if (n > 100) {
return n − 10;

} else {
return mc91(mc91(n + 11));

}
}

Listing 1.2. An example of ACSL
contracts for Frama-C

Motivating Example. We first illustrate the relationship between software
model checking and deductive verification, using a C-version of the well-known
McCarthy 91 function as a motivating example:

mc91(n) =

{
n − 10 if n > 100
mc91(mc91(n + 11)) if n ≤ 100.

Today’s software model checkers focus mainly on the verification of safety
(or reachability) properties embedded in program code in the form of assertions.
Model checkers aim at fully automatic verification of programs, and therefore
try to prove the absence of assertion violations without requiring any further
code annotations. In the implementation of the McCarthy 91 function shown in
Listing 1.1, two assertions in the main function capture the post-conditions to
be verified: for the input 8, the result of the McCarthy 91 is conjectured to be
91, and for any input greater than 102 the result will be the input minus 10. The
main function serves as a harness for the verification of the function of interest.
The input in Listing 1.1 can be verified automatically by state-of-the-art model
checkers, for instance by the TriCera model checker considered in this paper.
TriCera can handle functions either by inlining them, or by inferring function
contracts consisting of pre- and post-conditions. In our example, a contract is
needed, since the McCarthy 91 function is recursive; the use of a contract is
enabled by the comment /*@ contract @*/. The translation of the computed
contract to the specification language ACSL is discussed in Sect. 5, and the
contract is shown in Listing 5.2.

152 A. Alshnakat et al.

Deductive verification systems such as Frama-C [9] and KeY [1], in con-
trast, rely to a larger degree on user-provided annotations. In the case of the
McCarthy 91 function, verification cannot proceed before a suitable function
contract is supplied. Annotations and specifications in Frama-C are written in
the behavioural specification language ACSL, which contains constructs written
in special C comments. The function contract annotation begins with /*@ and
ends with */, as shown in Listing 1.2. The keyword ensures is used to specify
post-conditions. More details on Frama-C and ACSL will be given in Sect. 4.3.
The contract given in Listing 1.2 is manually written, and gives a complete
specification of the function. While most deductive verification tools are not
able to compute contracts, they can usually check the correctness of contracts
fully automatically.

ACSL annotations required by Frama-C, or similar tools, are detailed, and
thus laborious to write. As the study [24] argues, an effective combination of
contracting and function inlining is indispensable for the scalability of deductive
verification. Going beyond this, automating the process of inferring function
contracts is clearly advantageous for the software development process: earlier
studies have shown that automation is a key enabler for the wider use of formal
methods in industrial settings, and that automated annotation is of particular
importance [28]. In this paper, we propose to leverage the ability of software
model checkers to automatically compute contracts, and this way support the
deductive verification process. That is, given an input specification and C code
as in Listing 1.1, we want to generate a contract similar to Listing 1.2 for use in
Frama-C. This paper provides the theoretic background for such a combination,
and presents first practical steps.

2 The Notion of a Contract

In this section we recall the notion of a (software) contract, and define the
operators of contract refinement and composition that provide the theoretical
foundation for working with contracts.

2.1 Contract Basics

For reasons of presentation, all considerations are done in the context of a simple
while-language with functions, with integers as the only data-type. We further
assume that function parameters are passed by value and are read-only, and
that programs do not contain global variables (or other kinds of global data, like
heap). All results generalise to more realistic settings, like to the specification
language ACSL used by Frama-C.

Definition 1 (Contract [26]). Suppose f is a function with formal param-
eters 〈a1, . . . , an〉 and a formal result variable r. A contract for f is a pair
(Pref ,Postf) consisting of a pre-condition Pref over the arguments a1, . . . , an,
and a post-condition Postf over the arguments a1, . . . , an and the result r.

Constraint-Based Contract Inference for Deductive Verification 153

Pre- and post-conditions are commonly represented as formulas in first-order
logic, modulo a suitable set of background theories (e.g., integers or bit-vectors).
The pre-condition, denoted by the requires clause in ACSL, characterises the
legal inputs of a function, while the post-condition, denoted by the ensures
clause, states properties of the function result, in relationship to the arguments.
In addition to pre- and post-conditions, contracts in ACSL also commonly spec-
ify modified variables in an assigns clause, but this is only meaningful in the
presence of global variables. An example of such a contract is shown in List-
ing 1.2.

A contract for a function f makes it possible to carry out the task of verifying
a program (that uses f) in two steps:

(i) It has to be checked that the function f satisfies its contract. An imple-
mentation of a function f is said to satisfy a contract (Pref ,Postf) if every
terminating run that starts in a state satisfying Pref ends in a state satis-
fying Postf . In Sect. 4, contract satisfaction will be formalised through the
Hoare triple {Pref} Sf {Postf}, in which Sf is the function body of f .

(ii) The rest of the program, sometimes called the client code, can be verified on
the basis of the contract for f , disregarding the concrete implementation of
f . A contract (Pref ,Postf) is applicable in client code if every invocation of
f satisfies the pre-conditions Pref , and if the client code executes correctly
for every potential result of f satisfying Postf . In Sect. 4, the verification of
client code will be formalised through a dedicated Hoare proof rule Call.

In the case of a program with multiple functions, step (i) will be carried out for
each implementation of a function in the program, so that the overall verifica-
tion effort can be split into many small parts that can be handled separately or
in parallel. As a result, verification of large programs can be organised in such
a way that the verification effort scales roughly linearly in the size of the pro-
gram, which is the key idea underlying procedure-modular (or function-modular)
verification. All large-scale verification projects proceed in this modular manner.

2.2 Contract Refinement and Composition

A function implementation will generally satisfy many contracts, some of which
will be sufficient to verify a given piece of client code, while others might be too
weak. Different contracts might cover different aspects of function behaviour,
and for instance describe the results produced for different input ranges. This
motivates the study of algebraic properties of the space of contracts, an exercise
that has received much attention for the case of system-level contracts [4], and to
a lesser degree for contracts of functions or procedures [30]. We define notions of
contract refinement, conjunction, and disjunction that exhibit several convenient
properties, and that correspond to the way contracts are used in KeY [1].

We say that a contract C = (Pre,Post) refines a contract C ′ = (Pre ′,Post ′)
(for the same function f), denoted C � C ′, if Pre ′ ⇒ Pre and Post ∧ Pre ′ ⇒
Post ′; in other words, refinement weakens the pre-condition of a contract, and

154 A. Alshnakat et al.

strengthens the post-condition for arguments admitted by the pre-condition.
Refinement has the property that if a function f satisfies the finer (and thus
stronger, or more precise) contract C, then f also fulfills the more abstract
one C ′. Vice versa, it also means that if a client verifies by means of modular
verification against the more abstract contract C ′ of a function, it will again
do so against the finer contract C, and thus does not need to be re-verified
upon refining the contract. Finally, note that the conjunction Post ∧ Pre ′ only
makes sense under the assumption that function arguments (or global variables)
cannot be updated in function bodies, as stated in the beginning of Sect. 2.1. In
the more general case, Pre ′ has to be modified to refer to the function pre-state,
for instance using the \old operator in ACSL.

The relation � is a preorder on the set of possible contracts of a function f ,
i.e., it is reflexive, transitive, but clearly not anti-symmetric. As usual, this means
that the preorder induces an equivalence relation ≡ defined by

C ≡ C ′ ⇔ (C � C ′) ∧ (C ′ � C)

and that the quotient � /≡ is a partial order. In the following, we denote the
class of contracts that are equivalent to C by [C], but leave out the brackets [·]
in most formulas for sake of presentation.

Example 2. Consider a function abs that computes the absolute value of an
integer x. Possible contracts for abs are:

C1 : (x = 5, r = 5) C2 : (x = 5, r = 6)
C3 : (x = 5, r = x) C4 : (x ≥ 0, r = x)
C5 : (x ≤ 0, r = −x) C6 : (true, r = |x|)

A standard implementation of abs will satisfy the contracts C1, C3, C4, C5, C6,
but not C2. Contracts C1 and C3 are equivalent, C1 ≡ C3. Contract C4 refines
contract C1 (C4 � C1), since C4 is more restrictive than C1, and similarly
C6 � C4 and C6 � C5.

