
A Hierarchical Variability Model

for Software Product Lines�

Dilian Gurov1, Bjarte M. Østvold2, and Ina Schaefer3

1 Royal Institute of Technology, Stockholm, Sweden
dilian@csc.kth.se

2 Norwegian Computing Center, Oslo, Norway
bjarte@nr.no

3 TU Braunschweig, Germany
i.schaefer@tu-bs.de

Abstract. A key challenge in software product line engineering is to rep-
resent solution space variability in an economic, yet easily understand-
able fashion. We introduce the notion of hierarchical variability models
to describe families of products in a manner that facilitates their modular
design and analysis. In this model, a family is represented by a common
set of artifacts and a set of variation points with associated variants.
A variant is again a hierarchical variability model, leading to a hierar-
chical structure. These models, however, are not unique with respect to
the families they define. We therefore propose a quantitative measure on
hierarchical variability models that expresses the degree to which a vari-
ability model captures commonality and variability in a family. Further,
by imposing well-formedness constraints, we identify a class of variabil-
ity models that, by construction, have maximal measure and are unique
for the families they define. For this class of simple families, we pro-
vide a procedure that reconstructs their hierarchical variability model.
The reconstructed model can be used to drive various static analyses
by divide-and-conquer reasoning. Hierarchical variability models strike a
balance between the formalism’s expressiveness and the desirable prop-
erty of model uniqueness. We illustrate the approach by a small product
line of Java classes.

1 Introduction

System diversity is prevalent in modern software systems. Systems simultane-
ously exist in many different variants in order to comply with different require-
ments. Software product line engineering [18] aims at developing a family of
system variants by managed reuse in order to decrease time to market and to
improve quality. The variability of the different products in a software product
line can be represented at different levels [7]. Problem space variability describes

� Partly funded by the EU project HATS, Highly Adaptable and Trustworthy Soft-
ware using Formal Models (FP7-231620) and the Deutsche Forschungsgemeinschaft
(SCHA1635/2-1).

R. Hähnle et al. (Eds.): ISoLA 2011 Workshops, CCIS 336, pp. 181–199, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

182 D. Gurov, B.M. Østvold, and I. Schaefer

product variation in terms of features where a feature is a user-visible product
characteristic. The set of valid feature configurations defines the set of possible
products. However, features do not relate to the actual artifacts that are used
to realize the products.

Problem-space variability, based on features, is at the requirements level, while
solution space variability is at the design and implementation level. Solution-
space variability describes product variation in terms of shared artifacts that are
used to build the actual products of the product line. In this paper, we capture
solution space variability in terms of variable artifact implementations for fixed
artifact names. This means that in different product variants an artifact with the
same name can be realized with different implementations. Here, an artifact can
be a component at a suitable level of granularity, such as a method, a class, or a
module. Then, the artifact name would be the method signature (including the
method name), interface signature or module signature, respectively, while the
artifact implementation would be the method body, interface implementation,
or the module realization. Previously, we used the finest of these levels [20],
i.e., method signatures and method bodies, while in Section 4 we show another
interpretation, where artifact names are types and artifact implementations are
classes, interfaces or types implementing the former type.

In order to describe the relationship of the artifact names to the artifact
implementations in the product variants, we introduce hierarchical variability
models. Hierarchical variability models represent, in a hierarchical manner, the
artifact implementations that are common to all products and the variations in
the artifact implementations that can occur between different products. On each
hierarchical level, there is a common set of artifact implementations that repre-
sent parts shared by all products, while variation points represent parts that can
vary from product to product. Every variation point is associated with a set of
variants that represent choices for realizing the variation point in different ways.
A variant is itself represented by a hierarchical variability model, introducing a
new level of hierarchy. A product described by a hierarchical variability model
is obtained by selecting a variant at every variation point.

We have previously argued that hierarchical variability models support mod-
ular design [12] and divide-and-conquer reasoning for product lines, such as the
formal verification of critical requirements of all products of a family [20]. In gen-
eral, given a concrete program analysis, factoring out common implementations
naturally reduces redundancy in the analysis. At variants with more than one
variation point, the analysis problem is decomposed into simpler subproblems
(since they expose orthogonality), while at variation points with more than one
variant, the same problem is solved independently as a case analysis (since they
don’t share implementations). Thus, a hierarchical variability model can be seen
as a (divide-and-conquer style) scheme for decomposing and splitting an analysis
over a family.

In this paper, we propose a hierarchical variability model that is simple in the
sense that it requires the choice of exactly one variant for every variation point,
and does not specify any constraints between choices made at different variation

A Hierarchical Variability Model for Software Product Lines 183

points. Figure 1 shows a simple hierarchical variability model for a cash desk sys-
tem, depicted as a tree with a root node marked CashDesk. Common to all cash
desk systems are the following artifact implementations: saleProcessCashDesk for
handling the sale process, and two implementations called writeReceiptCashDesk

and updateStockCashDesk responsible for the corresponding tasks. The notational
convention is that an artifact implementation is an artifact name (e.g., saleProcess)
with an index (e.g., CashDesk).

