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Abstract. The modular analysis of control flow of incomplete Java byte-
code programs is challenging, mainly because of the complex semantics
of the language, and the unknown inter-dependencies between the avail-
able and unavailable components. In this paper we describe a technique
for incremental, modular extraction of control flow graphs that are prov-
ably sound w.r.t. sequences of method invocations and exceptions. The
extracted models are suitable for various program analyses, in particu-
lar model-checking of temporal control flow safety properties. Soundness
comes at the price of over-approximation, potentially giving rise to false
positives reports during verification. Still, our technique supports incre-
mental refinement of the already extracted models, as more components
code becomes available. The extraction has been implemented as the
ConFlEx tool, and test-cases show its utility and efficiency.

1 Introduction

The main obstacle to the formal verification of software is the size of its state
space. A standard approach to address this problem is to construct an abstract
model of manageable size and to perform the verification over the model. Ide-
ally, the abstraction should come with a formal argument that it is property-
preserving for the class of properties of interest, otherwise the verification results
cannot be trusted. Control flow graphs (CFGs) are among the most commonly
used software models, where nodes represent the program’s control points, while
edges represent the transfer of control between the points.

In this paper we present a framework for the extraction of CFGs from the
available components of incomplete Java bytecode (JBC) programs. That is, pro-
grams where the implementation of some components is not yet available. Typi-
cal situations when one has to deal with incomplete programs are systems under
development, or systems depending on third-party software. In the latter case,
it is common that the source code of the third-party software never becomes
available, which motivates our choice to analyze Java bytecode.

We extract CFGs that are sound w.r.t sequences of method invocations and
exceptions. Such models are useful for many static analyses, especially for the
formal verification of temporal control flow safety properties. Previous techniques
have been proposed to analyze incomplete JBC programs [6,16]; however they
are admittedly unsound. To the best of our knowledge, our framework is the first
to soundly analyze the control flow of incomplete programs.
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The challenges to soundly analyze control flow from incomplete JBC programs
are twofold. The first are the object-oriented features of JBC. For instance, vir-
tual method calls (VMC) and exceptions impose difficulties. The second are the
unknown inter-dependencies between available and yet unavailable software com-
ponents. For instance, it is hard to estimate the control flow caused by exception
propagation, or to determine precisely the possible receivers of a VMC.

We define our framework by generalizing a previous algorithm from Amighi
et al. [2] for complete JBC programs that uses a transformation into an interme-
diate bytecode representation (BIR) [12]. The transformation into BIR allows
the precise estimation of a significant subset of the implicit (e.g., division by
zero) exceptions, and of explicit (with athrow instruction) exceptions.

The inter-dependencies involving yet unavailable components are captured by
means of user-provided interfaces. Our approach is conservative, and assumes
that unavailable methods may propagate any exception. This results in signif-
icant over-approximation, but the user may alleviate it by specifying in the
method’s interface the exceptions it should never propagate.

Still, valid global properties may fail to be established, giving rise to so-called
false positives. The algorithm mitigates this by allowing the incremental re-
finement of previously extracted CFGs, as more code becomes available. This
is accomplished by decoupling the intra- and inter-procedural exceptional flow
analysis. So, properties that could not be verified in the more abstract CFGs
may be established over the refined CFGs.

The framework defines formally the constraints to instantiating yet unavail-
able code, needed to ensure the soundness of the already generated CFGs w.r.t.
sequences of method invocations and exceptions. Further, we prove the correct-
ness of our extraction. First, we show that the extracted CFGs from the available
components are supergraphs of the ones extracted from the same components
by the algorithm for complete programs. Then, we connect this with previously
established results to conclude that the CFGs extracted with the present algo-
rithm are also sound w.r.t. the JBC behavior (as defined by the JVM), as long as
the specified constraints are respected. Therefore, already established behavioral
or structural properties are thus guaranteed to still hold.

We have implemented our technique as the ConFlEx tool. It features caching
of previous analyses, necessary for the incremental refinement, and matching
of newly arriving code against their interface specifications. Our experimental
results confirm the intuitive expectation that the over-approximations impact
significantly the size of the CFGs. Also, the results show that ConFlEx is
efficient, and performs a light-weight extraction of CFGs.

