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Abstract. We present a generic framework for verifying temporal safety
properties of procedural programs that are dynamically or statically con-
figured by replacing, adapting, or adding new components. To deal with
such a variability of a program, we require programmers to provide local
specifications for its variable components, and verify the global properties
by replacing these specifications with maximal models. Our framework
is a generalization of a previously developed framework that abstracts
from all program data. In this work, we capture program data and thus
significantly increase the range of properties that can be verified. Our
framework is generic by being parametric on the set of observed pro-
gram events and their semantics. We separate program structure from
the behavior it induces to facilitate independent component specifica-
tion and verification. We provide tool support for an instantiation of our
framework to programs written in a procedural language with pointers
as the only datatype.

1 Introduction

In modern computing systems code changes frequently. Components evolve
rapidly or exist in multiple versions customized for different users, and in open
and mobile contexts a system may even automatically reconfigure itself. As a
result, systems are no longer developed as monolithic applications; instead they
are composed of ready-made off-the-shelf components, and each component may
be dynamically replaced by a new one that provides improved or additional
functionality. The design and implementation of systems with such static and
dynamic variability has been attracting considerable attention over the past
years. However, there has been less attention to their formal verification. In this
paper, we develop a generic framework for the verification of temporal safety
properties of such systems.

The verification of variable systems is challenging because the code of the
variable components is either not available at verification time or changes fre-
quently. Therefore, an ideal verification technique for such systems should
(i) localize the verification of variable components, and (ii) relativize the global
properties of the system on the correctness of its variable components. This can
be achieved through a compositional verification scheme where system compo-
nents are specified locally and verified independently, while the correctness of
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its global properties is inferred from these local specifications. As a result, this
allows an independent evolution of the implementations of individual compo-
nents, only requiring the re-establishment of their local correctness. An algorith-
mic technique for realization of this verification scheme is to replace the local
specifications by so-called maximal models [12]. These are most general models
satisfying the specifications. Thus, if such models exist, they can replace the
specifications of variable components in the verification of the global properties.

The work presented in this paper is the second, final, and conceptually
more complicated phase of developing a compositional verification framework
for temporal properties of procedural programs with variability exploiting max-
imal models. In the first phase, we developed a compositional verification tech-
nique that separates program structure from its operational semantics (behavior)
to allow independent evolution of components [13,15]. The technique abstracts
away all program data to achieve algorithmic and practical verification. Such a
drastic abstraction, while allowing the verification of certain control flow safety
properties [25], significantly reduces the range of properties that can be handled.
For instance, properties of sequences of method invocations such as “method m1

is not called after method m2 is called” can be verified, but not properties that
involve program data, such as “method m1 is called only if variable V is not
pointing to null”. In this work, we generalize this technique to capture program
data, and thus bring the usability of our work to a whole new level.

The two main limitations of any verification technique that is based on max-
imal models are (i) the computationally complex maximal model construction
and (ii) the difficulty of producing component specifications. In our previous
works, these limitations were softened by full data abstraction. As we show in
Sect. 2, including program data (if done in the straightforward fashion) makes the
maximal model construction and property specification impractical: the program
models and properties become too detailed and large, maximal model construc-
tion becomes unmanageably complex, and the program models become overly
specific to one programming language. Our present proposal captures program
data without adding extra complexity to the maximal model construction, and
keeps the complexity of property specification within practical limits.

We define a novel notion of program structure that is parametric on a set
of actions that model single instructions of a selected type, and a set of Hoare-
style state assertions that capture abstractly the effect of a series of statements
between consecutive actions. We combine the abstraction provided by assertions
with the precision provided by actions to define a uniform control flow graph
representation of programs that can be tuned for the verification of the class of
properties of interest. The abstraction provided by assertions prevents the local
specifications from becoming overly verbose, and allows us to capture program
data without adding extra complexity to the maximal model construction. From
a wider perspective, by providing Hoare-style assertions and precise ordering of
actions these models allow to combine Hoare-style with temporal logic reasoning.

To the extent of our knowledge, our previous framework and consequently
the one presented in this paper are the only ones for algorithmic verification of
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Fig. 1. Web Server Application

temporal properties of procedural languages that allow the proofs to be rela-
tivized on component specifications. From a technical point of view, the main
contributions of this paper compared to our previous works are: (i) a novel struc-
tural model that combines the precise ordering of selected instructions with
abstract representation of the remaining ones, and its operational semantics
(a behavioral model), (ii) a proof that the original maximal model construction
can be adapted for the case with data (possibly from infinite domains) with
minimal additional cost, (iii) a proof of the correctness of the technique by (non-
trivial) re-establishment of our previous results, and (iv) tool support for an
instantiation of the framework to programs with pointers as the only datatype.
The extended version of this paper including additional examples and proofs can
be found in the accompanying report [24].

2 Overview of the Approach

This section provides an overview of our framework by demonstrating its use on
an example that mimics the method invocation style of real-life web applications.
Although the technique we propose applies to procedural languages in general,
we illustrate it here on Pointer Programs (PoP), a language with pointers as
the only datatype [23]. The language supports pointer creation and deletion,
assignments and conditional statements, loops, and method-calls with call-by-
reference parameter passing. The statement new x allocates a fresh chunk of
memory and assigns its pointer to variable x, while del x deletes the memory
that x is pointing to and assigns null to x (and all its aliases). The guards for
the conditional statements and loops are equality (alias) and inequality checks
on variables, and non-deterministic choice, denoted by *. Being able to deal with
this language is of interest, since it can give rise to infinite state spaces, for two
reasons: unbounded stacks of procedure calls, and unbounded pointer creation.
Due to space constraints, the formal instantiation of our generic verification
framework to the PoP language is delegated to the accompanying report [24].

