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Abstrat: We present a ompositional veri�ation method for ontrol �ow based safety

properties of smart ard applets. Our method rests on a lose orrespondene between

transition system models ordered by simulation and Hennessy-Milner logi extended with

simultaneous greatest �xed points. We show that simulation an be haraterised logially

and, vie versa, logial satisfation an be represented behaviourally by a maximal model for

a given formula. Based on these results and earlier ideas by Grumberg and Long we develop

a ompositional veri�ation tehnique, where maximal models replae logial assumptions

to redue ompositional veri�ation to standard model heking. However, in the ontext

of applets, equipped with interfaes, this tehnique needs to be re�ned. Sine for a given

behavioural formula and interfae a maximal applet does not always exist, we propose a

two-level approah, where loal assumptions restrit the ontrol �ow struture of applets,

while the global property restrits the ontrol �ow behaviour of the system. By separating

the tasks of verifying global and loal properties of applets, our method supports seure

post-issuane loading of new applets onto a smart ard.

Key-words: Applets, seurity, temporal logi, ompositional veri�ation, ontext-free

proesses.
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Logique de simulation, applets et véri�ation

ompositionnelle

Résumé : Nous présentons une méthode de véri�ation ompositionnelle pour des

propriétés de sûreté basées sur l'analyse de �ot de ontr�le des applets présentes sur

les artes à pue. Notre méthode s'appuie sur une orrespondane étroite entre modèles à

base de système de transition ordonné par simulation et la logique de Hennessy-Milner

étendue ave des plus grands points �xes simultanés. Nous montrons que la simulation peut

être aratérisée logiquement et, vie versa, la satis�abilité logique peut être représentée

omportementalement par un modèle maximal pour une formule donnée. En s'appuyant

sur es résultats, ainsi que des idées antérieures de Grumberg et Long, nous dévelop-

pons une tehnique de véri�ation ompositionnelle, pour laquelle les modèles maximaux

remplaent les hypothèses logiques a�n de réduire la véri�ation ompositionnelle à du

model-heking standard. Cependant, dans le ontexte des applets, munies d'interfaes,

ette tehnique doit être ra�née. Comme pour une formule omportementale et une inter-

fae données, une applet maximale n'existe pas toujours, nous proposons une approhe à

deux niveaux, dans laquelle les hypothèses loales restreignent la struture du �ot de ontr�le

en même que la propriété globale restreint le omportement du �ot ontr�le. En séparant

les tâhes de véri�ation des propriétés globales et loales des applets, notre méthode est

adaptée au hargement post-issuane de nouvelles applets sur la arte à pue.

Mots-lés : Applets, séurité, logique temporelle, véri�ation ompositionnelle, proessus

ontext-free
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4 Sprenger, Gurov & Huisman

1 Introdution

With the emergene of small seure devies, suh as open platform smart ards and se-

ure modules as Palladium

1

and Embassy

2

, it beomes important to set riteria to deide

whether an appliation an be aepted on a devie. Sine suh devies are typially used to

store privay-sensitive data, for the aeptane of this new tehnology it is important that

potential users have full trust in the protetion of their privay.

For the new generation of smart ards, an interesting possibility is to have post-issuane

loading of appliations (applets). This means that one the ard is issued and given to the

user, the user an install new applets on the ard himself; he does not have to go bak to

the ard issuer in order to do this. In this ase automati heks are needed to ensure that

the new applet an be trusted. These heks an involve for example type safety, memory

onsumption, and illiit data or ontrol �ow.

In this paper we fous on the last ategory of properties: to be able to safely install

an applet post-issuane on a smart ard, it needs to respet ertain ontrol �ow properties

as spei�ed. More preisely, we study sequential (single-threaded) applets and propose a

spei�ation and veri�ation method for safety properties of interproedural ontrol �ow,

i.e. properties desribing sequenes of method invoations whih are deemed safe for the

given appliation. Sine we are interested in post-issuane loading of applets, the imple-

mentation of applets might not be available at veri�ation time. We therefore propose a

ompositional veri�ation method, whih allows the veri�ation problem to be redued to

the following three tasks:

(i) deomposing the global behavioural property by �nding loal strutural properties of

the omponents (here applets),

(ii) proving orretness of this deomposition, that is, verifying that the loal applet prop-

erties (assumptions) are su�ient to guarantee the global property (guarantee), and

(iii) verifying that applets satisfy their assumptions.

As explained below, assumptions are strutural rather than behavioural to allow algorithmi

heking of orretness of property deompositions. This paper fouses on task (ii), while

for task (iii) standard algorithmi tehniques already exist.

The ompositional veri�ation method proposed here supports di�erent senarios for

seure post-issuane loading of applets w.r.t. ontrol �ow safety properties. In the �rst

senario, the ard issuer spei�es both the global and loal properties and veri�es � using

the tehniques desribed in this paper � that the deomposition is orret, meaning that the

loal spei�ation is su�ient to establish the global spei�ation. Eah time an applet is

loaded post-issuane, an algorithm provided by the ard issuer heks whether the applet

implementation satis�es the required spei�ation. An alternative senario is that the ard

issuer only provides the global spei�ation (and loal spei�ations for its own applets),

1

http://www.mirosoft.om/resoures/ngsb/default.mspx

2

http://www.wavesys.om/tehnology/embassy.html
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and leaves it to the applet provider to ome up with an appropriate loal spei�ation for

eah post-issuane loaded applet. As in the previous senario, an algorithm provided by

the ard issuer heks the applet against the loal spei�ation upon loading, but in this

senario also the property deomposition needs to be veri�ed at loading time, potentially

on-ard.

1.1 Our Approah

In earlier work [2℄, a proof system based approah at proving orretness of property de-

ompositions is investigated, whih aims at semi-automati veri�ation. However, for many

appliations an algorithmi veri�ation method is preferable, even more so if suh a hek

is to be performed frequently as in our seond senario.

The approah that we take here is inspired by the work on modular veri�ation by Grum-

berg and Long [9℄. Their framework is based on a behavioural simulation preorder whih (i)

is preserved under (parallel) omposition, and (ii) preserves satisfation of properties spei-

�ed in ACTL, the universal-path fragment of the (branhing-time) temporal logi CTL [8℄.

This justi�es ompositional veri�ation in the following style: to verify that the omposition

of omponents (that is, behaviours) X and Y satis�es a global temporal property ψ, one
�nds an abstration of X , that is, a behaviourX ′

simulatingX , suh that the omposition of

X ′
and Y satis�es ψ. Component Y an be treated similarly. In addition, a maximal model

onstrution θ is given, with the property that X satis�es φ exatly when X is simulated by

θ (φ). This onstrution allows behavioural abstrations to be given through temporal logi

formulae (rather than through behaviours), supporting veri�ation in the following style: to

verify that the omposition of X and Y satis�es ψ, one �nds a property φ of X , suh that the

omposition of θ (φ) and Y satis�es ψ. Components X and Y are assumed to be �nite-state

behaviours, allowing the veri�ation of both resulting sub-problems to be performed with

standard model-heking tehniques.

