
Formally Proving Compositionality
in Industrial Systems with Informal

Specifications

Mattias Nyberg(B), Jonas Westman, and Dilian Gurov

Royal Institute of Technology (KTH), Stockholm, Sweden
{matny,jowestm,dilian}@kth.se

https://www.kth.se/itm/rigorous-systems-engineering

Abstract. Based upon first-order logic, the paper presents a methodol-
ogy and a deductive system for proving compositionality. Typical spec-
ifications found in industry are not expressed in any formal notation;
rather most often in natural language. Therefore, the methodology does
not assume specifications to be formal logical sentences. Instead, the
methodology takes as input, properties of specifications and in particu-
lar, refinement relations. To cover general industrial heterogeneous sys-
tems, the semantics chosen is behavior based, originating in previous
work on contract-based design for cyber-physical systems. In contrast
to the previous work, implementation of specifications is non-monotonic
with respect to composition. That is, even though a specification is imple-
mented by one component, a composition with a second component may
not implement the same specification. This kind of non-monotonicity
is fundamentally important to support architectural specifications and
so-called freedom-of-interference used in design of safety critical systems.

1 Introduction

To enable verification of large scale systems, the need for compositional veri-
fication is well known [5,13,14]. The survey paper [14], one of the most cited
ones in the area of compositional verification, decribes the principle of compo-
sitional verification of software programs as presented below, but here by using
the notation and terminology of the present paper.

Consider c to be a component being a composition of a set of components
c1, . . . cn. According to [14], to ensure by compositional verification that c imple-
ments a specification S amounts to the following steps:

a) Find specifications S1, . . .Sn for c1, . . . cn such that steps (b) and (c) below
can be executed.

b) Prove that any component c implements S whenever c is composed of any
components ci implementing specifications Si, i = 1, . . . n. This is called the
compositionality proof problem and involves the specifications S1, . . .Sn and
S only.

c) Verify that each ci, i = 1, . . . n, implements specification Si.
c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12478, pp. 348–365, 2020.
https://doi.org/10.1007/978-3-030-61467-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61467-6_22&domain=pdf
https://doi.org/10.1007/978-3-030-61467-6_22

Formally Proving Compositionality in Industrial Sys. with Informal Spec. 349

In [14], all the specifications S and Si, i = 1, . . . n, are assumed to be expressed
using logical sentences only. It is also assumed that specifications are composed
using a composition operator opS such that, given that each component ci imple-
ments Si, the composition of components implements opS(S1, . . . ,Sn). Then, the
compositionality proof problem reduces to showing that opS(S1, . . . ,Sn) logically
entails S.

The problem we are solving in the present paper is the compositionality proof
problem, but with the following generalizations and modifications in relation
to [14].

– We consider the general domain of heterogeneous systems. That is, a com-
ponent may be a software program, as in [14], but we allow also mechanical
and electrical components.

– Specifications are industrial engineering objects, and as such we do not pre-
sume these to be expressed in any logical language. The motivation is that a
typical specification found in industry is not expressed in any formal notation;
instead it is most often informally expressed in natural language [11].

Exactly like [14], we deal with the compositionality proof problem, i.e. the prob-
lem of proving that the composition of a given set of specifications S1, . . .Sn

“implies” another given specification S. However, due to that we do not assume
specifications to be expressed as logical sentences, in contrast to [14], we can not
rely on a solution based on proving that the composition opS(S1, . . . ,Sn) logi-
cally entails S. Instead, we represent specifications formally as constant symbols,
and rather than formalizing the content of the specifications, we formalize refine-
ment relations between specifications and certain properties of the specifications.
These formalizations are then used to prove compositionality.

Our aim is industrial software-intensive heterogeneous systems, meaning the
solution needs to support both discrete and continuous systems. We have there-
fore chosen a behavior based semantics of components and specifications origi-
nating in previous work developed to support “contract-based design for cyber-
physical systems” [1,2,15–17].

The previous frameworks for contracts-based design [1,2,15,16] also give
some support for proving compositionality in the form of their definition of
“parallel composition” as a condition on the involved specifications. However,
their condition is based upon the assumption that implementation is monotonic
with respect to component composition. In contrast to these previous works, the
present paper does not make this assumption; instead we support the case when
implementation is non-monotonic with respect to composition [17]. That is, even
though a component c1 implements a specification S, it should not hold generally
that the composition of c1 with another component c2 also implements S.

A support for this kind of non-monotonicity is important since architectural
specifications typically state that components shall not read and not write any
other signals than those included in a defined interface. This is inheritly a “non-
monotonic property” since, for example, consider a component c1 that does not
write to a signal x, but another component c2 does. Component c1 clearly imple-
ments the specification “Signal x shall not be written to.” but when composed

350 M. Nyberg et al.

with component c2, this specification is no longer implemented. Thus, implemen-
tation is non-monotonic with respect to composition. The property that certain
components shall not read or write certain variables is also fundamental when
designing safety critical systems and in those cases referred to as freedom of
interference [9]. In conclusion, any framework for proving compositionality, and
that is capable of including also architectural specifications, needs to support
the case when implementation is non-monotonic with respect to composition.
The proposed solution generally supports the non-monotonic case, but it also
gives specific support to, and can explicitly utilize, the case when implementa-
tion is indeed monotonic with respect to component composition, which is still
a common case for normal functional specifications.

