
Compositional speci�cation and veri�cation of

control �ow based security properties of

multi-application programs

Gilles Barthe

1

, Dilian Gurov

2

, Marieke Huisman

1

1

INRIA Sophia-Antipolis, France

{Gilles.Barthe,Marieke.Huisman}@sophia.inria.fr

2

SICS, Sweden dilian@sics.se

Abstract. Jensen et al. present a simple and elegant program model,

within a speci�cation and veri�cation framework for checking control

�ow based security properties by model checking techniques. We gener-

alise this model and framework to allow for compositional speci�cation

and veri�cation of security properties of multi-application programs. The

framework contains a program model for multi-application programs,

and a temporal logic to specify security properties about such programs.

1 Introduction

Formal veri�cation of security properties becomes more and more important.

An important and interesting class of security properties are control �ow based

security properties. Jensen et al. [7] present a simple and elegant program model

which is used to check these kind of properties (using �nite-state model check-

ing). This program model is language independent, but it can easily be instanti-

ated for Java or JavaCard. With the program model, also a language to specify

security properties is presented. A drawback of this approach is that to check

�real world� programs, the state space can become very large.

Veri�cation of security properties is in particular important for the new gen-

eration multi-application smart cards. Typical for such multi-application smart

cards is that applets can be loaded post-issuance, i.e. after initialisation of the

card. Therefore, one would like to do the veri�cations in a compositional way,

stating which properties should be satis�ed by the components of the system, to

ensure the global correctness of the system. When issuing a new applet on the

card, one has to check that this new applet satis�es these required properties,

in order to know that other applets can safely cooperate with it.

In this paper, we present a framework for compositional veri�cation of multi-

application programs, which is a generalisation of the model presented by Jensen

et al. The framework, which consists of a program model and a speci�cation lan-

guage, is language-independent, but can easily be instantiated for JavaCard (as

in [7]). The framework enables speci�cation and reasoning in a compositional

style, and is thus more suited to verify security properties for multi-application

smart cards. The program model is designed to be as abstract as possible, while



it still accurately describes the method call behaviour. Further we propose a set

of temporal logic patterns which can be used to specify properties over these

programs. The temporal logic patterns can be translated into di�erent logics,

including the modal �-calculus [8]. For this logic, a proof system is under de-

velopment which will allow one to decompose system properties into properties

over the individual applets. This veri�cation method �ts in well with the nature

of smart cards, where applets can be loaded post-issuance, and it makes ver-

i�cation more manageable by reducing the state space. This paper focuses on

appropriate speci�cations of multi-application programs, and on how to specify

properties over such programs in such a way that compositional veri�cation can

be achieved.

The model and the logic enable us to reason about smart cards at a behav-

ioural level, i.e. at the level of method calls. We feel that this is the right level

to talk about applet interaction: for the global correctness of the system it is

important to know that the components have a certain interface behaviour, and

it does not matter how this behaviour is achieved. Only when showing that an

applet satis�es the required properties, one has to look at its implementation.

Example: electronic purse To illustrate our approach we discuss an example

from [1], which presents a typical veri�cation problem for smart cards. An elec-

tronic purse is presented, which contains three applets: a Purse applet P, and two

loyalty applets: AirFrance AF, and RentACar RaC. The owner of an electronic

purse smart card can decide to join a loyalty program of some company, and

load the appropriate applet on his card. The loyalty applets need to be informed

about the purchases done with the card, in order to compute the loyalty points.

For e�ciency reasons, the electronic purse keeps a log table of bounded size

of all credit and debit transactions, and the loyalty applets can request the

information stored in this table. For example, if the user wishes to know how

many loyalty points he/she has, the loyalty applet will update its local balance

�rst, before returning an answer. Updating the local balance of a loyalty applet

consists of two phases: asking the entries of the log table of the purse, and asking

the balances of loyalty partners (to compute an extended balance).

In order to ensure that loyalties do not miss any of the logged transactions

(if the log table is full, entries will be replaced by new transactions), they can

subscribe to the so-called logFull service. This service signals all subscribed

applets that the log will be emptied soon, and that they should thus update

their local balance. In the example, the AirFrance applet is subscribed to this

service, but the RentACar applet is not. However, RentACar might be able to

implicitly deduce that the log is full, from the fact that AirFrance asks RentACar

for its balance information, every time AirFrance gets the logFull message. A

malicious implementation of the RentACar loyalty applet might therefore request

the information stored in the log table, before returning the value of its local

balance to AirFrance. This is unwanted, because it might be the case that applets

pay for the logFull service, and the owner of the purse applet would not want

other applets to get this information for free.