Organization. Section 2 describes the program models on which we base our
technique, and the transformation into the BIR. Section 3 motivates our work
by presenting a compositional verification technique that benefits directly from
our results. Section 4 describes our framework to analyze incomplete programs,
and outlines a correctness argument. Section 5 describes the implementation
of our approach, and presents experimental results. Section 6 discusses related
work, while Section 7 draws conclusions and outlines directions for future work.
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2 Preliminaries

In this section we briefly present the program model, and give an overview of
the BIR language, both necessary to define our CFG extraction algorithm.

2.1 Program Model

We define CFGs, following Huisman et al. [13], as Kripke structures with transi-
tion labels, where nodes represent program control points, and the edges repre-
sent how instructions shift control between the points. The atomic propositions
associated with nodes contain information about the control address, possible
exceptions, and returns. We use the following notational convention: ◦pm denotes
a normal non-return control node in the address p of method m, •p,xm an excep-
tional non-return control node with exception x, while ◦p,rm and •p,x,rm a normal
and an exceptional return node, respectively.

Edge labels are either method signatures m corresponding to invocation in-
structions, or the special label ε signifying any other type of instruction. This
choice is made here because of our interest in the possible sequences of method
invocations (expressed as temporal safety properties), but the program model
can be adapted to other needs as well. API methods are not considered a part
of the program, and are thus labeled by ε. However, the propagated exceptions
declared in the signature with throws are taken into account.

Let Meth and Excp be the sets of all method signatures and exceptions,
respectively. We now define formally CFGs as a collection of method graphs.

Definition 1 (Method Graph). A method graph for method m ∈ M over
sets M ⊆ Meth and E ⊆ Excp is a pair Gm = (Mm,Em), where Mm =
(Vm, Lm,→m, Am, λm) is a labeled Kripke structure, with Vm the set of control
nodes of m, Am = {m, r}∪E the set of atomic propositions, and Lm = M ∪{ε}
the set of transition labels. We require that m ∈ λm(v) for all v ∈ Vm, and for all
x, x′ ∈ E, if {x, x′} ⊆ λm(v) then x = x′ (i.e., every control node is tagged with
the method signature it belongs to and with at most one exception). Em ⊆ VM is
the (non-empty) set of entry control points of m.

Every control flow graph G is equipped with an interface I = (I+, I−, Ie),
written G : I, specifying the (disjoint) sets of provided and (externally) required
methods, and the set Ie ⊆ I+ × E of potentially propagated exceptions by
the provided methods. We say a CFG is closed if there are no (externally)
required methods; we say it is open otherwise. CFG composition is defined as
the disjoint union � of their method graphs. Interface composition is defined as
I1 ∪ I2 = (I+1 ∪ I+2 , (I−1 ∪ I−2 )\(I+1 ∪ I+2 ), Ie1 ∪ Ie2 ).

Example 1 (CFG). Figure 1a shows a simple program to check the parity of an
integer. It is presented in Java source (rather than bytecode), to help the compre-
hension. The program has three methods. The method main calls parseInt to
convert the input string into an integer, then calls even. Notice that parseInt is
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a method from the Java API, and is not considered a part of the program. How-
ever, its signature declares that it may propagate a NumberFormatException,
and this must be taken into account in the analysis. The method odd potentially
throws an ArithmeticException.

The implementation of method even is not available. We specify it with the
interface Ieven = ({even}, {odd}, {}). It declares that the method may call itself
or odd, and does not propagate any exceptions. It is represented in the code by
the empty-bodied method, and the Java annotation GhostComponent.

public class EvenOdd{

public static void main(String[] argv){
EvenOdd obj = new EvenOdd();
obj.even(Integer.parseInt(argv[0]));

}

public boolean odd(int n){
if (n < 0)

throw new ArithmeticException();
else if (n == 0)

return false;
else

return even(n-1);
}

/*** Unavailable method ***/
@GhostComponent( handlers={"any"},
req_meths={"odd(int)"} )
public boolean even(int n) {};

}

(a) Program source (b) CFGs for available methods

Fig. 1. Example of Incomplete Java program

Figure 1b shows the CFGs for the available methods main and odd. The nodes
are tagged with the method’s signature and a control address. Entry nodes are
depicted as usual by incoming edges without source. There are three exceptional
nodes in the CFG, which represent points in which program control is taken
over by the JVM to take care of the exception. These three are also return nodes
(i.e., tagged with the atomic proposition r), and indicate the propagation of
the respective exception by the method. The invocations of methods even and
odd are represented by call edges. The invocation of parseInt, however, which
is a method from the Java API, is not represented by a call edge. Further, the
method’s signature declares that a NumberFormatException (NFE) is potentially
propagated, and this is reflected by an edge to •0,NFE,rmain .