With all these observations in mind, we propose as a first contribution of
the paper, a formal framework that enables formal reasoning about relation-
ships between components and specifications, and most importantly, it does not
require specifications to be formally expressed. The framework is based upon
first-order predicate logic and consists of a formal language, presented in Sect. 2,
a formal semantics, presented in Sect. 3, and a number of derived formal prop-
erties, presented in Sect. 4. Based upon the proposed formal framework, Sect. 5
presents the second contribution of the paper, a methodology and a deductive
system for proving compositionality. Proofs of propositions and theorem in the
paper have been left out but can be found in the report [12].

2 Syntax

In the framework of first-order predicate logic [8], this section presents the gram-
mars defining the syntactic categories used in the class of languages considered.
This forms a formal syntax for the contracts theory in [17] and is part of the
proposed formal framework, i.e. the first contribution of the paper. We consider
languages parameterized by two disjoint sets of symbols C and S. A component
term is formed by the grammar

c ::= c | c × c | q

where c ∈ C and C is a set of component constant symbols, × is a component
composition function symbol, and q ranges over component variables.

A specification term is formed by the grammar

S ::=S | S � S | (S, S) | S‖S | V

where S ∈ S and S is a set of specification constants; �, (·, ·), and ‖ are specifi-
cation composition function symbols; and V ranges over specification variables.
A specification term of the kind S1 � S2 will be referred to as conjunction of
specifications. A specification term of the kind (S1, S2) will be referred to as
assume-guarantee contract, or for short, contract. The first specification term in
(S1, S2) is called assumption and the second guarantee. A specification term of
the kind S1‖S2 will be referred to as parallel composition of specifications.

Formally Proving Compositionality in Industrial Sys. with Informal Spec. 351

As an extension to the contracts theory in [17], we introduce two new types
of specification constants, namely c©, called the compatibility specification, and
�‖, called the top specification. As will be explained in detail in Sect. 3 and 4,
the compatibility specification c© is used to enforce composed components to be
compatible with each other, and the top specification �‖ is used to allow contracts
to be a most general form of specification. Both c© and �‖ are included among
the specification constants S.

We introduce three predicate symbols; the only ones considered in the paper.
First, implementation written c : S, which reads c implements S. Second, refine-
ment written S1 � S2, which reads S1 refines S2. Third, Assertional(S), which
is a new concept and an extension of the contracts theory in [17]. As will be
explained in detail in Sect. 3 and 4, the purpose of Assertional(S) is to give explicit
support for cases when implementation is monotonic with respect to component
composition, since in general, the proposed framework otherwise assumes non-
monotonicity.

As usual in predicate logic [8], formulas are recursively built by combining
the three kind of predicates with the first-order logical symbols ∀, ∃, ¬, ∧, ∨,
→, and =. Furthermore, a sentence is a formula without free variables.

In summary, we have introduced a class of formal languages in which each
language, denoted LC,S, has the signature, i.e. non-logical symbols:

– the function symbols ×, �,‖ , and (·, ·)
– the predicate symbols :, �, and Assertional(·)
– component constant symbols instantiated by a set C

– specification constant symbols instantiated by a set S, which includes the two
specification constant symbols c© and �‖ .

As seen each language is completely specified by the disjoint sets C and S.

3 Semantics

In order to formally reason about compositionality, and as part of the proposed
formal framework, the present section introduces semantics for the syntactic
categories given in the previous section.

In a given engineering context, component terms and specification terms rep-
resent real-world components and specifications respectively. When reasoning
about whether real-world components implement real-world specifications, we
are not so interested in the components and specifications themselves. Instead,
of relevance are only the behaviors of components and behaviors that specifi-
cations specify. Therefore, given an engineering context, we define a semantics
based upon behavior of a real-world component and behavior set of real-world
specification. Formally, the engineering context is represented by a model M.
Since our interest is only the behaviors, the model M “bypasses” the real-world
objects and provides a mapping directly from terms to behaviors and behavior
sets, and from predicate symbols to relations between behaviors and behavior
sets.

352 M. Nyberg et al.

The first subsection below defines behavior formally, by reusing concepts from
previous work in [1,2,16] and [17]. The next subsections then use this definition
of behavior to define the semantics of terms and predicates. Many more detailed
explanations and motivations follow later in Sect. 4.

3.1 Behavior and Behavior Set

Let the universal set of variables Ξ = {x1, . . . , xNv
}, Nv ≥ 1, denote the set

of variables considered. These variables represent measurable or immeasurable
quantities of interest in the context studied. As such, a variable is typically a
function of time representing the fact that its value changes over a time window.
Next, in accordance with [16], let a run be a vector, with the elements being
variables in Ξ. For example, a run can be a trace [3,4,18] or an execution [10].

Let Ω denote the considered set of possible runs over the variables Ξ. Note
that for the same set of variables Ξ, infinitely many different sets Ω can be
chosen by varying the domain of each variable and the time window over which
runs are defined. Now, a behavior B is a, possibly empty, set of runs, i.e. B ⊆ Ω.
A behavior set Q is a, possibly empty, set of behaviors, i.e. Q ⊆ P(Ω), where P
denotes power set.

3.2 The Model Class Behavior Semantics

In general and according to standard predicate logic [8], a model M for a lan-
guage L is a pair of an interpretation for the language L and a domain of
discourse D.

For a given arbitrary set Ω, we will here consider a class of models MΩ,C,S for
the language LC,S. The class is defined by the following two constraints applying
to each model in MΩ,C,S:

– The domain of discourse is DΩ = P(Ω) ∪ P(P(Ω)), i.e. DΩ is the union of
the set of all possible behaviors and the set of all possible behavior sets.

– The interpretation conforms to a set of constraints (1), (2), and (3), presented
in the next section.

Let behavior semantics refer to the class MC,S that we define to be the union of
all model classes MΩ,C,S for all possible sets Ω.