At the first level of hierarchy, a cash desk can vary in two uncorrelated (i.e.,
orthogonal) aspects. First, there are two methods to input data about merchan-
dise payed for at the cash desk: by keyboard or using a scanner. Second, there
are two ways to pay, either in cash or by card. Thus, on the first level, the hierar-
chical variability model in the figure has two variation points: InputMethods and
PaymentMethods. Each variation point has associated variants which capture
one particular way of realizing the variation point. Variation point InputMeth-
ods has two variants, Keyboard and Scanner, each with an implementation of
the corresponding input method. Variation point PaymentMethods also has two
variants: Cash and Card for the two forms of payment. Both variants provide an
artifact named slot for inserting the means of payment and pay for the actual
payment process with different implementations. slot has one implementation
in each variant, whereas pay has one implementation for cash and three variant
implementations for card, corresponding to three different types of card.

The intention of a hierarchical variability model is that, on each level of hier-
archy, common sets of artifact implementations are factored out, while uncorre-

{ saleProcessCashDesk,
writeReceiptCashDesk,
updateStock CashDesk }

{inputKeyboard}

{inputScanner}

{slotCash, payCash}
{slotCard} {payCredit}

{payDebit}

{payPrePaid}

CashDesk

Keyboard

Scanner

Cash

Card

PrePaid

Debit

Credit

InputMethods

PaymentMethods

CardTypes

Legend: root of SHVM; variation point.

Fig. 1. The CashDesk hierarchical variability model (drawn sideways)

184 D. Gurov, B.M. Østvold, and I. Schaefer

lated (or orthogonal) sets of artifact implementations are delegated to different
variation points. To provide a measure for the quality of hierarchical variability
models for defining a family in an economical way, we define the separation degree
of a model (Definition 6) as the ratio between the total number of artifact imple-
mentations from which products are constructed and the total number of artifact
implementation occurrences in the common sets of the model. Thus, high-quality
models capture repetitions across products in a family without repetition in the
model. The maximal possible separation degree of one is reached in models where
every artifact implementation occurs in exactly one common set.

In order to reason formally about hierarchical variability models, we provide
these with a formal semantics in terms of the products that can be generated
by variant selection. We define well-formedness constraints on hierarchical vari-
ability models, under which the separation degree of the model is equal to one
by construction. We term the class of families generated by well-formed variabil-
ity models simple families, and define this class in a model-independent fashion.
We present a transformation from simple families to hierarchical variability mod-
els that (re)constructs the unique well-formed model that generates the family.
Uniqueness is established by showing that the two transformations—from well-
formed models to simple families and vice versa—are inverses of each other. For
practical purposes, the latter transformation can be used for variability model
mining from a given family of products. Simple hierarchical variability models
thus strike a balance between the expressiveness of the modeling formalism—
no bindings and being grammar-like—and the desirable property of uniqueness
of models: With a more expressive modeling formalism uniqueness may not be
achievable.

To the best of our knowledge, this work is the first to provide a formal seman-
tics for hierarchical variability models in the solution space, and to characterize
a class of variability models through the class of generated product families. Pre-
vious work has been informal, as for instance the Koala component model [22],
hierarchical variability modeling for software architectures [12], or plastic partial
components [17]. Our work is also the first to provide a technique for constructing
a hierarchical solution space variability model from a given family.

Our main contributions are thus:

(i) A formal definition of simple families as families that can be formed from
artifact implementations by using a set of base operations on families (Sec-
tion 2.1).

(ii) A definition of simple hierarchical variability models, together with a quality
measure called separation degree and a set of well-formedness constraints
yielding (by construction) models with maximal measure (Section 2.2).

(iii) A formal semantics for hierarchical variability models in terms of family
generation, and a proof that, for every well-formed variability model, the
generated family is simple (Section 3.1).

(iv) A procedure to construct hierarchical variability models from simple fami-
lies that produces well-formed models (Section 3.2).

(v) A characterization result stating that, for well-formed hierarchical variabil-
ity models and simple families, family generation and hierarchical variability

A Hierarchical Variability Model for Software Product Lines 185

model construction are inverses of each other, thus implying correctness of
model construction and uniqueness of well-formed models with respect to
the families they generate (Section 3.3).

All proofs and some supporting results can be found in the accompanying tech-
nical report [11].

2 Families and Variability Models

In this section, we present product families as a semantic domain for our hier-
archical variability model. The model is presented in the following subsection.

2.1 Families

We consider products realized by a set of artifact implementations for a given
set of artifact names. An artifact can be thought of as, e.g., a component or a
method. We fix a countably infinite set of artifact names Art .

Definition 1 (Product, family). An artifact implementation is an indexed
artifact name; let ai denote the i-th implementation of artifact name a. A prod-
uct P is a finite set of artifact implementations, where for each artifact name
there is at most one implementation. A family F is a finite non-empty set of
products.

Thus, products can be seen as partial maps from artifact names to natural
numbers, having a finite domain; we use NatArt to denote the set of all products
over Art . We refer to singleton set families as core families, or simply cores. The
family consisting of the empty product is denoted 1F .

Example 1. Here are some families that are used later to illustrate various no-
tions.

FA =
{ {a1, b1, c1, d1, e1} , {a1, b1, c1, d1, e2} , {a1, b1, c2, d2, e1} ,
{a1, b1, c2, d2, e2} , {a1, b1, c2, d3, e1} , {a1, b1, c2, d3, e2}

}

FB =
{ {a1, b1} , {a1, b2} , {a2, b1}

}

Next, we define two mappings for identifying the artifact names and artifact
implementations that occur in a family.