2.2 Bytecode Intermediate Representation

The BIR language is an intermediate representation of Java bytecode developed
at INRIA Rennes [12]. The main difference with JBC is that BIR instructions are
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stack-less. That is, instructions do not operate over values stored on the operand
stack. Instead, a JBC method is translated into BIR by symbolically executing
the bytecode, using an abstract stack. This stack is used to reconstruct expression
trees and to connect instructions to its operands. We give a brief overview of the
BIR language. However, we omit the details of the transformation from JBC to
BIR; for a full account we refer to [12]. Figure 2a shows the BIR syntax.

lvar ::= x | x1 | . . .
this

target ::= lvar
| tvar
| expr.f

tvar ::= t | t1 | . . .
expr ::= c | null

| expr ⊕ expr
| tvar | lvar
| expr.f

Assignment ::= target := expr

Return ::= return expr | return
MethodCall ::= expr.ns(expr,...)

| target := expr.ns(expr,...)

NewObject ::= target := new C(expr,...)

Assertion ::= notnull expr | notnegsize expr

| notzero expr | checkbound expr

Instruction ::= nop | if expr pc | goto pc

| throw expr | mayinit C

| Assignment | Return

| MethodCall | NewObject

| Assertion

(a) Syntax

public boolean odd(int x)
Java bytecode BIR

0: iload x
1: ifge 12 0: if (x >= 0) goto 5
4: new 1: mayinit

ArithmeticException ArithmeticException
7: dup
8: invokespecial 2: t0 := new

ArithmeticException() ArithmeticException()
3: notnull tO

11: athrow 4: throw tO
12: iload x
13: ifne 18 5: if (x != 0) goto 7
16: iconst 0
17: ireturn 6: return 0
18: aload 0
19: iload x
20: iconst 1
21: isub 7: notnull this
22: invokevirtual 8: t0 :=

even(int) this.even(x - 1)
25: ireturn 9: return t0

(b) Comparison with JBC

Fig. 2. The BIR language

The transformation into BIR simplifies the analysis of exceptional control
flow. It identifies implicit exceptions by inserting special assertions before the
instructions that can potentially raise the exception, as defined by the JVM
specification [18]. For example, the transformation inserts a [notnegsize expr]
assertion before instructions that might raise a NegativeArraySizeException.
If the assertion holds, meaning that expr does not evaluate to negative a num-
ber, it behaves as a [nop], and control flow passes to the next instruction. If
the assertion fails, control flow is passed to the exception handling mechanism.
Moreover, the BIR transformation connects the explicit exceptions, raised by
athrow, to their types in the [throw target ] instruction. Now, data-flow analy-
sis can estimate the possible types of the target variable.

Example 2 (JBC and BIR Comparison). Figure 2b shows the JBC and BIR
versions of method odd() from Figure 1a. The different shades indicate the re-
construction of expression trees, and the collapsing of instructions by the trans-
formation. The BIR method has a local variable (x), which is also present in the
JBC, and a newly introduced variable (t0). Notice that the argument for the
method invocation and the operand to the [if] instruction are reconstructed ex-
pression trees. The [notnull] instruction asserts that NullPointerException
can potentially be raised at this program point.
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3 Motivation

The motivation for the present work is to support the formal verification of in-
complete JBC programs. Typical scenarios of incomplete programs are systems
under development, or systems that depend on third-party software. Two exam-
ples are an ATM system that depends on the code from users’ smart-cards, or
ERP systems, which are typically modular. It is desirable that the available com-
ponents are checked against global properties in advance. Then, the only pending
task is the verification of the missing code, which should be light-weight, and
can be delayed until the user inserts the smart-card into the ATM, or a module
of the ERP system is provided.

One technique that enables the verification of incomplete programs is the com-
positional principle developed by Gurov et al. [11]. There, unavailable software
components are represented with an interface and a local temporal specification.
Both are used to compute a so-called maximal model, i.e., a model that simu-
lates the behavior of any model that respects the interface and satisfies the local
specification, and can thus represent the unavailable component when checking
global temporal safety properties. Once the missing code becomes available, it is
checked to match the interface and the local specification. If it does, this entails
the global properties.