3.3 Constraints on the Interpretation

We will below introduce constraints applying to the interpretation of each model
M ∈ MΩ,C,S. As stated above, each such model M has a domain of discourse
generated by the set Ω. Furthermore, since M is a model for some language LC,S,
the interpretation is a mapping from each of the symbols in LC,S, as presented
in Sect. 2, to DΩ .

Formally Proving Compositionality in Industrial Sys. with Informal Spec. 353

The interpretation of component constant symbols is a mapping from com-
ponent constant symbols to behaviors. The interpretation of the function symbol
component composition × is a function from (P(Ω))2 to P(Ω). That is,

qM ∈ P(Ω) (1a)

B1 ×M B2 = B1 ∩ B2. (1b)

The interpretation of the component composition symbol reveals that it is
associative, commutative, and idempotent, i.e. (c1 × c2) × c3 = c1 × (c2 × c3),
c1 × c2 = c2 × c1 and c × c = c respectively.

The interpretation of specification constant symbols is a mapping from spec-
ification constant symbols to behavior sets. The interpretation of the function
symbols specification conjunction, specification parallel composition, and con-
tract are functions from (P(P(Ω)))2 to P(P(Ω)). The interpretation of speci-
fication parallel composition is defined using a double intersection of sets, i.e.
Q1 � Q2 = {B1 ∩ B2| B1 ∈ Q1,B2 ∈ Q2}.

pM ∈ P(P(Ω)) (2a)

�M
‖ = {Ω} (2b)

c©M = {B ∈ P(Ω)|B �= ∅} (2c)

Q1 �M Q2 = Q1 ∩ Q2 (2d)

Q1‖MQ2 = Q1 � Q2 (2e)

(A,G)M = {B ∈ P(Ω)| ∀B′ ∈ A.B ∩ B′ ∈ G} (2f)

We can note that both the interpretations of the conjunction and parallel
composition symbols are associative, commutative, and idempotent. However,
the interpretation of contract has none of these properties.

As common in predicate logic, we extend the interpretation to non-constant
terms, e.g. (c1 × c2)M = cM

1 ×McM
2 and (A,G)M = (AM, GM)M.

Next, we consider the interpretation of the three predicate symbols. In pred-
icate logic, interpretation of each predicate is usually defined by a relation over
Dn where n is the arity of the predicate. Using this principle, the interpretation
of the three predicate symbols is as follows:

:M = {(B,Q) ∈ P(Ω) × P(P(Ω)) |B ∈ Q} (3a)

�M = {(Q1,Q2) ∈ P(P(Ω)) × P(P(Ω)) | Q1 ⊆ Q2} (3b)

AssertionalM = {Q ∈ P(P(Ω)) | Q is downward closed} (3c)

where downward closed refers to the general set property that for each B ∈ Q,
it holds that each subset B′ ⊆ B is also in Q, i.e. B′ ∈ Q.

3.4 Evaluation

As standard in predicate logic, given a model M for a language LC,S, evaluation
of a sentence φ in LC,S, is done by first using the interpretation of the constants

354 M. Nyberg et al.

to find the corresponding concrete elements in DΩ , i.e. behaviors and behavior
sets. If φ is a single predicate, by iteratively using the interpretation of the
function symbols, we compute one element, or a pair of elements, depending on
the arity of the actual predicate symbol. The element(s) are then checked in the
relation obtained from the interpretation of the predicate symbol. If and only
if the element(s) are in the relation, we say that M satisfies φ , or φ is true in
M, and write M |= φ. If φ is a formula built with several predicates combined
by logical symbols, it is evaluated by using the standard usage of the logical
symbols, e.g. M |= φ1 ∨ φ2 if and only if M |= φ1 or M |= φ2.

A set of formulas Ψ = {ψ1, . . . ψN} semantically entails a formula φ, denoted
Ψ |= φ, if it holds that any model M that satisfies each formula ψi ∈ Ψ also
satisfies the formula φ.

3.5 Theory

According to standard first order logic, we use the concept of theory [6] in order
to obtain a syntactical characterization of the model class considered. Let TC,S be
the theory of model class MC,S. That is, TC,S is the set of all first-order sentences
such that each sentence is satisfied by every model in MC,S. The following propo-
sition explains how general semantical-entailment properties can be proven by
refering to the theory TC,S, and is the basis for all other propositions and theorem
in the paper.

Proposition 1. Let φi(t1, ..., tm), i = 1..n, and ϕ(t1, ..., tm) represent sentences
in LC,S. If for each model M ∈ MC,S, such that M |= φi(t1, ..., tm), it holds also
M |= ϕ(t1, ..., tm), then TC,S, φ1(t1, ..., tm), . . . , φn(t1, ..., tm) |= ϕ(t1, ..., tm). ��

4 Explanations and Connection to Real-World
Engineering

This section presents more detailed explanations of and motivations for the
behavior semantics presented in Sect. 3. We also present a number of propo-
sitions stating important properties of the proposed formal framework, i.e. the
first contribution of the paper. In the sequel, most results and discussions will be
presented without reference to a specific language LC,S. Still, it means that each
result is valid only for a given implicit language LC,S, but since that language is
arbitrary in the class considered, the results and discussions will be valid for all
such languages.

We consider real-world components and real-world specifications to be engi-
neering artifacts existing in an engineering context. In the following three sub-
sections, with the ambition to strive for clarity, we carefully distinguish between
component terms, real-world components that are represented by component
terms, and behavior of real-world components represented by the interpreta-
tion of the terms. Similarly we carefully distinguish between specification terms,
real-world specifications, and behavior sets. However, in the rest of paper, when
the context is sufficiently precise, we will often refer to just component or
specification.