Definition 2 (Family names and implementations). The mapping
names (F) from families to sets of artifact names and the mapping impls(F)
from families to sets of artifact implementations are defined as follows, where
a1, . . . , an ∈ Art and i1, . . . , in ∈ Nat:

names (F)
def
=

⋃
P∈F names (P)

where names
({a1i1 , . . . , anin}

) def
= {a1, . . . , an}

impls(F)
def
=

⋃
P∈F impls(P)

where impls({a1i1 , . . . , anin})
def
= {a1i1 , . . . , anin}

186 D. Gurov, B.M. Østvold, and I. Schaefer

In this definition we abuse notation by also defining mappings with the same
names from products to the same co-domains.

We use two binary operations on families, the usual set union operation ∪ and
the product union operation �� over families with disjoint sets of artifact names
defined by:

F1 �� F2
def
= {P1 ∪ P2 |P1 ∈ F1 ∧ P2 ∈ F2}

and generalized through
∏

i∈I Fi to non-empty sets of families. Intuitively, the
product union of two families is the family having as products all possible com-
binations of products of the original families. Both operations are commutative
and associative.

We now define a distinct class of families that we later relate to a specific
class of hierarchical variability models. The class of families contains all single-
product families consisting of a single artifact implementation, and is closed
under product union of families over disjoint sets of artifact names, and un-
der union of families over the same set of artifact names, but having disjoint
implementations.

Definition 3 (Simple family). The class F of simple families is the least set
of families closed under the formation rules:

(F1)
{{ai}

} ∈ F for any a ∈ Art and i ∈ Nat.
(F2) F1 �� F2 ∈ F for any F1,F2 ∈ F such that names (F1) ∩ names (F2) = ∅.
(F3) F1 ∪ F2 ∈ F for any F1,F2 ∈ F such that names (F1) = names (F2) and

impls(F1) ∩ impls(F2) = ∅.
Example 2. The family

{ {a1, b1} , {a1, b2}
}
is simple, as it can be presented as{{a1}

}
�� (

{{b1}
}∪{{b2}

}
) which follows the above formation rules. Family FA

of Example 1 is also simple (as we shall see later in Example 6), while family FB

of Example 1 is not: there is no way of building this family with the above
formation rules.

Simplicity of families expresses that different functionalities in a product line are
always orthogonal, and that alternative realizations of the same functionality
have always disjoint implementations. These assumptions are rather heavy and
may not always hold in practice. But only under such severe constraints can one
hope for such a (strong) uniqueness result as the one obtained later (Section 2.1).

Two distinct artifact names a, b ∈ names (F) are termed correlated in a fam-
ily F , denoted aCF b, if there are implementations ai, bj ∈ impls(F) such that no
product in F contains both implementations simultaneously. Otherwise, names
a and b are termed uncorrelated or orthogonal. The correlation relation CF on
names (F) is symmetric, and hence, its reflexive and transitive closure C∗

F is
an equivalence relation. As usual, we denote the partitioning induced by C∗

F on
names (F) by names (F) /C∗

F (quotient set).

Example 3. Consider family FA of Example 1. The only two correlated names
are c and d, evidenced by the lack of a product containing, for instance, c1 and d2.
Thus, we have names (FA) /C

∗
FA

= {{a}, {b}, {c, d}, {e}}.

A Hierarchical Variability Model for Software Product Lines 187

Correlation (and orthogonality) extends naturally to products in a family: Prod-
ucts P and P ′ are correlated in F if some artifact name occurring in P is cor-
related to some artifact name occurring in P ′. Similarly, we define the sharing

relation NF on F as P1 NF P2
def⇔ P1∩P2 �= ∅, and use its reflexive and transitive

closure N∗
F to partition the family F .

When restricted to simple families, the two operations on families do not dis-
tribute over each other. This entails that simple families have unique formation
trees modulo commutativity and associativity of the two operations associated
with the rules.

2.2 Variability Models

In order to represent solution space variability of families in terms of shared
artifact implementations, we consider simple hierarchical variability models.

Definition 4 (Simple hierarchical variability model). A simple hierarchi-
cal variability model (SHVM) S is inductively defined as:

(i) a (possibly empty) common set of artifact implementations MC , or
(ii) a pair (MC , {VP1, . . . ,VPn}) where MC is defined as above and the set

{VP1, . . . ,VPn} of variation points is non-empty. A variation point VP i =
{Si,j | 1 ≤ j ≤ ki}, where ki ≥ 2, is a set of (at least two) SHVMs called
variants.

We sometimes refer to an SHVM simply as a variability model. An SHVM with
only a common set of artifact implementations is called ground model. An SHVM
generates a family F through all possible ways of resolving the variabilities of
the SHVM. This process recursively selects exactly one variant for each variation
point. We defer a formal definition of such a semantics for SHVMs to Section 3.1.
Variability models can be naturally depicted as trees, where leaves are common
sets of artifact implementations, and internal nodes are the roots of SHVMs or
variation points.

Example 4. Figure 2 and Figure 3 show four variability models named SA1, SA2,
SB1, and SB2. In these figures, (sub)trees showing variability models are rooted
with boxes, and subtrees showing variation points are rooted with diamonds.

In analogy with Definition 2, we define two mappings for identifying the artifact
names and artifact implementations that occur in SHVMs.

