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Logique de simulation, applets et vérification
compositionnelle

Résumé : Nous présentons une méthode de vérification compositionnelle pour des
propriétés de sireté basées sur ’analyse de flot de controle des applets présentes sur
les cartes & puce. Notre méthode s’appuie sur une correspondance étroite entre modéles a
base de systéme de transition ordonné par simulation et la logique de Hennessy-Milner
étendue avec des plus grands points fixes simultanés. Nous montrons que la simulation peut
étre caractérisée logiquement et, vice versa, la satisfiabilité logique peut étre représentée
comportementalement par un modéle maximal pour une formule donnée. En s’appuyant
sur ces résultats, ainsi que des idées antérieures de Grumberg et Long, nous dévelop-
pons une technique de vérification compositionnelle, pour laquelle les modéles maximaux
remplacent les hypothéses logiques afin de réduire la vérification compositionnelle & du
model-checking standard. Cependant, dans le contexte des applets, munies d’interfaces,
cette technique doit étre raffinée. Comme pour une formule comportementale et une inter-
face données, une applet maximale n’existe pas toujours, nous proposons une approche &
deux niveaux, dans laquelle les hypothéses locales restreignent la structure du flot de controle
en méme que la propriété globale restreint le comportement, du flot controle. En séparant
les taches de vérification des propriétés globales et locales des applets, notre méthode est
adaptée au chargement post-issuance de nouvelles applets sur la carte & puce.

Mots-clés : Applets, sécurité, logique temporelle, vérification compositionnelle, processus
context-free
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4 Sprenger, Gurov € Huisman

1 Introduction

With the emergence of small secure devices, such as open platform smart cards and se-
cure modules as Palladium' and Embassy?, it becomes important to set criteria to decide
whether an application can be accepted on a device. Since such devices are typically used to
store privacy-sensitive data, for the acceptance of this new technology it is important that
potential users have full trust in the protection of their privacy.

For the new generation of smart cards, an interesting possibility is to have post-issuance
loading of applications (applets). This means that once the card is issued and given to the
user, the user can install new applets on the card himself; he does not have to go back to
the card issuer in order to do this. In this case automatic checks are needed to ensure that
the new applet can be trusted. These checks can involve for example type safety, memory
consumption, and illicit data or control flow.

In this paper we focus on the last category of properties: to be able to safely install
an applet post-issuance on a smart card, it needs to respect certain control flow properties
as specified. More precisely, we study sequential (single-threaded) applets and propose a
specification and verification method for safety properties of interprocedural control flow,
i.e. properties describing sequences of method invocations which are deemed safe for the
given application. Since we are interested in post-issuance loading of applets, the imple-
mentation of applets might not be available at verification time. We therefore propose a
compositional verification method, which allows the verification problem to be reduced to
the following three tasks:

(i) decomposing the global behavioural property by finding local structural properties of
the components (here applets),

(ii) proving correctness of this decomposition, that is, verifying that the local applet prop-
erties (assumptions) are sufficient to guarantee the global property (guarantee), and

(iii) verifying that applets satisfy their assumptions.

As explained below, assumptions are structural rather than behavioural to allow algorithmic
checking of correctness of property decompositions. This paper focuses on task (ii), while
for task (iii) standard algorithmic techniques already exist.

The compositional verification method proposed here supports different scenarios for
secure post-issuance loading of applets w.r.t. control flow safety properties. In the first
scenario, the card issuer specifies both the global and local properties and verifies — using
the techniques described in this paper — that the decomposition is correct, meaning that the
local specification is sufficient to establish the global specification. Each time an applet is
loaded post-issuance, an algorithm provided by the card issuer checks whether the applet
implementation satisfies the required specification. An alternative scenario is that the card
issuer only provides the global specification (and local specifications for its own applets),

Thttp://www.microsoft.com /resources/ngscb/default.mspx
2http://www.wavesys.com /technology/embassy.html
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Simulation Logic, Applets and Compositional Verification 5

and leaves it to the applet provider to come up with an appropriate local specification for
each post-issuance loaded applet. As in the previous scenario, an algorithm provided by
the card issuer checks the applet against the local specification upon loading, but in this
scenario also the property decomposition needs to be verified at loading time, potentially
on-card.

1.1 Our Approach

In earlier work [2], a proof system based approach at proving correctness of property de-
compositions is investigated, which aims at semi-automatic verification. However, for many
applications an algorithmic verification method is preferable, even more so if such a check
is to be performed frequently as in our second scenario.

The approach that we take here is inspired by the work on modular verification by Grum-
berg and Long [9]. Their framework is based on a behavioural simulation preorder which (i)
is preserved under (parallel) composition, and (ii) preserves satisfaction of properties speci-
fied in ACTL, the universal-path fragment of the (branching-time) temporal logic CTL [8].
This justifies compositional verification in the following style: to verify that the composition
of components (that is, behaviours) X and Y satisfies a global temporal property v, one
finds an abstraction of X, that is, a behaviour X’ simulating X, such that the composition of
X’ and Y satisfies 1. Component Y can be treated similarly. In addition, a mazimal model
construction 6 is given, with the property that X satisfies ¢ exactly when X is simulated by
0 (¢). This construction allows behavioural abstractions to be given through temporal logic
formulae (rather than through behaviours), supporting verification in the following style: to
verify that the composition of X and Y satisfies ¢, one finds a property ¢ of X, such that the
composition of 6 (¢) and Y satisfies ¢». Components X and Y are assumed to be finite-state
behaviours, allowing the verification of both resulting sub-problems to be performed with
standard model-checking techniques.

In contrast to the above, we are faced with potentially infinite context-free applet be-
haviours, generated from finite applet structures. We consider sequential applets only, where
applet composition is structural, that is, joins their structures, without introducing concur-
rency in the behaviour. In this context, the decidability of the correctness problem of
property decompositions is an open problem. In our setup, even when restricting to safety
properties as mentioned above, in general there is no maximal applet structure for a given
behavioural property . For this reason, we adopt a scheme where

(i) local specifications (assumptions) are structural properties, that is, restrict the control-
flow structure of applets, and

(ii) global specifications (guarantees) are behavioural properties, that is, restrict the control-
flow behaviour of applets.

To verify that the composition of applet structures X and Y satisfies the behavioural prop-
erty 1, one finds a structural property ¢ of X, such that the composition of 6 (¢) and Y
satisfies 1. Again, the resulting verification sub-problems are algorithmically checkable:

RR n° 4890



6 Sprenger, Gurov € Huisman

showing that X satisfies ¢ is a standard model-checking problem (if the applet structure
X is viewed as a Kripke structure, see e.g. [16]), while showing that the composition of
0 (¢) and Y satisfies ) can be checked by standard techniques for model-checking temporal
properties of context-free processes [7].

To be able to handle applet structure and behaviour in a uniform way, we first develop a
general framework for abstract specifications (models with designated entry points). Then,
the method outlined above is obtained by combining instantiations of this framework on
both the structural and the behavioural level, with additional results to connect the two
levels.

1.2 Summary of Results

Section 2 develops the general framework in the setting of abstract specifications. After
the introduction of simulation and a corresponding logic, called simulation logic, we connect
these formally by defining maps between specifications and logical formulae. We then present
two characterisation results. The first is a logical characterisation of simulation that states
that, for any (finite) specification 7, there is a characteristic formula x(7") such that

S<T & SEX(T) (1)

that is, 7 simulates S precisely if S satisfies x(7). The second, complementary, result is
a behavioural characterisation of logical satisfaction that says that, for any formula ¢ of
simulation logic, there is a mazimal specification 0(¢) such that

SkE¢ = S<0(¢) (2)

Thus a specification satisfies a formula ¢ precisely if it simulates the maximal specification
0(¢) obtained from ¢. The map 6 is first defined on formulas in so-called simulation normal
form and then extended to all formulas by defining an effective stepwise transformation of
formulas into simulation normal form. The two characterisations (1) and (2) combine into a
Galois connection between the preorder of finite specifications ordered by simulation and the
preorder of logical formulae ordered by logical consequence. As another corollary, simulation
preserves the satisfaction of formulae of simulation logic.

Next, Section 3 instantiates these general results to the notion of applets. An applet is
defined as a collection of method specifications, which are essentially control graph structures
together with entry points. Further, to each applet we associate an interface, defining which
methods it provides and which methods it uses. The behaviour of an applet is then a context-
free specification derived via a set of transition rules. By instantiation of the framework from
Section 2, we obtain appropriate notions of simulation and logic on both the structural and
the behavioural levels. Our compositional reasoning principle then looks as follows

-A):s(b 91(¢)&JB|:1,1/1
AL‘!’JBICb’l/)

(3)
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Simulation Logic, Applets and Compositional Verification 7

where A and B are applets, W is applet composition, ¢ is an assumption in the structural
logic and 1 is a behavioural guarantee. Its correctness mainly rests on an instantiation of
the characterisation (2) on the structural level. In order to make sure that the maximal
specification 0(¢) is itself an applet, we introduce the characteristic formula ¢; for a given
applet interface I, which is conjoined to ¢ before applying 6. Doing this we obtain a variant
of (2) for applets, where 6 is replaced by 67, so the maximal specification is guaranteed to
be an applet with interface I.