In ontrast to the above, we are faed with potentially in�nite ontext-free applet be-

haviours, generated from �nite applet strutures. We onsider sequential applets only, where

applet omposition is strutural, that is, joins their strutures, without introduing onur-

reny in the behaviour. In this ontext, the deidability of the orretness problem of

property deompositions is an open problem. In our setup, even when restriting to safety

properties as mentioned above, in general there is no maximal applet struture for a given

behavioural property ψ. For this reason, we adopt a sheme where

(i) loal spei�ations (assumptions) are strutural properties, that is, restrit the ontrol-

�ow struture of applets, and

(ii) global spei�ations (guarantees) are behavioural properties, that is, restrit the ontrol-

�ow behaviour of applets.

To verify that the omposition of applet strutures X and Y satis�es the behavioural prop-

erty ψ, one �nds a strutural property φ of X , suh that the omposition of θ (φ) and Y
satis�es ψ. Again, the resulting veri�ation sub-problems are algorithmially hekable:

RR n° 4890



6 Sprenger, Gurov & Huisman

showing that X satis�es φ is a standard model-heking problem (if the applet struture

X is viewed as a Kripke struture, see e.g. [16℄), while showing that the omposition of

θ (φ) and Y satis�es ψ an be heked by standard tehniques for model-heking temporal

properties of ontext-free proesses [7℄.

To be able to handle applet struture and behaviour in a uniform way, we �rst develop a

general framework for abstrat spei�ations (models with designated entry points). Then,

the method outlined above is obtained by ombining instantiations of this framework on

both the strutural and the behavioural level, with additional results to onnet the two

levels.

1.2 Summary of Results

Setion 2 develops the general framework in the setting of abstrat spei�ations. After

the introdution of simulation and a orresponding logi, alled simulation logi, we onnet

these formally by de�ning maps between spei�ations and logial formulae. We then present

two haraterisation results. The �rst is a logial haraterisation of simulation that states

that, for any (�nite) spei�ation T , there is a harateristi formula χ(T ) suh that

S ≤ T ⇐⇒ S |= χ(T ) (1)

that is, T simulates S preisely if S satis�es χ(T ). The seond, omplementary, result is

a behavioural haraterisation of logial satisfation that says that, for any formula φ of

simulation logi, there is a maximal spei�ation θ(φ) suh that

S |= φ ⇐⇒ S ≤ θ(φ) (2)

Thus a spei�ation satis�es a formula φ preisely if it simulates the maximal spei�ation

θ(φ) obtained from φ. The map θ is �rst de�ned on formulas in so-alled simulation normal

form and then extended to all formulas by de�ning an e�etive stepwise transformation of

formulas into simulation normal form. The two haraterisations (1) and (2) ombine into a

Galois onnetion between the preorder of �nite spei�ations ordered by simulation and the

preorder of logial formulae ordered by logial onsequene. As another orollary, simulation

preserves the satisfation of formulae of simulation logi.

Next, Setion 3 instantiates these general results to the notion of applets. An applet is

de�ned as a olletion of method spei�ations, whih are essentially ontrol graph strutures

together with entry points. Further, to eah applet we assoiate an interfae, de�ning whih

methods it provides and whih methods it uses. The behaviour of an applet is then a ontext-

free spei�ation derived via a set of transition rules. By instantiation of the framework from

Setion 2, we obtain appropriate notions of simulation and logi on both the strutural and

the behavioural levels. Our ompositional reasoning priniple then looks as follows

A |=s φ θI(φ) ⊎ B |=b ψ

A ⊎ B |=b ψ
(3)

INRIA
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where A and B are applets, ⊎ is applet omposition, φ is an assumption in the strutural

logi and ψ is a behavioural guarantee. Its orretness mainly rests on an instantiation of

the haraterisation (2) on the strutural level. In order to make sure that the maximal

spei�ation θ(φ) is itself an applet, we introdue the harateristi formula φI for a given

applet interfae I, whih is onjoined to φ before applying θ. Doing this we obtain a variant

of (2) for applets, where θ is replaed by θI , so the maximal spei�ation is guaranteed to

be an applet with interfae I.
The link between the strutural and behavioural levels is provided by the additional

result that strutural simulation is ontained in behavioural simulation. Together with the

fats that simulation is preserved by applet omposition and that behavioural simulation

preserves satisfation of behavioural formulae, this justi�es priniple (3). Moreover, by using

the harateristi formula χ(A) as the loal assumption on φ and invoking the strutural

version of (1), we also establish the ompleteness of priniple (3).

This paper fouses on the theoretial underpinning of the proposed ompositional ap-

proah. Setion 4 skethes how our tehniques an be applied to an example. This example

is distilled from a larger ase study, desribed elsewhere in full detail [10℄, whih supports our

laim that this setup is su�ient to handle relevant pratial appliations. Finally, Setion 5

draws onlusions and presents diretions for future work.

1.3 Related Work

As stated above, our approah to ompositional veri�ation of applets is inspired by the work

on modular veri�ation by Grumberg and Long [9℄ (later developed further by Kupferman

and Vardi [14℄). We explained why and how we deviate from it; in addition, it should be

pointed out that the logi ACTL on whih their framework is based, allows safety as well

as liveness properties to be expressed, and that the models they onsider ontain fairness

onstraints, these being ruial for the existene and onstrution of maximal models for

liveness properties. Sine the properties we are mainly interested in are safety properties,

suh as, e.g., the absene of illiit ontrol �ow, there is no need to add fairness onstraints to

our models. Apart from these di�erenes in setup, the maximal model onstrution in the

paper [9℄ is a global one, in the sense that it starts out by onstruting all possible states

of the maximal model. Sine these states are obtained as sets of ertain subformulae of the

property, the maximal model is always exponentially larger than the property formula. In

ontrast, our onstrution involves a step-wise transformation of the property formula into

simulation normal form whih then diretly orresponds to a maximal model. Thus, our

approah is of a more loal nature and avoids unneessary exponential blow-ups.

The general treatment of simulation and its logial haraterisation that we adopt here

follows the approah to logial haraterisation of re�nement by Larsen and others [15, 5℄.

While on one hand we are more restritive in our notion of behaviour, using labelled transi-

tion systems rather than the more general notion of modal transition systems onsidered by

these authors, using simulation as re�nement, and dropping the diamond modality from the

logi, on the other hand we extend their results to modal logi with reursion and reursive

proesses.

RR n° 4890
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Our framework is also in�uened in part by work by Jensen et al. [12℄, who provide

a (non-ompositional) algorithmi veri�ation method for ontrol �ow safety properties of

applets. In partiular, this work motivated us to represent applets as graphs.