Formally Proving Compositionality in Industrial Sys. with Informal Spec. 355

4.1 Components and Component Compositions

We are considering an engineering context represented by a model M. The
component constant symbol c represents a real-world component in that context.
The interpretation cM is the behavior of this real-world component. As seen,
the real-world component is not explicit in our formalism, although we could
have introduced a second interpretation containing a mapping from the symbols
C to real-world components. However, since all our reasoning is about behavior
components, such a second interpretation would not bring any extra usefulness.

The real-world component, represented by the symbol c, has the behavior
cM. In accordance with Sect. 3.1, this behavior captures, through the runs it
includes, the dynamic and static constraints imposed by the real-world compo-
nent on the variables in Ξ, independent of constraints imposed by other real-
world components.

Example 1. Consider an electrical amplifier that takes an input signal u and
creates an output signal y, with amplification factor 2. The relationship between
the input u and output y can be described by the equation y = 2u. Let Ξ =
{u, y}, where u and y are real variables. For simplicity, we consider only one point
in time, i.e. each run is a vector of values, not a vector of functions of time. The
behavior of the amplifier is then the infinite set of all vectors (u, y) that are
solutions to y = 2u. That is B = {(0, 0), (0.1, 0.2), (1, 2), (2, 4), (15, 30), . . . }. ��
Example 2. Let Ξ = {x, y}, where x and y are Boolean variables. For simplicity,
we consider only one point in time. Examples of behaviors are B1 = {(0, 0)} ,
B2 = {(0, 1)}, B3 = {(0, 0), (0, 1)}, B4 = {(0, 0), (1, 1)}, and B5 = ∅. ��
Example 3. Let Ξ = {x, y}, where u and y are real variables. Examples of runs
are ω1 = (x(t), y(t)) = (t, et) and ω2 = (t, 2et) defined on a time window [0, 10].
These two runs can be combined to form four different behaviors B1 = {},
B2 = {(t, et)}, B3 = {(t, 2et)}, and B4 = {(t, et), (t, 2et)}. ��

Conceptually, composing two real world components means combining the
constraints imposed individually by the components. Thus the behavior (c1 ×
c2)M captures the combined dynamic and static constraints imposed by both
real world components. That is, the first real world component allows the runs
cM
1 and the second allows the runs cM

2 . Together, the two real world components
allow only runs that are in both cM

1 and cM
2 . Thus, the behavior of the composed

real world component is the intersection (c1 × c2)M = cM
1 ∩ cM

2 .
In the paper, we will mostly write expressions involving general component

terms. A term c may therefore be either a constant symbol or a composition
of constant symbols. If it is a composition, it represents a corresponding com-
position of real-world components. Even though the term c is a composition,

356 M. Nyberg et al.

representing a real-world composition, we will refer to it as a real-world compo-
nent. That is, we always consider a composition of real-world components to be
a new real-world component even though there may be no explicit component
constant symbol representing this composed real-world component.

4.2 Specification

Real-world specifications are usually defined in some requirements management
system. A specification constant symbol S represents such a real-world specifi-
cation. A real-world specification expresses, formally or informally, an intended
property in terms of the variables Ξ. Typical examples are functional require-
ments or interface requirements. Note that, regardless of if a real-world spec-
ification is expressed formally or informally in natural language, we presume
that the specified intended property is unambiguous, in line with standards on
requirements engineering e.g. [9].

The intended property is in our framework characterized by SM, which is
the set of behaviors consistent with the intended unambiguous property. For
example, if a real world specification represented by S is expressed as “The
signal x shall be larger than zero.”, then the behavior set SM consists of all
behaviors in which all runs have the value of the variable x larger than 0 at all
time points.

Example 4. Let Ξ = {x, y, z} where each variable is Boolean, and consider only
one point in time. Consider a real-world specification represented by S1 and
expressed as “The variable x shall be 0, y shall be constrained to either 0 or
1, and z shall not be constrained at all.”. Consider also real-world specification
represented by S2 and expressed as “Either x shall be 0 and z not be constrained,
or z shall be 0 and x not be constrained. In both cases, y shall be 1.”. This
corresponds to the behavior sets

SM
1 = {{(0, 0, 0), (0, 0, 1)}, {(0, 1, 0), (0, 1, 1)}} (4a)

SM
2 = {{(0, 1, 0), (0, 1, 1)}, {(0, 1, 0), (1, 1, 0)}} (4b)

��
As seen in the example, the framework allows specifications that specify

properties, both of the kind that variables shall take certain values, but also
of the kind stating that some variables shall not be constrained. The latter
is a typical property enforced by architecture specifications and requirements of
freedom of interference, and as further discussed in the following sections, closely
related to implementation being non-monotic with respect to composition.

4.3 Implementation

As stated above, a real world component, represented by a term c, has a behavior
cM that is the set of all runs that are possible with the constraints imposed by the
component. A real world specification, represented by a symbol S, expresses an

Formally Proving Compositionality in Industrial Sys. with Informal Spec. 357

intended property, and the behavior set SM is the set of all behaviors consistent
with this intended property. Based upon these notions, a real-world component,
represented by c, implements a real-world specification, represented by S, if the
behavior cM is in the set SM. We express this as M |= c:S.