The link between the structural and behavioural levels is provided by the additional
result that structural simulation is contained in behavioural simulation. Together with the
facts that simulation is preserved by applet composition and that behavioural simulation
preserves satisfaction of behavioural formulae, this justifies principle (3). Moreover, by using
the characteristic formula x(.A) as the local assumption on ¢ and invoking the structural
version of (1), we also establish the completeness of principle (3).

This paper focuses on the theoretical underpinning of the proposed compositional ap-
proach. Section 4 sketches how our techniques can be applied to an example. This example
is distilled from a larger case study, described elsewhere in full detail [10], which supports our
claim that this setup is sufficient to handle relevant practical applications. Finally, Section 5
draws conclusions and presents directions for future work.

1.3 Related Work

As stated above, our approach to compositional verification of applets is inspired by the work
on modular verification by Grumberg and Long [9] (later developed further by Kupferman
and Vardi [14]). We explained why and how we deviate from it; in addition, it should be
pointed out that the logic ACTL on which their framework is based, allows safety as well
as liveness properties to be expressed, and that the models they consider contain fairness
constraints, these being crucial for the existence and construction of maximal models for
liveness properties. Since the properties we are mainly interested in are safety properties,
such as, e.g., the absence of illicit control flow, there is no need to add fairness constraints to
our models. Apart from these differences in setup, the maximal model construction in the
paper [9] is a global one, in the sense that it starts out by constructing all possible states
of the maximal model. Since these states are obtained as sets of certain subformulae of the
property, the maximal model is always exponentially larger than the property formula. In
contrast, our construction involves a step-wise transformation of the property formula into
simulation normal form which then directly corresponds to a maximal model. Thus, our
approach is of a more local nature and avoids unnecessary exponential blow-ups.

The general treatment of simulation and its logical characterisation that we adopt here
follows the approach to logical characterisation of refinement by Larsen and others [15, 5].
While on one hand we are more restrictive in our notion of behaviour, using labelled transi-
tion systems rather than the more general notion of modal transition systems considered by
these authors, using simulation as refinement, and dropping the diamond modality from the
logic, on the other hand we extend their results to modal logic with recursion and recursive
processes.

RR n° 4890



8 Sprenger, Gurov € Huisman

Our framework is also influenced in part by work by Jensen et al. [12], who provide
a (non-compositional) algorithmic verification method for control flow safety properties of
applets. In particular, this work motivated us to represent applets as graphs.

2 Simulation versus Logic

This section develops several general results about simulation and its relation to logic. After
the introduction of specifications and simulations between specifications, we present simu-
lation logic, which is a subset of Hennessy-Milner logic [11] with (co-)recursion added. By
defining maps between specifications and logical formulae we establish a logical characterisa-
tion of simulation in terms of simulation logic and, vice versa, a behavioural characterisation
of logical satisfaction. These two results combine into a Galois connection between the pre-
order of specifications ordered by simulation and the preorder of logical formulae ordered by
logical consequence. In particular, the behavioural characterisation of satisfaction involves
the construction of a model from a formula, which is mazimal in the sense that it simulates
all specifications satisfying the formula. This will serve as the basis for our compositional
verification method for applets explained in the next section.

2.1 Specifications and Simulation

First we introduce the general notion of a model over a set of labels L and a set of atomic
propositions A.

Definition 1 (Model). A model over L and A is a structure M = (S, L,—, A, \), where
e S is a set of states,
e L is a finite set of labels,
e - C S x L xS isa transition relation,

o A is a finite set of atomic propositions, and

A: S — P(A) is a valuation assigning to each state s the atomic propositions that hold
at s.

A specification S over L and A is a pair (M, E), where M is a model over L and A and
E C S is a set of states.

Intuitively, one can think of E as the set of entry states of the model. As usual, we will
write s — t to denote (s,a,t) €—. For convenience, we define \*(p) = {s € S | p € A\(s)}
for p € A, i.e. the set of all states satisfying atomic proposition p. A model M is finitely
branching models if for all s € S and a € L the set {t | s = ¢} is finite. A specification
(M, E) is finitely branching if M is finitely branching and F is finite. A model is finite if
its set of states is finite, while a specification is finite if the underlying model is. The next
step is to define the (usual) notion of simulation on models and specifications.

INRIA



Simulation Logic, Applets and Compositional Verification 9

Definition 2 (Simulation). A simulation is a binary relation R on S such that whenever
(s,t) € R then

(i) A(s) = A(t), and
(ii) if s < s’ then there is some t' € S such thatt < t' and (s',t') € R.

We say that t simulates s, written s < t, if there is a simulation R such that (s,t) € R.
States s and t are simulation equivalent, written s =t, if s <t and t < s.

The notion of simulation is extended to specifications (M, E) and (M, E’) by defining
(M, E) < (M, E’) if there is a simulation R such that for each s € F there is some ¢t € E’
with (s,t) € R.

Next, we extend the definition of simulation to the case where we have two specifications
(M1, E1) and (Ma, Es), based on different models. We do this by first defining the “disjoint
union” M;WMs of the underlying models as (S, L, —, A, A), where S = (S1 x{1})U(S2x{2}),
L =1,ULy, A= A UAs, Ms,i) = \(s) and (s,i) % (t,7) if and only if i = j and
s 5, t. Then we work with simulations on M; W My, by defining (My, Ey) < (Mo, Es) if
My Mg, By x {1}) < (M1 W Mg, Es x {2}).

2.2 Simulation Logic

The next step is to define a logic that characterises simulation. This logic is defined in
two steps: first we define a basic logic and then we add recursion by using modal equation
systems. The resulting logic is equivalent to modal p-calculus [13] with greatest fixed points
and box modalities only.

Definition 3 (Basic simulation logic: syntax). Let V be a countably infinite set of
variables over sets of states, ranged over by X, Y, Z, .... The formulae of basic simulation
logic over a set L of labels and a set A of atomic propositions are inductively defined by

Gu=p|p| X |p1ANd2 |1V h2]la]d

where p € A and a € L. The set of free variables fv(¢) C V of a formula ¢ is defined as
usual. Formulae of the shape p or —p are called literals.

Definition 4 (Basic simulation logic: semantics). The semantics of a formula ¢ of
basic simulation logic over L and A with respect to a model M over L and A and an
environment p: V — P(S) is defined inductively by

Ipllp = X(p)

|=pllp = S—X\(p)

X lp = p(X)

o1 Ad2llp = llgrllp N |p2llp

1V d2llp = llgillpU |p2llp

Illa] &llp = {s€S|Vt€S.si>timpliest€ llollo}

RR n° 4890



10 Sprenger, Gurov € Huisman

We implicitly assume the existence of the false proposition ff with \*(ff) = & in all
models. We then define tt = —ff. Let us introduce some useful notations. We often use
finite generalisations of the boolean connectives for which we use notations such as \/, ¢;
and \/ @ for a finite set ® of formulae. For the special case of an empty set of formulae,
we make the identifications \/ & = ff and A\ @ = tt. For a more compact representation of
modal formulae we will use [K]¢ for K C L to denote the formula A . [a] #. In concrete
cases we will omit the curly brackets and write [a, b] ¢ instead of [{a, b}] . As a special case,
we write [—] ¢ for [L] ¢.

In order to make the logic expressive enough to characterise all finite models, we follow
Larsen [15] and introduce modal equation systems over formulae of basic simulation logic.

Definition 5 (Modal equation system). A modal equation system ¥ = {X;, = ¢; | i € I}
over L and A is a finite set of equations such that the variables X; are pairwise distinct and
each ¢; is a formula of basic simulation logic over L and A. The set of variables occurring
in X is partitioned into the set of bound variables, defined by bv(X) = {X; | i € I}, and the
set of free variables fv(X).

We will henceforth often use ¢x to refer to the formula ¢ in an equation (X = ¢) € X .

Example 1. An example of a modal equation system is ¥ = {X; = XoA X3, X5 =Y, X3 =
Z}. For this system we have bv(X) = { X1, X5, X3} and fv(X) = {Y, Z}.