2 Simulation versus Logi

This setion develops several general results about simulation and its relation to logi. After

the introdution of spei�ations and simulations between spei�ations, we present simu-

lation logi, whih is a subset of Hennessy-Milner logi [11℄ with (o-)reursion added. By

de�ning maps between spei�ations and logial formulae we establish a logial haraterisa-

tion of simulation in terms of simulation logi and, vie versa, a behavioural haraterisation

of logial satisfation. These two results ombine into a Galois onnetion between the pre-

order of spei�ations ordered by simulation and the preorder of logial formulae ordered by

logial onsequene. In partiular, the behavioural haraterisation of satisfation involves

the onstrution of a model from a formula, whih is maximal in the sense that it simulates

all spei�ations satisfying the formula. This will serve as the basis for our ompositional

veri�ation method for applets explained in the next setion.

2.1 Spei�ations and Simulation

First we introdue the general notion of a model over a set of labels L and a set of atomi

propositions A.

De�nition 1 (Model). A model over L and A is a struture M = (S,L,→, A, λ), where

� S is a set of states,

� L is a �nite set of labels,

� →⊆ S × L× S is a transition relation,

� A is a �nite set of atomi propositions, and

� λ : S → P(A) is a valuation assigning to eah state s the atomi propositions that hold

at s.

A spei�ation S over L and A is a pair (M, E), where M is a model over L and A and

E ⊆ S is a set of states.

Intuitively, one an think of E as the set of entry states of the model. As usual, we will

write s
a
−→ t to denote (s, a, t) ∈→. For onveniene, we de�ne λ∗(p) = {s ∈ S | p ∈ λ(s)}

for p ∈ A, i.e. the set of all states satisfying atomi proposition p. A model M is �nitely

branhing models if for all s ∈ S and a ∈ L the set {t | s
a
−→ t} is �nite. A spei�ation

(M, E) is �nitely branhing if M is �nitely branhing and E is �nite. A model is �nite if

its set of states is �nite, while a spei�ation is �nite if the underlying model is. The next

step is to de�ne the (usual) notion of simulation on models and spei�ations.

INRIA
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De�nition 2 (Simulation). A simulation is a binary relation R on S suh that whenever

(s, t) ∈ R then

(i) λ(s) = λ(t), and

(ii) if s
a
−→ s′ then there is some t′ ∈ S suh that t

a
−→ t′ and (s′, t′) ∈ R.

We say that t simulates s, written s ≤ t, if there is a simulation R suh that (s, t) ∈ R.
States s and t are simulation equivalent, written s = t, if s ≤ t and t ≤ s.

The notion of simulation is extended to spei�ations (M, E) and (M, E′) by de�ning

(M, E) ≤ (M, E′) if there is a simulation R suh that for eah s ∈ E there is some t ∈ E′

with (s, t) ∈ R.
Next, we extend the de�nition of simulation to the ase where we have two spei�ations

(M1, E1) and (M2, E2), based on di�erent models. We do this by �rst de�ning the �disjoint

union� M1⊎M2 of the underlying models as (S,L,→, A, λ), where S = (S1×{1})∪(S2×{2}),

L = L1 ∪ L2, A = A1 ∪ A2, λ(s, i) = λi(s) and (s, i)
a
−→ (t, j) if and only if i = j and

s
a
−→i t. Then we work with simulations on M1 ⊎M2, by de�ning (M1, E1) ≤ (M2, E2) if

(M1 ⊎M2, E1 × {1}) ≤ (M1 ⊎M2, E2 × {2}).

2.2 Simulation Logi

The next step is to de�ne a logi that haraterises simulation. This logi is de�ned in

two steps: �rst we de�ne a basi logi and then we add reursion by using modal equation

systems. The resulting logi is equivalent to modal µ-alulus [13℄ with greatest �xed points

and box modalities only.

De�nition 3 (Basi simulation logi: syntax). Let V be a ountably in�nite set of

variables over sets of states, ranged over by X,Y, Z, . . .. The formulae of basi simulation

logi over a set L of labels and a set A of atomi propositions are indutively de�ned by

φ ::= p | ¬p | X | φ1 ∧ φ2 | φ1 ∨ φ2 | [a]φ

where p ∈ A and a ∈ L. The set of free variables fv(φ) ⊆ V of a formula φ is de�ned as

usual. Formulae of the shape p or ¬p are alled literals.

De�nition 4 (Basi simulation logi: semantis). The semantis of a formula φ of

basi simulation logi over L and A with respet to a model M over L and A and an

environment ρ : V → P(S) is de�ned indutively by

‖p‖ρ = λ∗(p)
‖¬p‖ρ = S − λ∗(p)
‖X‖ρ = ρ(X)
‖φ1 ∧ φ2‖ρ = ‖φ1‖ρ ∩ ‖φ2‖ρ
‖φ1 ∨ φ2‖ρ = ‖φ1‖ρ ∪ ‖φ2‖ρ

‖[a]φ‖ρ = {s ∈ S | ∀t ∈ S . s
a
−→ t implies t ∈ ‖φ‖ρ}

RR n° 4890



10 Sprenger, Gurov & Huisman

We impliitly assume the existene of the false proposition ff with λ∗(ff) = ∅ in all

models. We then de�ne tt = ¬ff. Let us introdue some useful notations. We often use

�nite generalisations of the boolean onnetives for whih we use notations suh as

∨

i φi

and

∨

Φ for a �nite set Φ of formulae. For the speial ase of an empty set of formulae,

we make the identi�ations

∨

∅ = ff and

∧

∅ = tt. For a more ompat representation of

modal formulae we will use [K]φ for K ⊆ L to denote the formula

∧

a∈K [a]φ. In onrete

ases we will omit the urly brakets and write [a, b]φ instead of [{a, b}]φ. As a speial ase,
we write [−]φ for [L]φ.

In order to make the logi expressive enough to haraterise all �nite models, we follow

Larsen [15℄ and introdue modal equation systems over formulae of basi simulation logi.

De�nition 5 (Modal equation system). A modal equation system Σ = {Xi = φi | i ∈ I}
over L and A is a �nite set of equations suh that the variables Xi are pairwise distint and

eah φi is a formula of basi simulation logi over L and A. The set of variables ourring

in Σ is partitioned into the set of bound variables, de�ned by bv(Σ) = {Xi | i ∈ I}, and the

set of free variables fv(Σ).

We will heneforth often use φX to refer to the formula φ in an equation (X = φ) ∈ Σ .

Example 1. An example of a modal equation system is Σ = {X1 = X2∧X3, X2 = Y,X3 =
Z}. For this system we have bv(Σ) = {X1, X2, X3} and fv(Σ) = {Y, Z}.