Definition 5 (SHVM names and implementations). The mapping
names (S) from SHVMs to sets of artifact names and the mapping impls(S)
from SHVMs to sets of artifact implementations are defined as follows, where
a1, . . . , an ∈ Art and i1, . . . , in ∈ Nat:

188 D. Gurov, B.M. Østvold, and I. Schaefer

{}

{a1, b1,
c1, d1, e1}

{a1, b1,
c1, d1, e2}

{a1, b1,
c2, d2, e1}

{a1, b1,
c2, d2, e2}

{a1, b1,
c2, d3, e1}

{a1, b1,
c2, d3, e2}

SA1

{a1, b1}

{c1, d1} {c2}

{d2} {d3}

{e1} {e2}

SA2

Fig. 2. SHVMs SA1 and SA2 for the family FA in Example 1

{a1, b2}

{a1} {a2}

{b1}

SB1

{a1}

{b1} {b2}

{a2, b1}

SB2

Fig. 3. SHVMs SB1 and SB2 for the family FB in Example 1

A Hierarchical Variability Model for Software Product Lines 189

names
({a1i1 , . . . , anin}

) def
= {a1, . . . , an}

names ((Mc, {VP1, . . . ,VPn})) def
= names (MC) ∪

⋃
1≤i≤n names (VP i)

where names (VP)
def
=

⋃
S∈VP names (S)

impls({a1i1 , . . . , anin})
def
= {a1i1 , . . . , anin}

impls((Mc, {VP1, . . . ,VPn})) def
= impls(MC) ∪

⋃
1≤i≤n impls(VP i)

where impls(VP)
def
=

⋃
S∈VP impls(S)

Again we abuse notation by also defining mappings with the same names from
variation points to the same co-domains.

Next, we define a measure of the degree of separation in a variability model, as
the proportion between the number of artifact implementations of a variability
model and the total size of the leaves of the SHVM tree. The separation degree
is, thus, a number in the interval 〈0, 1], and captures the degree to which the
commonalities and orthogonalities of products are factored out as common sets
and variation points in a variability model, respectively: the higher this degree,
the less artifact implementations occur repeatedly in more than one leaf. The
maximal value of 1 holds when every artifact implementation occurs in exactly
one leaf; this is trivially the case for ground models.

Definition 6 (Separation degree). The separation degree sd(S) of a vari-
ability model S is defined as:

sd({}) def
= 1

sd(S) def
=

|impls(S)|
sd ′(S) if S �= {}

where sd ′(S) is inductively defined as follows:

sd ′(MC)
def
= |MC |

sd ′((MC , {VP1, . . . ,VPn})) def
= sd ′(MC) +Σ1≤i≤nsd

′(VP i)

where sd ′(VP)
def
= ΣS∈VPsd

′(S)
As usual |S| denotes the cardinality of set S.

Intuitively this definition captures the extent to which orthogonal artifact
implementations are delegated to separate variation points, and the extent to
which disjointness of artifact implementations is delegated to separate variants.
Since this is the original intention of variation points and variants in our model,
separation degree is an obvious quality measure indicating how well the model
is used for the purpose of hierarchically representing a software family (that is,
a set of products).

The following definition provides a set of well-formedness constraints on
SHVMs.

190 D. Gurov, B.M. Østvold, and I. Schaefer

Definition 7 (Well-formed variability model). A ground variability model
S = MC is well-formed if constraint (S1) below is satisfied. A variability model
S = (MC , {VP1, . . . ,VPn}) with variation points VP i = {Si,j | 1 ≤ j ≤ ki} is
well-formed if all variants Si,j are well-formed, and furthermore, the following
constraints are satisfied:

(S1) MC implements artifact names at most once.
(S2) names (MC) ∩ names (VP i) = ∅ for all i, and

names (VP i1) ∩ names (VP i2) = ∅ whenever i1 �= i2.
(S3) names (Si,j1) = names (Si,j2) for all i, j1, j2, and

impls(Si,j1) ∩ impls(Si,j2) = ∅ whenever j1 �= j2.

Example 5. Consider the SHVMs SA1 and SA2 depicted in Figure 2. SA1 is not
well-formed whereas SA2 is. The separation degrees are sd(SA1) =

9
6·5 = 0.3 and

sd(SA2) =
9
9 = 1. Figure 3 depicts another two SHVMs, SB1 and SB2. Neither

of these are well-formed and both have separation degree 4
5 = 0.8.

The constraints in Definition 6 ensure that the separation degree of a well-formed
SHVM is equal to one, and is thus maximal.

Proposition 1. If variability model S is well-formed then sd(S) = 1.

Note that the converse of Proposition 1 does not hold in general: The vari-
ability model MC = {a1, a2} has separation degree 1, but well-formedness con-
straint (S1) is not satisfied.

3 Relating Families and Variability Models

In this section, we present translations between well-formed variability models
and simple families, and show that they are inverses of each other. In particu-
lar, this entails that the translation from simple families to variability models
produces the unique well-formed model generating the respective family, thus
giving a procedure for constructing a variability model from a given family.

3.1 From Variability Models to Families

The set of products generated by a ground model is the singleton set comprising
the set of common artifact implementations (and, thus, representing one prod-
uct). The set of products generated by a variation point is the union of the
product sets generated by its variants. Finally, the set of products generated by
an SHVM with a non-empty set of variation points is the set of all products
consisting of the common artifact implementations and of exactly one product
from the set generated by each variation point.