Example 5. Consider again the real-world specifications represented by S1

and S2 from Example 4. Consider also three real-world components repre-
sented by c3, c4, and c5, having behaviors cM

3 = {(0, 0, 0), (0, 0, 1)}, cM
4 =

{(0, 1, 0), (0, 1, 1)}, and cM
5 = {(0, 1, 0), (1, 1, 0)} respectively. Notably, it holds

that M |= c3 : S1 and M |= c4 : S1, but since cM
3 ∩ cM

4 = ∅ �∈ SM
1 , it does

not hold that M |= c3 × c4 : S1. Furthermore, it holds that M |= c4 : S2 and
M |= c5 : S2, but since cM

4 ∩ cM
5 = {(0, 1, 0)} �∈ SM

2 , it does not hold that
M |= c4 × c5 :S2. ��

Example 5 highlights the fact that even though two real-world components
individually satisfy the same real-world specification, their composition does in
general not. That is, implementing a specification is non-monotonic with respect
to composition.

4.4 Refinement

From now on, we will stop being so careful in the dinstinction between terms
and real-world objects.

In general, refinement is the single most important property used to prove
compositionality, as will be further highlighed in Sect. 5.1. Refinement means,
in words, that if any component c implements specification S1, and S1 refines
S2, then c will implement also S2. The following proposition confirms that the
interpretation constraints (2) and (3) match this notion of refinement.

Proposition 2 (Refinement Elimination (re) and Introduction). It holds

a) TC,S, c:S1, S1 � S2 |= c:S2 and (re)
b) TC,S,∀q(q :S1 → q :S2) |= S1 � S2 . ��

4.5 Assertional Specification

The proposed framework, as noted many times by now, supports generally the
case when implementation is non-monotonic with respect to component com-
position. However, in many cases, implementation of a specification S is indeed
monotonic and in order to support reasoning utilizing this fact, the framework
incorporates the predicate Assertional(S). If a specification S is assertional and
a component c1 implements S, i.e. c1 :S, then any composition with any other
component c2 will also implement S, i.e. c1 × c2 :S. Thus, if a specification S is
assertional, then implementation of S will be monotonic with respect to compo-
nent composition. This relationship is indeed a consequence of the interpretation
constraints (1), (2), and (3), as confirmed by the following proposition.

Proposition 3 (Assertional vs Monotonic (am)). It holds

358 M. Nyberg et al.

a) TC,S, ∀q1∀q2

(
q1 :S → q1×q2 :S

) |= Assertional(S) and
b) TC,S,Assertional(S), c1 :S |= c1×c2 :S . (am)

��
Consider a specification S expressing an intended property of the kind of a

simple relation between variables in Ξ, e.g. “x shall be larger than y”. According
to Sect. 4.2 the behavior set SM contains all behaviors consistent with the
relation, which means all behaviors in which each run respects the relation.
Since any subset, including the empty set, of such a behavior will also have
all its runs respecting the relation, any such subset is also a behavior in SM.
Recall from Sect. 3.3 that this corresponds to the definition of downward-closed
set and the interpretation of Assertional(S). Thus, in general it holds that any
property of individual runs lifted to sets of runs, is assertional. This includes
all properties that are expressible in linear-time temporal logic. In particular, a
specification becomes assertional if it is possible to express the specification as a
simple relation between variables in Ξ, or a combination of such relations, and
this should be the case for a majority of industrial specifications. Note however,
that the empty behavior is rarely a desired behavior, but it can be excluded
simply by means of the specification c© as will be explained in Sect. 4.8.

An important exception is specifications expressing architectural contraints,
e.g. “signal x shall not be sent out” or “memory location 0x2AF3 shall not be
written to”, sometimes refered to as a requirement on freedom of interference [9].
The specifications S1 and S2 in Example 4 are two examples of specifications
that are not assertional. This can be seen by studying the behavior sets (4) and
also by observing that their natural language formulations include the phrase
“not constrained” which is a type of architectural specification.

4.6 Conjunction and Parallel Composition of Specifications

Conjunction of two specifications simply means that the component shall imple-
ment both specifications, as confirmed by the following proposition. The follow-
ing proposition confirms that the interpretation constraints (2) and (3) match
this notion of refinement.

Proposition 4 (Conjunction Introduction (�i) and Elimination (�e)). It
holds

a) TC,S, c:S1, c:S2 |= c:S1 � S2 and (�i)
b) TC,S, c:S1 � S2 |= c:S1 . (�e)

��
Parallel composition of two specifications means that, if a component c imple-

ments S1‖S2, the behavior of the component is possible to “factorize” into two
behaviors B1 ∈ SM

1 and B2 ∈ SM
2 such that cM = B1 ∩ B2. In practice, paral-

lel composition of specification S1 ‖S2 is typically used as part of a refinement
relation S1‖S2 � S, which means that, if the refinement relation holds, we can
check that components c1 and c2 implement S1 and S2 respectively, and then

Formally Proving Compositionality in Industrial Sys. with Informal Spec. 359

it follows that the composition c1 × c2 implements S. The following proposition
confirms that the interpretation constraints (1), (2), and (3) match both these
views of parallel composition.

Proposition 5 (Parallel Specification Composition). It holds

a) TC,S, c:S1‖S2 |= ∃q1, q2(q1 :S1 ∧ q2 :S2 ∧ q1 × q2 = c) and
b) TC,S, c1 :S1, c2 :S2 |= c1 × c2 :S1‖S2. ��

The following proposition investigates the relationship between conjunction
and parallel composition.

Proposition 6 (Conjunction vs Parallel Composition). It holds

a) TC,S |= S1 � S2 � S1‖S2 and
b) TC,S, Assertional(S1), Assertional(S2) |= S1‖S2 � S1 � S2. ��

Part (b) of the proposition is interesting since it, in the case S1 and S2 are
assertional, provides an indirect way to prove S1 ‖ S2 � S from knowing that
S1 � S2 � S, which in some cases might be simpler to prove.