2



Thus, one would like to specify and verify that only applets that are sub-

scribed to the logFull service update their balance, until the log is emptied; in

particular one would like to specify that the bad scenario, depicted as a message

sequence chart in Fig. 1 (where the solid lines indicate method invocations and

the dashed lines indicate method returns) can not happen.

The property depicted in Fig 1 can be formulated

RentACar

logFull

getTrs

getTrs

getTrs

getTrs

logFull

getBalance

getBalance

Purse AirFrance

Fig. 1. Electronic

purse: bad scenario

as: an invocation of AF.logFull in the AirFrance ap-

plet should not trigger an invocation of P.getTrs in

the Purse applet by the RentACar applet RaC. Below,

in Section 2, we will specify this property formally,

and we will also show that to establish that this prop-

erty holds for the system, it is su�cient to show that

AF.logFull only calls P.getTrs and RaC.getBalance,

while these methods do not call other methods (hence

RaC never calls P.getTrs when AF.logFull is called).

The remainder of this paper is organised as fol-

lows. Section 2 introduces the temporal logic patterns

and show how these are used to specify properties. It

also discusses the decomposition theorem. Section 3

discusses the compositional program model, which ex-

tends the model of Jensen et al. Finally, Section 4 con-

cludes and discusses future work. Throughout the paper, the case study described

above will serve as a motivating example.

2 Specifying properties for multi-application programs

Typical properties that are of interest for multi-application programs can often

be expressed as temporal logic formulae, stating e.g. that a particular event only

occurs after some other event has happened. We take the following approach to

speci�cation. First we specify the global property (as a temporal logic formula)

that should be satis�ed by the program. Then we specify which properties should

hold for the individual applets (or components) of the program, and we prove

formally that if the components satisfy these properties, the global program

satis�es the global speci�cation.

The speci�cations of the global system and the applets are described using

temporal speci�cations patterns, following the approach taken for the Bandera

speci�cation language [3]. These patterns have proven useful to specify prop-

erties, and can easily be translated into formulae in a particular logic. Typical

example patterns that we use are ALWAYS �,WITHIN m �, wherem is a method,

and A CALLS M, where A is an applet, and M a set of methods. The temporal

logic framework is rich enough to express security properties like the absence of

bad scenarios as illustrated above, and it allows a wide range of other important

behavioural correctness properties of multi-application programs to be speci�ed.

Using these temporal logic patterns we can specify correctness properties

for the electronic purse. As mentioned above we want that an invocation of

3



AF.logFull in the purse does not trigger a call from RaC to P.getTrs. Formally,

we can specify this as SPEC

EP

(P; AF; RaC), where:

SPEC

EP

(X;Y; Z)

def

=

ALWAYS .

WITHIN Y:logFull :

NOT(Z CALLS fX:getTrsg)

where X , Y , Z are variables ranging over applets. This speci�cation states that

for any (reachable) state in which the method Y:logFull has been invoked, but

not been �nished, there should be no call from the Z applet to X:getTrs.

Based on this speci�cation, we give speci�cations per applet in such a way

that it is su�cient to prove for each applet that it satis�es its local speci�ca-

tion, in order to deduce that the global system satis�es the global speci�cation.

Finding the local speci�cation requires insight into the system. We specify the

purse applet as SPEC

P

(P), the AirFrance applet as SPEC

AF

(AF; P; RaC), and the

RentACar applet as SPEC

RaC

(RaC), where SPEC

P

, SPEC

AF

, and SPEC

RaC

are de-

�ned as follows.

SPEC

P

(X)

def

=

ALWAYS .

WITHIN (X:getTrs) :

X CALLS fg

SPEC

AF

(Y;X;Z)

def

=

ALWAYS .

WITHIN (Y:logFull) :

Y CALLS fX:getTrs; Z:getBalanceg

SPEC

RaC

(Z)

def

=

ALWAYS .

WITHIN (Z:getBalance) :

Z CALLS fg

The speci�cation for the purse applet states that the method X:getTrs does

not invoke any other method. The speci�cation for AirFrance speci�es which

methods are invoked by Y:logFull. The speci�cation for RentACar speci�es

that Z:getBalance should not invoke any other method. Notice that these spec-

i�cations do not fully specify the behaviour of the applets, they only describe

the necessary behaviour in order to satisfy the global property.