Definition 8 (Family generation). The mapping family(S) from variability
models to families is inductively defined as follows:

A Hierarchical Variability Model for Software Product Lines 191

family(MC)
def
= {MC}

family((MC , {VP1, . . . ,VPn})) def
= {MC} ��

∏
1≤i≤n family(VP i)

where family(VP)
def
=

⋃
S∈VP family(S)

We say that variability model S generates family(S).
Here we again abuse notation by also defining a mapping with the same name
from variation points to the same co-domain. Family generation is well-defined
in the sense that well-formed variability models generate simple families.

Proposition 2. If variability model S is well-formed, then family(S) is simple.

Example 6. SHVMs SA1 and SA2 in Figure 2 both generate family FA in Ex-
ample 1, implying that family FA is simple since SA2 is well-formed. SHVMs
SB1 and SB2 in Figure 2 both generate family FB in Example 1. Of these four,
SA2, SB1 and SB2 have maximal separation degree in the sense that, for each
of the families FA and FB, no other SHVMs for the same family have higher
separation degree.

3.2 From Families to Variability Models

We now present a reverse transformation from simple families to well-formed
variability models. Recall that simple families have unique formation trees mod-
ulo commutativity and associativity of the two operations. Well-formed SHVMs
can thus be seen as a uniform way of grouping the formation terms. Every fam-
ily F can be decomposed into the form:

F = {P} �� FV , FV =
∏

1≤i≤n Fi, Fi =
⋃

1≤j≤ki
Fi,j

where P is a product, or equivalently, as a single equation:

F = {P} ��

∏
1≤i≤n

⋃
1≤j≤ki

Fi,j (∗)

The existence of the decomposition is ensured since every family F can be
trivially decomposed as {∅} ��

∏⋃F , i.e., with product P being empty and
n = k1 = 1. Decomposition (∗) is only unique under additional constraints,
under which the decomposition is called canonical.

Definition 9 (Canonical form). A family F , decomposed as equation (∗)
above, is in canonical form if the following conditions hold:

(C1) The product P is the set of artifact implementations that are common to
all products in F .

(C2) The set of artifact names in FV has n equivalence classes w.r.t. correlated
artifact names C∗

FV
, and for the i-th equivalence class, the family Fi is the

projection of FV onto the artifact names of the class.

192 D. Gurov, B.M. Østvold, and I. Schaefer

(C3) For all i, 1 ≤ i ≤ n, Fi,j are the ki equivalence classes of Fi w.r.t. imple-
mentation sharing N∗

Fi
.

The decomposition into canonical form is clearly unique for a simple family, and
exposes one level of hierarchy. Thus, by iterative application of the decomposi-
tion, we obtain a mapping from families to hierarchical variability models.

Definition 10 (Variability model generation). The mapping shvm(F) from
simple families presented in canonical form to variability models is inductively
defined as follows:

shvm({MC}) def
= MC

shvm
({MC} ��

∏
1≤i≤n

⋃
1≤j≤ki

Fi,j

) def
= (MC , {VP1, . . . ,VPn})

where VP i
def
= {shvm(Fi,j) | 1 ≤ j ≤ ki}

We say that family F generates variability model shvm(F).

As the next result shows, the generated variability model is well-formed.

Proposition 3. If family F is simple, then shvm(F) is well-formed.

Example 7. Consider the family FA from Example 1.

– In the first step of the decomposition of FA into canonical form we obtain
the common set P = {a1, b1} and the family FV = {{c1, d1, e1} , {c1, d1, e2} ,
{c2, d2, e1} , {c2, d2, e2} ,
{c2, d3, e1} , {c2, d3, e2}}.

– In the next step, we analyze FV to find that only artifact names c and d are
correlated. Projecting FV onto the two resulting equivalence classes {c, d}
and {e} we obtain the two variation points F1 = {{c1, d1} , {c2, d2} , {c2, d3}}
and F2 = {{e1} , {e2}}.

– In the third step, we analyze F1 and see that two products share the artifact
implementation c2, which gives us the variants F1,1 = {{c1, d1}} and F1,2 =
{{c2, d2} , {c2, d3}}, and then analyze F2 to obtain the variantsF2,1 = {{e1}}
and F2,2 = {{e2}}.

Only F1,2 is not a ground model. Applying the above steps decomposes it into a
common set {c2} and a single variation point with two variants consisting of the
common sets {d2} and {d3}. It is easy to see that shvm(FA) is the variability
model SA2 in Figure 2.

3.3 Characterization Results

Our first result establishes correctness of model extraction.

Lemma 1. For every simple family F we have:

family(shvm(F)) = F

A Hierarchical Variability Model for Software Product Lines 193

The second result establishes uniqueness of well-formed models w.r.t. the gen-
erated (simple) family.

Lemma 2. For every well-formed variability model S we have:

shvm(family(S)) = S

An immediate consequence of the above two lemmata is our main characteriza-
tion result, which essentially states that the two transformations relating vari-
ability models and families are inverses of each other.