The next step is to de�ne the semantis of a modal equation system, in terms of its

greatest solution. A solution of a modal equation system Σ is a map η : bv(Σ) → P(S),
assigning to eah variableX ∈ bv(Σ) a set of states, suh that all equations in Σ are satis�ed.

Maps η are ordered by point-wise inlusion. We �rst de�ne the environment update ρ[η],
as ρ[η](X) = η(X) if X ∈ bv(Σ) and ρ[η](X) = ρ(X) otherwise. Then we de�ne the map

ΨΣ,ρ : P(S)bv(Σ) → P(S)bv(Σ)
indued by the equations in Σ by ΨΣ,ρ(η)(X) = ‖φX‖ρ[η].

De�nition 6 (Solutions). A solution of a modal equation system Σ with respet to a model

M and an environment ρ is a map η : bv(Σ) → P(S) suh that ΨΣ,ρ(η) = η. The semantis

of a modal equation system Σ with respet to M and ρ, denoted ‖Σ‖ρ, is its greatest solution.

Note that by the well-known Knaster-Tarski �xed point theorem [17℄ the greatest solution

of ΨΣ,ρ always exists, sine ΨΣ,ρ is a monotone map on the lattie P(S)bv(Σ)
ordered by

point-wise inlusion.

Example 2. For the example above, there is a unique solution ‖Σ‖ρ = {X1 7→ ρ(Y ) ∩
ρ(Z), X2 7→ ρ(Y ), X3 7→ ρ(Z)}.

We use modal equation systems to add reursion to basi simulation logi. A formula

φ[Σ] of simulation logi is omposed of a formula φ of basi simulation logi and a modal

equation system Σ. The free variables of φ are interpreted by the greatest solution of Σ.
Formally:

INRIA
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De�nition 7 (Simulation Logi). The formulae of simulation logi over L and A are

de�ned by φ[Σ], where φ is a formula of basi simulation logi and Σ is a modal equation

system. The set of free and bound variables are fv(φ[Σ]) = (fv(φ) ∪ fv(Σ)) − bv(Σ) and

bv(φ[Σ]) = bv(Σ), respetively.
The semantis of φ[Σ] with respet to model M and environment ρ is de�ned by

‖φ[Σ]‖ρ = ‖φ‖ρ[‖Σ‖ρ].

We say that a state s of a model M satis�es φ[Σ], written (M, s) |= φ[Σ], if s ∈ ‖φ[Σ]‖ρ for
all ρ. For spei�ations (M, E) we de�ne (M, E) |= φ[Σ] if (M, s) |= φ[Σ] for all s ∈ E.

We heneforth often omit the equation system Σ from φ[Σ] if no onfusion an arise.

Further, from now one we restrit our attention to losed formulae with no free variables,

for whih the semantis is independent of the environment.

We say that φ1 is a logial onsequene of φ0, written φ0 |= φ1, if for all spei�ations

S, S |= φ0 implies S |= φ1. The formula φ0 is logially equivalent to φ1, written φ0 ≡ φ1, if

φ0 |= φ1 and φ1 |= φ0.

Simulation logi is equally expressive as the modal µ-alulus [13℄ with box modalities

and greatest �xed points only. The translation from this fragment of the modal µ-alulus
to simulation logi is straightforward. As an example, the formula νX.p1∧(νY.X∧(p2∨Y ))
is translated to the equivalent simulation logi formula X [X = p1 ∧ Y, Y = X ∧ (p2 ∨ Y )].
The translation in the other diretion is based on Beki£'s priniple [3, 1℄, whih expresses a

�xed point in a produt lattie in terms of a vetor of omponent-wise �xed points.

2.3 Representation Results

Next, we will relate simulation logi to simulation. We proeed by de�ning two translations:

χ and θ. The map χ translates a �nite spei�ation into a formula, haraterising the

spei�ation, while θ translates formulae into (�nite) spei�ations. The latter map is �rst

de�ned on formulae in so-alled simulation normal form (SNF) and then extended to all

formulae by showing that any formula an be transformed into SNF. We show that χ logially

haraterises simulation and θ behaviourally haraterises logial satisfation. These two

maps form a Galois onnetion between �nite spei�ations and formulas: S ≤ θ(φ) if and
only if S |= φ if and only if χ(S) |= φ.

First we de�ne the mapping from �nite spei�ations to formulae. A �nite spei�ation

(M, E) is translated into its harateristi formula χ(M, E) = φE [ΣM], where ΣM is

de�ned by an equation

Xs =
∧

a∈L

[a]
∨

s
a
−→t

Xt ∧
∧

p∈λ(s)

p ∧
∧

q 6∈λ(s)

¬q

for eah s ∈ S, and φE =
∨

s∈E Xs. Reall that we identify
∨

∅ with ff and

∧

∅ with tt, so

for example an empty set of a-transitions from state s will yield the box formula [a] ff.
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a

b
 a

 bb

A = {p, q}
L = {a, b}
E = {s1, s2}

s1(p, q) s2(p)

s3()

Figure 1: Example spei�ation S

Example 3. To illustrate this de�nition, suppose we have the spei�ation S displayed in

Figure 1 (where the notation s1(p, q) is used to denote a state s1 for whih λ(s1) = {p, q}).
The orresponding formula for this model is χ(S) = Xs1

∨Xs2
[Σ], where Σ is given by

Σ =





Xs1
= [a]Xs2

∧ [b]ff ∧ p ∧ q
Xs2

= [a] ff ∧[b](Xs1
∨Xs3

) ∧ p ∧ ¬q
Xs3

= [a]Xs2
∧ [b]Xs1

∧ ¬p ∧ ¬q





We an prove that if spei�ation S1 is simulated by the �nite spei�ation S2, this is

equivalent to saying that S1 satis�es the harateristi formula of S2. This is a variation of

an earlier result by Larsen [15℄

3

.

Theorem 1. Let S1, S2 be spei�ations and suppose S2 is �nite. Then S1 ≤ S2 if and

only if S1 |= χ(S2).

Proof. (adapted from [15℄; inluded here for ompleteness) Suppose Si = (Mi, Ei) for i =
1, 2.

�⇒� Let Ψ be the map on P(S)bv(Σ)
indued by the equations in Σ (ΨΣ before De�ni-

tion 6). In order to prove that (M1, E1) |= (
∨

s∈E2
Xs)[ΣM2

] it is su�ient to show that

the map η de�ned by η(Xs) = {t ∈ S1 | t ≤ s} is a post-�xed point of Ψ. It then follows by

�xed point indution that η ⊆ ‖ΣM2
‖. Also, sine S1 ≤ S2, we have that for eah t ∈ E1

there is some s ∈ E2 suh that t ∈ η(Xs). Hene t ∈ ‖Σ‖(Xs) and therefore t |= χ(S2).
It remains to be shown that η(Xs) ⊆ Ψ(η)(Xs) for all s ∈ S. Let t ∈ η(Xs), hene t ≤ s.