We use this language to implement a program that mimics the method invoca-
tion style of Java enterprise web applications. The execution of such applications
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starts in method Container where based on the current request a Servlet is called
to prepare the output. As a coding standard [17], servlets should not call each
other. Thus if for example servlet A needs to make use of servlet B, it forwards
a request to the Container that triggers a call to B. We model this so-called for-
warding mechanism by explicit invocation of Container in servlets.

The program in Fig. 1 provides an implementation of a container and two
implementations of a single servlet, in which the one at the bottom extends the
one at the top by adding a logging facility through calling method LogSys. In
the code, the variables are pointers to requests. The global variables p and c
point to the previous (last-received) and current requests, respectively. At the
beginning of the execution, the request c is initialized by Main and Container
is called. In Container if the current request is different with the previous one,
the current request is stored in p and method Servlet is called, which non-
deterministically generates a fresh request and calls back Container. By this,
we mimic the call-backs to Container (forwarding mechanism) in a real web-
application when servlets call each other via the container. Container drops (i.e.,
deletes) the requests that are bounced back to it (when p = c) to avoid cycles in
the computation. The code of method LogSys is not shown here,but we assume
that it does not modify the global variables. Here, we consider each method as
a component, but in general a component can consist of several methods.

In this example, we assume that the method Servlet is the variable part
of the program. The structural local specification of method Servlet and two
behavioral global properties are given in the figure. In the remainder of this
section, we explain how to apply to this program the verification technique devel-
oped in the later sections, in different variability scenarios.

Verification Technique. In our framework, we divide the verification of variable
programs into two independent sub-tasks:

(i) a check that the implementation of each variable component satisfies its local
specification, and

(ii) a check that the composition of the local specifications together with the
implementations of the non-variable components entails the global property.

By this division we localize the verification of variable components (with sub-
task (i)), and relativize the correctness of global properties of the program on
the local specifications of its variable components (with sub-task (ii)). Thus,
adding or changing the implementation of a variable component does not require
the global property to be re-verified, just its local specification (with sub-task
(i)). Also notice that, if the local specifications are specified as completely as
possible (i.e., are not tailored toward particular global properties), once the local
checks of sub-task (i) are performed, the verification of new global properties will
not require the re-specification and verification of variable components. In fact,
variable components are often implemented and specified as general-purpose
libraries that can be used in arbitrary contexts and should thus not be specified
toward specific global properties.
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In most variability scenarios, variable systems would be verified once (with
sub-tasks (i) and (ii)) before delivering the software to customers, and would be
re-verified every time a variable component is modified by performing sub-task
(i) on the customer’s side. Ideally, sub-task (i) should be performable quickly and
thus in isolation from the non-variable part of the system, which is (usually) sig-
nificantly larger than the modified component. This is difficult to achieve for local
specifications that express properties of the execution of programs, i.e. behav-
ioral specifications, but is natural for those that express properties of the code
(program text) itself, i.e. structural specifications. The reason is that the lat-
ter can be checked against the component’s code rather than the execution of
the whole program. For example, a behavioral specification of method Servlet
would be “c points to null at any return point of method Servlet”, which can-
not be checked for method Servlet in isolation from Container and LogSys,
while the structural specification given in Fig. 1 can be checked against Servlet’s
code, independent from the rest of the program. In practice, these local speci-
fications should be provided by the developers. This requires the knowledge of
the safety requirements of the system.

Let us now mimic some dynamic variability scenarios. First assume that no
implementation of Servlet is available, for example because it is not imple-
mented yet or should be imported from a third-party library. Still, the incom-
plete program can be verified from the given structural local property of method
Servlet and the implementation of methods Main and Container by perform-
ing sub-task (ii). Later, when the implementation of method Servlet at the top
becomes available, it is only checked against its specification, as in sub-task (i).
Now assume that, after a while, the implementation of Servlet is updated to
the one at the bottom. Again, only the local check of sub-task (i) needs to be
performed, this time for the new implementation.

For static variability scenarios, assume that the two implementations of
Servlet are available and each of them together with Container make an appli-
cation that is delivered to customers based on their needs and budget (as in prod-
uct families). To verify the global property, the local specification of method
Servlet is checked for each of the implementations separately (sub-task (i)).
Independently, the composition of this local specification with the implementa-
tion of Container is checked against the global property (sub-task (ii)).

To verify programs in such variability scenarios, we model the structure of
non-variable components with flow graphs, and convert local specifications of
the variable components to maximal flow graphs. Here, we present these notions
informally and describe how they are used in our verification framework.