The correctness of the verified temporal safety properties is only guaran-
teed for models that soundly over-approximate the actual program behavior.
Soundness, however, comes at the price of excessive over-approximations. Thus,
potentially giving rise to false positives. To alleviate this problem, we aim to a
model extraction strategy that is incremental : whenever more code arrives, the
existing model can be refined, and the false positive may now be provable.

Example 3 (Compositional Verification). Suppose we want to verify two global
properties over the available code from the incomplete program in Figure 1.
Let φ1 be defined informally as ”if an ArithmeticException is raised within a
method, it must be either caught locally, or by the immediate caller method”,
and φ2 be the same property, but for an ArrayStoreException.

We define the local property ψeven for the missing method even informally as
“after calling odd, even must terminate normally”, and construct the maximal
CFG for ψeven and Ieven. Also, we extract the CFGs from the available methods
main and odd, and compose them with the maximal CFG for even.

The global property φ1 is checked against the composed model, and it turns
out to hold. Thus, once the implementation of even is provided, we simply ex-
tract its CFG, and check it against the local property ψeven. If it holds, the cor-
rectness of the program is established w.r.t. φ1. Also the property φ2 is checked
over the same composed model. However, φ2 does not hold since neither the
interface, nor the local property restrict an ArrayStoreException from being
raised by even. Still, it may be a false positive: once the code of even becomes
available, we may extract its CFG, refine the previously extracted CFGs, com-
pose them, and re-check the property.
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4 CFG Extraction Framework

In this section we outline the theoretical definitions of the framework for ex-
traction of CFGs from incomplete JBC programs, and summarize the soundness
argument. For the complete definitions and results we refer to [4].

4.1 Incomplete JBC Programs and Extraction Algorithm

We model incomplete JBC programs as open environments, following Freund
and Mitchell’s definition of closed environment for complete JBC programs [10].
An open environment Γo is defined in Figure 3 as the union of partial mappings
from method references, class names and interface names to their respective
definitions. We write interfaces (in typewrite font) to distinguish it from the
CFG interfaces introduced in Section 2.1. An important aspect of the definition is
that it contains all information about the type hierarchy. Thus, we can enumerate
the set of exception types from a given open environment.

The difference from the modeling of complete programs is that in open envi-
ronments a method body (i.e., code) may be empty. Also, entries in the handlers
have a special meaning for empty methods. They represent the exception types
that cannot be propagated by the method’s implementation, once provided.

Γ I : IFace-Name ⇀

〈
interfaces : set of IFace-Name

method : set of IFace-Method-Ref

〉

ΓC : Class-Name ⇀

〈
super : Class-Name

interfaces : set of IFace-Name
fields : set of Field-Ref

〉

ΓM : Method-Ref ⇀

〈
code : Instruction∗

handlers : Handler∗

〉
Γo=Γ I∪ΓC ∪ ΓM

Fig. 3. Open environment of a JBC/BIR program

Open environments also model the BIR version of incomplete programs. The
differences to the JBC version is the code array, translated syntactically to BIR
instructions, and handlers, which has the addresses of the exception handlers
mapped to the respective BIR addresses. We use the common modeling as open
environments to define the CFG extraction indirectly. First we transform JBC
into BIR; then extract CFGs from the intermediate representation. Here we focus
on the latter transformation; for the former, we refer again to [12].

The oG algorithm extracts CFGs from the available methods of an open envi-
ronment. It iterates over the instructions array of a method m and produces, for
every program counter pc and corresponding instruction i, a set of edges oGpc,i

m to-
gether with the associated nodes. Figure 4 shows the necessary auxiliary
functions, and the extraction rules for oG, grouped by their BIR instruction type.
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MCA(C.ns) =

⎧
⎪⎪⎨

⎪⎪⎩

{ c′.ns | c′ is the closest super-type s.t. c′.ns ∈ dom(ΓM )}
∪ { c.ns | c <: C ∧ c.ns ∈ dom(ΓM ) } if call is virtual

{ C.ns } otherwise

Hpc,x,l
m =

⎧
⎨

⎩

{ (◦pc,x
m , l, •pc,x,r

m ) } if hpc,x
m = undef

{ (◦pc’
m , l, •pc,x

m ), (•pc,x
m , ε, ◦pc’

m ) } if hpc,x
m = pc’