We have to establish t ∈ Ψ(η)(Xs), that is,

(i) t ∈ ‖[a]
∨

s
a
−→s′

Xs′‖ρ[η] for all a ∈ L, and

(ii) t ∈ ‖
∧

p∈λ(s) p ∧
∧

q 6∈λ(s) ¬q‖ρ[η].

For (i) suppose t
a
−→ t′. Sine t ≤ s, there is a s′ suh that s

a
−→ s′ and t′ ≤ s′. Hene,

t′ ∈ η(Xs′). Point (ii) follows from t ≤ s and the de�nition of simulation.

�⇐� Let χ(S2) = (
∨

X )[Σ] with X = {Xs | s ∈ E2} and let η = ‖Σ‖ρ for some (arbitrary)

environment ρ. We show that R = {(s, t) | s ∈ η(Xt)} is a simulation between M1 and

3

By using in�nite equation systems this theorem easily generalises to �nitely branhing S2.
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M2. The result S1 ≤ S2 then easily follows. Let (s, t) ∈ R, that is, s ∈ η(Xt). Then s
and t satisfy the same propositions, sine s ∈ ‖

∧

p∈λ(t) p ∧
∧

q 6∈λ(t) ¬q‖ρ. Suppose now that

s
a
−→ s′. Sine s ∈ ‖[a]

∨

t
a
−→t′

Xt′‖ρ[η], we have s′ ∈ η(Xt′) for some t′ with t
a
−→ t′. This

shows that R is a simulation between M1 and M2.

Now that we have a translation from �nite spei�ations to formulae, we are interested

in de�ning the inverse mapping. However, not all formulae orrespond diretly to a spei�-

ation, but those in so-alled simulation normal form do.

De�nition 8 (Simulation normal form). A formula φ[Σ] of simulation logi over L and

A is in simulation normal form (SNF) if φ has the form

∨

X for some �nite set X ⊆ bv(Σ)
and all equations of Σ have the following state normal form

X =
∧

a∈L

[a]
∨

YX,a ∧
∧

p∈BX

p ∧
∧

q∈A−BX

¬q

where eah YX,a ⊆ bv(Σ) is a �nite set of variables and BX ⊆ A is a set of atomi proposi-

tions.

Notie that any formula χ(S) is always in SNF. From a formula (
∨

X )[Σ] over L and A
in SNF we derive the spei�ation

θ((
∨

X )[Σ]) = ((S,L,→, A, λ), E)

where S = bv(Σ), E = X and the equation for X indues transitions {X
a
−→ Y | Y ∈ YX,a}

and truth assignment λ(X) = BX .

Lemma 1. χ and θ are eah others inverse up to equivalene, that is,

(i) θ(χ(S)) ∼= S (

∼= is isomorphism

4

) for �nite S, and

(ii) χ(θ(φ)) ≡α φ (≡α is α-onvertibility) for φ in SNF.

Finally we are ready to relate simulation logi to simulation.

Theorem 2. For φ in simulation normal form, we have S ≤ θ(φ) if and only if S |= φ.

Proof. Follows from Theorem 1 by Lemma 1(ii).

Transformation to SNF

As mentioned above, all formulae of simulation logi have a semantially equivalent simu-

lation normal form. To see this we present a stepwise transformation proess of a formula

of the form X0[Σ0] over given sets of labels L and atomi propositions A into simulation

normal form. If neessary, we �rst transform a formula φ[Σ] into the equivalent formula

X [X = φ,Σ], where X is fresh. The transformation produes a formula ψ = (
∨

X )[Σ] for a
set of variables X and an equation system Σ suh that

4

Here, isomorphism means a bijetion of states and transitions, but labels have to math on the nose.
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14 Sprenger, Gurov & Huisman

(i) ψ is equivalent to X0[Σ0], and

(ii) ψ is in simulation normal form.

Before desribing the transformation in detail, we introdue some auxiliary de�nitions. First,

we need a slightly non-standard variant of disjuntive normal form (DNF).

De�nition 9 (DNF). A formula φ of basi simulation logi is in disjuntive normal form

if it is a disjuntion of onjuntions of box formulae and literals, that is, it has the shape

φ =
∨

i

∧

j

[aij ]ψij ∧
∧

Li

where eah Li is a set of literals and the ψij 's are arbitrary formulae in basi simulation

logi.

De�nition 10. The onjuntive deomposition c(ψ) of a formula ψ into its onjunts is

given by c(ψ) = {ψ1, . . . , ψm} suh that no ψi is a onjuntion and ψ =
∧

i ψi (modulo

assoiativity and ommutativity).

Note that by onvention we have c(tt) = ∅. We all an ourrene of a subformula

top-level if it is not under the sope of a box operator. Next, we introdue the notions of

variable dependeny and guardedness.

De�nition 11 (Variable dependeny). For X,Y ∈ bv(Σ), we say that X depends on

Y , written X ≻ Y , if Y ours in φX . We all (bv(Σ),≻) the variable dependeny graph of

Σ.

De�nition 12 (Guardedness). Let X,Y ∈ bv(Σ). Variable Y is guarded in φX if all

ourrenes of Y in φX are in the sope of a box formula, and is unguarded otherwise. De�ne

the restrition of ≻ to unguarded dependenies by X ≻u Y if X ≻ Y and Y ours unguarded

in φ. An equation system Σ is alled weakly guarded if ≻u is ayli and strongly guarded if

≻u is empty. A formula φ[Σ] is weakly (strongly) guarded if Σ is weakly (strongly) guarded.

Example 4. Consider the modal equation system

Σ =

[

X = [a]X ∨ (q ∧ Y )
Y = [b] (X ∧ Y ) ∧ p

]

Its variable dependeny graph is given by ≻ = {X,Y } × {X,Y }. In the equation for X
variable X is guarded but Y is not. In the equation for Y both X and Y are guarded.

Hene, ≻u = {(X,Y )} being ayli but not empty, Σ is weakly guarded but not strongly

guarded.

Lemma 2. Any formula φ of simulation logi is equivalent to a weakly and to a strongly

guarded formula.
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Proof. (Sketh) To transform φ into a weakly guarded formula we �rst translate φ into a

modal µ-alulus formula, use Kozen's proedure to obtain a guarded formula [18℄, and

then translate this bak into a weakly guarded formula φw of simulation logi. In order to

obtain a strongly guarded formula from φw, we repeatedly rewrite unguarded ourrenes of

variables by their de�ning equations. This proess terminates by weak guardedness of φw.

After these auxiliary de�nitions, we are ready to present the transformation. It onsists

of three phases:

Phase I transforms an equation into a disjuntion of formulae in state normal form, where

only variables appear under modalities,

Phase II eliminates the top-level disjuntions by introduing a new equation for eah dis-

junt, and

Phase III is a leanup phase that removes dupliated and unreahable equations.