Given the global speci�cation SPEC

EP

for the electronic purse, and given

the speci�cations for the individual applets P, AF and RaC, we establish the

following theorem, presented as a Gentzen-style sequent, where free variables

are (implicitly) universally quanti�ed (where X : � is an assertion meaning that

applet X satis�es property �).

X : SPEC

P

(X); Y : SPEC

AF

(Y;X; Z); Z : SPEC

RaC

(Z) ` X j Y j Z : SPEC

EP

(X;Y; Z)

4



P.debit.Med

AF.logFull.Med1

AF.buyTicket AF.logFull

AF.buyTicket.Ret AF.logFull.Ret

P.getTrs

P.getTrs.Ret

RentACar

RaC.rentCar

User.RaC

RaC.getBalance.Med

RaC.rentCar.Ret RaC.getBalance.Ret

RaC.getBalance

P.debit.Ret

P.debit

Purse

User.P User.AF

AirFrance

Fig. 2. Compositional model for the purse

Using this theorem one can reduce the proof of the global correctness asser-

tion P j AF j RaC : SPEC

EP

(P; AF; RaC) to proving the local correctness assertions

P : SPEC

P

(P; AF), AF : SPEC

AF

(AF; P; RaC) and RaC : SPEC

RaC

(RaC) of the individ-

ual applets. Notice that we thus have two di�erent kind of veri�cation tasks

in our framework, namely model-checking the local properties of the individ-

ual applets, and proving property decompositions correct. The use of general

temporal logic patterns allows us to use di�erent veri�cation techniques. For

example, we can model check the �local� applet properties, by translating the

speci�cations into CTL (e.g. as input for NuSMV [2]) or LTL (e.g. as input for

SPIN [6]), while we can use the modal �-calculus [8] to prove the correctness of

the property decomposition.

3 A program model for multi-application programs

To verify the properties as described above, we need a formal model, representing

multi-application programs, with a formal (operational) semantics. This model

is designed in such a way that it is suited for compositional veri�cation. Based on

the approach taken by Jensen et al. [7], we model a program as a transfer graph,

modelling intra-procedural control �ow, and a call graph, modelling method

calls. A special set of vertices is identi�ed, which are the return vertices, where

a method hands back control to the caller. A function � : V * A exists, which

attributes vertices to applets. This is a partial function, as we allow vertices

that do not belong to applets; these are the external vertices that model the

environment. To illustrate the model, Fig. 2 shows the electronic purse formalised

in this way. A suggestive naming and notation is used, to attribute vertices to

applets (the function �), and to suggest the control �ow in the methods. For

clarity of presentation, in the picture we did not name all the intermediate

5



vertices. The dashed arrows are edges in the transfer graph, the solid arrows are

edges in the call graph.

Every applet has a local state, which is a list of pairs of vertices, representing

the control stack in the current program point. For example, given an applet

a with local vertices v

2

and v

5

, its local state (v

1

; v

2

) � (v

2

; v

3

) � (v

4

; v

5

) can be

interpreted as: vertex v

1

(which is external to a) invoked a vertex in a, during

whose execution v

2

is reached. Next, v

2

invoked the vertex v

3

in some other

applet. Execution continued in this other applet, but eventually somewhere in

some applet a vertex v

4

is reached, which invoked a vertex in a again, and during

the execution of this vertex, the vertex v

5

is reached.

The operational semantics of individual applets as well as of sets of applets

is given compositionally, in terms of labelled transition systems induced by a set

of transition rules. The latter are grouped in two parts: transition rules de�ning

the behaviour of individual applets (that is, singleton applet sets), and transition

rules for combining behaviours of applet sets.

The transition labels are denoting method invocations and returns. We dis-

tinguish between perfect and imperfect actions, the former being either intra-

procedural control �ow actions (left unlabelled) or method invocations/returns

internal to a given applet set (labelled with call and ret, respectively), and the lat-

ter being method invocations/returns involving vertices external to the applet set

(labelled with call?/ret? for input and call!/ret! for output action, respectively).

Imperfect actions can form the corresponding perfect actions by synchronisation

in the global trace of the system (thus leaving only the labels call and ret).

Applet transition rules Figure 3 gives the transition rules per applet. In this

�gure the applet name a is �xed, and � denotes the local state of applet a. We

use v

1

!

T

v

2

to denote edges in the transfer graph, modelling intra-procedural

control �ow, and v

1

!

C

v

2

to denote edges in the call graph, respectively.