4.7 Contracts

Traditionally in the literature, e.g. see [1,2,15,16], an assume-guarantee contract
(A,G) is defined by the property that: a component c2 implements a contract
(A,G) if for any component c1 that implements A, the composition c1×c2 imple-
ments G. The following proposition confirms that our way of defining contract as
the constraint (2f) on the interpretation, leads to this property used as definition
in the previous literature.

Proposition 7 (Contract Elimination (ce) and Introduction (ci)). It
holds

a) TC,S |= A‖(A,G) � G alternatively expressed as
TC,S, c1 :A, c2 :(A,G) |= c1 × c2 :G , (ce)

b) TC,S,∀q1(q1 :A → q1 × c2 :G) |= c2 :(A,G). (ci)
��

As noted in Sect. 1, and as will be seen in Sect. 5.1, contracts are of particular
importance when proving compositionality. Therefore, results in Sect. 5.1 will
be derived assuming that all specifications are contracts. However, this is no
limitation according to the following proposition.

Proposition 8 (Generality of Contracts).
It holds that TC,S |= S=(�‖, S). ��
Thus, any specification S can always be written as the contract (�‖, S). In fact,
this is the reason why the specification constant symbol �‖ was introduced in
the syntax in Sect. 2.

According to Proposition 3, assertional specifications are tightly connected
with implementation being monotonic with respect to component composition.

360 M. Nyberg et al.

This monotonicity is highly useful for proving compositionality, as will be seen
in Sect. 5.1. Therefore, it is important to know if a contract is assertional, and
according to the following proposition, a contract is in fact assertional if its
guarantee is assertional.

Proposition 9 (Assertional Contracts). It holds
TC,S,Assertional(G) |= Assertional((A,G)). ��

4.8 Compatibility Specification c©
Two components may impose constraints incompatible with each other. This
corresponds to that there is no single run that is in both behaviors of the com-
ponents, i.e. cM

1 ∩ cM
2 = ∅. We want to be able to reason about this case, in

order to avoid it. Therefore we need support in the syntax to express and spec-
ify that components shall be compatible, and to express that components are
or are not compatible. This syntactic support is provided by the specification
constant symbol c© whose interpretation, according to (2), is the set of all behav-
ior sets except the empty set. Consequently, for any model M ∈ MC,S, it holds
M |= c1 × c2 : c© if and only if cM

1 ∩ cM
2 �= ∅.

Note that even though the purpose of the notion of compatible components
is to avoid two or more components to get the behavior empty set. However,
in the framework, the notion of compatibility is formally a property of general
component terms, including single components. Therefore we will simply refer to
compatible or incompatible components, irrespective of whether the component
is a composition or not.

Note that an assertional specification will always accept an incompatible
component, i.e. an incompatible component will always implement any asser-
tional specification, since the interpretation of an assertional specification is a
downward-closed set, which always includes the empty set as one of the elements.
Therefore, the specification c© comes in handy in conjunction with assertional
specifications, i.e. S� c© allows S to be assertional while at the same time enforces
compatibility.

5 Compositionality

With grammar and behavior semantics defined, this section will present the sec-
ond contribution of the paper: a methodology and a deductive system for proving
compositionality without presuming specifications to be expressed formally. We
start by defining compositionality formally.

Definition 1 (Compositionality). Consider a model M such that M ∈
MC,S. In the model M, the specifications S1, . . . SN are composable into the
specification S, or equivalently, the specification S is decomposable into the spec-
ifications S1, . . . SN , if

M |= S1‖. . .‖SN � S . (5)

��

Formally Proving Compositionality in Industrial Sys. with Informal Spec. 361

Note that in Definition 1, compositionality is defined for a specific model M. In
fact, in the framework of the paper, we can not define compositionality to be a
property only of the specifications S1, . . . , SN , S such as

TC,S |= S1‖. . .‖SN � S

since this relation does not hold in general. It holds in some particular cases,
such as TC,S |= A ‖ (A,G) � G. However it does not hold if S1, . . . , SN , S are
distinct constant terms, i.e. TC,S |= S1‖. . .‖SN � S does never hold, since there
is always possible to find one model that does not satisfy S1‖. . .‖SN � S.

The reference to a model in Definition 1 stands in contrast to [14], in which
specifications themselves are expressed as formulas of predicates, meaning that
in [14], no reference to a specific model M is needed to define or evaluate com-
positionality. This difference is further highlighted in the following example.

Example 6. Consider an engineering context represented by a model M1 in
which the specification constant symbol S represents a real-world specification
expressed as “The value of signal y shall be two times the value of signal u.”.
That is, the interpretation SM1 is the behavior set of all behaviors matching
this natural-language specification. Furthermore, S1 represents a specification
expressed as “The value of signal x shall equal the value of signal u.”, and S2

represents a specification expressed as “The value of signal y shall be two times
the value of signal x.” In this model M1, it holds M1 |= S1‖S2 � S. However,
we can not say anything about any other model M2 since we do not know the
interpretation of S1, S2, and S in any such model. For example, in M2, it might
be the case that S1, S2, and S represents real-world specifications “x shall equal
0.”, “y shall equal 0.”, and “z shall equal 0” respectively. Thus, it does not hold
generally that |= S1‖S2 � S. ��

5.1 Proving Compositionality

Even though compositionality is a property of a model, we want to utilize stan-
dard methods and tools, developed for first-order logic, and these work solely on
a syntactic level. Thus, when proving compositionality, we need a way to avoid
making reference to a particular model.