The example indicates that the space of possible contracts of a function has
the structure of a lattice, which is indeed the case:

Lemma 3. Let C be the set of all contracts of a function f (including both
satisfied and unsatisfied contracts). The partially ordered set (C/ ≡, � / ≡) is
a bounded lattice with the bottom element ⊥ = [(true, false)], the top element
� = [(false, true)], and the binary operations:

[(Pre,Post)] [(Pre ′,Post ′)] ⇔ [(Pre ∧ Pre ′, Post ∨ Post ′)] (Join)
[(Pre,Post)] � [(Pre ′,Post ′)] ⇔ (Meet)

[(Pre ∨ Pre ′, (Pre → Post) ∧ (Pre ′ → Post ′))]

Proof. It mainly has to be verified that the defined operations indeed describe
least upper and greatest lower bounds. This can be done automatically by first-
order theorem provers. �

http://logicrunch.it.uu.se:4096/~wv/princess/?ex=perma%2F1589530284_2006632332

Constraint-Based Contract Inference for Deductive Verification 155

The bottom element ⊥ of the contract lattice is the strongest (most refined)
contract, and is only satisfied by an implementation of a function that diverges
for every input; the top element � is the weakest contract, and satisfied by every
implementation. Joining two contracts models the case of a function f having
several implementations: if two implementations of f satisfy the contracts C1

and C2, respectively, then both implementations will satisfy C1 C2, and client
code can be verified on the basis of this more abstract contract. The meet of
two contracts merges properties of a function expressed in multiple contracts
into a single, stronger contract: if an implementation satisfies both C1 and C2,
then it will also satisfy C1 � C2 (and vice versa). The meet operation is useful,
in particular, for merging multiple automatically inferred contracts, as will be
discussed later in this paper.

Example 4. We consider again the contracts from Example 2. Contracts C4 and
C5 capture different parts of the behaviour of abs, and the meet of the two
contracts is C6, i.e., C4 � C5 ≡ C6.

The problem of combining contracts has also been studied in the context of
Hoare inference rules. Consider a library function that is called by several client
functions. The library function may then have a different contract inferred from
each client context, and we want to combine these into a single contract. Owe et.
al. found that two inference rules, namely a rule for generalised normalisation and
the Conseq rule of Hoare logic (see Table 1), are sufficient to infer any Hoare
triple {P} S {R} from a given set of Hoare triples over the same program S
that logically entail {P} S {R} [30]. Combining contracts in this way, however,
does not preclude the need for re-verifying clients against their contracts in the
context of the new, combined contract of a library function.

3 Existing Approaches in Contract Inference

While contracts are extremely useful for verifying programs modularly, finding
correct and sufficient contracts is a time-consuming and error-prone process.
This section surveys the existing work on automatic contract synthesis, extract-
ing contracts either from the program under verification, or from the program
together with the overall properties to be verified.

3.1 Strongest Post-conditions

One line of research on inferring contracts is based on the fundamental semantic
notion of strongest post-condition due to Dijkstra [13], sometimes also called a
function summary. Given a program (or rather a part of a program, typically
a procedure) and a pre-condition, i.e., a state assertion that is assumed to hold
at the beginning of the execution of the program, the strongest post-condition
is an assertion that captures precisely the final states of the execution. So, if
the pre-condition is true, the strongest post-condition characterises the final
states of all executions starting in any initial state. For the purposes of contract

156 A. Alshnakat et al.

inference this is meaningful, since one obtains useful contracts even when no
pre-condition has been supplied from elsewhere. The strongest post-condition
provides the strongest possible contract (for the given pre-condition) and is thus
ideal for procedure-modular deductive verification. However, this precision often
comes at the cost of overly verbose assertions being generated. This is because
the strongest post-condition, when generated automatically, will often closely
reflect the program from which it is extracted, and not necessarily capture the
program intention concisely.

Strongest post-conditions can be computed with the help of symbolic exe-
cution [15], at least for programs that do not contain unbounded loops. This
method is a source of explosion of the size of the generated formulas, since it is
path-based.

Singleton and others [36] developed an algorithm that converts the expo-
nentially large post-conditions, resulting from a strongest post-condition com-
putation, into a more concise and usable form. The algorithm consists of several
steps. Initially, the program is converted into a passive single assignment form
(essentially eliminating all assignments, which are the main source of assertion
explosion). Then, from a given pre-condition (or true, if no better pre-condition
is available), the strongest post-condition is computed by means of symbolic exe-
cution. The resulting formula is first converted into a normal form that groups
subformulas into a hierarchy of cases, and is then flattened. The flattened for-
mula is analysed for overlapping states, which are recombined into a form, in
which the strongest post-condition is finally presented.

3.2 Weakest Pre-conditions

A related approach is the inference of pre-conditions that are sufficient to estab-
lish given post-conditions, or more generally pre-conditions that ensure that
program assertions do not fail. The information captured by pre-conditions is
complementary to that of post-conditions: while pre-conditions do not compare
pre- and post-states, and therefore cannot specify the effect of a function, they
state obligations required for correct execution of a function that need to be
taken care of by the caller.

Pre-conditions can be computed in various different ways. The traditional
weakest pre-condition calculus due to Dijkstra [12] transforms post-conditions
to pre-conditions, and forms the basis of several deductive verification systems.
Similarly to post-conditions, pre-conditions can also be computed through sym-
bolic execution, by extracting the path constraints of all paths leading to violated
post-conditions or failing assertions. An alternative approach based on a com-
bination of abstract interpretation and quantifier elimination is presented by
Moy [27]; the method is able to compute pre-conditions also in the presence of
loops, but it does not always output weakest pre-conditions. Seghir and Kroen-
ing derived pre-conditions using an algorithm based on Counterexample-Guided
Abstraction Refinement (CEGAR) [34]. Starting from an over-approximation of
the weakest pre-conditions of a function, the algorithm iteratively eliminates

Constraint-Based Contract Inference for Deductive Verification 157

sets of pre-states for which function execution can lead to errors, until even-
tually sufficient (but still necessary, i.e., weakest) pre-conditions remain. The
use of CEGAR implies that also functions with loops can be handled, although
in general the algorithm might not terminate; this is unavoidable since neither
strongest post-conditions nor weakest pre-conditions are computable in general.
An eager variant of the algorithm, which does no longer require a refinement
loop is demonstrated by Seghir and Schrammel [35].

The concept of Maximal Specification Inference [2] generalises the inference
of weakest pre-conditions and considers the specifications of multiple functions
simultaneously. Given a piece of program code that uses functions f1, . . . , fn
(e.g., taken from a library), maximal specification inference attempts to con-
struct the weakest specifications of f1, . . . , fn that are sufficient to verify the
overall program. Albarghouthi et al. computed weakest specifications in a
counterexample-guided manner, employing multi-abduction to find new spec-
ifications [2]. The approach can be applied even when no implementations of
f1, . . . , fn are available.

3.3 Dynamic Inference of Assertions and Contracts

Given a set of test cases that exercise a system through its state space, a tool
for dynamic contract inference will determine conditions that hold at various
program points. These conditions are candidate assertions that may hold for
all program runs. The most well-known tool for dynamic contract inference is
Daikon [14], which automatically detects likely invariants for multiple languages;
C, C++, Java and Perl. For each language, Daikon dedicates an instrumenter
to trace certain variables. The traced variables are read by the inference engine
to generate likely invariants. The generated invariants are tested against their
trace samples and are reported only if they pass these tests. Daikon is optimised
to handle large code sizes and large numbers of invariants, e.g., by suppressing
the weaker invariants.