N pc,n
m =

⎧
⎨

⎩

⋃

{x|•pc’,x,r
n ∈G(n)} Hpc,x,n

m if ΓM [m] is available
⋃

x∈EΓo
−Γm

o [n].handlers Hpc,x,n
m otherwise

oGpc,i
m =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(◦pc
m, ε, ◦pc+1

m )} if i ∈ Assignment ∪ {[nop],[mayinit]}
{(◦pc

m, ε, ◦pc+1
m ), (◦pc

m, ε, ◦pc’
m )} if i = [if expr pc’]

{(◦pc
m, ε, ◦pc’

m )} if i = [goto pc’]

{(◦pc
m, ε, ◦pc,r

m )} if i ∈ Return
⋃

{x|x<:X} Hpc,x,ε
m if i = [throw X]

{(◦pc
m, ε, ◦pc+1

m )} ∪ Hpc,χi,ε
m if i ∈ Assertion

{(◦pc
m, C, ◦pc+1

m )} ∪ Hpc,NPE,C
m ∪ N pc,C

m if i ∈ NewObject
⋃

n∈MCA(n){(◦pc
m, n, ◦pc+1

m )} ∪ N pc,n
m if i ∈ MethodCall

Fig. 4. CFG extraction from incomplete BIR

Let h
pc,x
m denote the first handler (if any) in the exception table of method m

(with the same entries as the JBC table, but with control points relating to
BIR instructions) for the exception of type (or subtype of) x at position pc.

The function Hpc,x,l
m produces edges related to exception handling, determined

by the value of h
pc,x
m . If there is a handler for x at pc in m, it returns two

edges: one from a normal node to an exceptional node, and another one from
the exceptional node to the normal node tagged with the handler’s initial control
point pc’; otherwise, it returns an edge to an exceptional return node. The label l
is either the signature of a callee method that propagates the exception, or ε, if
the exception is raised within the method. The function χi simply returns the
exception type associated to a BIR assertion i.

The definition of oGpc,i
m is sub-divided into two parts. The intra-procedural

analysis extracts for every method an initial CFG, based solely on its instruction
array and its exception table. Based on these CFGs, the inter-procedural analysis
computes the functions N pc,n

m , which return exceptional edges for exceptions
propagated by calls to method n. The functions for inter-dependent methods
are thus mutually recursive, and are computed in a fixed-point manner.

The oG algorithm is a generalization from the G algorithm, proposed by Amighi
et al. [2] for complete programs. It introduces two significant modifications. The
first one is w.r.t. virtual method call resolution. The G algorithm is parametrized
by a sound VMC resolution algorithm. However, standard VMC algorithms,
such as the Rapid Type Analysis (RTA) [3], are defined for complete programs
only, and may provide unsound estimation in the absence of code. We therefore
fix the VMC resolution algorithm to our Modular Class Analysis (MCA), which



Sound CFG Extraction from Incomplete Java Bytecode Programs 223

is a generalization of the Class Hierarchy Analysis (CHA) [7].MCA soundly over-
approximates the possible receivers to methods with the same signature (ns) from
sub-types and from the closest super-type of the static type (C) that are either pro-
vided or declared to be missing (given by function dom). The second modification
concerns the functionN that computes the control flow caused by exception prop-
agation. In this case, when the callee method is unavailable, the set of exceptions
that are propagated is defined as all exception types, excluding those annotated
by the user in handlers to be never propagated.

4.2 Correctness of oG
The main purpose of the transformation above is to extract CFGs from the
available components of incomplete JBC programs that are sound for any in-
stantiation of the missing code. CFGs that preserve this property entails the
verification of global temporal safety properties, as explained in Section 3. Fur-
ther, the transformation allows the extracted CFGs to be refined incrementally
as more component code becomes available, until completion of the system.

Theoretically, both purposes are supported through a refinement pre-order
on open environments, as defined below. Notice that closed environments for
complete programs are simply open environments where all method bodies are
provided, and are thus minimal w.r.t. the pre-order.