Flow Graphs. A flow graph is a finite collection of method graphs, each of which
represents the control flow structure of a method. Our flow graphs are parametric
on the class of program instructions that need to be explicitly represented for the
verification of the properties of interest, while using an abstract representation of
all other instructions. The rationale is that in temporal reasoning one is usually
interested in the ordering of certain events of interest, here called actions. The
exact ordering of the other events can be abstracted away; only their cumulative
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(a) Flow Graphs of Main and Container (b) Maximal Flow Graph of Servlet

Fig. 2. (a) Flow Graphs of Main and Container (b) Maximal Flow Graph of Servlet

effect needs to be captured. We represent the effect of a series of consecutive
events between two actions in a Hoare style, through logical assertions. The
combination of the precise ordering of actions and abstract representation of
data provided by assertions yields a flexible program model that potentially
allows to combine Hoare-style with temporal logic reasoning. Here, however, we
use these models only for the verification of control flow properties.

In our flow graphs, the actions have parameters and are represented by tran-
sition labels, while the assertions are assigned to control nodes1. Besides asser-
tions, return nodes are tagged by the atomic proposition r. Entry nodes of
method graphs represent the beginning of methods.

As an example, Fig. 2a shows a flow graph of the code of methods Main and
Container. We want to verify properties talking about order of new and del
statements, e.g., global properties in the figure, thus in this example, actions
are new and del. We add a neutral action ε to simplify the presentation of the
flow graphs. Assertions are equality and inequality checks on the variables at
the beginning and the end of a block of code between two actions. They express
the cumulative effect of condition evaluation and assignments. We use variable
names (such as p and c) and their primed version (p′ and c′) to refer to the values
at the beginning and the end of blocks, respectively. For example, state s8 in the
figure represents the assignment statement p := c in the code of Container.

Maximal Flow Graphs. A maximal flow graph for a specification is a flow graph
that represents the structure of any code satisfying it. To verify global proper-
ties, in our framework the variable components are replaced with maximal flow
graphs constructed from their specifications (in sub-task (ii)). By this, we decou-
ple the concrete implementations of variable components from the global cor-
rectness reasoning, thus allowing independent evolution of their code. In Sect. 5,
we define formally maximal flow graphs, prove their existence and uniqueness
for our specification logic, and provide an algorithm to construct them. Here, we
only give an intuitive explanation of their specifics in the present setup.

Local specifications often specify constraints on a small subset of the pro-
gram variables only, namely the variables whose values should be captured for
1 This (maybe non-standard) design choice allows a clear distinction between actions

and assertions, which is crucial for our framework.



Algorithmic Verification of Procedural Programs 333

the verification of the class of properties of interest. For example, the specifi-
cation of method Servlet does not specify any constraint on the variables p
and c since their values don’t have any effect on the global properties. In such
situations, there are (possibly infinitely) many implementations for a component
that respect its specification. A maximal flow graph should capture the structure
of all these implementations. It is therefore of size exponential in the number
of unspecified variables and their values, and is thus infeasible to construct in
practice with standard algorithms, e.g., [12,13,20], where data is represented
concretely.

In our structural models, however, data is represented symbolically through
logical assertions. We use a semantic entailment relation on assertions to reduce
the size and complexity of the construction of the maximal flow graphs. The
idea is that a control node with assertion φ can represent any set of nodes that
are tagged with assertions entailing φ. For example, consider the maximal flow
graph constructed from the local specification of Servlet shown in Fig. 2b. In
the graph the assertions (true) do not specify any constraints on the variables,
so any similar flow graph that for example has c′ = c or p′ = p as assertions at
its control nodes will be represented by the given maximal flow graph.

Verification. In our framework we support verification of structural and behav-
ioral global properties by performing the sub-tasks (i) and (ii) as follows. (i) The
flow graph extracted from the available implementation of Servlet is model
checked against its local specification. (ii) The maximal flow graph of Servlet
and the flow graph of Container are composed by means of set-theoretic union.
This composition can be directly model checked against structural global prop-
erties. However, the verification of behavioral global properties requires that a
behavioral model is induced from the composition. Intuitively this model (called
flow graph behavior) should capture all possible runs (executions) of the flow
graph. Therefore, it should model the call stack and represent the values of vari-
ables at each point of the execution, in which the latter requires the semantics of
the transition labels and state assertions. Also, to allow model checking of such
models, values should be from finite domains. Then the model can be represented
by means of pushdown automata. These models are defined in Sect. 3.

3 Program Model

We first define an abstract notion of model on which our representations of pro-
gram structure and behavior are based. A model is a Kripke structure extended
with transition labels and a set of state assertions.

Definition 1 (Model). A model is a tuple M = (S,L,→, A, P, λA, λP ) where
S is a set of states, L a set of labels, →⊆ S×L×S a labeled transition relation, A
a finite set of atomic propositions (or atoms), P a finite set of state assertions,
λA : S → 2A and λP : S → P valuations assigning to each state a set of atoms
and a state assertion, respectively. An initialized model S is a pair (M, E) with
M a model and E ⊆ S a set of initial states.
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Models are composed through disjoint union �. We assume the set of state
assertions P to be equipped with a semantic entailment relation, denoted by
�. This relation is used to define simulation preorder, logical satisfaction, and
maximal model construction.

In contrast to models without data, the states of models with data are addi-
tionally tagged with state assertions. As we shall see, these assertions together
with the atomic propositions provide the basis for the symbolic and concrete rep-
resentation of data, respectively. State assertions are used in structural models
to capture how data may change at the states (nodes) of the model, while atomic
propositions are used in behavioral models to represent the values of variables
at each point of the program execution.