The next step is to define the semantics of a modal equation system, in terms of its
greatest solution. A solution of a modal equation system 3 is a map n : bv(X) — P(S),
assigning to each variable X € bv(X) a set of states, such that all equations in ¥ are satisfied.
Maps n are ordered by point-wise inclusion. We first define the environment update p[n],
as p[n)(X) = n(X) if X € bv(X) and p[n](X) = p(X) otherwise. Then we define the map
Uy, ,: P(S)P*) — P(S)>>) induced by the equations in X by ¥s. ,(7)(X) = ||éx||p[n]-

Definition 6 (Solutions). A solution of a modal equation system X with respect to a model
M and an environment p is a map 0 : bv(X) — P(S) such that ¥y, ,(n) =n. The semantics
of a modal equation system ¥ with respect to M and p, denoted ||X||p, is its greatest solution.

Note that by the well-known Knaster-Tarski fixed point theorem [17] the greatest solution
of Wy, , always exists, since Uy, , is a monotone map on the lattice P(S)*(*) ordered by
point-wise inclusion.

Example 2. For the example above, there is a unique solution |X|lp = {X1 — p(Y) N
p(Z2), Xz > p(Y), X5 — p(Z)}.

We use modal equation systems to add recursion to basic simulation logic. A formula
¢[X] of simulation logic is composed of a formula ¢ of basic simulation logic and a modal
equation system 3. The free variables of ¢ are interpreted by the greatest solution of 3.
Formally:

INRIA



Simulation Logic, Applets and Compositional Verification 11

Definition 7 (Simulation Logic). The formulae of simulation logic over L and A are
defined by ¢[X], where ¢ is a formula of basic simulation logic and ¥ is a modal equation
system. The set of free and bound variables are fv(¢[X]) = (fv(¢) U fv(X)) — bv(X) and
bv(4[X]) = bv(X), respectively.

The semantics of ¢[X] with respect to model M and environment p is defined by

1013l = ligllollI Xl p]-

We say that a state s of a model M satisfies ¢[3], written (M, s) E ¢[X], if s € ||9[X]||p for
all p. For specifications (M, E) we define (M, E) = ¢[X] if (M, s) = @[X] for all s € E.

We henceforth often omit the equation system ¥ from ¢[X] if no confusion can arise.
Further, from now one we restrict our attention to closed formulae with no free variables,
for which the semantics is independent of the environment.

We say that ¢, is a logical consequence of ¢q, written ¢g = ¢1, if for all specifications
S, 8 E ¢p implies S = ¢1. The formula ¢y is logically equivalent to ¢1, written ¢g = ¢y, if
b0 = ¢1 and ¢1 = do-

Simulation logic is equally expressive as the modal p-calculus [13] with box modalities
and greatest fixed points only. The translation from this fragment of the modal p-calculus
to simulation logic is straightforward. As an example, the formula v X.p; A (Y. X A(p2VY))
is translated to the equivalent simulation logic formula X[X = p1 AY.Y = X A (p2 VY)].
The translation in the other direction is based on Beki¢’s principle [3, 1], which expresses a
fixed point in a product lattice in terms of a vector of component-wise fixed points.

2.3 Representation Results

Next, we will relate simulation logic to simulation. We proceed by defining two translations:
x and 6. The map x translates a finite specification into a formula, characterising the
specification, while € translates formulae into (finite) specifications. The latter map is first
defined on formulae in so-called simulation normal form (SNF) and then extended to all
formulae by showing that any formula can be transformed into SNF. We show that y logically
characterises simulation and € behaviourally characterises logical satisfaction. These two
maps form a Galois connection between finite specifications and formulas: S < 6(¢) if and
only if S = ¢ if and only if x(S) E ¢.

First we define the mapping from finite specifications to formulae. A finite specification
(M, E) is translated into its characteristic formula x(M,E) = ¢g[Em], where X is
defined by an equation

XS:/\[a]\/Xt/\ /\ p A /\ —q
acl o, PEX(s) agA(s)

for each s € S, and ¢g =/, Xs. Recall that we identify \/ & with ff and /\ @ with tt, so
for example an empty set of a-transitions from state s will yield the box formula [a] ff.

RR n° 4890



12 Sprenger, Gurov € Huisman

A={p, q}
si(p,q) 2 s2m L = {a, b}
E ={s1, s2]

s30)

Figure 1: Example specification S

Example 3. To illustrate this definition, suppose we have the specification S displayed in
Figure 1 (where the notation s1(p, q) is used to denote a state s; for which A(s1) = {p, q}).
The corresponding formula for this model is x(S) = X5, V Xs,[2], where ¥ is given by

Xs, = [a]Xs, ADIfFADAG
Y=\ X5, = [a]ffAD](Xs, VX)) ADA g
Xoy = [a]Xs, A [B] X, Ap A g

We can prove that if specification &7 is simulated by the finite specification Sy, this is
equivalent to saying that S; satisfies the characteristic formula of S;. This is a variation of
an earlier result by Larsen [15]3.

Theorem 1. Let S1, Sy be specifications and suppose Sy is finite. Then S < Ss if and
only if S1 = x(S2).

Proof. (adapted from [15]; included here for completeness) Suppose S; = (M;, E;) for i =
1,2.

“=” Let ¥ be the map on P(S)®) induced by the equations in ¥ (¥y;, before Defini-
tion 6). In order to prove that (M1, E1) | (V,cp, Xs)[Em,] it is sufficient to show that
the map 7 defined by n(X;) = {t € S1 | t < s} is a post-fixed point of U. It then follows by
fixed point induction that n C ||, ]]. Also, since &1 < Sa, we have that for each ¢ € Ey
there is some s € Ey such that ¢t € n(X;). Hence ¢ € || X]|(X;) and therefore ¢ = x(S2).

It remains to be shown that n(Xs) C ¥(n)(X;) for all s € S. Let t € n(X), hence t < s.
We have to establish t € ¥(n)(Xy), that is,

(i) tellalV, =, , Xyllpn] for all a € L, and
(i) t € [Apers)P N Nygaes) ~allpnl-

For (i) suppose t < t/. Since t < s, there is a s’ such that s = s and ¢’ < s’. Hence,
t' € n(Xs). Point (ii) follows from ¢ < s and the definition of simulation.

“<" Let x(S2) = (V X)[X] with X = {X, | s € Ex} and let p = ||3||p for some (arbitrary)
environment p. We show that R = {(s,t) | s € n(X;)} is a simulation between M; and

3By using infinite equation systems this theorem easily generalises to finitely branching Sa.
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Ma. The result §; < S then easily follows. Let (s,t) € R, that is, s € n(X;). Then s
and ¢ satisfy the same propositions, since s € [|A\,cxy P A Aggar) 7allp- Suppose now that
s % 8. Since s € ||[a] V,=,, Xellp[n], we have s" € n(Xy) for some ¢’ with ¢ 2, . This
shows that R is a simulation between M; and M. O

Now that we have a translation from finite specifications to formulae, we are interested
in defining the inverse mapping. However, not all formulae correspond directly to a specifi-
cation, but those in so-called simulation normal form do.

Definition 8 (Simulation normal form). A formula ¢[X] of simulation logic over L and
A is in simulation normal form (SNF) if ¢ has the form \/ X for some finite set X C bv(X)
and all equations of ¥ have the following state normal form

X=Al\Ixar ANpr N -q
acl pEBx g€ A—Bx

where each Vx o C bv(X) is a finite set of variables and Bx C A is a set of atomic proposi-
tions.

Notice that any formula x(S) is always in SNF. From a formula (\/ X)[X] over L and A
in SNF we derive the specification

0((\/ X)[E]) = (S, L, —, A, ), E)

where S = bv(X), E = X and the equation for X induces transitions {X %Y |Y € Vx..}
and truth assignment A\(X) = Bx.
Lemma 1. x and 0 are each others inverse up to equivalence, that is,

(i) 0(x(S)) =2 S (= is isomorphism*) for finite S, and

(i) x(0(9)) =a ¢ (=a is a-convertibility) for ¢ in SNF.

Finally we are ready to relate simulation logic to simulation.

Theorem 2. For ¢ in simulation normal form, we have S < 0(¢) if and only if S = ¢.
Proof. Follows from Theorem 1 by Lemma 1(ii). O

Transformation to SNF

As mentioned above, all formulae of simulation logic have a semantically equivalent simu-
lation normal form. To see this we present a stepwise transformation process of a formula
of the form X,[¥¢] over given sets of labels L and atomic propositions A into simulation
normal form. If necessary, we first transform a formula ¢[¥] into the equivalent formula
X[X = ¢,%], where X is fresh. The transformation produces a formula ¢y = (\/ X)[X] for a
set of variables X and an equation system X such that

4Here, isomorphism means a bijection of states and transitions, but labels have to match on the nose.
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(i) v is equivalent to Xo[%], and
(if) ¢ is in simulation normal form.

Before describing the transformation in detail, we introduce some auxiliary definitions. First,
we need a slightly non-standard variant of disjunctive normal form (DNF).