Definition 2 (Environment Refinement). Let Γo and Γ ′
o be open environ-

ments. We say that environment Γo refines environment Γ ′
o, written Γo � Γ ′

o, if
the following conditions hold:

(i) method references, class names and interface names defined in Γ ′
o must

also be in Γo;
(ii) an interface in Γ I contain the same methods, and extend a subset of the

interfaces in Γ I′
;

(iii) classes in ΓC have the same super-class, implement a subset of the
interfaces in of the same classes in ΓC′

;
(iv) a method in Γ ′

o must have a superset of the handlers of Γ ′
o if it is unavailable

in both environments, it must have the same code and handlers if it is im-
plemented in both environments, or the method implementation Γo cannot
propagate exceptions declared in Γ ′

o.handlers, where it was unavailable.

We say that Γ implements Γo whenever Γ � Γo and Γ is closed.

The refinement of a method which is unavailable in both environments entails
that in Γo it propagates at most the same set of exceptions as in Γ ′

o. Thus, a
CFG extraction from Γ ′

o must have over-approximated the set of propagated
exceptions involving the method. In the refinement which a method is imple-
mented in both environments, there cannot be changes; otherwise, the method
graph extracted from Γ ′

o would not soundly over-approximate the method graph
from Γo. The refinement of a missing method in Γ ′

o, which is implemented in Γo,
simply guarantees that it respects its interface w.r.t. propagated exceptions.
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The following result states that, when applied to closed environments, the
algorithm for open environments reduces to the one for closed environments
with MCA as the virtual method call resolution algorithm.

Theorem 1. Let Γ be a closed environment, and GMCA be the instantiation of G
with MCA. Then GMCA(Γ ) = oG(Γ ).

The next result establishes monotonicity of CFG extraction w.r.t. refinement.

Theorem 2. Let Γo and Γ ′
o be open environments, and m be the signature of a

method available on both. Then Γo � Γ ′
o implies oG(m,Γo) ⊆ oG(m,Γ ′

o).

The proofs of the above theorems are available in [4], due to space limitation.
These results ensure soundness of the CFG extraction w.r.t. temporal safety
properties, by virtue of several results established earlier. Here we briefly outline
the soundness argument; for the full account the reader is referred to [2,11]. First,
subgraph inclusion of CFGs entails structural simulation between CFGs in terms
of a simulation relation between the nodes of the two graphs. Next, structural
simulation in turn entails behavioral simulation in terms of a simulation relation
between the behavioral configurations induced by the two graphs by means of
pushdown systems ([11, Th. 36]). Third, temporal safety properties are preserved
(backwards) under behavioral simulation ([11, Cor. 17]). These three results
guarantee preservation of temporal safety properties under refinement of open
environments. Together with the soundness result for G established in [2] and
Theorem 1 above, we obtain soundness of oG.

As more code becomes available, not only the temporal safety properties that
were already verified over the previously extracted CFGs are guaranteed to still
hold if the CFGs are re-extracted (and so, refined), but new properties can be
established. The problem of potential false positives, intrinsic to sound over-
approximation, can thus be alleviated through CFG re-extraction. We have de-
signed our framework in a way that the intra-procedural analysis is preserved, as
long as the implementation is not changed. Therefore, the incremental analysis
upon the arrival of previously unavailable code produces a refined model due to
the fewer over-approximations w.r.t. exceptional flow.

5 The ConFlEx Tool

In this section we describe the implementation of the CFG extraction algorithms
described in Section 4. First we describe some practical aspects of the implemen-
tation, and then provide experimental data that validate our tool.

5.1 Implementation

We have implemented both the algorithm for complete and for incomplete pro-
grams as the Control Flow Extractor tool (ConFlEx). It is based on Sawja [12],
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a library for the static analysis of Java bytecode. We have tailored Sawja to ad-
dress our needs. First, we have instrumented the BIR transformation to soundly
provide the possible exceptions raised explicitly by throw instructions.

Moreover, Sawja supports only the analysis of complete programs. Thus, we
have lifted it to support open environments. On top of it, we have implemented
the check of the refinement relation. Missing methods and their interfaces are
provided as dummy methods with annotations. We have defined a template in
Java annotation, named GhostComponent, to represent the interface of missing
methods. Figure 1a shows the source code of an annotated missing method. It
declares that the method even may call odd, or itself, and may not propagate
exceptions. Here the keyword any denotes the set of all exception types. After
compiling, the annotation is accessible as meta-data in the JBC .class file.