Theorem 1 (Characterization Theorem). For every simple family F and
every well-formed variability model S we have:

family(S) = F ⇐⇒ shvm(F) = S

4 Application

In this section, we show how to apply our theory to families consisting of products
of program code. We explain how to obtain an SHVM from a set of products,
and what insights one can gain from the derived model. Our running example
(Section 4.1) is a simple product family written in Java, but the application of
our theory is not restricted to particular programming languages or paradigms.

4.1 Example Product Line: Storing and Processing Collections

The example family consists of six products, where each product is a Java class.
The code for all products appears in Figure 4.1 The six products—named PX1,
PX2, PY1, PY2, PZ1, and PZ2 after the respective class—have the following com-
monalities: They all store a collection of values of the custom type Elem, have
a method for setting this state to some value, a method process(), and last a
method compute() which returns some subclass of Number. The products have
the following differences: The type of the state is either List or Set, both subin-
terfaces of java.util.Collection. In the case of List, method compute()

returns a Double, and in the case of Set, it returns either a Byte or an Integer.
Furthermore, method process() either prints out the state of one element at a
time using a method on class System, or it produces a String from the elements
and returns it.

4.2 From Code to Artifacts

Before we can construct an SHVM, we need a scheme to obtain a set of products,
that is, products in the sense of Definition 1. Thus, we must identify artifacts in
the product code. An artifact name in the program code is a construct that may

1 We have omitted the following: import declarations, definition of custom type Elem,
and repeated or irrelevant code.

194 D. Gurov, B.M. Østvold, and I. Schaefer

class X1 {
List<Elem> s t a t e = new ArrayList<Elem>() ;
void s e tS ta t e (L i st<Elem> arg) { this . s t a t e . addAll (arg) ; }
Double compute () { . . . }
void p roc e s s () { for (Elem e : s t a t e) System . out . p r i n t l n (e) ; }

}
class X2 {

List<Elem> s t a t e = new ArrayList<Elem>() ;
void s e tS ta t e (L i st<Elem> arg) { . . . } // as be fore
Double compute () { . . . }
S t r i ng p roc e s s () {

S t r i ng r e s = ”” ;
for (Elem e : s t a t e) r e s = re s + ” , ” + e . t oS t r i ng () ;
return r e s ;

} }
class Y1 {

Set<Elem> s t a t e = new HashSet<Elem>() ;
void s e tS ta t e (Set<Elem> arg) { this . s t a t e . addAll (arg) ; }
Byte compute () { . . . }
void p roc e s s () { . . . } // as be fore with same s ig .

}
class Y2 {

Set<Elem> s t a t e = new HashSet<Elem>() ;
void s e tS ta t e (Set<Elem> arg) { . . . } // as be fore
Byte compute () { . . . }
S t r i ng p roc e s s () { . . . } // as be fore with same s ig .

}
class Z1 {

Set<Elem> s t a t e = new HashSet<Elem>() ;
void s e tS ta t e (Set<Elem> arg) { . . . } // as be fore
In t e ge r compute () { . . . }
void p roc e s s () { . . . } // as be fore with same s ig .

}
class Z2 {

Set<Elem> s t a t e = new HashSet<Elem>() ;
void s e tS ta t e (Set<Elem> arg) { . . . } // as be fore
In t e ge r compute () { . . . }
S t r i ng p roc e s s () { . . . } // as be fore with same s ig .

}

Fig. 4. Example product line consisting of six Java classes

Table 1. Example scheme for obtaining artifacts from Java code

Art. name Art. impl. Connection Notation

interface I class C C implements I IC
interface I interface J J subinterface of I IJ
class C class D D subclass of C CD

type T type T (by convention) TT

occur several times, but with different realizations which are then the artifact
implementations. Deciding how to identify artifacts in the code means deter-
mining what are the important parts of the code for the variability model of
the product line. In general, this can be done in many ways. Here, we give one
possible example.

For this example, we consider an artifact to be a pair of Java types, one
being the name of the type and one being its implementation. For two Java

A Hierarchical Variability Model for Software Product Lines 195

types to form an artifact, they must be connected as shown in Table 1. The
types that form artifacts in our example are underlined in Figure 4. (Class
java.lang.Object and interface Collection do not occur in the figure, but
are also used.) These are some artifacts identified in the example:

– The interface java.util.List is connected to the interface
java.util.Collection via the Java implements relation, giving rise to the
artifact CollectionList (omitting package prefixes).

– The Class java.lang.String is connected to the class
java.lang.Object via the subclass relation, so we have the artifact
ObjectString.

– Class Elem is—by convention—related to itself, so we have the artifact
ElemElem.

With the scheme in Table 1, we identify the following set of products which is
a simple family and yields a hierarchical variability model with three variation
points including one inside the other.

PX1 =
{
ElemElem, CollectionList, NumberDouble, ObjectSystem

}

PX2 =
{
ElemElem, CollectionList, NumberDouble, ObjectString

}

PY1 =
{
ElemElem, CollectionSet, NumberByte, ObjectSystem

}

PY2 =
{
ElemElem, CollectionSet, NumberByte, ObjectString

}

PZ1 =
{
ElemElem, CollectionSet, NumberInteger, ObjectSystem

}

PZ2 =
{
ElemElem, CollectionSet, NumberInteger, ObjectString

}

4.3 Constructing and Interpreting the SHVM

From the set of products obtained in the previous section, constructing an SHVM
is straightforward by the procedure specified in Definition 10. We obtain the
SHVM depicted in Figure 5. The SHVM in this figure is nearly identical to SA2

in Figure 2—differing only in the cardinality of set at the leftmost branch from
the root. Hence, the construction proceeds similarly to that of Example 7. Since
the family is simple, the obtained model is well-formed and, thus, optimal w.r.t.
the separation degree.