We mentioned that a maximal model is the most general model satisfying a
property. The generality relation on models is technically defined w.r.t. a pre-
order relation called simulation. The definition of simulation preorder is para-
metric on the semantic entailment �.

Definition 2 (Simulation). A simulation on S is a binary relation R on S
such that whenever (s, t) ∈ R then λA(s) = λA(t), λP (s) � λP (t), and whenever
s

a−→s′ then there is some t′ ∈ S such that t
a−→t′ and (s′, t′) ∈ R. We say that t

simulates s, written s � t, if there is a simulation R such that (s, t) ∈ R.

Simulation on two disjoint models M1 and M2 is defined, as usual, as simulation
on their union. Simulation is extended to initialized models (M1, E1) by defining
(M1, E1) � (M2, E2) if there is a simulation R such that for each s ∈ E1 there
is some t ∈ E2 with (s, t) ∈ R.

As mentioned earlier, we compose models to verify global properties. The
following theorem establishes that simulation is preserved by model composition.

Theorem 1 (Monotonicity). If S1 � S ′
1 and S2 � S ′

2 then S1 �S2 � S ′
1 �S ′

2.

3.1 Flow Graphs

Intuitively, a flow graph is a collection of method graphs, one for each method of
the program, as illustrated in Fig. 2a. W.l.o.g., we assume that method names
are distinct and taken from a countably infinite set of method names Meth.
The notion of method graph is an instance of the generic notion of initialized
model defined above, with particular sets of assertions P and labels L. Let A
be a set of actions with data parameters. The set of flow graph labels is L =
LA ∪ Lcall, where LA = {α(a1, ..., an) | α ∈ A} are action-induced labels and
Lcall = {m(a1, . . . , aw) | m ∈ Meth} are labels representing method invocations.

Definition 3 (Method Graph). A method graph for method name m ∈ Meth
over a set M ⊆ Meth of method names is an initialized model (Mm, Em) where
Mm = (Sm, Lm,→m, Am, Pm, λAm

, λPm
) is a finite model and Em ⊆ Sm is

a non-empty set of entry points of m. Sm is the set of control nodes of m,
Lm ⊆ L, Am = {m, r}, Pm ⊆ P , λPm

: Sm → Pm is a valuation for transition
propositions, and λAm

: Sm → {{m}, {m, r}} is a valuation for atoms so that
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each node is tagged with its method name, and return nodes are additionally
tagged with r.

We sometimes write s |= m to denote m ∈ λA(s). Notice that with the above
definition, control nodes of flow graphs do not in general correspond to single
program points in the actual program’s code, but rather to sets of them.

Example 1. The definition of method graphs for PoP programs is an instantia-
tion of the definition above where Apop is formed from PoP actions and Pm are
the PoP assertions. Recall that the set of PoP actions is Apop = {del, new, ε}
where the arities of new and del are one and of ε is zero. The set of PoP assertions
Ppop is formed by equality and inequality constraints on the values of variables
at the beginning (non-primed variables) and end (primed variables) of the code
block that has collapsed into a state. Figure 2a shows a flow graph for the non-
variable components (methods Main and Container) of the PoP program in
Fig. 1.

Given the definition of PoP assertions above, semantic entailment � on Ppop

is defined as logical implication. �

In contrast to the flow graphs defined here, the ones without data do not have
state assertions, because all variables and their values are abstracted away.

Every flow graph G is equipped with an interface I, denoted by G : I. A flow
graph interface consists of a triple I = (M+,M−,Modify), where M+,M− ⊆
Meth are finite sets of provided and required methods, respectively, and Modify
is the set of the global variables of the program that are modified in the code of
the provided methods. As we shall see, interfaces are needed when constructing
maximal flow graphs, which in turn are used for compositional verification.

The definition of flow graph simulation, denoted by �s, is an instantiation of
the general notion of simulation on models (see Definition 2) to flow graphs.

3.2 Flow Graph Behavior

Program states σ ∈ Σ are defined as usual as mappings from the set of program
variables V to their values taken from D. Behavioral transitions conceptually
capture the occurrence of actions together with data transformations as spec-
ified by assertions. An assertion φ is interpreted over pairs of program states,
written (σ, σ′) |= φ, and is defined to hold when the closed formula φ[σ, σ′] is
logically valid (here σ, σ′ are used as syntactic substitutions for the non-primed
and primed variables, respectively). We define behavioral states 〈s, σ, σ′〉 as con-
sisting of a control node and a pair of program states that satisfies the assertion
of the node.

Example 2. PoP programs can create infinitely many pointers. However, at any
point of the execution (behavior), only finitely many of them are referenced by
program variables. Following [23] we exploit this fact and abstractly represent
the infinite pointers of PoP programs by finitely many equivalence classes. Two
variables are deemed to be equivalent whenever they are pointing to the same
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memory. Thus, PoP program states are essentially partitionings of variables into
such equivalence classes. In Example 3 we show how these program states are
used to form an execution of the PoP program in Fig. 1. �

Next we define flow graph behavior. Behavioral transitions are labeled with
“m1 call m2(a1, . . . , aw)” for an invocation of method m2 by method m1 with
parameters a1, . . . , aw, “m2 ret m1” for the corresponding return from the call,
or α(a1, ..., an) ∈ LA for the (method-local) transfer of control by action α with
parameters a1, ..., an. The definition of flow graph behavior is parametric on
externally provided (denotational) semantic mappings �·� over states and state
pairs that specify the (local) effect of actions, calls and returns.