The Daikon tool has been used for dynamic contract inference in Eiffel.
Polikarpova et al. compare, on 25 Eiffel classes, the programmer-provided con-
tracts with automatically generated ones [32]. The results from this study show
that a high portion of the inferred assertions were correct and relevant, that there
were around 5 times more inferred assertion clauses than programmer-provided
ones, and that only about 60% of the programmer-provided assertions were cov-
ered by the automatically inferred ones. The main conclusion from this work
is that the inferred contracts can be used to correct and improve the human-
written ones, but that contract inference can not completely replace the manual
work. As the authors comment, this should not be surprising, since automati-
cally inferred contracts are bound to document the behaviour of the program as
it is, rather than document its intent.

A related approach is used by QuickSpec [7], a tool to automatically discover
laws satisfied by functional programs. QuickSpec systematically enumerates pos-
sible terms and equations about functional programs, uses random testing to
eliminate laws that do not hold, and applies a congruence graph data-structure

158 A. Alshnakat et al.

to eliminate more complicated laws that follow from known simpler equations.
Like the other dynamic approaches, QuickSpec can sometimes erroneously pro-
pose laws that could not be ruled out based on the generated test cases, but
experiments show that the approach performs well in practice, and is able to
discover intricate facts about programs.

3.4 Property-Guided Contract Inference

The methods discussed so far are driven primarily by the considered program,
and can be applied even if no specifications or properties are otherwise given.
Property-guided contract inference methods, in contrast, do not attempt to find
the most general contract satisfied by a function, but instead aim at discovering
contracts that are just sufficient to verify some overall property of a program. The
approach proposed in Sects. 4 and 5 of this paper, which is based on an encoding
of programs and functions as Constrained Horn Clauses, falls into this category.
Also weakest pre-condition methods, and in particular maximal specification
synthesis [2], can start from existing specifications.

Since they do not aim for generality, property-guided methods can often
find partial contracts that are more succinct than the complete contracts. For
instance, by choosing stronger pre-conditions, it might be possible to find con-
tracts that ignore complicated corner-cases, provided that they are never trig-
gered by a program.

As a related approach, Denney and Fischer propose the use of syntactic pat-
terns to infer annotations for automatically generated code [11]. This is feasible
since generated code is very idiomatic, so that all code constructs that can pos-
sibly occur can be covered by patterns. The chosen code generator systems were
AutoBayes and AutoFilter. The results show that the algorithm could success-
fully certify various safety properties of the generated code.

4 Deductive Verification and Horn Clauses

This part discusses the property-guided inference of contracts with the help of
Horn solvers. Horn clauses, in this context often narrowed down to Constrained
Horn Clauses, CHC, have been proposed as a uniform framework to automate
the application of proof rules in deductive verification [6,16,20], lifting deduc-
tive approaches to a similar level of automation as achieved by software model
checkers. Thanks to their generality, Horn solvers can be applied quite naturally
to infer not only program invariants, but also contracts, from the program and
properties to be verified. We start by considering different calculi for deductive
verification, and their automation, before more formally defining the framework
of Horn clauses.

4.1 From Hoare Logic to Horn Clauses, and Back Again

Program logics characterise the correctness of programs in terms of proof rules
that can be used to derive program correctness judgements. The proof rules often

Constraint-Based Contract Inference for Deductive Verification 159

require the right annotations to be provided by the user, or by some oracle; for
instance, loop rules need (inductive) loop invariants to be provided, and rules for
modular handling of function or method calls rely on a contract. We consider
proof rules in Hoare logic [18], which express the correctness of programs in
terms of Hoare triples {P} S {R} with a pre-condition P , program S, and post-
condition R. The triple {P} S {R} expresses that every terminating run of
program S that starts in a state satisfying P ends in a state satisfying R. Hoare
triples can be derived using proof rules such as the ones in Table 1 and 2.

Table 1. Selection of standard hoare rules for sequential programs

{P [x/t]} x = t {P} Assign
{P} S {Q} {Q} T {R}

{P} S;T {R} Comp

{P ∧ B} S {R} {P ∧ ¬B} T {R}
{P} if B then S else T {R} Cond

{I ∧ B} S {I}
{I} while B do S {I ∧ ¬B} Loop

P ⇒ P ′ {P ′} S {R′} R′ ⇒ R

{P} S {R} Conseq

Sequential Hoare Proofs. The first selection of Hoare rules, shown in Table 1, can
be used to derive properties of sequential programs without function calls. For
simplicity, we assume that no distinction is made between program expressions
and terms of the specification language in rule Assign, and between Boolean
program expressions and formulas of the specification language in the rules Cond
and Loop. One rule exists for each of the program constructs, which are assign-
ments to variables, sequential composition, conditional statements, and while
loops; one further rule, the Consequence rule, describes how pre-conditions can
be strengthened and post-conditions be weakened. Each rule specifies that the
conclusion, the Hoare triple underneath the bar, follows from the premises above
the bar. In Assign, the notation P [x/t] denotes (capture-avoiding) substitution
of all free occurrences of x in P by the term t.

During proof search, the rules are applied backwards, in a goal-directed man-
ner. Two of the rules have formulas in their premises that do not appear in the
respective conclusion; when these rules are applied backwards, these formulas
need to be provided by the user: in Comp, an intermediate assertion Q is needed
to decompose a Hoare triple into two triples, and in Loop, a loop invariant I
has to be specified. The framework of Horn clauses provides a general strat-
egy to compute such verification artefacts automatically, by initially keeping the
required annotations symbolic (i.e., by using uninterpreted predicate symbols),
collecting constraints from the leaves of a proof tree, and then using a Horn
solver to determine which annotations are adequate.

To implement this strategy, it is advantageous to work with slightly gener-
alised versions of some of the rules, shown in Table 2. Compared to the rules

160 A. Alshnakat et al.

Table 2. Hoare rules with generalised conclusions

P ⇒ R[x/t]
{P} x = t {R} Assign′ P ⇒ I {I ∧ B} S {I} I ∧ ¬B ⇒ R

{P} while B do S {R} Loop′

in Table 1, the generalised rules do not syntactically restrict the pre- and post-
conditions in the conclusion; logically, the rules in Table 2 can be derived from
their respective original version in Table 1 and the Conseq rule.

I(n, x) ∧ x < n ⇒ I(n, x+ 1)
{I(n, x) ∧ x < n} x = x+ 1 {I(n, x)}

P

n ≥ 0 ⇒ P (n, 0)
{n ≥ 0} x = 0 {P (n, x)}

P (n, x) ⇒ I(n, x) P I(n, x) ∧ x �< n ⇒ x = n

{P (n, x)} while x < n do x = x+ 1 {x = n}
{n ≥ 0} x = 0;while x < n do x = x+ 1 {x = n}

Fig. 1. Proof for Example 5

Example 5. We show how to prove a simple Hoare triple using this approach:

{n ≥ 0} x = 0;while x < n do x = x + 1 {x = n}

A completely expanded proof tree for this Hoare triple is shown in Fig. 1. The
proof contains applications of the rules Comp and Loop′, both of which demand
program annotations; to be able to construct a complete proof, symbolic formu-
las P (n, x) and I(n, x) have been inserted, involving the uninterpreted binary
predicate symbols P and I applied over the program variables, allowing us to
postpone the actual choice of concrete formulas at this point.

The proof’s leaves, marked in grey, represent the conditions that the formu-
las P (n, x), I(n, x) have to satisfy in order to close the proof:

n ≥ 0 ⇒ P (n, 0)
P (n, x) ⇒ I(n, x)

I(n, x) ∧ x < n ⇒ I(n, x + 1)
I(n, x) ∧ x �< n ⇒ x = n

The variables n, x are implicitly universally quantified in each formula. The four
conditions can be turned into Horn clauses, i.e., written as disjunctions with
at most one positive literal each (Example 7 elaborates on this, continuing the
current example), and their satisfiability can therefore be checked automatically

Constraint-Based Contract Inference for Deductive Verification 161

using Horn solvers. In case of our four conditions, a Horn solver would quickly
determine that the clauses are indeed satisfiable, and that one possible solution
are the formulas:

P (n, x) ≡ n ≥ 0 ∧ x = 0
I(n, x) ≡ n ≥ x ∧ x ≥ 0

To obtain a self-contained Hoare proof, we could substitute the placeholders
P, I in Fig. 1 with those formulas, and observe that indeed all rule applications
become valid, and the proof is well-formed.