Definition 9 (DNF). A formula ¢ of basic simulation logic is in disjunctive normal form
if it is a disjunction of conjunctions of box formulae and literals, that is, it has the shape

¢:\//_\[aij]7/h'j/\/\ﬁi

where each L; is a set of literals and the 1;;’s are arbitrary formulae in basic simulation
logic.

Definition 10. The conjunctive decomposition ¢(¢) of a formula v into its conjuncts is
given by c(p) = {¢1,...,¢m} such that no ; is a conjunction and ¢ = N, v; (modulo
associativity and commutativity).

Note that by convention we have c(tt) = @. We call an occurrence of a subformula
top-level if it is not under the scope of a box operator. Next, we introduce the notions of
variable dependency and guardedness.

Definition 11 (Variable dependency). For X,Y € bv(X), we say that X depends on
Y, written X > Y, if Y occurs in ¢x. We call (bv(X), =) the variable dependency graph of
3.

Definition 12 (Guardedness). Let X,Y € bv(X). Variable Y is guarded in ¢x if all
occurrences of Y in ¢x are in the scope of a box formula, and is unguarded otherwise. Define
the restriction of > to unguarded dependencies by X =, Y if X =Y andY occurs unguarded
in ¢. An equation system X is called weakly guarded if =, is acyclic and strongly guarded if
= 18 empty. A formula ¢[X] is weakly (strongly) guarded if ¥ is weakly (strongly) guarded.

Example 4. Consider the modal equation system

5 X = [a)XV(gAY)
Y = BXAY)Ap

Its variable dependency graph is given by = = {X,Y} x {X,Y}. In the equation for X

variable X is guarded but Y is not. In the equation for Y both X and Y are guarded.

Hence, =, = {(X,Y)} being acyclic but not empty, ¥ is weakly guarded but not strongly

guarded.

Lemma 2. Any formula ¢ of simulation logic is equivalent to a weakly and to a strongly
guarded formula.
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Proof. (Sketch) To transform ¢ into a weakly guarded formula we first translate ¢ into a
modal p-calculus formula, use Kozen’s procedure to obtain a guarded formula [18], and
then translate this back into a weakly guarded formula ¢,, of simulation logic. In order to
obtain a strongly guarded formula from ¢,,, we repeatedly rewrite unguarded occurrences of
variables by their defining equations. This process terminates by weak guardedness of ¢,,.

O

After these auxiliary definitions, we are ready to present the transformation. It consists
of three phases:

Phase I transforms an equation into a disjunction of formulae in state normal form, where
only variables appear under modalities,

Phase II eliminates the top-level disjunctions by introducing a new equation for each dis-
junct, and

Phase III is a cleanup phase that removes duplicated and unreachable equations.

The transformation relies on a partial function h mapping sets of formulae to variables.
The purpose of this map is to avoid the repeated introduction of a new equation for the
same formula. If h maps a set of formulae ¥ to variable X, this means that at some point
a new equation X = AU has been added to ¥ (in step 1.4), so X is reused instead of
introducing another equation for A W. This bookkeeping is essential for the termination of
the transformation.

Starting the transformation with the formula X[%], we initially have X = {Xo}, ¥ = X¢
and h = @. By Lemma 2 we assume w.l.o.g. that 3, is weakly guarded.

Phase I (Disjunction of state normal forms) All steps of this phase are applied to each
equation including the new ones introduced in step 1.4 below. Phase I must be completed
for all equations before moving on to phase II. The description of most steps ends by an
equation indicating the equation shape achieved by the respective transformation step.

(1) (Strong guardedness) Make equation strongly guarded by repeatedly rewriting un-
guarded occurrences of variables using the original equation system .

(2) (DNF) Put equation into disjunctive normal form and remove inconsistent disjuncts
(those where ff or both p and —p appear).

X:\_//_\[aij]@jA/\ﬁi

(3) (Box grouping and completion) Group boxes together using [a] ¢1 A[a] p2 = [a] (¢1 A ¢2)
and add missing boxes using tt = [a] tt.

X =\ A ldviarn )\ L

i a€L
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(4) (Modal depth reduction) Apply the following to each top-level box subformula [a] ¥,
where 1, is not a variable. If (¢(;,),Y) € h for some variable Y then replace [a] ¥,
by [a] Y; otherwise, choose a fresh variable Z ¢ bv(X), add the new equation Z = v,
to X, replace [a] ¥, by [a] Z and extend h to h U {(c(¥iq), Z)}.

X=\/ A\ ld Zan \L

1 a€L

(5) (Literal completion) Replace equation X = ¢ by X = ¢ A /\peA(p V —p), then repeat
step (2) to put equation back into DNF. Equation shape is

X=\/NldZir Nor N -q (4)
1 a€l peB qeA—B

for some B C A.

Phase IT (Push disjunctions inside) Remove an equation of shape X =/, ¢; from X
(unless there is exactly one disjunct). Add a new equation X; = ¢; for each non-variable
disjunct ¢; of ¢x. Then substitute \/, X; for X in all equations of ¥, where X is a variable
disjunct or the fresh variable introduced for ¢;. Finally, in case X in X, replace X by

(X = XD UK i),
X= NaVyun Avn /\

acLl peB qeA—B

where ), is a (possibly empty) set of variables. Repeat this step until all equations are in
SNF.

Phase IIT (Cleanup) This optimisation phase iteratively removes duplicated and un-
reachable equations.

(1) If there are equations Z; = 1; and Zs = 19 in ¥ such that ¢2[Z1/Z5] = 11, then
remove Zo = 1) from ¥ and substitute Z; for Z5 in the remaining equations as well
as in X.

(2) Remove an equation Z = 4 from X in case Z can not be reached from any variable in
X via the variable dependency graph.

The algorithm transforms any formula ¢ into its simulation normal form, denoted by snf(¢).

Remark 1. Tt is important to use the original equation system Yy for rewriting to strongly
guarded form in step 1.1 as the following example shows. Consider the equation system

Yo ={X =[] (X AY),Y = [a] X}

and let us look at the transformation of the equation for X. The first transformation step
with any effect is step 1.4, where we introduce a new equation Z = X AY and transform the
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old one to X = [a] Z. The map h becomes ({X,Y},Z). Rewriting X and Y in Z=X AY
using the new equation for X and grouping boxes yields Z = [a] (Z A X). This looks
suspiciously like the initial equation for X and indeed this process of “unfolding” continues
ad infinitum: introduce a new equation for U = ZA X (as {Z, X} is not in the domain of h)
and rewrite the old one to Z = [a] U. Then transform the equation for U to U = [a] (U A X)
and so on. Such scenarios are avoided by using ¥ for rewriting to strong normal form.

Remark 2. The description of the procedure can be slightly simplified by moving the literal
completion (step 1.5) to an earlier stage, e.g. before step 1.2. However, for the calculation
of our examples, we found it useful to push the combinatorial blowup that this step incurs
to the end of the transformation

Remark 3. Note that there are many ways to optimise the translation above. For example,
steps II1.1-2 of phase III can be applied at any point of the transformation if A is updated
in the obvious way. However, for the sake of a clearer presentation, we only do these
optimisations at the end.

Example 5. Here we present a very simple example of the transformation to SNF. A
more elaborate example appears in Section 4. Let ¢ = tt be interpreted as a formula over
L = {a,b} and A = {p}. We first translate this to X[Xo] with ¥y = {X = tt}. This is
clearly strongly guarded (I.1) and in DNF (I.2). Box completion (step 1.3) transforms the
equation to X = [a] tt A [b]tt. Then step 1.4 produces ¥ = {X = [a]Y A [B]Y,Y = tt} and
h = {(2,Y)} (recall ¢(tt) = @). Applying steps 1.1-3 to YV yields Y = [a] tt A [b] tt. Step
1.4 then yields Y = [a] Y A [B] Y, since h(@) = Y. Now we have ¢x = ¢y [X/Y], so, using
remark 3, we drop the equation for Y and get ¥ = {X = [a] X A [b] X}. Step L.5 turns this
into ¥ ={X = ([a] X A[B] X Ap) V ([a] X A [b] X A —p)}. Phase II produces X = {X1, X2}
and

X1 = [a] (Xl \/XQ)/\[b] (Xl\/XQ)/\p

[a] (X1 \Y XQ) 1A\ [b] (Xl V Xg) N —p

which is in SNF, so snf(¢) = (X7 V X2)[X].

s
I

Theorem 3. For any formula of simulation logic, there is a logically equivalent formula in
simulation normal form.

Proof. By Lemma 2, we assume w.l.o.g. that the equations in ¥y are weakly guarded. For
the purpose of the proof, we think of the transformation as producing a series of triples
(X;, 2, h;) consisting of the current values of X', 3 and h after each transformation step.
We have to show that

(1) each of the transformation steps preserves the semantics of the formula, that is,
(V &i)[2i] = Xo[Zo]

(2) the transformation terminates after, say, n steps with (\/ X, )[Z,] in SNF.