Finally, we have implemented the extraction rules from the BIR representa-
tion, as in defined in Figure 4. As described in Section 4.2, the intra-procedural
analysis always produces the same set of triples if a method’s implementation
is not altered. Thus, we have implemented the caching of edges produced in the
intra-procedural analysis. The caching allows us to perform the incremental ex-
traction of the newly arrived component. Still, the inter-procedural analysis has
to be recomputed.

5.2 Experimental Results

We validate our tool by using real-world Java applications to emulate incomplete
Java bytecode systems. We choose three large, existing complete JBC applica-
tions, and replace the implementation of some of the classes with annotated
methods. Then, we re-introduce the implementations incrementally, to mimic
the arrival of code.

In the initial configuration, we replace the implementations of the methods of
four classes with annotated methods. We perform the analysis of the resulting
incomplete environment and cache the intra-procedural analysis. Next, we refine
the incomplete program by re-inserting three of the four classes removed in con-
figurations 2 and 3. For the former we reuse the cached results from configuration
1, while for the latter we perform a completely new analysis, for the purposes of
assessing the impact of caching intra- results. Then, configuration 4 represents
the completion of the incomplete system from set 2. The next two configurations
5 and 6 are performed over the original closed programs, with MCA, and RTA
to investigate the impact of the chosen VMC resolution algorithm on the size of
the resulting CFGs. Table 1 shows the experimental data. All tests have been
made on an Intel i3 2.27 GHz with 4GB of RAM.

We can draw several conclusions from the experimental results. First, we
observe that the number of unavailable components has a significant impact on
the size of the over-approximations. For instance, configuration 1, where four
classes are missing and thus has fewer instructions, produces larger CFGs than
configurations 2 and 3, where a single class is missing. This can be explained
partially by the excessive over-approximation of the exceptional control flow.
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Table 1. Experimental results for ConFlEx

Configuration VMC

Reused Missing # of JBC # of # of Time (ms)

results classes instructions Nodes Edges Intra Inter

Jasmin

1

MCA

no 4 25440 53467 54285 1256 339

2 yes 1 30377 35684 36228 291 109

3 no 1 30377 35684 36228 1540 104

4 yes 0 32223 34411 35052 49 104

5 no 0 32223 34411 35052 1554 85

6 RTA no 0 30930 27267 27717 690 35

Java-Cup

1

MCA

no 4 30042 76511 77345 1799 512

2 yes 1 33354 76798 77649 567 427

3 no 1 33354 76798 77649 2098 518

4 yes 0 35422 45455 46328 66 151

5 no 0 35422 45455 46328 2126 141

6 RTA no 0 32049 32097 32509 983 45

JFlex

1

MCA

no 4 52336 118414 119868 6396 877

2 yes 1 55972 77174 78678 960 631

3 no 1 55972 77174 78678 7227 407

4 yes 0 60417 72154 73175 115 181

5 no 0 60417 72154 73175 7219 177

6 RTA no 0 53474 53956 54777 1676 76

Next, we see that the choice of VMC resolution algorithm has a serious impact
on the CFG size. For example, in the analysis of the complete JFlex,MCA (con-
figuration 5) produces 43% more nodes as compared to RTA (configuration 6).
One reason is that RTA performs reachability analysis and eliminates dead code,
and thus, the extraction is performed over fewer instructions. Further, a more
precise estimation of receivers to virtual calls results in fewer call edges. Conse-
quently, fewer nodes and edges relate to potentially propagated exceptions.

The caching of intra-procedural analysis, and consequent incremental extrac-
tion, leads to significant speed-up when compared to a whole new analysis. Also,
the fixed-point computation in the inter-procedural analysis proves to be light-
weight in practice, and contributes to a small fraction of the total time. This
makesConFlEx suitable for extracting CFGs in a context where the verification
must be light-weight, such as in the ATM example mentioned in Section 3.

We do not provide comparative data with other extraction tools, such as
Soot [16] or Wala [14] because this would demand the implementation of similar
extraction rules from their intermediate representations. However, experimental
results from Sawja [12] show that it outperforms Soot in all tests w.r.t. the
transformation into their respective intermediate representations, and outper-
forms Wala w.r.t. virtual method call algorithms. Thus, ConFlEx clearly ben-
efits from using Sawja and BIR. Also, to the best of our knowledge, ConFlEx
is the first control flow analysis tool that supports incremental CFG extraction.
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6 Related Work

The present work combines several aspects of program analysis, namely sound-
ness w.r.t. sequences of method invocations and exceptions, precision w.r.t ex-
ceptional flow, and modularity and incrementally of the analysis of JBC. To the
best of our knowledge, no previous work has addressed all these aspects together.