Definition 4 (Flow Graph Behavior). Let S = (M, E) : (M+,M−,Modify)
be a flow graph s.t. M = (S,L,→, A, P, λA, λP ). The behavior of S is defined as
the initialized model b(S) = (Mb, Eb) where Mb = (Sb, Lb,→b, Ab, Pb, λAb

, λPb
),

with Sb ⊆ (S × Σ × Σ) × (S × Σ)∗, i.e., states (or configurations) are pairs of
behavioral states 〈s, σ, σ′〉 and stacks γ over pairs of control nodes and program
states, Lb = LA ∪ {m1 call lm2 | m1 ∈ M+ ∧ lm2 ∈ Lcall} ∪ {m1 ret m2 |
m1,m2 ∈ M+}, Ab = A ∪ (Σ × Σ), Pb = {tt}, λAb

(〈s, σ, σ′〉, γ) = λA(s) ∪
{(σ, σ′)}, and →b⊆ Sb × Lb × Sb is defined by the following transition rules:

[α] (〈s1, σ1, σ′
1〉, γ)

α(σ′(a1),...,σ′(an))−−−−−−−−−−−−−−→(〈s2, σ2, σ′
2〉, γ) if s1

α(a1,...,an)−−−−−−−−−→s2 ∧
(σ1, σ′

1) |= λP (s1)∧
(σ2, σ′

2) |= λP (s2)∧
σ2 = �α�σ′

1

[call] (〈s1, σ1, σ′
1〉, γ) if s1

m′(a1,...,aw)−−−−−−−−−−→s2 ∧ s |= m′ ∧
m call m′(σ′(a1),...,σ′(aw))−−−−−−−−−−−−−−−−−−−−→(〈s, σ, σ′〉, 〈s2, σ′

1〉 · γ) s1, s2 |= m ∧ m, m′ ∈ M+ ∧
(σ1, σ′

1) |= λP (s1)∧
(σ, σ′) |= λP (s)∧
σ2 = �call�σ′

1

[ret] (〈s1, σ1, σ′
1〉, 〈s2, σ2〉 · γ)

m ret m′
−−−−−−→(〈s2, σ3, σ′

3〉, γ) if s1 |= r ∧ m, m′ ∈ M+ ∧
s2 |= m′ ∧ (σ1, σ′

1) |= λP (s1)∧
s1 |= m ∧ (σ3, σ′

3) |= λP (s2)∧
σ3 = �ret�(σ′

1, σ2)

The initial configurations are Eb = {(〈s, σ0, σ
′
0〉, ε) | s ∈ E ∧ (σ0, σ

′
0) |= λP (s)},

where σ0 and ε denote the initial program state and the empty stack, respectively.

In the behavioral models variables are explicitly assigned to values and therefore
the set of assertions Pb should be empty. However, to be faithful to Definition 1,
we use the (dummy) value tt which we assign to all behavioral states. It should
further be noted that if D is finite, flow graph behavior can also be defined by
means of pushdown automata, as in [13].

Example 3. The above definition is instantiated to PoP programs through the
denotational semantics of PoP transition labels: PoP actions, call and ret.
Due to space limitation, here we only provide an intuitive explanation of the
semantics and delegate the formal definitions to the accompanying technical
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report [24]. Intuitively, the semantics of ε is the identity function, del(v) moves
v and all of its aliases to the equivalence class of null, new(v) maps v to a fresh
equivalence class, call initializes a program state for the called method, and
ret recomputes the equivalence classes of variables upon a return from a call.
Consider the composition of flow graphs shown in Fig. 2a and b. An example
run through this flow graph is shown below2. In the run, the boxes represent the
equivalence classes of variables, where the left box always represents the class of
null, e.g., shows that variables p is in the equivalence class of null and c
is in a different one.

Observe how assertions and transitions change the equivalence classes of vari-
ables, and states are pushed to and popped from the stack. E.g., the first tran-
sitions, new c, changes the equivalence class of c from null to a fresh one;
the assertion of state s8 moves p to the equivalence class of c; and the second
transition pushes to the stack, that is popped by the last transition. �

In contrast to the above definition of behavior, the one without data does not
have program states Σ, and the only action is ε. Thus, at calls control nodes
are simply pushed to the stack and these are popped at returns. Also the set of
atomic propositions Ab is equal to A, only consisting of method names and r.

Again, we instantiate the general definition of simulation (Definition 2) to
flow graph behavior, and denote it by �b. A result that we later exploit for
compositional verification is that if two flow graphs are related by structural
simulation, then their behaviors are related by behavioral simulation.

Theorem 2 (Simulation Correspondence). For flow graphs A and B, if
A �s B then b(A) �b b(B).

4 Logic

As a property specification language we use the safety fragment of Modal Equa-
tion Systems [21], that is without diamond modalities. This logic is equal in
expressive power to the safety fragment of the modal μ-calculus [19]. Here, we
employ the former logic for technical reasons that will become clear later, but a
user is free to use either. The translation of μ-calculus to simulation logic defined
2 This example is simplified for the presentation in this paper. For complete examples

please see [24].
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in Definition 6 below is based on Bekič’s principle described in [6,8]. The transla-
tion in the other direction is straightforward and done simply by replacing each
fixed point by an equation.