The transformation relies on a partial funtion h mapping sets of formulae to variables.

The purpose of this map is to avoid the repeated introdution of a new equation for the

same formula. If h maps a set of formulae Ψ to variable X , this means that at some point

a new equation X =
∧

Ψ has been added to Σ (in step I.4), so X is reused instead of

introduing another equation for

∧

Ψ. This bookkeeping is essential for the termination of

the transformation.

Starting the transformation with the formulaX0[Σ0], we initially haveX = {X0}, Σ = Σ0

and h = ∅. By Lemma 2 we assume w.l.o.g. that Σ0 is weakly guarded.

Phase I (Disjuntion of state normal forms) All steps of this phase are applied to eah

equation inluding the new ones introdued in step I.4 below. Phase I must be ompleted

for all equations before moving on to phase II. The desription of most steps ends by an

equation indiating the equation shape ahieved by the respetive transformation step.

(1) (Strong guardedness) Make equation strongly guarded by repeatedly rewriting un-

guarded ourrenes of variables using the original equation system Σ0.

(2) (DNF) Put equation into disjuntive normal form and remove inonsistent disjunts

(those where ff or both p and ¬p appear).

X =
∨

i

∧

j

[aij ]φij ∧
∧

Li

(3) (Box grouping and ompletion) Group boxes together using [a]φ1∧[a]φ2 ≡ [a] (φ1∧φ2)
and add missing boxes using tt ≡ [a] tt.

X =
∨

i

∧

a∈L

[a]ψia ∧
∧

Li
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(4) (Modal depth redution) Apply the following to eah top-level box subformula [a]ψia

where ψia is not a variable. If (c(ψia), Y ) ∈ h for some variable Y then replae [a]ψia

by [a]Y ; otherwise, hoose a fresh variable Z 6∈ bv(Σ), add the new equation Z = ψia

to Σ, replae [a]ψia by [a]Z and extend h to h ∪ {(c(ψia), Z)}.

X =
∨

i

∧

a∈L

[a]Zia ∧
∧

Li

(5) (Literal ompletion) Replae equation X = φ by X = φ ∧
∧

p∈A(p ∨ ¬p), then repeat

step (2) to put equation bak into DNF. Equation shape is

X =
∨

i

∧

a∈L

[a]Zia ∧
∧

p∈B

p ∧
∧

q∈A−B

¬q (4)

for some B ⊆ A.

Phase II (Push disjuntions inside) Remove an equation of shape X =
∨

i φi from Σ
(unless there is exatly one disjunt). Add a new equation Xi = φi for eah non-variable

disjunt φi of φX . Then substitute

∨

iXi for X in all equations of Σ, where Xi is a variable

disjunt or the fresh variable introdued for φi. Finally, in ase X in X , replae X by

(X − {X}) ∪ {Xi | i}.

X =
∧

a∈L

[a]
∨

Ya ∧
∧

p∈B

p ∧
∧

q∈A−B

¬q

where Ya is a (possibly empty) set of variables. Repeat this step until all equations are in

SNF.

Phase III (Cleanup) This optimisation phase iteratively removes dupliated and un-

reahable equations.

(1) If there are equations Z1 = ψ1 and Z2 = ψ2 in Σ suh that ψ2[Z1/Z2] = ψ1, then

remove Z2 = ψ2 from Σ and substitute Z1 for Z2 in the remaining equations as well

as in X .

(2) Remove an equation Z = ψ from Σ in ase Z an not be reahed from any variable in

X via the variable dependeny graph.

The algorithm transforms any formula φ into its simulation normal form, denoted by snf(φ).

Remark 1. It is important to use the original equation system Σ0 for rewriting to strongly

guarded form in step I.1 as the following example shows. Consider the equation system

Σ0 = {X = [a] (X ∧ Y ), Y = [a]X}

and let us look at the transformation of the equation for X . The �rst transformation step

with any e�et is step I.4, where we introdue a new equation Z = X ∧Y and transform the
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old one to X = [a]Z. The map h beomes ({X,Y }, Z). Rewriting X and Y in Z = X ∧ Y
using the new equation for X and grouping boxes yields Z = [a] (Z ∧ X). This looks

suspiiously like the initial equation for X and indeed this proess of �unfolding� ontinues

ad in�nitum: introdue a new equation for U = Z ∧X (as {Z,X} is not in the domain of h)
and rewrite the old one to Z = [a]U . Then transform the equation for U to U = [a] (U ∧X)
and so on. Suh senarios are avoided by using Σ0 for rewriting to strong normal form.

Remark 2. The desription of the proedure an be slightly simpli�ed by moving the literal

ompletion (step I.5) to an earlier stage, e.g. before step I.2. However, for the alulation

of our examples, we found it useful to push the ombinatorial blowup that this step inurs

to the end of the transformation

Remark 3. Note that there are many ways to optimise the translation above. For example,

steps III.1-2 of phase III an be applied at any point of the transformation if h is updated

in the obvious way. However, for the sake of a learer presentation, we only do these

optimisations at the end.

Example 5. Here we present a very simple example of the transformation to SNF. A

more elaborate example appears in Setion 4. Let φ = tt be interpreted as a formula over

L = {a, b} and A = {p}. We �rst translate this to X [Σ0] with Σ0 = {X = tt}. This is

learly strongly guarded (I.1) and in DNF (I.2). Box ompletion (step I.3) transforms the

equation to X = [a] tt∧ [b] tt. Then step I.4 produes Σ = {X = [a]Y ∧ [b]Y, Y = tt} and

h = {(∅, Y )} (reall c(tt) = ∅). Applying steps I.1-3 to Y yields Y = [a] tt∧ [b] tt. Step

I.4 then yields Y = [a]Y ∧ [b]Y , sine h(∅) = Y . Now we have φX = φY [X/Y ], so, using
remark 3, we drop the equation for Y and get Σ = {X = [a]X ∧ [b]X}. Step I.5 turns this

into Σ = {X = ([a]X ∧ [b]X ∧ p) ∨ ([a]X ∧ [b]X ∧ ¬p)}. Phase II produes X = {X1, X2}
and

Σ =

[

X1 = [a] (X1 ∨X2) ∧ [b] (X1 ∨X2) ∧ p
X2 = [a] (X1 ∨X2) ∧ [b] (X1 ∨X2) ∧ ¬p

]

whih is in SNF, so snf(φ) = (X1 ∨X2)[Σ].

Theorem 3. For any formula of simulation logi, there is a logially equivalent formula in

simulation normal form.

Proof. By Lemma 2, we assume w.l.o.g. that the equations in Σ0 are weakly guarded. For

the purpose of the proof, we think of the transformation as produing a series of triples

(Xi,Σi, hi) onsisting of the urrent values of X , Σ and h after eah transformation step.