The present algorithm is modular in its essence. It analyzes components in-
dividually, as long as the interfaces for the missing components are provided.
This strategy is described by Cousot and Cousot [5], and called separate anal-
ysis. However, a “pure” modular analysis, in the sense that each component is
analyzed in isolation, would not take advantage of the inter-dependencies among
the available components, and can lead to excessive over-approximation of the
exceptional flow. In our case, we take inter-dependencies into account, and the
isolated analyses are made incrementally.

Bandera [9] is a pioneering tool to generate abstract models from Java source
programs. It is built on top of the Soot framework [16], and uses its intermedi-
ate language Jimple, in a similar fashion as ConFlEx uses Sawja and BIR. It
provides several features, such as output for multiple model checkers, and some
static analyses. In comparison to ConFlEx, Bandera is a versatile tool, which
provides an integrated framework to program checking. However, it cannot an-
alyze incomplete programs, and it does not address exceptional flows.

Dagenais and Hendren [6] present partial program analysis (PPA), a technique
to build a typed intermediate representation from an incomplete program. It
has been implemented in Soot, and also uses Jimple as its IR. The technique
performs other analysis than control flow. Also, it is less restrictive and does
not constrain the class hierarchy. However, it is admittedly unsound. Wala [14],
another framework for the analysis of JBC, can also analyze partial programs.
However, it ignores any side-effects from calls to unavailable methods. Thus, it
is also unsound.

Ali and Lhotk [1] present a modular algorithm to generate call graphs from
applications, without analyzing the API for possible call-backs. They assume
that the API was coded in separation, and does not have knowledge about the
application. Thus, call-backs are only possible to the application methods that
overwrite a method from the API. Unfortunately this assumption is not valid for
unavailable components, since developers have full knowledge of the application.
The authors validate their algorithm empirically over a set of benchmarks. Thus,
there is no formal argument about the soundness of their approach.

Several works propose different exception analyses. Our algorithm follows the
approach of Jo and Chang [15] to extract CFGs by decoupling the intra- and
inter-procedural analyses of exceptional control flow. However, they do not dis-
cuss implicit exceptions, nor address virtual method calls. Li et al. [17] present
a framework for the extraction of CFGs and the model-checking of exceptional
safety properties. The CFG extraction does not compute inter-procedural ex-
ceptional flow; instead, it uses a model checker to traverse the state-space. This
approach requires exploration to be bounded, and is thus unsound.
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7 Conclusion

We have presented a framework to extract control flow graphs from the avail-
able components of incomplete Java bytecode programs. It generalizes a previous
algorithm for complete JBC programs that is defined through a transforma-
tion into an intermediate representation, and has been proven to produce sound
CFGs, simulating the JVM behavior of the original programs. Our algorithm is
modular in its essence. However, for higher precision, we perform the analysis of
all available components together, and support the incremental refinement of the
extracted CFGs as more components become available. The extracted CFGs are
proven to be sound w.r.t. sequences of method invocations and exceptions. The
extracted models are thus suitable for several program analyses, in particular
model-checking of temporal control flow safety properties.

We have implemented the framework as the ConFlEx tool. The experimental
results show that the over-approximations necessary to generate sound models
(in the presence of unavailable components) have a considerable impact on the
size of the extracted control flow graphs. Moreover, the over-approximations may
give rise to false positive reports. ConFlEx alleviates this by providing support
for the incremental refinement of the extracted models, as soon as more code
becomes available. This shows the utility of ConFlEx to generate sound CFGs
for incomplete programs with few missing components.

Future Work. Our framework constrains the components and how they relate
w.r.t. the class hierarchy, and is limited to programs for which we know all
components in advance. Our goal is to extend our analysis to truly open Java
bytecode programs, where any number of components may be added in some
regulated fashion. One idea is to follow the idea of lazy parsing, as introduced
in [8]. There, instead of bounding a priori the unavailable components of a
system, the analysis generates the constraints that the unavailable components
have to fulfill to guarantee the soundness of any previous analyses.

Acknowledgments. We thank Musard Balliu, Roberto Guanciale and Siavash
Soleimanifard for their valuable comments.
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