We concentrate here on showing that phase I preserves the meaning of formulae and termi-
nates with all equations in shape (4). It is then not difficult to see that phases IT and III
terminate and produce an equivalent formula in SNF.
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Partial correctness For phase I we establish the following two invariants:
J1. for all Y € bv(Xy) we have Y € bv(X;) and Y[X;] = Y[X], and
J2. if (U, Z) € h; then Z € bv(X;) and Z[X;] = (A P)[Z:].

The preservation of meaning (point 1) in phase I is then a consequence of J1 - sinceX’ remains
unchanged, while J2 is an auxiliary invariant expressing a property of each h;, which will be
needed to establish invariant J1.

Both invariants hold trivially for i = 0. We have to check that they are preserved by
steps I.1-1.5. This is easy to see for steps 1.2 and 1.5, which are justified by propositional
equivalences and the fact that h;;1 = h;. Similarly, for step 1.3 which is based on modal
equivalences. We discuss the proof for the remaining steps 1.1 and 1.4 in some detail.

Given equation (X = ¢) € %;, in step 1.1 we repeatedly rewrite unguarded occurrences
of variables in ¢ using equations of ¥y. Suppose we rewrite equation (Y = ) € ¥ in ¢.
By the fixed point property we have Y[Xg] = ¢[2¢]. It then follows by invariant J1 and a
routine induction on the structure of ¢ that Y[X;] = ¢[%;]. Hence, X[%;] = X[X]], where
Y/ is obtained from X; by replacing X = ¢ with X = ¢[¢)/Y]. By repeatedly applying
this argument we get X[X;] = X[X;41], and thus the preservation of J1. Since h;11 = hy,
invariant J2 is also preserved.

In step 1.4 we consider an equation (X = ¢) € X, and a top-level occurrence of a
subformula [a] ¢ in ¢ such that 1) is not a variable. Two cases are distinguished. If (¢(¢)),Y) €
hi then ¥; = (2, —{X = ¢})U{X = ¢'}, where the given occurrence of [a] ¢ in ¢ is replaced
by [a] Y in ¢'. By invariant J2 we know that Y'[3;] = [%;], so both J1 and J2 are preserved.
If, on the other hand, ¢(¢) & dom(h;) then we set ¥} = (3; —{X = ¢}) U{X = ¢, Z =9},
where the given occurrence of [a]y in ¢ is replaced by [a] Z in ¢ and Z ¢& bv(X;) is a
fresh variable. We also set h} to h; U {(c(¢), Z)}. Invariant J1 is preserved. In particular,
X[X;] = X[Xf], as we are just introducing a new name for the subformula v of ¢. Invariant
J2 certainly holds for the new mapping (c(¢), Z) € h} and it holds for all elements in h;
by J1. Again, by repeating this argument one can easily see that both invariants hold for

(Xig1, Big1, hig1).

Termination It remains to be proven that phase I terminates. There are two points to
consider. First, the rewriting process in step 1.1 might fail to terminate. However, this is
prevented by our assumption that the initial equation system X, is weakly guarded (see
also Lemma 2). All transformation steps preserve the weak guardedness of equations. In
particular, any new equation introduced in step 1.4 is weakly guarded, since it simply gives
name to a subformula of an existing equation and does therefore not add any cycles to the
variable dependency graph.

The second potential source of non-termination is the introduction of new equations in
step I.4. Let us call a formula ¢ bozed in ¢ if there is some a € L such that [a]¢) is a
subformula of ¢. Non-termination of step 1.4 is ruled out by the following invariant:

J3. whenever (U, Z) € h; then each ¢p € ¥ appears boxed in the right-hand side of an
original equation in X.
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Since there are only a finite number of boxed subformulae, the map h eventually fills up into
a total function at which point no further equations will be added. Then phase I terminates,
since each of the individual steps does.

To see that J3 holds, observe that steps 1.1 and 1.2 do not affect boxed formulae and
in step 1.3 boxed formulae might be combined into conjunctions. Therefore, these steps
preserve the property

P. all boxed formulae of an equation (X = ¢) € X; are conjunctions of boxed formulae of
So-

This property trivially holds initially for the equations in ¥. But then it also holds for any
new equations introduced in step 1.4. Hence, any pair (¥, 7) that is added to h; satisfies
invariant J3. This completes the proof of termination. O

We extend the mapping 6 to all formulae of simulation logic by defining 0(¢) = 0(snf(¢)).
Then, since snf preserves the semantics of formulae, Theorem 2 can be extended to all
formulae.

Theorem 4. For all specifications S and formulae ¢, we have S < 0(¢) if and only if
S E ¢.

Thus, for any specification S and any property ¢, if we want to check whether the
specification satisfies the property, it is sufficient to check that S is simulated by 6(¢).

Consequences We mention a few consequences of Theorems 1 and 4. Let (S, <) be the
preorder of (isomorphism classes of) finite specifications over given L and A ordered by
simulation and let (L, =) be the preorder of formulae of simulation logic over L and A
ordered by the logical consequence relation.

Corollary 1. x and 0 are monotone.
Simulation preserves logical properties:
Corollary 2. For all specifications S1 and Sa we have 81 < Sy and Sz = ¢ imply S1 E ¢.

The pair (x,0) of maps forms a Galois connection between the preorders (L, }=) and

(S, <):
Corollary 3. For finite specifications S and all formulas ¢, we have S < 6(¢) if and only
if X(8) = ¢

2.4 Weak Simulation

Often, one is only interested in the observable behaviour of systems. To achieve this, one can
identify a distinguished action € € A, called the silent action, and define weak transitions
s = t in terms of the usual (strong) transitions as follows: s = t whenever s(—)*t, and s = ¢
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whenever s =% ¢ for all a # . Weak simulation <,, (weak simulation equivalence =,,)
is then defined as simulation (simulation equivalence) w.r.t. weak transitions. Similarly, we
can interpret the box modality of simulation logic over the weak transitions rather than the
strong transitions of models. To distinguish the two interpretations, we shall redefine the
notion of satisfaction and write S |=,, ¢ in that case. Thus, s =, [a] ¢ if all states that can
be reached from s by a transition labelled a, preceded and followed by an arbitrary number
of e-steps, satisfy ¢.

Example 6. Suppose we have a model with states S = {s1, 52, s3} and transitions s; = so
and sy = s3. Further, suppose that A(s2) = {p,¢} and A(s3) = {p}. Then s; =, [a]p, but
not s1 =y [a] ¢, since s3 does not satisfy the atomic proposition g.

A natural question is whether the results of the previous subsection can be used to relate
weak simulation and simulation logic in the same way as simulation and simulation logic
are related by the transformation 6 (and its inverse x). Note that applying 6 on a formula
of simulation logic interpreted over weak transitions would only give us a model in terms of
weak transitions, without the underlying strong transitions. However, there is a standard
translation of formulae interpreted over weak transitions into equivalent formulae interpreted
over strong transitions [16]. This translation, let us denote it by o, is easily adapted to our
setting. It has the property that S &, ¢ exactly when § = o(¢). We show that 0 o o
provides the desired transformation relating weak simulation and simulation logic.

To this end, we first introduce the notion of saturated model, i.e. a model in which s % ¢
whenever s = t. We show that for all formulae ¢, 6 (o (¢)) is simulation equivalent to its
saturation, and therefore it is sufficient for a model to be weakly simulated by 6 (¢ (¢)) in
order to satisfy ¢ when interpreted over weak transitions.

Definition 13. Let M = (S,L,—,A,\) be a model. The saturation of M is the model
sat(M) = (S,L,—4, A, \) in which s %, t exactly when s = t. The saturation of a
specification (M, E) is the specification sat(M, E) = (sat(M), E).

Thus, sat(M) is the least saturated model w.r.t. the subset ordering on the powerset of
S x L x S, containing M. In the example above, we have to add the transition s; — s3 and
e-self-loops to saturate the model. We have s = t in sat(S) whenever s = ¢ in sat(S)
whenever s = ¢ in S. As consequences, we have the following properties of weak simulation
and simulation logic.

Proposition 1. (i) §; <, Sz iff S1 < sat(Sz2), and
(i) S o 6 if 504(S) = 6 if] S = 0(0).

Lemma 3. 0 (o (¢)) = sat(0 (o (¢))).

Proof. Clearly, 0 (o (¢)) < sat(f (o (¢))) holds; it remains to show the other direction. From
reflexivity of < and Theorem 4 we know that 6 (¢ (¢)) = 0(¢). Then, by Proposition 1(ii),
sat(f (o (9))) | o(¢), and again by Theorem 4, sat(0 (o (¢))) < 60 (o ($)). O
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These results allow the following characterisation of simulation logic, in the style of
Theorem 4.

Theorem 5. S <,, 0 (0 (¢)) if and only if S =y ¢.