Verification by Contract. One reason for the popularity of Horn clauses in ver-
ification is that other language features, for instance procedure calls or con-
currency, can be handled in much the same way as sequential programs. We
consider the case of a program containing (possibly mutually recursive) func-
tions f1, . . . , fn, and make the same simplifying assumptions as in Sect. 2: func-
tion parameters are passed by value and are read-only, and there are no global
variables. For simplicity of presentation, it is assumed here that each function f
is associated with a distinct set āf = 〈a1f , . . . , akf 〉 of variables representing the
formal arguments of the function, as well as a further distinct variable rf to store
the function result. Each function f is implemented through a function body Sf ,
which by itself is a piece of program code, and possibly contains function calls.

Table 3. Hoare rule for function calls

P ⇒ Pref [āf/t̄] P ∧ Postf [āf/t̄] ⇒ R[x/rf]
{P} x = f(t̄) {R} Call

Following the style of design-by-contract [26], each function f is specified with
a contract (Pref ,Postf), containing a pre-condition Pref over the arguments āf ,
and a post-condition Postf over the arguments āf and the result rf . To verify
programs involving function calls, we need a further Hoare rule, which is shown in
Table 3. The rule enables the modular verification of programs referring entirely
to the function contracts, and is a simplified version of the rules that can be found
in the literature (e.g., in the work by von Oheimb [29]). The two premises of the
rule state that function calls have to establish the pre-conditions, and that the
post-conditions can be assumed to hold for the result of the function call. To ver-
ify an end-to-end property {P} S {R} of a program S, with functions f1, . . . , fn,
in a procedure-modular way, it has to be shown that (i) each function fi satisfies
its contract, which means that the Hoare triple {Prefi} Sfi {Postfi} holds; and
(ii) S satisfies the end-to-end property {P} S {R}, making use of the contracts
for the functions f1, . . . , fn.

To verify programs with function calls automatically, we can apply a similar
strategy as before: we keep function pre- and post-conditions initially symbolic

162 A. Alshnakat et al.

as formulas Pref (āf) and Postf (āf , rf), respectively; we collect the constraints
that pre- and post-conditions have to satisfy, together with constraints on loop
invariants and intermediate assertions; and finally we use a Horn solver to search
for a solution of the constraints in combination. Note that we overload here
the meta-symbols Pref and Postf used in rule Call, with the uninterpreted
predicate symbols of the symbolic formulas. Note also that while the formulas
are symbolic, the terms to which the predicate symbols are applied are explicit,
and thus the substitutions are carried out immediately (and not left symbolic).

Example 6. We show how to verify a program with a recursive unary function f
using this strategy:

{x ≥ 0} y = f(x) {y = x} (1)

where the function f has the body

if a1f > 0 then z = f(a1f − 1); rf = z + 1 else rf = 0

Note that the notation rf = t corresponds to a return statement.

x ≥ 0 ⇒ Pre(x) x ≥ 0 ∧ Po(x, rf) ⇒ rf = x

{x ≥ 0} y = f(x) {y = x}
Pre(a1

f) ∧ a1
f > 0 ⇒ Pre(a1

f − 1)
Pre(a1

f) ∧ a1
f > 0 ∧ Po(a1

f − 1, rf) ⇒ Q(a1
f , rf , rf)

{Pre(a1
f) ∧ a1

f > 0} z = f(a1
f − 1) {Q(a1

f , z, rf)}
Q(a1

f , z, rf) ⇒ Po(a1
f , z + 1)

{Q(a1
f , z, rf)} rf = z + 1 {Po(a1

f , rf)}
{Pre(a1

f) ∧ a1
f > 0} z = f(a1

f − 1); rf = z + 1 {Po(a1
f , rf)}

P1

Pre(a1
f) ∧ a1

f �> 0 ⇒ Po(a1
f , 0)

{Pre(a1
f) ∧ a1

f �> 0} rf = 0 {Po(a1
f , rf)}

P2

P1 P2

{Pre(a1
f)} if a1

f > 0 then z = f(a1
f − 1); rf = z + 1 else rf = 0 {Po(a1

f , rf)}

Fig. 2. Hoare proofs for Example 6

The two proof trees needed to verify the program, for the overall property
and the correctness of the function contract, are shown in Fig. 2, using the
symbolic formulas Pre(a1f) and Po(a1f , rf) for the contract and Q(a1f , z, rf) as
intermediate assertion between z = f(a1f − 1) and rf = z + 1. The proofs give

Constraint-Based Contract Inference for Deductive Verification 163

rise to the following conditions (in the proofs in grey) about the annotations:

x ≥ 0 ⇒ Pre(x)

Pre(a1f) ∧ a1f > 0 ⇒ Pre(a1f − 1)

Pre(a1f) ∧ a1f > 0 ∧ Po(a1f − 1, rf) ⇒ Q(a1f , rf , rf)

Q(a1f , z, rf) ⇒ Po(a1f , z + 1)

Pre(a1f) ∧ a1f �> 0 ⇒ Po(a1f , 0)

x ≥ 0 ∧ Po(x, rf) ⇒ rf = x

A solution of the constraints is:

Pre(a1f) ≡ true

Po(a1f , rf) ≡ (a1f ≥ 0 ∧ rf = a1f) ∨ (a1f ≤ 0 ∧ rf = 0)

Q(a1f , z, rf) ≡ z = rf ∧ a1f = z + 1 ∧ a1f > 0

In other words, it has been shown that the function f satisfies the contract
C = (true, (a1f ≥ 0∧rf = a1f)∨(a1f ≤ 0∧rf = 0)), and that C is sufficient to verify
the client program (1). It can be noted that C, for reasons of readability, can be
decomposed into C ≡ C1 � C2, with simpler contracts C1 = (a1f ≥ 0, rf = a1f)
and C2 = (a1f ≤ 0, rf = 0).

4.2 Constrained Horn Clauses

We now introduce the framework of constrained Horn clauses more formally.
Throughout the section, we assume that some background theory has been fixed,
for instance the theory of Presburger arithmetic, of fixed-length bit-vectors, or
of arrays. Given a set X of first-order variables, a constraint language is then a
set Constr of first-order formulas over the background theory and X; in practice,
often the constraint language is restricted to quantifier-free formulas.

We then consider a set R of uninterpreted fixed-arity relation symbols, which
represent set-theoretic relations over the domain described by the background
theory. Relation symbols are used as symbolic formulas (e.g., I, Pre, etc.) in the
previous section.

A (constrained) Horn clause is a formula B1 ∧ · · · ∧ Bn ∧ C → H where

– C ∈ Constr is a constraint over the chosen background theory and X;
– each Bi is an application p(t1, . . . , tk) of a relation symbol p ∈ R to first-order

terms over X;
– H is similarly either an application p(t1, . . . , tk) of p ∈ R to first-order terms,

or false.

The first-order variables in a clause are implicitly universally quantified. H
is called the head of the clause, and B1 ∧· · ·∧Bn ∧C the body. In case C = true,
we often leave out C and just write B1 ∧ · · · ∧ Bn → H.

164 A. Alshnakat et al.

Horn solvers are tools for computing (symbolic or syntactic) solutions of Horn
clauses. A syntactic solution of a set HC of Horn clauses maps every relation
symbol p(x1, . . . , xn) (with p ∈ R) to a constraint over the arguments x1, . . . , xn

in the chosen constraint language, in such a way that substituting the formulas
for the relation symbols makes all clauses valid. Tools like Spacer [25] or Eldar-
ica [19] can compute solutions of Horn clauses over a number of background
theories fully automatically, with the help of model checking algorithms includ-
ing CEGAR and IC3.

Example 7. The four conditions extracted in Example 5 can be turned into Horn
clauses with just a minor change of notation. The clauses are formulated over
the set R = {P, I} of binary relation symbols, and the first-order variables n, x
are implicitly universally quantified:

n ≥ 0 → P (n, 0)
P (n, x) → I(n, x)

I(n, x) ∧ x < n → I(n, x + 1)
I(n, x) ∧ x �< n ∧ x �= n → false

It can be noted that the formulas given in Example 5 are indeed a syntactic
solution of the clauses.