We have to show that

(1) eah of the transformation steps preserves the semantis of the formula, that is,

(
∨

Xi)[Σi] ≡ X0[Σ0]

(2) the transformation terminates after, say, n steps with (
∨

Xn)[Σn] in SNF.

We onentrate here on showing that phase I preserves the meaning of formulae and termi-

nates with all equations in shape (4). It is then not di�ult to see that phases II and III

terminate and produe an equivalent formula in SNF.
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Partial orretness For phase I we establish the following two invariants:

J1. for all Y ∈ bv(Σ0) we have Y ∈ bv(Σi) and Y [Σi] ≡ Y [Σ0], and

J2. if (Ψ, Z) ∈ hi then Z ∈ bv(Σi) and Z[Σi] ≡ (
∧

Ψ)[Σi].

The preservation of meaning (point 1) in phase I is then a onsequene of J1 - sineX remains

unhanged, while J2 is an auxiliary invariant expressing a property of eah hi, whih will be

needed to establish invariant J1.

Both invariants hold trivially for i = 0. We have to hek that they are preserved by

steps I.1-I.5. This is easy to see for steps I.2 and I.5, whih are justi�ed by propositional

equivalenes and the fat that hi+1 = hi. Similarly, for step I.3 whih is based on modal

equivalenes. We disuss the proof for the remaining steps I.1 and I.4 in some detail.

Given equation (X = φ) ∈ Σi, in step I.1 we repeatedly rewrite unguarded ourrenes

of variables in φ using equations of Σ0. Suppose we rewrite equation (Y = ψ) ∈ Σ0 in φ.
By the �xed point property we have Y [Σ0] ≡ ψ[Σ0]. It then follows by invariant J1 and a

routine indution on the struture of ψ that Y [Σi] ≡ ψ[Σi]. Hene, X [Σi] ≡ X [Σ′
i], where

Σ′
i is obtained from Σi by replaing X = φ with X = φ[ψ/Y ]. By repeatedly applying

this argument we get X [Σi] ≡ X [Σi+1], and thus the preservation of J1. Sine hi+1 = hi,

invariant J2 is also preserved.

In step I.4 we onsider an equation (X = φ) ∈ Σi and a top-level ourrene of a

subformula [a]ψ in φ suh that ψ is not a variable. Two ases are distinguished. If (c(ψ), Y ) ∈
hi then Σ′

i = (Σi−{X = φ})∪{X = φ′}, where the given ourrene of [a]ψ in φ is replaed

by [a]Y in φ′. By invariant J2 we know that Y [Σi] ≡ ψ[Σi], so both J1 and J2 are preserved.

If, on the other hand, c(ψ) 6∈ dom(hi) then we set Σ′
i = (Σi − {X = φ}) ∪ {X = φ′, Z = ψ},

where the given ourrene of [a]ψ in φ is replaed by [a]Z in φ′ and Z 6∈ bv(Σi) is a

fresh variable. We also set h′i to hi ∪ {(c(ψ), Z)}. Invariant J1 is preserved. In partiular,

X [Σi] ≡ X [Σ′
i], as we are just introduing a new name for the subformula ψ of φ. Invariant

J2 ertainly holds for the new mapping (c(ψ), Z) ∈ h′i and it holds for all elements in hi

by J1. Again, by repeating this argument one an easily see that both invariants hold for

(Xi+1,Σi+1, hi+1).

Termination It remains to be proven that phase I terminates. There are two points to

onsider. First, the rewriting proess in step I.1 might fail to terminate. However, this is

prevented by our assumption that the initial equation system Σ0 is weakly guarded (see

also Lemma 2). All transformation steps preserve the weak guardedness of equations. In

partiular, any new equation introdued in step I.4 is weakly guarded, sine it simply gives

name to a subformula of an existing equation and does therefore not add any yles to the

variable dependeny graph.

The seond potential soure of non-termination is the introdution of new equations in

step I.4. Let us all a formula ψ boxed in φ if there is some a ∈ L suh that [a]ψ is a

subformula of φ. Non-termination of step I.4 is ruled out by the following invariant:

J3. whenever (Ψ, Z) ∈ hi then eah ψ ∈ Ψ appears boxed in the right-hand side of an

original equation in Σ0.
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Sine there are only a �nite number of boxed subformulae, the map h eventually �lls up into

a total funtion at whih point no further equations will be added. Then phase I terminates,

sine eah of the individual steps does.

To see that J3 holds, observe that steps I.1 and I.2 do not a�et boxed formulae and

in step I.3 boxed formulae might be ombined into onjuntions. Therefore, these steps

preserve the property

P. all boxed formulae of an equation (X = φ) ∈ Σi are onjuntions of boxed formulae of

Σ0.

This property trivially holds initially for the equations in Σ0. But then it also holds for any

new equations introdued in step I.4. Hene, any pair (Ψ, Z) that is added to hi satis�es

invariant J3. This ompletes the proof of termination.

We extend the mapping θ to all formulae of simulation logi by de�ning θ(φ) = θ(snf(φ)).
Then, sine snf preserves the semantis of formulae, Theorem 2 an be extended to all

formulae.

Theorem 4. For all spei�ations S and formulae φ, we have S ≤ θ(φ) if and only if

S |= φ.

Thus, for any spei�ation S and any property φ, if we want to hek whether the

spei�ation satis�es the property, it is su�ient to hek that S is simulated by θ(φ).

Consequenes We mention a few onsequenes of Theorems 1 and 4. Let (S,≤) be the

preorder of (isomorphism lasses of) �nite spei�ations over given L and A ordered by

simulation and let (L, |=) be the preorder of formulae of simulation logi over L and A
ordered by the logial onsequene relation.

Corollary 1. χ and θ are monotone.

Simulation preserves logial properties:

Corollary 2. For all spei�ations S1 and S2 we have S1 ≤ S2 and S2 |= φ imply S1 |= φ.

The pair (χ, θ) of maps forms a Galois onnetion between the preorders (L, |=) and

(S,≤):

Corollary 3. For �nite spei�ations S and all formulas φ, we have S ≤ θ(φ) if and only

if χ(S) |= φ.

2.4 Weak Simulation

Often, one is only interested in the observable behaviour of systems. To ahieve this, one an

identify a distinguished ation ε ∈ A, alled the silent ation, and de�ne weak transitions

s
a
⇒ t in terms of the usual (strong) transitions as follows: s

ε
⇒ t whenever s(

ε
−→)∗t, and s

a
⇒ t
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whenever s
ε
⇒

a
−→

ε
⇒ t for all a 6= ε. Weak simulation ≤w (weak simulation equivalene =w)

is then de�ned as simulation (simulation equivalene) w.r.t. weak transitions. Similarly, we

an interpret the box modality of simulation logi over the weak transitions rather than the

strong transitions of models. To distinguish the two interpretations, we shall rede�ne the

notion of satisfation and write S |=w φ in that ase. Thus, s |=w [a]φ if all states that an

be reahed from s by a transition labelled a, preeded and followed by an arbitrary number

of ε-steps, satisfy φ.