Following Larsen [21], we define the syntax and semantics of the specification
language in two steps: first we define a basic modal logic that is parametrized
on a set of labels L, state assertions P , and atoms A, and then we add recursion
by means of equation systems in Definition 6. Basic simulation logic is a variant
of Hennessy-Milner logic [14] without diamond modalities.

Definition 5 (Basic Simulation Logic: Syntax). The formulas of basic sim-
ulation logic are inductively defined by:

φ ::= a | ¬a | p | ¬p | X | φ1 ∧ φ2 | φ1 ∨ φ2 | [l]φ

where a ∈ A, p ∈ P , l ∈ L, and X ranges over a set of propositional variables V.
Formulas of the shape a, ¬a, p, and ¬p are called atomic formulas.

The semantics of a formula φ of basic simulation logic over L, P , and A is defined
relative to a model M and an environment ρ : V → 2S as an extension of the
standard definition (see [26]) with the following additional clauses.

‖p‖ρ
def= {s ∈ S | λP (s) � p} and ‖¬p‖ρ

def= S \ ‖p‖ρ

Definition 6 (Modal Equation System). A modal equation system Π =
{Xi = Φi | i ∈ J} over L and A for a set of indexes J is a finite set of
defining equations such that the variables Xi are pairwise distinct and each Φi

is a formula of basic simulation logic over L, P , and A. The set of variables
occurring in Π is partitioned into the set of bound variables, defined by bv(Π) =
{Xi | i ∈ J}, and the set of free variables fv(Π).

The semantics of a closed modal equation system ‖[Π]‖ρ is defined as its greatest
fixed point. We use n-ary versions of conjunction and disjunction, setting

∧ ∅ =
tt (true) and

∨ ∅ = ff (false). We use Labels(X) and Atoms(X) to refer to
the set of labels and atoms of the defining equation for X, respectively.

Finally, using the definitions of basic simulation logic and modal equation
systems, the formulas of simulation logic are defined by Φ[Π] over L, P , and A,
where Φ is a formula of basic simulation logic and Π is a modal equation sys-
tem. The semantics of Φ[Π] w.r.t. model M and environment ρ is defined by
‖Φ[Π]‖ρ

def= ‖Φ‖ρ[‖Π‖ρ]. We say that a state s of a model M satisfies Φ[Π],
written (M, s) |= Φ[Π], if s ∈ ‖Φ[Π]‖ρ for all ρ. For initialized model (M,E) we
define (M,E) |= Φ[Π] if (M, s) |= Φ[Π] for all s ∈ E.

Simulation logic is capable of expressing safety properties of sequences of
observed actions, calls and returns. We use two instantiations of this logic to
represent structural and behavioral properties. Structural logic expresses prop-
erties of flow graphs (Definition 3), therefore it is instantiated by a ∈ A, p ∈ P ,
and l ∈ L. Behavioral logic, however, expresses properties of flow graph behaviors
(Definition 4), therefore it is instantiated by a ∈ Ab, p ∈ Pb, and l ∈ Lb.
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Example 4. The structural local property “Container can only be called as the
last statement of the method Servlet” in Fig. 1 is specified by the structural
formula X[Π], where Π is

X = [Container()]r ∧
∧

l∈LServlet\Container()
[l]X

The second behavioral global property in Fig. 1 is specified by the behavioral
formula X[Π], where Π is X = ((Main∧r) ⇒ (p = null∧c = null))∧∧

l∈Lb
[l]X.

5 Maximal Models and Flow Graphs

To construct maximal models, we generalize our previous algorithm for models
without program data [13], following closely the treatment there. We therefore
only sketch our construction here, and refer the reader to [13] for the details. Our
construction algorithm is defined on the general notion of model (Definition 1).

5.1 Maximal Model Construction

We define two auxiliary functions θ and χ which form a Galois connection
between finite models and formulas in simulation logic. Function χ translates
a finite model into a formula, while θ translates a formula into a (finite) model.
Both functions are defined on formulas in a so-called simulation normal form
(SNF). In this section, we define SNF and show that every formula of simulation
logic has an SNF representation and provide an algorithm to convert a formula
to its SNF. The construction of maximal models basically consists of translating
a given formula into SNF and applying function θ on the result.

Definition 7 (χ). Function χ maps a finite initialized model (M, E) into its
characteristic formula χ(M, E) = φE [ΠM], where φE =

∨
s∈E Xs, and ΠM is

defined by the equations:

Xs =
∧

l∈L

[l]
∨

s
l−→t

Xt ∧
∧

a∈λA(s)

a ∧
∧

b/∈λA(s)

¬b ∧ λP (s)

Example 5. Function χ maps the flow graph of method Main to its characteristic
formula (X1)[ΠMain], where ΠMain is the modal equation system

X1 =
∧

l∈L\{new c}[l]ff ∧ [new c]X2 ∧ ¬r ∧ Main ∧ Φ

X2 =
∧

l∈L\{Container()}[l]ff ∧ [Container()]X3 ∧ ¬r ∧ Main ∧ Φ

X3 =
∧

l∈L[l]ff ∧ r ∧ Main ∧ Φ

and where L is the set of structural labels. Recall that ff =
∨ ∅. �

The next result shows that function χ precisely translates an initialized model
to a formula. This is a variation of an earlier result by Larsen [21].
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Theorem 3. Let S1 and S2 be two initialized models and let S2 be finite. Then
S1 � S2 if and only if S1 |= X (S2).