Proof. S <4, 6 (o (¢)) holds by Proposition 1(i) exactly when S < sat(d (o (¢))), which by
Lemma 3 holds exactly when S < 6 (o (¢)). Theorem 4 together with Proposition 1(ii) then
establish the result. O

3 Compositional Verification of Applets

So far, all our results have been developed for arbitrary specifications. From now on, we shall
concentrate on a particular application, namely the representation of applets (i.e. smart card
applications) in our general notion of specification. We study sequential (single-threaded)
applets and safety properties of their interprocedural control flow. As explained above,
we are interested in the decomposition of properties, in order to guarantee the secure post-
issuance loading of applets. We do this by instantiating the general framework of the previous
section on two different levels:

(i) the structural level, where a specification represents the control flow graph of a method,
and applets are viewed as collections of methods, with an appropriate interface;

(ii) the behavioural level, where a specification represents the behaviour of an applet.

This yields a version of simulation logic for each level. The compositional verification princi-
ple that we develop allows us to state assumptions about individual applets in the structural
simulation logic, in order to establish behavioural simulation logic properties for the com-
posed system. For this and the next section, it will be convenient to make the following
assumption.

Assumption 1 (Reachability). In all specifications (M, E), each state of M is reachable
from a state in E.

Note that all results of Section 2 carry over to this restricted setting.

3.1 Applets

Applets are defined as a collection of methods, where each method is an instance of a model.
However, for a realistic program model of applets, it is necessary to know which methods
exist and/or are used. Therefore, we first define the notion of an applet interface, which
specifies which methods are provided and required by an applet.

Let Meth be a countably infinite set of method names.
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Definition 14 (Applet interface). An applet interface is a pair I = (IT,17), where
It I~ C Meth are finite sets of names of provided and required methods, respectively.
The composition of two interfaces Iy = (I}, I;) and I, = (I, 1) is defined by I, U Iy =
(I ULy, I uly).

As mentioned above, methods are an instance of the general notion of specification.

Definition 15 (Method specification). A method graph for m € Meth over a set M of
method names is a finite model

Mm = (Vm; Lm; —m» Ama )\m)

where Vi, is the set of control nodes of m, Ly, = M U{e}, Ay = {m,r}, X5, (m) = Vi,
i.e. each node is tagged with the method name, and X%, (r) C V;,, is a set of return points. A
method specification for m € Meth over M is a pair (M, Ey,), where M,, is a method
graph for m over M and E,, C V,, is a non-empty set of entry points of m.

An applet is basically a collection of method specifications. For the formal definition we
extend the notion of disjoint union from models (as defined for simulation between models,
below Definition 2) to specifications: given specifications (M, E1) and (Mg, Es) define
(M, E1)W(May, Es) = (MW Ma,ing (Ey)Uing(F2)) where in; and ing are injections from
states of My and Ms to states of M1 W My, respectively.

Definition 16 (Applet). An applet A with interface I, written A : I, is defined inductively
by

o Oy (B, M), where Ty = (9, M U{e},@,{r}, ), ) is the empty applet over M,

o (Mu, Ep): ({m}, M) if (M, Epn) is a method specification for m € Meth over M,
and

e AW Ay : UL if Ay : Iy and As : I5.
An applet A: (I'™,17) is closed if I- C IT.

Note that, up to isomorphism, W is associative and commutative and has the neutral
element @),. For an arbitrary specification (M, E') we say that it is an applet with interface
I if and only if we can decompose (M, E) following this definition. Notice that if A : I, then
for each method m € It the applet has to contain a corresponding method graph. Thus,
an applet can only provide methods that it actually implements.

Lemma 4. Suppose A= (M, E) is an applet with M = (V,L,—, A, \). Then its interface
is (A {r}, L~ {e}).

Proof. By induction on the structure of the applet. O
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3.2 Structural Level

As mentioned above, we express properties over applets at two levels: structural and be-
havioural. The next subsection considers behavioural properties, here we study structural
ones, i.e. properties that allow one to restrict the possible method graphs in an applet.

Simulation An applet A; structurally simulates another applet A, if each entry point
for a method m of A; is simulated by some entry point for the same method of As. Thus,
structural simulation coincides directly with simulation on models, as defined above. For
convenience, we write A; <; As instead of A; < As to denote structural simulation. Struc-
tural simulation is preserved by applet composition.

Theorem 6 (Struct-Mon). If A; <, By and Az <, By then A1 W Ay <; By W Ba.

R ={((s,1), (t,7)) | i € {1,2} A(s,t) € R;} is a simulation between A; WAy and By WBy. O

Proof. Suppose R; and Ry are witnesses of A; <, B; and As < Bs, respectively. Then

Logic We also instantiate the notion of satisfaction to the structural level. An applet
satisfies a formula of simulation logic if all its entry points satisfy the formula. For clarity,
we define structural satisfaction A =5 ¢ as A = ¢.

Maximal applets Let I = (I™,17) be an applet interface. Define ¢;[X;], the character-
istic formula for interface I, by

¢I = VmGI*Xm

S, = {Xon=om|melt)

Om = [IiaE]Xm/\pm

Pm = mAN-m |m eIt m #m}

The formula ¢;[¥;] axiomatises the basic structure of an applet with interface I, namely
that each initial node belongs to a unique method m and no transition leaves m. Note that
Y7 is in not in SNF (proposition r is missing).

Example 7. Given interface I = ({mq,ma}, {m1,ms}), the basic structure of applets with
interface I is characterised by the formula ¢;[¥;], where ¢; = X,,, V X, and

Xm1 = [mla ms, E]AXr'ml A mi A —ma

Y=
Xms = [m1,ms,e]Xm, Ama A —my

The following proposition characterises applets interface I as those specifications that
satisfy the characteristic formula ¢; for interface I.

Proposition 2. Let [ = (I, 17) be an applet interface, let (M, E) be any specification
over L=1"U{e} and A =TT U{r}. We have (M, E) = ¢1[X1] if and only if (M, E) is
an applet with interface I, ie. (M, E): 1.
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Proof. “=" Suppose (M, E) 5 ¢7[X;]. We use induction on the size of IT. Note that each
of the cases below depends on Assumption 1.

Case I = @: In this case ¢; = ff, so the only specification which satisfies this property
is the empty applet @.

Case It = {m}: Here ¢7[X7] = X[ X = [I7,€] X, Am]. Any specification satisfying
this property is a single method graph. Thus (M, F) is an applet with interface ({m}, 7).

Case IT = I W I: Since (M, E) Es ¢1[21], we know that every state in the model
satisfies exactly one of the atomic predicates m € I'T. We can define (M1, E1) and (Mo, E»)
as the restrictions of (M, E) w.r.t. I and I5. Notice that (M1, E1) W (Ma, Es) = (M, E).
We can decompose ¢1[%1] = ¢(r, 1-) A b1, 1) [X(1,,1-)5 Z(1,.1-)]- By induction, (M, Ey) :
(I, I7) and (Mg, E2) : (I2,17), thus by Definition 16 (M, E) : I.

“<” By Theorem 4, it is sufficient to show (M, E) <; 0(¢;[3;]). First, we calculate
0(é1r|X1]), which gives for each method name m € It the method specification ((V,,, I~ U
(s {1, 7 Am), Vi), where

Vm = {Xm,ra Xm,—\r}

—m = Vi x (I U{e}) x Vi

Am = AXmr, Am, 1), (Xin, -, {m})}
Using the relation R = {(s,%) | A(s) = A(t)}, it is easy to show that any applet (M, E) with
interface I is simulated by this applet. O

Finally, using the characteristic formula for interface I, we define the maximal applet
with interface I w.r.t. a formula ¢[X] as the conjunction of ¢[X] and ¢;[X;].

Definition 17 (Maximal applet). The maximal applet w.r.t. interface I satisfying ¢[%]
is defined as 01(P[2]) = 0(PpAG1[2, X)) (where it is assumed w.l.0.g. that the bound variables
of ¥ and X; are disjoint).

Notice that by Proposition 2 6;(¢) : I, i.e. the maximal applet has interface I. Also, by
definition 0;(¢[X]) s ¢[X], since ¢ A ¢1[2, E1] | ¢[X]. Finally, we show that to prove that
an applet satisfies formula ¢[X], it is sufficient to show that it is simulated by the maximal
applet w.r.t. ¢[X].

Theorem 7 (Struct-Max). Let A: 1 be an applet. Then A <, 0;(¢[X]) if and only if
A Es ¢[2].