We use an applet-state predicate active

a

and vertex predicates local

a

and

return

a

, which are de�ned as follows.

active

a

(�)

def

= 9�

0

; v; v

0

: (� = �

0

� (v; v

0

)) ^ local

a

(v

0

)

local

a

(v)

def

= �(v) 2 dom(�) ^ �(v) = a

return

a

(v)

def

= v 2 V

R

^ local

a

(v)

Thus, an applet is active if the second vertex in the last pair of � is local to this

applet.

The �rst three rules describe transitions local to the applet. The rules send

call and receive call describe the state transitions when a call to a di�erent applet

is made (either from an external vertex, or from applet to applet). Similarly, the

rules send return and receive return describe the state transitions if a call over

method borders is completed. The receive return transition is enabled if the return

is sent by the same applet as the one the corresponding call was send to, there

are no requirements on the local state of this applet. This is in accordance with

the restrictions on compositional reasoning.

6



[local call]

v

1

!

C

v

2

local

a

(v

1

) local

a

(v

2

)

� � (v; v

1

)

v

1

call v

2

�����! � � (v; v

1

) � (v

1

; v

2

)

[local return]

v

1

!

T

a

v

2

return

a

(v

3

)

� � (v; v

1

) � (v

1

; v

3

)

v

3

ret v

1

�����! � � (v; v

2

)

[local transfer]

v

1

!

T

a

v

2

v

1

6!

C

� � (v; v

1

) �! � � (v; v

2

)

[send call]

v

1

!

C

v

2

local

a

(v

1

) :local

a

(v

2

)

� � (v; v

1

)

v

1

call! v

2

������! � � (v; v

1

) � (v

1

; v

2

)

[receive call]

v

1

!

C

v

2

:local

a

(v

1

) local

a

(v

2

) :active

a

(�)

�

v

1

call? v

2

������! � � (v

1

; v

2

)

[send return]

return

a

(v

2

) :local

a

(v

1

)

� � (v

1

; v

2

)

v

2

ret! v

1

�����! �

[receive return]

v

1

!

T

a

v

2

:local

a

(v

3

) �(v

3

) = �(v

4

)

� � (v; v

1

) � (v

1

; v

3

)

v

4

ret? v

1

������! � � (v; v

2

)

Fig. 3. Applet transition rules

In all rules except receive call it is implicit whether applet a is active or not.

The two receive rules are the only two rules that can apply when applet a is

not active. Notice how the active applet changes when methods are called and

returned: the applet that sends a call has to be active to be able to make the call,

and as a result becomes inactive, while the applet that receives the call becomes

active. A similar thing applies to the return transitions.

Using these transition rules, one can derive for example the trace fragment

in Fig. 4 for the AirFrance applet.

Composing applets Applets can be composed into larger system components.

Composite states are sets of local states, with the following restrictions:

� at most one applet is active,

� at most one external vertex is mentioned in the trace, and in this case this

vertex occurs as the �rst component of the �rst pair of the trace.

The last condition ensures that we can only get single execution threads (which

is for the time being appropriate for JavaCard). Computations are always started

by the environment, they do not begin spontaneously. External vertices can only

invoke methods, and wait for their return. By requiring that external vertices

only occur at the beginning of the trace, we enforce that the environment only

invokes a method in an applet, if there is no active applet. If necessary this

7



AirFrance:

�

P.debit.Med call? AF.logFull

����������������!

(P.debit.Med; AF.logFull) �������!

(P.debit.Med; AF.logFull.Med1)

AF.logFull.Med1 call! P.getTrs

�����������������!

(P.debit.Med; AF.logFull.Med1) �

(AF.logFull.Med1; P.getTrs)

P.getTrs.Ret ret? AF.logFull.Med1

�������������������!

(P.debit.Med; AF.logFull.Med2)

AF.logFull.Med2 call! RaC.getBalance

���������������������!

: : :

Fig. 4. Local trace AirFrance applet

[synchro]

A

1

v

1

`? v

2

�����! A

0

1

A

2

v

1

`! v

2

����! A

0

2

` 2 call; ret

A

1

j A

2

v

1

` v

2

����! A

0

1

j A

0

2

[propagation]

A

1

`

�! A

0

1

perfect(`) or :involved

A

2

(`)

A

1

j A

2

`

�! A

0

1

j A

2

Fig. 5. Transition rules for composite states

restriction can be relaxed to allow multi-threading. For the global state, i.e. the

set of all applets, we strengthen the last restriction and require that the �rst

component in the �rst pair of the trace is an external vertex. In this way, we

ensure that it is always an external vertex that triggers the global execution.