4.3 Tool Support

We conclude the section by discussing the model checkers and deductive verifi-
cation tools used in the rest of the paper.

TriCera. There are several verification tools implementing the verification strat-
egy outlined in Sect. 4.1, including the tool SeaHorn [17] for C programs, and
JayHorn [23] for Java. TriCera,1 the tool used in our experiments, is a software
model checker for C programs following the same methodology. TriCera was
originally a spin-off of the C front-end that was used in the Horn solver Eldar-
ica, and later extended to also support computation of function contracts, and
to handle heap-allocated data-structures. TriCera primarily targets the Horn
solver Eldarica as back-end, but can also output Horn clauses to interface other
solvers.

Eldarica. Eldarica [19]2 is a solver for Horn clauses with constraints over a
number of possible theories. Eldarica combines Predicate Abstraction with the
Counterexample-Guided Abstraction Refinement (CEGAR) algorithm to auto-
matically check whether a given set of Horn clauses is satisfiable. Eldarica first
appeared as a solver for Horn clauses over Presburger arithmetic in 2013. Over
the last years, various further features have been added to the tool, and it

1 https://github.com/uuverifiers/tricera.
2 https://github.com/uuverifiers/eldarica.

https://github.com/uuverifiers/tricera
https://github.com/uuverifiers/eldarica

Constraint-Based Contract Inference for Deductive Verification 165

can now solve problems over the theories of integers, algebraic data-types, bit-
vectors, and arrays. Eldarica can process Horn clauses and programs in a variety
of formats, implements sophisticated heuristics to solve tricky systems of clauses
without diverging, and offers an elegant API for programmatic use.

Frama-C. Frama-C is a tool for static analysis of C code [9]. There are sev-
eral plugins available that perform different analyses. On such plugin is WP,
which uses deductive verification to verify functional properties of programs [9].
To perform verification Frama-C uses function contracts to specify behaviours
of functions, and to this end it has its own specification language called ACSL
(ANSI C Specification Language). Function contracts are annotated in the source
code as a special type of C comments, and a contract generally consists of
pre-conditions and post-conditions, expressed using the keywords requires and
ensures, respectively. An example can be seen in Listing 1.2.

The deductive verification performed by the WP plugin is based on Weakest
Pre-condition calculus [12], which defines for a statement S a function from
any post-condition Q to a pre-condition P ′, such that P ′ is the weakest pre-
condition where the Hoare triple {P ′} S {R} holds. This mapping can be seen
as a modification of the Hoare logic rules presented in Sect. 4.1, and verification of
a Hoare triple {P} S {R} can then be performed by computing the weakest pre-
condition P ′ and proving that P ⇒ P ′. The WP plugin verifies, and reports, for
each annotation (e.g., assertions and invariants) whether it is valid. The overall
program is said to be valid if all annotations are valid. The verification process
is function-modular, i.e., when a function call is reached the tool checks that the
caller fulfills the pre-condition of the called function, and, if so, assumes that
the post-condition hold after the function. Verification that the callee fulfills the
contract is then performed separately, similarily to the proof in Fig. 2.

5 Synthesising Contracts for Frama-C

This section describes how the model checker TriCera is used to synthesise con-
tracts that can be verified in Frama-C, and the reason for doing so.

The way TriCera is used to synthesise contracts is by verifying that all asser-
tions in the program hold. As a side effect of this, contracts for all individual
functions are generated, as part of the Horn clause solution. Through an exten-
sion to TriCera, these contracts are then syntactically transformed into ACSL,
and verified in Frama-C. Using a deductive verifier to verify the program again,
with the newly generated contracts, increases confidence in the verification result.
Frama-C is a well established tool that is generally considered trustworthy, and
using several verification techniques naturally increases confidence.

Extracting contracts from model checking can also help in other respects.
Contracts can be used when a program is modified to speed up the re-verification
process: all contracts that are still satisfied by a modified function can be kept
and reused. Contracts can also be applied to gradually modularise verification
efforts, and in this way improve scalability. Since model checking is automatic but

166 A. Alshnakat et al.

mc914/2: (((1 + −1 ∗ 0) = 0) & ((100 + −1 ∗ 0) >= 0))
mc913/2: (((1 + −1 ∗ 0) = 0) & ((−101 + 0) >= 0))
...
mc91 pre/1: true
...
mc91 post/2: (((!((10 + (1 + −1 ∗ 0)) = 0) | ((−101 + 0) >= 0)) & (!((−91

+ 1) = 0) | ((101 + −1 ∗ 0) >= 0))) & (((10 + (1 + −1 ∗ 0)) = 0) |
((−91 + 1) = 0)))

Listing 5.1. A portion of TriCera’s solution output for Listing 1.1.

not function modular, it is by itself limited in scalability. By relying mainly on
the result of Frama-C, contract synthesis is complementary to writing contracts
manually. Modules that are too large to be model-checked can still be verified
and the result combined with verification of other modules, where all contracts
have been synthesised automatically. Finally, having explicit contracts is useful
for verification of code external to the code base used to synthesise the contracts,
for example when the latter is a library.

In the present paper, we assume a context where there are properties to be
verified at the C module level. Even though the contracts do not give a complete
specification of function, they are still of interest in this context, since they will
always be sufficient to prove the desired properties at the module level.

TriCera does currently not support the full C language, and only has limited
support for heap, arrays, pointers, and structs. As such, properties related to
memory safety cannot be verified, and contracts not be generated. We therefore
limited our experiment to programs over arithmetic data-types.

5.1 Syntactical Transformation

Our starting point for producing ACSL contracts is the Horn clause solution
output in Prolog format by TriCera. A part of the Horn clause solution for the
example in Listing 1.1 is shown in Listing 5.1. Each line of the output contains
a formula that defines one of the predicates from the Horn clauses.

In TriCera’s solution, the pre-state prior to entering the function, and the
post-state after exiting the function are identified with the names func_pre and
func_post. Those were split from other statements such as the main invariant
and the conditions of functions at different states. The pre-state and post-state
formulas correspond to the pre-condition and post-condition, i.e, the function
contract. After extracting the contracts, they were properly rearranged twice.
The first rearrangement was with respect to the function name. The second
rearrangement was required to ensure that the pre-condition precedes the post-
condition of each function. Thus, the order is compliant with ACSL annotations.

Constraint-Based Contract Inference for Deductive Verification 167

/∗@
//Function: mc91

requires \true;
ensures (\ result − \old(n) != −10 || \old(n) >= 101) &&

(\ result != 91 || 101 >= \old(n)) &&
(\ result − \old(n) == −10 || \result == 91);

∗/

Listing 5.2. The final result of pretty-printing an ACSL contract, when using the
harness from Listing 1.1

TriCera uses the symbols _0,_1, . . . _n-1 to represent to index function
arguments and program variables. For outputting contracts, those symbols were
again replaced with the original program variables. A few more syntactical mod-
ifications were necessary in order to adhere to the ACSL format, as follows:

(i) Logical symbols (&, |, =) were replaced with the C equivalents (&&, ||, ==).
(ii) Boolean literals (true, false) were replaced with the corresponding ACSL

primitives (\true, \false).
(iii) Variable values before execution (value_old) were replaced with the equiv-

alent ACSL construct (\old(value)).
(iv) The keywords for pre- and post-states (func_pre, func_post) were

replaced with ACSL keywords for pre- and post-conditions (requires,
ensures).

To form more readable contracts, we used (and extended) the existing pretty-
printer from Princess [33], the theorem prover included in TriCera and Eldarica.
Pretty-printing eliminated most of the parentheses in the output, and applies
further simplifications to the formulas, leading to more legible ACSL. The final
result is shown in Listing 5.2. With some manipulations of the formula it is easy
to see that this is equivalent to the contract in Listing 1.2. Furthermore, we can
see that the contract is a complete specification of the function, despite the input
specification not asserting properties for all executions.