Proof. By Proposition 2, for applet A : I, A =4 ¢[X] if and only if A =5 ¢ A ¢r[X, 2] The
result then follows from Theorem 4. O
3.3 Behavioural Level

Next, we change our focus to properties on the behavioural level. The advantage of also
having this level for specifications is that it allows us to write more abstract specifications.
The first step is to define the behaviour of an applet.
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el ! -

(transfer) n k :m Y vEor

(v,0) = (v, 0)

mi, me € IT vy 22, V) ve = Mo vy €F
(call)
macall mo ’
(v1,0) ———= (v2,0] - 0)

(return) mi, me € IT ve Ema AT vy Emg

(va, vy - 0) mz ret mi (v1,0)

Table 1: Applet Transition Rules

Definition 18 (Behaviour). Let A = (M,E) : (I*,17) be a closed applet and let
M =(V,L,—, A/ \). The behaviour of A is described by the specification b(A) = (My, Eyp),
where My = (Sb, Ly, —b, Ab, M) is defined as follows.

e Sy, =V x V* i.e. states are pairs of control points and stacks;
o Ly ={my Il mg|le{callret}, mi,mo € IT}U{e};
e —, is defined by the rules of Table 1;
o Ay = A; and
o pc N((v,0)) if pe Aw) forpe A.
The set of initial states Ey is defined by Ey, = E x {e}.
Note that applet behaviour defines a context-free process (see, e.g., [6] for an survey of

infinite process structures).

Simulation Also on the behavioural level, we instantiate the general definition of simu-
lation. Applet Ay behaviourally simulates applet As, written Ay <, Asg, if (A1) < b(Az).
Any two applets that are related by structural simulation, are also related by behavioural
simulation.

Theorem 8 (Simulation Correspondence). If A; <, Ay then A; <, As.

Proof. Let R be a structural simulation between A; = (M1, E1) and Ay = (Mg, Es). We
lift R on the structural level to R; on the behavioural level by defining

Ry ={(v,0),(v",0) | (v,v') € R, |o| =]o’| and
(o(i),0'(i)) € Rfor all 0 <i < |o|}
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I = ({m1}, {m1}) I = ({m1}, {m1})

E = {s1} E = {s1}
sl (ml) sl (ml)
m1 — b m1
®s2(ml,r) ® s2 (ml)

Figure 2: Counterexample, reverse of Theorem 9

We show that R is a behavioural simulation between A; and As.

Since for each entry point vy € Ej there is an entry point vs € Fs, such that (vi,v2) €
R, we have that for each initial state (vi,e), there is an initial state (vg,€), such that
((’Ul, E), (’02, E)) € Rb.

Now suppose that ((v1,01), (v2,02)) € Rp. Both states must belong to the same method,
say m. We proceed by case analysis on the possible transitions from (vq, o1).

Case 1. (Transfer) Suppose (v1,01) = (v}, 01). Since (v1,v2) € R and vy —, va, it follows
that there is a transition (va,09) = (vh, 09) in Az such that (v}, 01), (vh,02)) € Ry.

Case 2. (Call) Suppose (v1,071) malm, (u1,v}-07). We know that vy —— v} , u; = m' and

u1 € Ey. Since (v1,v2) € R we know there is a call edge vy —— v}y in Ay such that (v}, vh) €
R. Furthermore, since uy is an entry point of m in Aj, there is a entry point us € Fo such

that (uy,us) € R and uy = m'. Therefore, there is a transition (va, 09) — call m

in As such that ((uy, v} - o1), (ug,vh - 02)) € Rp.

(ug,v5-03)

Case 3. (Return) Suppose (v1,01) ——=" (wy, o). We derive that vi = mAr, o1 = wy -0,

and wy = m/. Since ((v1,01), (v2,02)) € Ry we have o3 = ws - 0 and (w1, w2) € R, thus
wy = m. Further, since (v1,v2) € R, we know that va = m Ar. Hence, there is a transition

(va, w2 - ) T (wa, 0b) and ((wy,0%), (w2, 0%)) € Ry

This shows that A4; <, As. -

The reverse is not the case. Consider for example the two applets in Figure 2. The
left applet is behaviourally simulated by the right applet (in fact, they are behaviourally
equivalent), but there is no structural simulation between these applets - in any direction -
since in the left applet the state s satisfies the atomic predicate r, while in the right applet
it does not.

Logic Finally, we instantiate simulation logic on the behavioural level by defining be-

havioural satisfaction A =y ¢ as b(A) = 1.
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3.4 Compositional Reasoning

Having instantiated the results from Section 2 both at the structural and at the behavioural
level, we are now ready to relate the two. The main result of this paper is the following
compositional reasoning principle. Let A : I and B : J be applets, let ¢ be a formula in
structural simulation logic, and ¥ be a formula in behavioural simulation logic. Then we
have

Abs¢ 0@ WB ¢
AW B, ¢

This principle says that in order to show that a a composed applet AW B has a behavioural
property 1, it is sufficient to find a structural property ¢, satisfied by .4, such that 6;(¢) ¥
B |=p ¥. By using the characteristic formula x(.A) as instantiation for ¢ we can also show
that this principle is complete.

(beh-comp)

Theorem 9. (Soundness and Completeness) Suppose A : I. Let 1) be a behavioural formula.
Then there is a structural formula ¢ such that A =5 ¢ and 0;1(¢) W B = ¢ if and only if
AW B ':b .

Proof. “=" Suppose A =5 ¢ and 0;(¢)WB = ¢. By Theorem 7 and the first assumption, we
have A <, 0;(¢). It follows that AWB <}, 0;(¢)wB by Theorems 6 and 8. Hence, AWB | ¢
by Corollary 2 (instantiated to the behavioural level) and the second assumption.

“<” Suppose AW B |y ¢ and set ¢ = x(A). We have to show that A =, x(A) and
0r(x(A)) W B |, ¢. The former follows from Theorem 1 (for S; = Ss, instantiated to
structural level). To see the latter, we start by the observation that x(A) A ¢;[21] Es x(A).
By the monotonicity of § (Corollary 1), we get 0;1(x(A)) < 6(x(A)). Lemma 1 states that
6(x(A)) = A. Hence, using the definition of structural simulation, 6;(x(A)) <, A. It follows
by Theorems 6 and 8 that 0;(x(A)) W B <, AW B. Finally, Corollary 2 and the assumption
imply that 0;(x(A)) W B = ¢. O

Note that by taking B to be the empty applet & ;—, the compositional reasoning principle
above relates behavioural properties to structural ones. Given applet A : I, the satisfaction
of behavioural property ¥ can be reduced to the satisfaction of structural property ¢ if and
only if the maximal applet w.r.t. I and ¢ (behaviourally) satisfies property .

A|:s¢ 91(¢)':b’l/)
Al ¥

In the rule beh-comp, structural property ¢ can play the role of a specification for applet
A. The completeness result guarantees the usefulness of the rule only when ¢ is meant to
serve as a complete specification for A. However, in the case of a yet unknown (or not
yet implemented) applet, producing a complete specification might be too much to ask in
practice. In this case, one would rather like to use the weakest (that is, most abstract) local
structural specification ¢ implying the desired global behavioural property . A natural

(struct-beh)
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question is thus whether such a weakest specification always exists. Let ¢ be called a cut-
formula for I, B and ¢ whenever 0;(¢) W B =, ¢, and let the rule be said to possess the
weakest-cut property if for any I, B and v there is a weakest cut-formula. Unfortunately, it
is easy to show that the rule above does not possess this desirable property. For otherwise
o1V ¢2 would be a cut-formula for I, B and 1 whenever ¢; and ¢o are so; however, it is
easy to provide concrete I, B, i, ¢1 and ¢5 such that ¢; and ¢5 are cut-formulae for I, B
and 1, but ¢; V ¢2 is not. The fundamental reason for this, we believe, is that the set of
applets behaviourally satisfying a property ¢ is in general not closed under disjoint union.

The above observation suggests that having to structurally specify a component by a
single formula might in certain cases force the specification to become unnecessarily concrete.
To achieve the desired level of abstractness, we propose the use of sets of formulae as
specifications, by defining, for a set of formulae F', S = F to hold if S |= ¢ for some ¢ € F.

Other useful compositional reasoning principles are also thinkable. For example, a rule
of the shape of the above rule, but involving structural properties only, is easily justifiable
with the results presented above.

A|:s¢ 91(¢)@BF5¢

AUB -, v
Apart from being able to show soundness and completeness for this rule (using a similar
proof as for the rule beh-comp), we can also show that it possesses the weakest-cut property.

(struct-comp)

4 Example

Finally, to demonstrate the use of our approach in practice, we present a small example. This
example is a smaller, distilled version of a larger case study on verification of behavioural
safety properties for an electronic purse. This case study is described elsewhere in more
detail [10], and we refer to this paper for a more detailed motivation why this kind of security
properties are important for smart card applications and how they should be formalised.
Suppose we have a smart card, on which we allow instances of applets A and B with the
following interfaces: A : ({my1,ma}, {m1,mo,ms}) and B : ({ms}, {m1,m2, ms}), respec-
tively. Now, suppose that the method m; is a method that is called by an instance of the
applet B when it is in a particular state. However, it might be the case that only certain
instances of applet A are supposed to know that this instance of B is in this state - possibly
because they have paid to get this information®. Thus, as a global security property we
require that when method m is called, this does not trigger any other calls to instances of
A (until the method has finished). We specify this as the following global security property.