The constructed SHVM may be read as a graphical summary of the textual
product line description given in Section 4.1, focusing on Java types. Note, in
particular, that the choice between List and Set is clearly visible as a variation
point, and that, for example, the combination of List and Byte is not allowed
by the SHVM, whereas List and Double is allowed.

5 Related Work

The existing approaches to represent solution space product line variability can
be divided into three directions [23]. First, annotative approaches consider one

196 D. Gurov, B.M. Østvold, and I. Schaefer

{ElemElem}

{CollectionList,
NumberDouble}

{CollectionSet}

{NumberByte} {NumberInteger}

{
ObjectSystem

}{
ObjectString

}

Fig. 5. SHVM for the example family

model representing all products of a product line. Variant annotations, e.g.,
using UML stereotypes [24,10], presence conditions [6], or separate variability
representations, such as orthogonal variability models [18], define which parts
of the model have to be removed to generate the model of a concrete prod-
uct. Second, compositional approaches [4,23,16,3] associate product fragments
with product features which are composed for particular feature configurations.
Third, transformational approaches [13,5] represent variability by rules deter-
mining how a base model has to be changed for a particular product model. All
these approaches consider a representation of artifact variability without any
hierarchy.

Our hierarchical variability model generalizes the ideas of the Koala compo-
nent model [22] for the implementation of variant-rich component-based systems.
In Koala, the variability of a component is described by the variability of its
sub-components which can be selected by switches and explicit diversity inter-
faces. Diversity interfaces and switches in Koala can be understood as concrete
language constructs targeted at the implementation level to express variation
points and associated variants. Plastic partial components [17] are an archi-
tectural modeling approach where component variability is defined by extending
partially defined components with variation points and associated variants. How-
ever, variants cannot contain variable components so this modeling approach is
not truly hierarchical. Hierarchical variability modeling for software architec-
tures [12] applies the modeling concepts for solution space variability presented
in this paper to component-based software engineering and provides a concrete
modeling language for variable software architectures that is truly hierarchical.
However, none of these approaches formally defines the semantics of hierarchical
variability models, nor reasons about their well-formedness or uniqueness.

To the best of our knowledge, this paper presents the first approach for con-
structing a hierarchical variability model for solution space variability from a
given product family. So far, there have only been approaches to construct
feature models for representing problem space variability for a given set of

A Hierarchical Variability Model for Software Product Lines 197

products. Czarnecki et al. [8] re-construct a feature model from a set of sample
feature combinations using data mining techniques [1]. Other approaches aim
at constructing feature models from sample mappings between products and
their features using formal concept analysis [9], for instance, to derive logical
dependencies between code variants from pre-processor annotations [21], or to
construct a feature model for function-block based systems after determining
model variants by similarity [19]. Loesch and Ploedereder [14] use formal con-
cept analysis to optimize feature models in case of product line evolution, e.g.,
to remove unused features or to combine features that always occur together.
Niu and Easterbrook [15] apply formal concept analysis to functional and non-
functional product line requirements in order to construct a feature model as
a more abstract representation of the requirements. Also, information retrieval
techniques are applied to obtain a feature model from heterogeneous product
line requirements [2]. Using hierarchical clustering, a tree structure of textually
similar requirements is constructed. Requirement clusters in the leaves are more
similar to each other than requirements clusters closer to the root giving rise to
the structure of a feature model.

In our work, we abstract from the need to determine the different variants of
the same conceptual entity by assuming fixed artifact names and corresponding
artifact implementations. However, if we relax this assumption, techniques, such
as similarity analysis [19] or formal concept analysis [9] could be applied to infer
the relationship between different variants of the same conceptual entity, and
thus make our approach applicable.

6 Conclusion

In this article, we present hierarchical solution space variability models for soft-
ware product lines. We give a formal semantics of such models in terms of sets
(or families) of products, where each product is a set of artifact implementations.
We introduce the separation degree as a quality measure of hierarchical variabil-
ity models. We identify well-formed variability models as a class of models for
which the measure is maximal (and equal to one) and which are unique for the
family they generate; the class of families generated by such models is the class
of simple families. Furthermore, we present a transformation that constructs,
from a simple family, the unique well-formed model that generates it, and prove
uniqueness by showing that family generation and model construction are in-
verses of each other for this class of models. While maximal separation degree
and uniqueness of models with maximal measure are theoretically appealing, in
practice, product families might not be simple. Still, the separation degree is
a useful measure for hierarchical variability models, and, as Examples 5 and 6
suggest, searching for the set of models with a maximal measure (not necessarily
equal to one) for a given family is equally meaningful.

Future work will focus on the practical evaluation of the proposed method for
variability model mining, considering in particular sets of (legacy code) products
that have not been designed as a family from the outset. Further effort is planned

198 D. Gurov, B.M. Østvold, and I. Schaefer

on generalizing the model with optional and multiple variant selections and with
requires/excludes constraints between variants, and on adapting accordingly the
model reconstruction transformation. Another generalization will deal with the
more abstract domain of products over implementations only, where the names
are not given in advance, but must be inferred. Additionally, the restriction that
all variants associated to a variation point have to provide the same artifact
names will be lifted. In order to integrate hierarchical variability models into
software product line engineering, we aim at offering tool support for hierarchical
variability modeling extending the approach presented in [12] and connecting
variation points to product features captured by feature models.