Definition 8 (Simulation Normal Form). A formula φ[Π] of simulation
logic over L, A, and P is in simulation normal form (SNF) if φ has the form∨ Z for some finite set Z ⊆ bv(Π) and all equations of Π have the following
state normal form

X =
∧

l∈L

[l]
∨

YX,l ∧
∧

a∈BX

a ∧
∧

b/∈A\BX

¬b ∧ p (1)

where each YX,l ⊆ bv(Π) is a finite set of variables, BX ⊆ A is a set of atomic
propositions, and p ∈ P is a state assertion.

Example 6. The property shown in Example 5 is in simulation normal form. �

To translate simulation logic formulas into SNF we generalize the algorithm
of [13] that works as follows. For a given set of atoms A, labels L, and a for-
mula φ[Π], it saturates each equation of Π by conjoining its missing labels as∧

l∈L∧l/∈Labels(X)[l] tt, and atoms as
∧

a∈A∧a/∈Atoms(X)(a ∨ ¬a), and then trans-
forms the resulting formula to SNF by introducing new equations for disjunctions
of formulas not guarded by any box. Our adaptation of this algorithm to for-
mulas φ[Π] of Definition 6 proceeds in two steps. First, we apply the above
algorithm to φ[Π], simply carrying over the assertions of the equations. In the
second step, we conjoin the top element of the lattice of P to the resulting equa-
tions that do not have any assertions. In this way we simplify the saturation of
assertions, that would otherwise be very inefficient or even impossible when the
set of variables and their values is large or infinite.

Theorem 4. Every formula of simulation logic has an equivalent one in SNF.

Definition 9 (θ). Function θ translates a formula (
∨ X )[Π] over L, A, and P ,

that is in SNF as in (1), to the (finite) initialized model θ((
∨ X )[Π]) = ((S,L,→,

A, P, λA, λP ), E) where S = bv(Π), E = X and for every X ∈ X the equation
for X induces transitions {X

l−→Y | Y ∈ YX,l}, λA(X) = BX , and λP (X) = p.

Theorem 5 (Maximal Model Theorem). For any φ in SNF, we have S �
θ(φ) if and only if S |= φ.

Thus, the model θ(φ) is a maximal model for φ, in the sense that θ(φ) is a model
that satisfies φ and simulates all models satisfying it.

5.2 Maximal Flow Graph Construction

Maximal models constructed from structural properties by the above algorithm
are in general not legal flow graphs. To restrict these to legal flow graphs, we
conjoin the property with a so-called characteristic formula CI constructed from
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the interface I = (M+,M−,Modify). CI describes precisely the models that
constitute flow graphs with interface I:

CI = ΦI [ΠI ] , ΦI =
∨

m∈M+ Xm

ΠI = {Xm =
∧

l∈L[l]Xm ∧ am ∧ pm | m ∈ M+}
am = m ∧ ∧{¬m′ | m′ ∈ M+,m′ �= m}
pm =

∧{v = v′ | v /∈ Modify ∧ v ∈ V }
With the help of CI we obtain a variant of Theorem 5 for flow graphs.

Theorem 6. Let I = (M+,M−,Modify) be an interface. For any initialized
model S = (M, E) over L and A = M+ ∪ {r} we have:

1. S |= CI if and only if R(S) : I
2. S �s θ(φ ∧ CI) if and only if S |= φ and R(S) : I

where R(S) denotes the reachable part of S.

6 Compositional Verification and Tool Support

As mentioned in Sect. 5, for models and formulas as defined in Definitions 1
and 6, maximal models exist and are unique up to isomorphism. Therefore,
for this choice of model and logic we can provide the following principle for
compositional verification that is sound and complete for finite models: “To show
M1 � M2 |= ψ, it suffices to show M1 |= φ, i.e., that component M1 satisfies
a suitably chosen local specification φ, and θ(φ) � M2 |= ψ, i.e., that M2, when
composed with the maximal model θ(φ), satisfies the global property ψ.”

We exploit Theorem 6 to adapt this principle to flow graphs (as models) and
structural logic and use the maximal flow graph construction from Sect. 5.2 to
obtain the rule below.

G1 |= φ θ(φ ∧ CI) � G2 |= ψ

G1 � G2 |= ψ
(2)

The rule states that the composition of flow graphs G1 and G2 satisfies the
structural property ψ if flow graph G1 satisfies a local structural property φ,
and the composition of flow graph G2 with the maximal flow graph for φ and
interface I satisfies ψ.

Theorem 7. Rule (2) is sound and complete.