5.2 Contracts for Different Assertions

In the generation of ACSL contracts, the result highly depends on the choice of
the logical formula in the assertions. For example, in Listing 1.1, if the harness
is altered to only have the assertion assert(res>0);, then the generated post-
condition is ensures \result >= 91;, and if altering the harness to have only
the assertion assert(res==91 || res==x-10);, the generated post-condition
is ensures \result == 91 || (\result-\old(n)==-10 && \old(n)>=101);
(in both cases the pre-condition is simply true). Both post-conditions are verified
in Frama-C as valid, and proven to be correct with respect to the test harness.

168 A. Alshnakat et al.

There is no guarantee of completeness of the generated contract, it will simply
be sufficient to verify what was asserted about the function, as well as be sound
with regard to recursive calls. However, in many cases, such as in the example
just shown in Listing 5.2, the contract will be stronger than what was asserted
in the harness function.

5.3 Contracts for Client Code and Libraries

As explained above, the function contracts that are inferred are sufficient for
the calling function to be verified, but are not necessarily the strongest (or most
precise) contracts that the respective functions fulfill. As such, if a function is
used in more than one client program (say it is a library function), the contract
extracted in the context of one client might not be sufficient in the context
of another client. If we have several clients using the same library function, the
contracts inferred individually in each client can be combined to a single contract
that allows all client code to be verified.

Depending on the context in which a function is called, the pre-condition
generated by TriCera will vary. For example, if, as in Listing 1.1, the function
inputs are unconstrained, the pre-condition generated tends to be \true. This
is because the function is in fact model-checked for all possible states w.r.t.
the affected variables. In this case, the generated contracts can be combined by
simply creating a new post-condition that is the conjunction of all generated
post-conditions. In Frama-C this can be achieved by including all the generated
ensures clauses, since this is semantically equivalent to having one ensures
clause that is the conjunction of all the expressions. The new contract C will
then refine all the generated contracts C1, . . . , Cn, as defined in Sect. 2.2.

A more interesting case is when a function is called in a context where the
variables are assigned a specific value, or their possible values are a subset of
the total range. In this case TriCera will generate a pre-condition allowing only
the values that can possibly occur in the calling context. For example, consider
the cmp function seen in Listing 5.3, which is used as an example in the paper
by Singleton et al. [36] discussed in Sect. 3.1. For some harness, TriCera will
generate the clause requires b == 5 && a == 5; as pre-condition, with the
post-condition ensures \result == 0 && \old(b) == 5 && \old(a) == 5;,
and for some other harness the two clauses requires b == 7 && a == 5; and
ensures \result == -1 && \old(b) == 7 && \old(a) == 5; will be gener-
ated. Note that the post-conditions contain redundant equalities over the vari-
ables in the pre-state, an artefact of the use of constant propagation in the
Horn solver. In this case we cannot use conjunctions of the contracts to create
a new contract. Ignoring the fact that the post-conditions would be incompati-
ble, the specification resulting from contract conjunction would not give enough
information to the caller about which input would create the respective output.
Instead one can use each pair of pre- and post-conditions (Pi, Qi) to form an
implication Pi ⇒ Qi, to create a new post-condition that is the conjunction of
all these implications. This follows the meet operation defined in Sect. 2.2, and

Constraint-Based Contract Inference for Deductive Verification 169

int cmp(int a, int b) {
int c = a;
if (c < b) {

return −1;
} else {

if (c > b) {
return 1;

}
return 0;

}
}

Listing 5.3. C implementation of an integer comparison function.

thus we have that the new contract C = C1 � · · · �Cn, where C1, . . . , Cn are the
generated contracts.

An equivalent result can also be achieved by using the ACSL construct
behavior. Behaviours are used specifically to specify several pre- and post-
condition pairs, which is also evaluated similarly to the meet operation on con-
tracts. The two approaches are semantically equivalent, and as long as we also
keep the disjunction of pre-conditions will have no effect on verification complete-
ness. Without the pre-condition, the contract might not be possible to prove.
An obvious example is when the pre-condition contains auxiliary assertions, for
example about memory validity, since then the resulting specification might not
be possible to prove because of run-time exceptions not related to executions
considered in the particular contexts from which the contracts were generated.

Listing 5.4 shows an example of three automatically inferred contracts that
have been manually conjoined using the Frama-C behavior construct as outlined
above, into a single contract that can be verified in Frama-C, and which allows
the clients from which the original, now conjoined, contracts where generated to
be verified. By using this approach, it also possible to instruct Frama-C to prove
that the behaviours are disjoint, and that they form a complete specification,
if desired, by using the ACSL keywords disjoint and complete. Completeness
means that the assumptions of the behaviours covers all possible states as spec-
ified by the pre-condition, i.e. that the pre-condition implies that at least one of
the assumptions of the behaviours hold. Disjointness refers to the assumptions
of the behaviours not overlapping, i.e. that the pre-condition implies that no two
assumptions of the behaviours hold at the same time.

6 A Case Study Using SV-COMP Benchmarks

This section describes how the TriCera contract generation was evaluated using
SV-COMP verification tasks, and the results thereof. The case study is a

170 A. Alshnakat et al.

/∗@
requires a == b || a < b || a > b;
assigns \nothing;
behavior eq:

assumes b == a;
ensures \result == 0 && \old(b) == \old(a);

behavior lt :
assumes b − a >= 1;
ensures \result == −1;

behavior gt:
assumes a − b >= 1;
ensures \result == 1;

complete behaviors;
disjoint behaviors;

∗/

Listing 5.4. Frama-C contract resulting from the conjoining of different inferred
contracts for the function in Listing 5.3.

continuation of previous work on using model checking based on Constrained
Horn Clauses to verify and infer contracts for industrial software [3].

The authors of the present paper are not aware of any existing techniques for
C code contract inference, and cannot therefore make a comparative evaluation.
Instead, a subset of a collection of verification tasks commonly used to evaluate
verification techniques was used to carry out initial experiments with the contract
inference performed by TriCera.

6.1 SV-COMP Verification Tasks

The International Competition on Software Verification (SV-COMP) is an
annual competition to assess the state-of-the-art software verification tools [5].
The collection of verification tasks used in this competition is maintained in
an open-source repository, and has been contributed by multiple research and
development groups [37].

The SV-COMP repository was chosen as the main method to test the auto-
matically generated contracts. The benchmark suite was limited to 12 folders
of C implementation files. The selected verification tasks focused on checking
loops and recursions. The tested properties varied in nature, and included, for
example, overflow and (un)reachability checks.

It was necessary to edit the source files to prepare them for contract gen-
eration, and also to process them correctly with TriCera. The main changes
included:

– Some source files included loops directly inside a main function, but no func-
tion calls. In such files the loops were moved to separate functions, and

Constraint-Based Contract Inference for Deductive Verification 171

contracts generated for those auxiliary functions. New variables were intro-
duced to store the returned values, and used in the properties to be verified
in the outer function.

– Tasks with the expected verification result FALSE, i.e., a counterexample to
safety, were modified to produce the answer TRUE.

– Some source files used the function VERIFER_error() to express assertions.
Such function calls were changed to the statement assert(0).

– The reserved keyword _Bool is not supported by TriCera. Source files using
this data-type were fixed by adding a typedef enum {false, true} _Bool;

The experiments were performed in a virtual machine running Ubuntu 17.10,
on a host machine with an Intel Core i5-7500 CPU @ 3.40 GHz. Three of the
four CPU cores, and 3.8 GiB memory, were allocated to the virtual machine.
The verification time limit was set to 60 min. Where we report average contract
generation times, the test cases that timed out were excluded.

6.2 Results

The following verification results focus on whether functions meet their generated
contracts, so the result is considered to be positive (i.e., verified) when the post-
condition is verified as Valid using Frama-C. Some results also specify whether
the pre-condition was verified as Valid, which means that it holds at all call sites
(including both the harness function and recursive calls). A result of Unknown
means that Frama-C terminated but was unable to prove the assertion, and
Timeout means that the verification attempt did not terminate within the time
limit.