The way the labelled transitions of composite states are induced by the la-

belled transitions of its subsets is de�ned through the rules given in Fig. 5. In

these rules A

1

and A

2

denote disjoint sets of applet states. Symmetric counter-

parts exist for both rules. The transition rule synchro applies when both sets of

applets can do a transition, labelled with an imperfect action, and when these

imperfect actions can synchronise into one perfect action (a perfect action is

labelled with call or ret only, it does not contain tags ? or !). This results in a

single transition in the composite system, labelled with the corresponding per-

fect action. The propagation transition rule applies when one set of applets can

do a transition, labelled with `, such that ` is a perfect action, or ` does not

involve vertices from applets in the other set. The notion of being involved is

de�ned as follows (where A is a set of applets).

involved

A

(�)

def

= 9v1; v2 2 V:9` 2 fcall; retg: (� = v

1

`? v

2

_ � = v

1

`! v

2

) ^

(�(v

1

) 2 A _ �(v

2

) 2 A)

Using these transition rules, one can �nd e.g. the global trace fragment for the

electronic purse, depicted in Fig. 6.

8



P:� j AF:� j RaC:�

User.P call? P.debit

�����������!

P:(User.P; P.debit) j AF:� j RaC:� �������!

P:(User.P; P.debit.Med) j AF:� j RaC:�

P.debit.Med call AF.logFull

���������������!

P:(User.P; P.debit.Med) � (P.debit.Med; AF.logFull) j

AF:(P.debit.Med; AF.logFull) j

RaC:�

�������!

: : :

P.debit.Ret ret! User.P

�������������!

P:� j AF:� j RaC:�

Fig. 6. Fragment of the global trace

4 Conclusions & future work

We have outlined a compositional program model, which will help us to verify

security properties over multi-application smart cards. Further we have shown

how typical properties of multi-application programs can be speci�ed, and de-

composed into speci�cations over the applets. The program model and logic are

language-independent, but can easily be instantiated for JavaCard applications,

as is illustrated by the purse example.

Future work The work presented here is only a �rst step towards a speci�cation

and veri�cation framework for (security) properties of multi-application smart

cards. Future work will concentrate on the following topics.

� Based on [4, 5] a proof system will be developed (and proven sound and

complete) which will allow one to prove the correctness of the decomposition.

� At the moment the program model only deals with the control �ow structure

of the program. To be able to express integrity properties as the balance of

the purse is not changed by any action in the loyalty applet one also needs

to be able to talk about data. To this end, the program model has to be

extended with data. Every applet will contain several variables (or �elds),

and for each program step it has to be described how these variables might

be a�ected.

� After decomposing the global property, it remains to be shown that the

individual applets satisfy the required properties. When dealing with control

�ow based security properties only, we can fall back on the model checking

techniques developed by Jensen et al. [7], but after extending the model with

data, more sophisticated techniques will be required. Abstraction techniques

will be used to simplify the applets and the properties in such a way that

they can be checked by model checking.

9



References

1. P. Bieber, J. Cazin, V. Wiels, G. Zanon, P. Girard, and J.-L. Lanet. Electronic

purse applet certi�cation: extended abstract. In S. Schneider and P. Ryan, editors,

Proceedings of the workshop on secure architectures and information �ow, volume 32

of Elect. Notes in Theor. Comp. Sci. Elsevier Publishing, 2000.

2. A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. Nusmv: a new symbolic model

checker. Software Tools for Technology Transfer (STTT), 2/4:410�425, 2000.

3. J. Corbett, M. Dwyer, J. Hatcli�, and Robby. A language framework for expressing

checkable properties of dynamic software. In K. Havelund, J. Penix, and W. Visser,

editors, SPIN Model Checking and Software Veri�cation, number 1885 in LNCS.

Springer, 2000.

4. M. Dam and D. Gurov. Compositional veri�cation of CCS processes. In D. Bjorner,

M. Broy, and A.V. Zamulin, editors, Perspectives of System Informatics '99, number

1755 in LNCS, pages 247�256. Springer, 1999.

5. M. Dam and D. Gurov. �-calculus with explicit points and approximations. In

FICS 2000, 2000.

6. G. Holzmann. The model checker SPIN. Transactions on Software Engineering,

23(5):279�295, 1997.

7. T. Jensen, D. Le Métayer, and T. Thorn. Veri�cation of control �ow based secu-

rity policies. In Proceedings of the IEEE Symposium on Research in Security and

Privacy, pages 89�103. IEEE Computer Society Press, 1999.

8. D. Kozen. Results on the propositional �-calculus. Theor. Comp. Sci., 27:333�354,

1983.

10