We restrict local specifications to structural properties, and by exploiting the fact
that structural simulation implies behavioral simulation (Theorem 2), we obtain
a complete compositional verification rule for global behavioral properties, thus
avoiding the possibility of false negatives. However, adapting the compositional
verification principle to local behavioral specifications is more problematic, as
behavioral properties in general do not give rise to unique maximal flow graphs.
We can represent the set of flow graphs satisfying the local specification by a
(pushdown) model that simulates the behavior of these flow graphs, but this
necessarily leads to approximate (i.e., sound but incomplete) solutions, since
such a model cannot be guaranteed to be a legal flow graph behavior.
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Tool Support and Evaluation. We have extended our compositional verification
toolset [16] for the verification of PoP programs in the presence of variability.
Besides the necessary data structures, the toolset includes a maximal flow graph
constructor, a tool to induce behaviors from flow graphs, and external model
checkers CWB [9] and Moped [18]. We used this toolset to verify a Java J2EE
application consisting of 1087 lines of code, of which 297 lines are variable.

We focused on properties of database connections, such as “at the end of
the execution, all database connections should have been closed”. We there-
fore abstracted away all program data except variables of this type, constructed
and destructed by invoking methods getConnection and close, respectively. To
extract flow graphs with this abstraction, we first extracted a data-less flow graph
from the Java code with our flow graph extractor tool ConFlEx [11]. Then we
manually inserted all 4 database connection variables of the program into the
extracted flow graphs and replaced any call to getConnection and close meth-
ods with new and del actions, respectively. This was necessary because currently
we do not have a tool to extract PoP flow graphs from code. We also specified
each method of the program with a structural local specification, expressing
its safe sequences of invocation of methods getConnection and close (here
renamed to new and del). We then (i) model checked the flow graphs of variable
components against their corresponding local specifications with CWB (took 0.5
sec.), and (ii) constructed maximal flow graphs from the local specifications of
the variable components (took 4.1 sec.), composed them with the flow graphs of
the other components and model checked the result against a property of data-
base connection with Moped (took 2.1 sec.). Recall that to re-verify the program
after a change in the variable components only sub-task (i) needs to be repeated.

7 Related Work

In the context of compositional verification of temporal properties, the maxi-
mal model technique was first proposed by Grumberg and Long for ACTL, the
universal fragment of CTL [12], and later generalized by Kupferman and Vardi
for ACTL* [20]. These works do not address the verification of infinite state
systems. In our previous work, we used maximal models constructed from safety
μ-calculus formulas to verify infinite state context-free behaviors, where the pro-
gram data is disregarded [13]. In this work we extend our previous work to a
generic framework that captures program data.

For a different class of properties, Hoare logic provides a popular frame-
work for compositional verification of programs, (see e.g. [22]) that is technically
capable of verifying programs with variability. Also, of particular interest to our
technique is the work by Alur and Chaudhuri [3], which proposes a unification
of Hoare logic and Manna-Pnueli-style temporal reasoning by defining a set of
proof rules for the verification of some particular classes of (non-regular) tem-
poral properties. Our technique is partially inspired by this work.

Related to our approach of relativizating global properties on local speci-
fications, Andersen introduces partial model checking in which global proper-
ties of concurrent systems are reduced to local properties of their components
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(processes) [5]. The work only considers finite-state systems; however, the app-
roach suggests the possibility of extending our technique to generate local prop-
erties for variable components of programs when the global properties are fixed.

Several successful tools and techniques exist for (non-compositional) ver-
ification of behavioral properties of procedural programs. However, as men-
tioned, compositionality is essential for the verification of variable programs.
Still, related to our two-step verification procedure, tools such as SLAM [7] and
ESP [10] divide the verification into (local) intra- and (global) inter-procedural
analysis to achieve scalability. It is interesting to explore if the ideas presented
here can be used to adapt these tools for the verification of systems with
variability.

Closely related to our flow graph model are recursive state machines [2],
defined by Alur and others as a formalism to model procedural programs with
recursive calls. The authors propose efficient LTL and CTL* model checking
algorithms. However, they do not address compositional verification.

As for specification languages, the temporal logic of nested calls and returns [4]
and its generalization to nested words [1] are of particular interest to this work.
These logics are capable of abstracting internal computations by moving from a
call to its corresponding return point in one step. However, they do not make a
clear separation of structure and behavior, and may therefore require more
involved maximal model constructions.

8 Conclusion

This paper presents a generic framework for compositional verification of tem-
poral safety properties of sequential procedural programs in the presence of vari-
ability. The framework is a generalization of a previously developed framework
which disregards program data. Our technique relies on local specifications of
the variable components, in that the correctness of global properties of the pro-
gram is relativized on the composition of the maximal flow graphs constructed
from these local specifications and the flow graphs of the stable components.

The framework is parametric on a set of selected “visible” program instruc-
tions that are explicitly represented as transition labels, while the effect of all
other instructions is captured abstractly by means of Hoare-style state asser-
tions. This distinction allows to keep the level of detail of specifications within
practical limits. It also allows a (symbolic) formulation of the maximal model
construction for program models with data that does not add to the complex-
ity of the construction for models without data. To evaluate our technique in
practice, we provide tool support for the verification of evolving PoP programs.

In the current setting, our (symbolic) flow graphs induce behaviors with
concrete data from finite domains. We conjecture that program data can be
represented symbolically in the behaviors as well, using the state assertions of
the structural program model (Definition 1). We plan to investigate the expres-
siveness of symbolic behaviors. We are currently working on a parametric flow
graph extractor to extract flow graphs of Java programs for the given sets of
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actions and assertions. We also plan to provide tool support for the verification
of programs with other datatypes, such as integers and Booleans.
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