Overall Results. In total there were 129 verification tasks tested using TriCera.
For 110 of these, a contract could be generated within the set time limit, whereas
19 tasks timed out. Out of the 110 generated contracts, 78 could be immediately
verified by Frama-C. An additional 20 tasks could be verified after manually
adding loop annotations (i.e., variant, invariant and assigns). The rest of the
verification tasks could not be verified. The average contract generation time was
19 s, with the minimum and maximum being 1.3 s and 17 min, respectively. The
detailed results are divided into two parts based on whether the files contained
functions with loops or recursion.

Programs with Loops. This part of the experiment was conducted over 66 source
files, which were selected from 10 different folders of the SV-COMP benchmark
repository. The test suite contained both For and While loops, and also some
cases of nested loops. Programs had between 10 and 50 lines of code (measured
using the tool CLOC [10]).

Of the 66 programs with loops, 13 did not have a contract generated within
the time limit, and were ignored for the rest of the analysis. Of the 53 for which a
contract was generated, 22 could immediately be verified with Frama-C, in addi-
tion to 20 more verified after manually adding loop annotations. The primary

172 A. Alshnakat et al.

0

10

20

30

40

50

Pre-condition Post-condition

N
um

be
r o

f f
ile

s

Valid Valid (under hypothesis)
Unknown Timeout
No verification attempted

Fig. 3. Results of verifying generated
contracts for files containing loops in
Frama-C.

0

5

10

15

20

25

30

Pre-condition Post-condition

N
um

be
r o

f f
ile

s

Valid Valid (under hypothesis) Unknown

Fig. 4. Results of verifying generated
contracts for files with loops in Frama-
C, after adding loop annotations.

0
5

10
15
20
25
30
35
40

0 10 20 30 40 50 60

Ti
m

e
in

 se
co

nd
s

Verification task
(ascending order w.r.t. verification time)

Fig. 5. Time spent in running both
verification and contract generation in
TriCera of functions that contain loops.

0

10

20

30

40

50

60

Pre-condition Post-condition

N
um

be
r o

f f
ile

s

Valid Unknown Timeout

Fig. 6. Results of verifying generated
contracts for files with recursive func-
tions in Frama-C.

verification result is shown in Fig. 3 in terms of pre-condition and post-condition
verification status in Frama-C. In Fig. 4, the verification result after manually
adding loop annotations can be seen, for the files which were not already succes-
fully verified. In several of these cases, Frama-C verified the assertions as valid
under some hypothesis, which means that the result depended on other asser-
tions that could not be verified. In almost all cases, this dependence were the
manually added loop annotations that could not be verified.

The average contract generation time was 4.2 s, the minimum 1.4 s, and the
maximum 36 s (Fig. 5). The horizontal axis views a series of verification tasks,
while the vertical axis shows the ascending order of the required time.

Programs with Recursion. This part of the experiment was conducted over 63
source files that contained recursive functions, selected from 2 folders of the SV-
COMP benchmark repository. These files all contained a main function, which
could be used as a harness, calling recursive functions. Thus, the source code
did not require to be rewritten in the same manner as the files containing loops.
The source code included both single and nested recursive (up to 4) functions.
Programs had between 18 and 66 lines of code.

Constraint-Based Contract Inference for Deductive Verification 173

Of the 63 programs with recursion, 6 failed the contract generation time
limit. Of the 57 programs with generated contracts, 56 could be verified with
Frama-C. Figure 6 shows the final result of the contracts tested using Frama-C.
No further additions were required to verify those files.

The average contract generation time was 33 s, with the minimum 1.3 s and
maximum 17 min (Fig. 7).

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60

Ti
m

e
in

 se
co

nd
s

Verification task
(ascending order w.r.t. to verification time)

Fig. 7. Time spent in running both verification and contract generation in TriCera of
functions that contain recursion.

Summary. The case study used the SV-COMP repository as the source to test
the inferred contracts. There were no further assertions added to the source
files, and only 5 files required assumption statements in order to generate the
contracts (e.g. to ensure that a random value assigned to a loop guard variable
is always positive). Around 77.3% of files with loops (excluding the time outs)
and 98.2% of files with recursion were verified with Frama-C. The overall time
varied from a few seconds to 17 min.

The tasks with loops demanded extensive manual work because of the missing
invariant, variant and assigns loop annotations. However, the recursive tasks
were straightforward, and minimal code alterations were made.

7 Conclusions

This paper surveys existing work on automatic inference of program contracts,
proposes a property-guided method to compute contracts with the help of Horn
solvers, and provides experimental evidence that such an approach indeed works
on a selection of SV-COMP benchmarks. Our implementation, at this point, is a
proof of concept, and more work is needed to handle real-world C programs: in
particular, inference not only of contracts but also of loop invariants, and infer-
ence of contracts also in the presence of arrays, heap-allocated data-structures,
and pointers. Within those restrictions, we believe that the experimental results
are encouraging, and that the proposed combination of deductive verification
technology with model checking algorithms can significantly extend the reach of
both paradigms.

174 A. Alshnakat et al.

Acknowledgements. This work has been partially funded by the Swedish Govern-
mental Agency for Innovation Systems (VINNOVA) under the AVerT project 2018-
02727, by the Swedish Research Council (VR) under grant 2018-04727, and by the
Swedish Foundation for Strategic Research (SSF) under the project WebSec (Ref.
RIT17-0011).

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.):
Deductive Software Verification - The KeY Book - From Theory to Practice. LNCS,
vol. 10001. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49812-6

2. Albarghouthi, A., Dillig, I., Gurfinkel, A.: Maximal specification synthesis. In:
Bod́ık, R., Majumdar, R. (eds.) Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2016, St.
Petersburg, FL, USA, 20–22 January 2016, pp. 789–801. ACM (2016). https://doi.
org/10.1145/2837614.2837628

3. Alshnakat, A.: Automatic verification of embedded systems using horn clause
solvers. Master’s thesis, Uppsala University, Department of Information Technol-
ogy (2019)

4. Benveniste, A., et al.: Contracts for system design. Found. Trends Electron. Des.
Autom. 12(2–3), 124–400 (2018)

5. Beyer, D.: Software verification and verifiable witnesses. In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 401–416. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0 31

6. Bjørner, N., Gurfinkel, A., McMillan, K., Rybalchenko, A.: Horn clause solvers for
program verification. In: Beklemishev, L.D., Blass, A., Dershowitz, N., Finkbeiner,
B., Schulte, W. (eds.) Fields of Logic and Computation II. LNCS, vol. 9300, pp.
24–51. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23534-9 2

7. Claessen, K., Smallbone, N., Hughes, J.: QuickSpec: guessing formal specifications
using testing. In: Fraser, G., Gargantini, A. (eds.) TAP 2010. LNCS, vol. 6143, pp.
6–21. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13977-2 3

8. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R.: Handbook of Model Checking.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8

9. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-C: a software analysis perspective. In: Eleftherakis, G., Hinchey, M., Hol-
combe, M. (eds.) SEFM 2012. LNCS, vol. 7504, pp. 233–247. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33826-7 16

10. Danial, A.: Cloc - count lines of code. http://cloc.sourceforge.net/
11. Denney, E., Fischer, B.: A generic annotation inference algorithm for the safety

certification of automatically generated code. In: Jarzabek, S., Schmidt, D.C., Veld-
huizen, T.L. (eds.) Generative Programming and Component Engineering, 5th
International Conference, GPCE 2006, Portland, Oregon, USA, 22–26 October
2006, Proceedings, pp. 121–130. ACM (2006), https://doi.org/10.1145/1173706.
1173725

12. Dijkstra, E.W.: Guarded commands, non determinacy and for-
mal derivation of programs. Commun. ACM 18(8), 453–457 (1975).
http://doi.acm.org/10.1145/360933.360975

13. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs
(1976). http://www.worldcat.org/oclc/01958445