() —miV Z[Z=(miAr)V(K]ffA[-]Z)]

5In the case study on which this example is based, this is the case for a method which signals that a
certain table is full. Other applets can register to get the information that this table is full, and thus that
they better read its contents before it will be emptied. However, this information should not be passed on
to third party applets who did not pay for this information.
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where K = { my callmy, my call ma, mo call my, ms call ma, mgcallmy, mgzcallmg }. Notice
that this can be considered as a confidentiality property: it prevents certain information to
flow to unauthorised applications [4].

This formula expresses that within method m;y, i.e. until the model describing the
behaviour of the applet reaches a state satisfying mj A 7, there cannot be any calls to other
methods declared in the interface of 4. Notice that this also restricts the calls that can be
made from an instance of applet B, i.e. mgz is also not allowed to call a method declared in
the interface of A. To make it easier to express this kind of properties, we are developing
a common set of specification patterns, with appropriate definitions as modal p-calculus
formulae.

There are several ways in which this property can be established. A trivial one is by
specifying that method m; should not make any method calls. However, this would exclude
many sensible implementations of m;i, therefore we prefer to be less restrictive, and we
propose the following structural specifications for A and B°.

(c4) —m1 V(X Am)[X = [ma, moff A [g,m3] X]
(o) —m3V (Y Amg)[Y = [my, ma]ff A [, m3]Y]

The specification for A expresses that the method graph for m; should not contain any
call edge labelled m; or ms. The specification for B expresses a similar property for the
method graph of ms.

Applying the compositional reasoning principle beh-comp twice, we know that for any
instances of applets A and B, in order to prove that their composition A W B respects the
property ¢, it is sufficient to prove for these instances that A =5 o4 and B =5 o, and
finally, that 07,(04) W 01,(08) Eb . The properties for the individual applets can be
checked using existing model checking techniques, so here we focus on the proof of the last
sequent, using the maximal model construction presented earlier. Following Definition 17,
the maximal applet is constructed as follows:

(1) take the conjunction of the structural specification and the characteristic formula for
the given interface;

(2) transform the resulting formula into simulation normal form; and

(3) use the mapping 6 to construct the applet corresponding to this formula in SNF.

We present in some detail the construction of the maximal applet for o5; the construction of
the maximal applet for o 4 is similar. As a first step, the characteristic formula for interface
I is the following.

(¢IB) Xms [sz = [mlam27m3a€]Xm3 A mB]

6In the formula —mj V (X A m1), the conjunct m; is redundant in the second disjunct. However, we
found that adding it allows to eliminate quickly inconsistent or redundant cases during the transformation
into SNF. Not adding the conjunct produces the same result, but requires more logical simplifications.
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Thus, the conjunction with o gives the following formula, after desugaring.

Z = (ﬁmg V Y) A\ )(m3
A Y = [ml,mg]ff/\ [mg,E]Y
Xm;:, = [m17m25m37€]Xm3 /\m3

The next step is to transform this formula into SNF. First, in phase 1 of the transforma-
tion, each equation is transformed into a disjunction of state normal forms. Suppose that
we start with the equation defining Z.

(1) Make the equation strongly guarded, by rewriting with the original equation system.

Z = (—ms3 V [mq, mo]ff A [ms,e]Y) A
[mla ma,ms, E]sz Ams3

(2) Put the equation into DNF

Z = (_‘mg AN [ml, mao,Mms, E]Xm3 A mg) vV
([ml, mg]ff AN [mg, E]Y A [ml, ma,ms, E]Xmg A mg)

and simplify

Z = [my, ma]ff A [ms,e]Y A [my, ma, mg, €] Xm, Ams

(3) Group and complete boxes. Here no boxes are missing, therefore we only group boxes”.

7 = [ml,mg]ff/\ [mg,E](Y N Xm3) A\ ms

(4) Introduce new equations for formula under boxes. Since the map h does not contain
a mapping for {Y, X,,,} yet, we introduce a new variable U and add the mapping
({Y, X,n.,},U) to h. The equation defining Z then becomes

Z = [ml, mg]ff/\ [mg, E]U Ams
while we introduce the equation

U=Y AXm,

If we follow the algorithm precisely, we would get [m1, m2](ff A Xpms), for which the next step would
introduce an equation F = ff A X5, which (when transforming it into DNF) would simplify to F' = ff. In
Phase 2, all occurrences of the variable would get replaced again by ff, thus for simplicity of presentation we
ignore this in this example. However, it is important to notice that our algorithm is general and thus can
handle these cases as well.
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(5) Finally, we complete the equation for Z by adding missing literals and putting the
formula into DNF again. In this case, the only literal that is missing is . Adding this
literal gives us the following result.

Z = ([my, ma]ff A [ms,e]U Amg A1)V

([ma, ma]ff A [ms, e]U A ms A —r)

The equations defining Y and X,,, are handled in a similar way. The only step that has
some effect is step 5, which introduces the missing literal r. More interesting is to look how
phase 1 is applied to the new equation U =Y A X,,,.

(1) Rewriting into strongly guarded form gives

U= [ml, mg]ff/\ [mg, E]Y/\
[mla ma,ms, E]de A ms3

(2) The formula is already in DNF, and cannot be simplified.

(3) Grouping boxes results in the following.

U = [my, ma]ff A [ms, e](Y A Xpny) Amg

(4) The mapping h contains a map ({Y, X, }, U). Therefore, we replace Y A X,,, by U.

U = [my, ma]ff A [mg, e]U Amg

(5) Literal completion again introduces r.

U= ([ml,mg]ff/\ [mg,E]U/\mg /\7’) \%
([m1, ma]ff A [ms, e]U A ms A —r)

Now, phase I has been completed for all equations. Phase II introduces a single equation
for each disjunction, and it replaces the variables by the disjunctions. For example, the
equation defining U gets replaced by the two following equations.

U, = [ml,mg]ff/\ [mg,E](Ul \Y UQ) Amg AT,
Us = [ml,mg]ff/\ [mg,E](Ul \Y UQ) A msg A\ —r

The remaining equations are treated similarly. Notice that also Z in X gets replaced by
{Z1,Z5}, where Z; and Z, are the equations replacing Z.

Finally, we are ready for the cleanup in phase ITI. We find that the equations for Z; and
Ui, and Z5 and Us are duplicates of each other. Therefore, we remove the equations for 7
and Zs, and we replace {Z1, Z2} in X by {U1,Us}. We also find that the equations Y7, Ys,
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m3 U1(m3, 1) X11(m1,r) ml,m2,m3
€ 213 e C.XZl(mZ,r)
ms, m3
m3 £ £
€ m3, m1,m2,m m1l,m2,m3
€ €|
m3 m3 ml,m2,m:
€ u2(m3) ¢ x1a(m1) € X21(m2)
E ={U1, U2} E ={X11,X12,X21,X2:
A={m3,r} A={ml,m2,}
O15(0B) 014(04)

Figure 3: Maximal applets for oz and o 4

Xms1 and X2 (replacing Y and X,,, in Phase II, respectively), are not reachable from any
variable in X = {U;,Usz}. Therefore, the final result of the transformation is the following
formula.

U, = [ml,mg]ﬂ:/\[mg,E](Ul\/UQ)/\mg/\T

UV Us Uy, = [ml,mg]ff/\[mg,e](Ul\/Ug)/\mg/\ﬁr

Figure 3 displays the maximal applet corresponding to this equation system (in its left
column). Also, it displays the maximal applet found for the property o4, which is found in
a similar way. Using a model checking algorithm for context-free processes [7], it can easily
be verified that the composition of these two maximal applets indeed satisfies the global
behavioural specification ¢, and thus that the property decomposition is correct.

5 Conclusions

We propose a compositional verification method for control flow based safety properties of
smart card applets. Our method supports different scenarios for secure post-issuance loading
of applets. Local applet assumptions are structural, while global guarantees are behavioural,
both written in a modal logic with greatest fixed point recursion.

In a general setting, we establish the correspondence between models (which can be
structures as well as behaviours) and properties by means of a Galois connection. Maximal
(or characteristic) models are used to algorithmically decide correctness of property decom-
positions by reducing the problem to a standard model checking problem for context-free
processes. A distilled version of a realistic case study illustrates the practical applicability
of the approach.

Future work will focus on extending our results in two directions: (i) adding diamond
modalities to the simulation logic, and (ii) investigating under what restrictions the proposed
method can be adapted to behavioural assumptions.
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