To solve this problem, we below present a theorem, which explains how com-
positionality can be proven without reference to any model M. To remove the
model M from the reasoning, we abstract it into a set Γ of sentences that M
satisfy. More specifically, the sentences in Γ represent given knowledge about
refinement relations between specifications, and also given knowledge that some
specifications are assertional. The theorem refers to a hypothetical deductive
system that is strongly sound for TC,S, which means that, for any sentence φ, if
TC,S � φ, then also TC,S |= φ.

Theorem 1. (Proving Contract Compositionality). Let Γ be a set of
sentences where each sentence is either in the form �jαj � β or Assertional(γ),
where each αj, β, and γ is a specification term. If there is a proof of

Γ, q1 :(A1, G1), . . . , qN :(AN , GN) � q1 × . . . × qN :(A,G), (6)

362 M. Nyberg et al.

in a deductive system, strongly sound for TC,S, then it holds

TC,S, Γ |= (A1, G1)‖. . .‖(AN , GN) � (A,G). (7)

��
Note that (7) means, according to Definition 1, that in any model M ∈ MCS,
satisfying Γ , the specifications (A1, G1), . . . (AN , GN) are composable into the
specification (A,G).

To illustrate how the theorem can be used in an engineering context, assume
that the specifications A1, G1, . . . , AN , GN , A,G are stored in a requirements
management system. Assume also that the requirements management system
contains the knowledge of refinement relations between the specifications and of
which specifications that are assertional. This knowledge can be based on manual
informal analysis made by engineers, which is the only option when specifications
are informal, or it can be based upon formal analysis. However, it is important to
note that any such formal analysis is done outside the proposed framework and
outside the scope of Theorem 1. This allows using the most appropriate analysis
technique for the problem at hand, e.g. non-linear analysis in case specifications
are expressed as non-linear differential equations.

Whatever analysis methods that are used, manual or formal, the obtained
knowledge is taken as input to the compositionality proof problem by inserting it
as sentences in the set Γ . Then a theorem prover such as HOL4 can be used with
a deductive system to find a proof of the sequent (6). That a proof has been found
means formally that in any model M ∈ MC,S, such that M satisfies each sentence
in Γ , the contract (A,G) is decomposable into the contracts (Ai, Gi). Note that
the model M is the mathematical object representing the engineering context
but it is not needed explicitly. Instead we can express the conclusion simply as:
in the engineering context considered, the contract (A,G) is decomposable into
the contracts (Ai, Gi).

5.2 Deductive System for Proving Compositionality

Theorem 1 presented the solution to prove compositionality (5) by finding a
proof of the sequent (6). In order to find such proofs, we consider a deduc-
tive system for the language LC,S, having no axioms but a set of inference
rules R. We choose R to include seven rules based upon the propositions in
Sect. 4: R = {re, am,�i,�e, ce, ci, cre}. The first six match exactly the corre-
sponding proposition and rule cre is a rule derived by combining �e, re, and �i.
Two examples of the inference rules are Contract Elimination (ce), based upon
Proposition 2a, and the derived rule Conjunction Refinement Elimination (cre):

c1 :S1 c2 :(S1, S2)
c1 × c2 : S2

ce
c : S1 � S2 S2 � S3

c : S2 � S3
cre.

Each rule in R is not sound generally, but according to the underlying proposi-
tions 2, 3, 4, and 7, which have all been proven using HOL4, see [7], each rule is

Formally Proving Compositionality in Industrial Sys. with Informal Spec. 363

sound when TC,S is added to the premises. This means that each rule is strongly
sound for TC,S, and consequently, the deductive system is strongly sound for
TC,S.

In general, more inference rules can be needed to prove compositionality. For
instance, the utilization of interface specifications is highly useful but this is out
of the scope of the present paper. However, for the example presented in Sect. 5.3
below, the seven rules in R are sufficient.

Fig. 1. (a) A compositionality problem with refinement relations in (8) illustrated as
a directed graph. (b) A proof DAG for a proof of the sequent (9) corresponding to the
compositionality problem in (a) but with c© added to each contract.

5.3 Compositionality Proof Example

We consider an example of a basic compositionality problem as illustrated in
Fig. 1a, where arrows represent known refinement relations, and component
terms in the sequent to prove (9) are represented as dashed boxes. The refinement
relations and a known fact that the specification A is assertional are collected in

Γ = {Assertional(A), A � A1, A � G1 � A2, G2 � G}. (8)

To ensure compatibility as explained in Sect. 4.8, we add the compatibility spec-
ification c© to the assumption and guarantee of each contract. According to

364 M. Nyberg et al.

Theorem 1, this gives us the following sequent to prove:

Γ, x1 :(A1 � c©, G1 � c©), x2 :(A2 � c©, G2 � c©) � x1 ×x2 :(A� c©, G� c©). (9)

The deductive system has been implemented in the theorem prover HOL4, as
further explained in [7], and by using this implementation, we automatically
obtain a proof of the sequent (9). The proof is shown in Fig. 1 as a proof DAG
in which arrows point from the premises used in the inference rule shown at
the corresponding arrow head. The dashed arrow illustrates that q0 : A � c© is
temporarily assumed when applying the rule contract introduction ci.

6 Conclusions

Based upon first-order predicate logic, the paper has presented a formal frame-
work and methodology for proving compositionality. To support general hetero-
geneous systems, the semantics chosen is behavior based, originating in previous
work on contract-based design for cyber-physical systems [1,2,15,16]. However,
in contrast to the previous work, we treat implementation of specifications to be
non-monotonic with respect to composition. That is, even though a specification
is implemented by one component, a composition with a second component may
not implement the same specification. This kind of non-monotonicity is funda-
mentally important to support architectural specifications and so called freedom
of interference used in design of safety critical systems.