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1145/2837614.2837628
https://doi.org/10.1145/2837614.2837628
https://doi.org/10.1007/978-3-662-46681-0_31
https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.1007/978-3-642-13977-2_3
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-642-33826-7_16
http://cloc.sourceforge.net/
https://doi.org/10.1145/1173706.1173725
https://doi.org/10.1145/1173706.1173725
http://doi.acm.org/10.1145/360933.360975
http://www.worldcat.org/oclc/01958445

Constraint-Based Contract Inference for Deductive Verification 175

14. Ernst, M.D., et al.: The daikon system for dynamic detection of likely invari-
ants. Sci. Comput. Program. 69(1–3), 35–45 (2007). https://doi.org/10.1016/j.
scico.2007.01.015

15. Gordon, M., Collavizza, H.: Forward with Hoare. In: Roscoe, A.W., Jones, C.B.,
Wood, K.R. (eds.) Reflections on the Work of C.A.R. Hoare. LNCS, pp. 101–121.
Springer, London (2010). https://doi.org/10.1007/978-1-84882-912-1 5

16. Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing soft-
ware verifiers from proof rules. In: PLDI, pp. 405–416 (2012). http://doi.acm.org/
10.1145/2254064.2254112

17. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn verification
framework. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206,
pp. 343–361. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-
4 20

18. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969). http://doi.acm.org/10.1145/363235.363259

19. Hojjat, H., Rümmer, P.: The ELDARICA horn solver. In: 2018 Formal Methods in
Computer Aided Design, FMCAD 2018, Austin, TX, USA, 30 October–2 November
2018. IEEE (2018). https://doi.org/10.23919/FMCAD.2018.8603013

20. Hojjat, H., Rümmer, P., Subotic, P., Yi, W.: Horn clauses for communicating
timed systems. In: Bjørner, N., Fioravanti, F., Rybalchenko, A., Senni, V. (eds.)
Proceedings First Workshop on Horn Clauses for Verification and Synthesis, HCVS
2014, Vienna, Austria, 17 July 2014. EPTCS, vol. 169, pp. 39–52 (2014). https://
doi.org/10.4204/EPTCS.169.6

21. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. 23(5), 279–295
(1997)

22. Jones, C.B.: Developing methods for computer programs including a notion of
interference. Ph.D. thesis, University of Oxford, UK (1981). http://ethos.bl.uk/
OrderDetails.do?uin=uk.bl.ethos.259064

23. Kahsai, T., Rümmer, P., Sanchez, H., Schäf, M.: JayHorn: a framework for verifying
java programs. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp.
352–358. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4 19

24. Knüppel, A., Thüm, T., Padylla, C., Schaefer, I.: Scalability of deductive verifica-
tion depends on method call treatment. In: Margaria, T., Steffen, B. (eds.) ISoLA
2018. LNCS, vol. 11247, pp. 159–175. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-03427-6 15

25. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive
programs. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 17–34.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9 2

26. Meyer, B.: Applying “design by contract”. IEEE Comput. 25(10), 40–51 (1992).
https://doi.org/10.1109/2.161279

27. Moy, Y.: Sufficient preconditions for modular assertion checking. In: Logozzo,
F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 188–202.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78163-9 18

28. Nyberg, M., Gurov, D., Lidström, C., Rasmusson, A., Westman, J.: Formal veri-
fication in automotive industry: enablers and obstacles. In: Margaria, T., Steffen,
B. (eds.) ISoLA 2018. LNCS, vol. 11247, pp. 139–158. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03427-6 14

29. Oheimb, D.: Hoare logic for mutual recursion and local variables. In: Rangan, C.P.,
Raman, V., Ramanujam, R. (eds.) FSTTCS 1999. LNCS, vol. 1738, pp. 168–180.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-46691-6 13

https://doi.org/10.1016/j.scico.2007.01.015
https://doi.org/10.1016/j.scico.2007.01.015
https://doi.org/10.1007/978-1-84882-912-1_5
http://doi.acm.org/10.1145/2254064.2254112
http://doi.acm.org/10.1145/2254064.2254112
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-319-21690-4_20
http://doi.acm.org/10.1145/363235.363259
https://doi.org/10.23919/FMCAD.2018.8603013
https://doi.org/10.4204/EPTCS.169.6
https://doi.org/10.4204/EPTCS.169.6
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259064
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259064
https://doi.org/10.1007/978-3-319-41528-4_19
https://doi.org/10.1007/978-3-030-03427-6_15
https://doi.org/10.1007/978-3-030-03427-6_15
https://doi.org/10.1007/978-3-319-08867-9_2
https://doi.org/10.1109/2.161279
https://doi.org/10.1007/978-3-540-78163-9_18
https://doi.org/10.1007/978-3-030-03427-6_14
https://doi.org/10.1007/3-540-46691-6_13

176 A. Alshnakat et al.

30. Owe, O., Ramezanifarkhani, T., Fazeldehkordi, E.: Hoare-style reasoning from mul-
tiple contracts. In: Polikarpova, N., Schneider, S. (eds.) IFM 2017. LNCS, vol.
10510, pp. 263–278. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66845-1 17

31. Owicki, S.S., Gries, D.: An axiomatic proof technique for parallel programs I. Acta
Inf. 6, 319–340 (1976). https://doi.org/10.1007/BF00268134

32. Polikarpova, N., Ciupa, I., Meyer, B.: A comparative study of programmer-written
and automatically inferred contracts. In: Rothermel, G., Dillon, L.K. (eds.) Pro-
ceedings of the Eighteenth International Symposium on Software Testing and Anal-
ysis, ISSTA 2009, Chicago, IL, USA, 19–23 July 2009, pp. 93–104. ACM (2009).
https://doi.org/10.1145/1572272.1572284

33. Rümmer, P.: A constraint sequent calculus for first-order logic with linear integer
arithmetic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS
(LNAI), vol. 5330, pp. 274–289. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-89439-1 20

34. Seghir, M.N., Kroening, D.: Counterexample-guided precondition inference. In:
Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 451–471.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37036-6 25

35. Seghir, M.N., Schrammel, P.: Necessary and sufficient preconditions via eager
abstraction. In: Garrigue, J. (ed.) APLAS 2014. LNCS, vol. 8858, pp. 236–254.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12736-1 13

36. Singleton, J.L., Leavens, G.T., Rajan, H., Cok, D.R.: Inferring concise specifica-
tions of APIs. CoRR abs/1905.06847 (2019). http://arxiv.org/abs/1905.06847

37. SV-Comp: Collection of verification tasks. https://github.com/sosy-lab/sv-
benchmarks

https://doi.org/10.1007/978-3-319-66845-1_17
https://doi.org/10.1007/978-3-319-66845-1_17
https://doi.org/10.1007/BF00268134
https://doi.org/10.1145/1572272.1572284
https://doi.org/10.1007/978-3-540-89439-1_20
https://doi.org/10.1007/978-3-540-89439-1_20
https://doi.org/10.1007/978-3-642-37036-6_25
https://doi.org/10.1007/978-3-319-12736-1_13
http://arxiv.org/abs/1905.06847
https://github.com/sosy-lab/sv-benchmarks
https://github.com/sosy-lab/sv-benchmarks

	Constraint-Based Contract Inference for Deductive Verification
	1 Introduction
	2 The Notion of a Contract
	2.1 Contract Basics
	2.2 Contract Refinement and Composition

	3 Existing Approaches in Contract Inference
	3.1 Strongest Post-conditions
	3.2 Weakest Pre-conditions
	3.3 Dynamic Inference of Assertions and Contracts
	3.4 Property-Guided Contract Inference

	4 Deductive Verification and Horn Clauses
	4.1 From Hoare Logic to Horn Clauses, and Back Again
	4.2 Constrained Horn Clauses
	4.3 Tool Support

	5 Synthesising Contracts for Frama-C
	5.1 Syntactical Transformation
	5.2 Contracts for Different Assertions
	5.3 Contracts for Client Code and Libraries

	6 A Case Study Using SV-COMP Benchmarks
	6.1 SV-COMP Verification Tasks
	6.2 Results

	7 Conclusions
	References