References

1. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of
items in large databases. In: SIGMOD Conference, pp. 207–216 (1993)

2. Alves, V., Schwanninger, C., Barbosa, L., Rashid, A., Sawyer, P., Rayson, P.,
Pohl, C., Rummler, A.: An exploratory study of information retrieval techniques
in domain analysis. In: SPLC, pp. 67–76 (2008)

3. Apel, S., Janda, F., Trujillo, S., Kästner, C.: Model Superimposition in Software
Product Lines. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 4–19.
Springer, Heidelberg (2009)

4. Batory, D., Sarvela, J., Rauschmayer, A.: Scaling Step-Wise Refinement. IEEE
Trans. Software Eng. 30(6), 355–371 (2004)

5. Clarke, D., Helvensteijn, M., Schaefer, I.: Abstract delta modeling. In: GPCE.
Springer (2010)

6. Czarnecki, K., Antkiewicz, M.: Mapping Features to Models: A Template Approach
Based on Superimposed Variants. In: Glück, R., Lowry, M. (eds.) GPCE 2005.
LNCS, vol. 3676, pp. 422–437. Springer, Heidelberg (2005)

7. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and
Applications. Addison-Wesley (2000)

8. Czarnecki, K., She, S., Wasowski, A.: Sample spaces and feature models: There
and back again. In: SPLC, pp. 22–31 (2008)

9. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer (1996)

10. Gomaa, H.: Designing Software Product Lines with UML. Addison Wesley (2004)

11. Gurov, D., Østvold, B.M., Schaefer, I.: A hierarchical variablility model for software
product lines. Technical Report TRITA-CSC-TCS 2011:1, KTH Royal Institute of
Technology, Stockholm, 26 pages (2011),
http://www.csc.kth.se/~dilian/Papers/techrep-11-1.pdf

12. Haber, A., Rendel, H., Rumpe, B., Schaefer, I., van der Linden, F.: Hierarchical
variability modeling for software architectures. In: Software Product Line Confer-
ence, SPLC 2011 (2011) (to appear)

13. Haugen, Ø., Møller-Pedersen, B., Oldevik, J., Olsen, G., Svendsen, A.: Adding
Standardized Variability to Domain Specific Languages. In: Software Product Line
Conference (SPLC 2008), pp. 139–148. IEEE (2008)

14. Loesch, F., Ploedereder, E.: Optimization of variability in software product lines.
In: SPLC, pp. 151–162 (2007)

http://www.csc.kth.se/~dilian/Papers/techrep-11-1.pdf

A Hierarchical Variability Model for Software Product Lines 199

15. Niu, N., Easterbrook, S.: Concept analysis for product line requirements. In: Pro-
ceedings of the 8th ACM International Conference on Aspect-oriented Software
Development, AOSD 2009, pp. 137–148 (2009)

16. Noda, N., Kishi, T.: Aspect-Oriented Modeling for Variability Management. In:
Software Product Line Conference (SPLC 2008), pp. 213–222. IEEE (2008)

17. Pérez, J., Dı́az, J., Soria, C.C., Garbajosa, J.: Plastic Partial Components: A so-
lution to support variability in architectural components. In: WICSA/ECSA, pp.
221–230 (2009)

18. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering -
Foundations, Principles, and Techniques. Springer (2005)

19. Ryssel, U., Ploennigs, J., Kabitzsch, K.: Automatic variation-point identification in
function-block-based models. In: Proceedings of the Ninth International Conference
on Generative Programming and Component Engineering, GPCE 2010, pp. 23–32.
ACM, New York (2010)

20. Schaefer, I., Gurov, D., Soleimanifard, S.: Compositional Algorithmic Verification
of Software Product Lines. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M.
(eds.) FMCO 2010. LNCS, vol. 6957, pp. 184–203. Springer, Heidelberg (2011)

21. Snelting, G.: Reengineering of configurations based on mathematical concept anal-
ysis. ACM Trans. Softw. Eng. Methodol. 5, 146–189 (1996)

22. van Ommering, R.: Software reuse in product populations. IEEE Trans. Software
Eng. 31(7), 537–550 (2005)

23. Völter, M., Groher, I.: Product Line Implementation using Aspect-Oriented and
Model-Driven Software Development. In: Software Product Line Conference (SPLC
2007), pp. 233–242. IEEE (2007)

24. Ziadi, T., Hëlouët, L., Jézéquel, J.-M.: Towards a UML Profile for Software Product
Lines. In: van der Linden, F.J. (ed.) PFE 2003. LNCS, vol. 3014, pp. 129–139.
Springer, Heidelberg (2004)

	A Hierarchical Variability Model for Software Product Lines
	Introduction
	Families and Variability Models
	Families
	Variability Models

	Relating Families and Variability Models
	From Variability Models to Families
	From Families to Variability Models
	Characterization Results

	Application
	Example Product Line: Storing and Processing Collections
	From Code to Artifacts
	Constructing and Interpreting the SHVM

	Related Work
	Conclusion
	References