With the contributions of the paper, i.e. the framework and methodology
for proving compositionality, it is now possible to prove compositionality for
industrial systems, even though specifications themselves are not formal objects.
Instead, we rely on given refinement relations between specifications and the
property assertional of the specifications.

Our view is that in industrial heterogenuous systems, there is in general a
mix between informal and formal specification. Furthermore, for the specifica-
tions that indeed are formal, the kind of formalism differ between different parts
of the system, e.g. one part might be described by differential equations, while
another by linear-time logic. Therefore, within each formalism, some individual
refinement relations may indeed be possible to prove, although there is no uni-
versal formalism in which all refinement relations can be proven and certainly
not the whole compositionality. In this case, the proposed framework provides
a unifying framework allowing reasoning utilizing the results from individual
refinement proofs, and also results from informal analyses, in order to prove
compositionality.

References

1. Benveniste, A., Caillaud, B., Ferrari, A., Mangeruca, L., Passerone, R., Sofronis, C.:
Multiple viewpoint contract-based specification and design. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2007. LNCS, vol. 5382, pp.
200–225. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92188-
2 9

https://doi.org/10.1007/978-3-540-92188-2_9
https://doi.org/10.1007/978-3-540-92188-2_9

Formally Proving Compositionality in Industrial Sys. with Informal Spec. 365

2. Benveniste, A., Caillaud, B., Passerone, R.: Multi-viewpoint state machines for rich
component models. In: Model-Based Design for Embedded Systems, pp. 487–518.
Taylor & Francis (2009)

3. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential
processes. J. ACM 31(3), 560–599 (1984)

4. Dill, D.L.: Trace theory for automatic hierarchical verification of speed-independent
circuits. In: Proceedings of the fifth MIT Conference on Advanced Research in
VLSI, pp. 51–65. MIT Press, Cambridge, MA, USA (1988)

5. Furia, C.A.: A Compositional World - a survey of recent works on compositional-
ity in formal methods. Technical Report 22, Dipartimento di Elettronica e Infor-
mazione, Politecnico di Milano (2005)

6. Galton, A.: Logic for Information Technology. John Wiley & Sons Inc., Hoboken
(1990)

7. Hedengren, G.: Verifying Correctness of Contract Decompositions. Master’s thesis,
Royal Institute of Technology (KTH) (2020)

8. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning about
Systems. Cambridge University Press, Cambridge (2004)

9. ISO 26262: “Road vehicles - Functional safety” (2018)
10. Negulescu, R.: Process spaces. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS,

vol. 1877, pp. 199–213. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-44618-4 16

11. Nyberg, M., Gurov, D., Lidström, C., Rasmusson, A., Westman, J.: Formal veri-
fication in automotive industry: enablers and obstacles. In: Margaria, T., Steffen,
B. (eds.) ISoLA 2018. LNCS, vol. 11247, pp. 139–158. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03427-6 14

12. Nyberg, M., Westman, J., Gurov, D.: Formally proving compositionality in indus-
trial systems with informal specifications. Technical report, Royal Institute of Tech-
nology (KTH) (2020). http://www.kth.se/profile/matny

13. Peng, H., Tahar, S.: A survey on compositional verification. Technical report,
Department of Electrical and Computer Engineering, Concordia University, Mon-
treal, Canada, November 1998

14. Roever, W.-P.: The need for compositional proof systems: a survey. In: de Roever,
W.-P., Langmaack, H., Pnueli, A. (eds.) COMPOS 1997. LNCS, vol. 1536, pp.
1–22. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49213-5 1

15. Sangiovanni-Vincentelli, A.L., Damm, W., Passerone, R.: Taming Dr. Franken-
stein: contract-based design for cyber-physical systems. Eur. J. Control 18(3),
217–238 (2012)

16. Westman, J., Nyberg, M.: Conditions of contracts for separating responsibilities in
heterogeneous systems. Formal Methods Syst. Des. 52(2), 147–192 (2017). https://
doi.org/10.1007/s10703-017-0294-7

17. Westman, J., Nyberg, M.: Preserving contract satisfiability under non-monotonic
composition. In: Baier, C., Caires, L. (eds.) FORTE 2018. LNCS, vol. 10854, pp.
181–195. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92612-4 10

18. Wolf, E.S.: Hierarchical Models of Synchronous Circuits for Formal Verification
and Substitution. Ph.D. thesis, Stanford University, Stanford, CA, USA (1996)

https://doi.org/10.1007/3-540-44618-4_16
https://doi.org/10.1007/3-540-44618-4_16
https://doi.org/10.1007/978-3-030-03427-6_14
http://www.kth.se/profile/matny
https://doi.org/10.1007/3-540-49213-5_1
https://doi.org/10.1007/s10703-017-0294-7
https://doi.org/10.1007/s10703-017-0294-7
https://doi.org/10.1007/978-3-319-92612-4_10

	Formally Proving Compositionality in Industrial Systems with Informal Specifications
	1 Introduction
	2 Syntax
	3 Semantics
	3.1 Behavior and Behavior Set
	3.2 The Model Class Behavior Semantics
	3.3 Constraints on the Interpretation
	3.4 Evaluation
	3.5 Theory

	4 Explanations and Connection to Real-World Engineering
	4.1 Components and Component Compositions
	4.2 Specification
	4.3 Implementation
	4.4 Refinement
	4.5 Assertional Specification
	4.6 Conjunction and Parallel Composition of Specifications
	4.7 Contracts
	4.8 Compatibility Specification ©

	5 Compositionality
	5.1 Proving Compositionality
	5.2 Deductive System for Proving Compositionality
	5.3 Compositionality Proof Example

	6 Conclusions
	References