Example 6. Suppose we have a model with states S = {s1, s2, s3} and transitions s1
a
−→ s2

and s2
ε
−→ s3. Further, suppose that λ(s2) = {p, q} and λ(s3) = {p}. Then s1 |=w [a] p, but

not s1 |=w [a] q, sine s3 does not satisfy the atomi proposition q.

A natural question is whether the results of the previous subsetion an be used to relate

weak simulation and simulation logi in the same way as simulation and simulation logi

are related by the transformation θ (and its inverse χ). Note that applying θ on a formula

of simulation logi interpreted over weak transitions would only give us a model in terms of

weak transitions, without the underlying strong transitions. However, there is a standard

translation of formulae interpreted over weak transitions into equivalent formulae interpreted

over strong transitions [16℄. This translation, let us denote it by σ, is easily adapted to our

setting. It has the property that S |=w φ exatly when S |= σ(φ). We show that θ ◦ σ
provides the desired transformation relating weak simulation and simulation logi.

To this end, we �rst introdue the notion of saturated model, i.e. a model in whih s
a
−→ t

whenever s
a
⇒ t. We show that for all formulae φ, θ (σ (φ)) is simulation equivalent to its

saturation, and therefore it is su�ient for a model to be weakly simulated by θ (σ (φ)) in
order to satisfy φ when interpreted over weak transitions.

De�nition 13. Let M = (S,L,→, A, λ) be a model. The saturation of M is the model

sat(M) = (S,L,→s, A, λ) in whih s
a
−→s t exatly when s

a
⇒ t. The saturation of a

spei�ation (M, E) is the spei�ation sat(M, E) = (sat(M), E).

Thus, sat(M) is the least saturated model w.r.t. the subset ordering on the powerset of

S×L×S, ontaining M. In the example above, we have to add the transition s1
a
−→ s3 and

ε-self-loops to saturate the model. We have s
a
⇒s t in sat(S) whenever s

a
−→s t in sat(S)

whenever s
a
⇒ t in S. As onsequenes, we have the following properties of weak simulation

and simulation logi.

Proposition 1. (i) S1 ≤w S2 i� S1 ≤ sat(S2), and
(ii) S |=w φ i� sat(S) |=w φ i� S |= σ(φ).

Lemma 3. θ (σ (φ)) = sat(θ (σ (φ))).

Proof. Clearly, θ (σ (φ)) ≤ sat(θ (σ (φ))) holds; it remains to show the other diretion. From

re�exivity of ≤ and Theorem 4 we know that θ (σ (φ)) |= σ(φ). Then, by Proposition 1(ii),

sat(θ (σ (φ))) |= σ(φ), and again by Theorem 4, sat(θ (σ (φ))) ≤ θ (σ (φ)).
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These results allow the following haraterisation of simulation logi, in the style of

Theorem 4.

Theorem 5. S ≤w θ (σ (φ)) if and only if S |=w φ.

Proof. S ≤w θ (σ (φ)) holds by Proposition 1(i) exatly when S ≤ sat(θ (σ (φ))), whih by

Lemma 3 holds exatly when S ≤ θ (σ (φ)). Theorem 4 together with Proposition 1(ii) then

establish the result.

3 Compositional Veri�ation of Applets

So far, all our results have been developed for arbitrary spei�ations. From now on, we shall

onentrate on a partiular appliation, namely the representation of applets (i.e. smart ard

appliations) in our general notion of spei�ation. We study sequential (single-threaded)

applets and safety properties of their interproedural ontrol �ow. As explained above,

we are interested in the deomposition of properties, in order to guarantee the seure post-

issuane loading of applets. We do this by instantiating the general framework of the previous

setion on two di�erent levels:

(i) the strutural level, where a spei�ation represents the ontrol �ow graph of a method,

and applets are viewed as olletions of methods, with an appropriate interfae;

(ii) the behavioural level, where a spei�ation represents the behaviour of an applet.

This yields a version of simulation logi for eah level. The ompositional veri�ation prini-

ple that we develop allows us to state assumptions about individual applets in the strutural

simulation logi, in order to establish behavioural simulation logi properties for the om-

posed system. For this and the next setion, it will be onvenient to make the following

assumption.

Assumption 1 (Reahability). In all spei�ations (M, E), eah state of M is reahable

from a state in E.

Note that all results of Setion 2 arry over to this restrited setting.

3.1 Applets

Applets are de�ned as a olletion of methods, where eah method is an instane of a model.

However, for a realisti program model of applets, it is neessary to know whih methods

exist and/or are used. Therefore, we �rst de�ne the notion of an applet interfae, whih

spei�es whih methods are provided and required by an applet.

Let Meth be a ountably in�nite set of method names.
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De�nition 14 (Applet interfae). An applet interfae is a pair I = (I+, I−), where
I+, I− ⊆ Meth are �nite sets of names of provided and required methods, respetively.

The omposition of two interfaes I1 = (I+
1 , I

−
1 ) and I2 = (I+

2 , I
−
2 ) is de�ned by I1 ∪ I2 =

(I+
1 ∪ I+

2 , I
−
1 ∪ I−2 ).

As mentioned above, methods are an instane of the general notion of spei�ation.

De�nition 15 (Method spei�ation). A method graph for m ∈ Meth over a set M of

method names is a �nite model

Mm = (Vm, Lm,→m, Am, λm)

where Vm is the set of ontrol nodes of m, Lm = M ∪ {ε}, Am = {m, r}, λ∗m(m) = Vm,

i.e. eah node is tagged with the method name, and λ∗m(r) ⊆ Vm is a set of return points. A

method spei�ation for m ∈ Meth over M is a pair (Mm, Em), where Mm is a method

graph for m over M and Em ⊆ Vm is a non-empty set of entry points of m.

An applet is basially a olletion of method spei�ations. For the formal de�nition we

extend the notion of disjoint union from models (as de�ned for simulation between models,

below De�nition 2) to spei�ations: given spei�ations (M1, E1) and (M2, E2) de�ne

(M1, E1)⊎(M2, E2) = (M1⊎M2, in1(E1)∪ in2(E2)) where in1 and in2 are injetions from

states of M1 and M2 to states of M1 ⊎M2, respetively.

De�nition 16 (Applet). An applet A with interfae I, written A : I, is de�ned indutively
by

� ∅M : (∅,M), where ∅M = ((∅,M ∪ {ε},∅, {r},∅),∅) is the empty applet over M ,

� (Mm, Em) : ({m},M) if (Mm, Em) is a method spei�ation for m ∈ Meth over M ,

and

� A1 ⊎ A2 : I1 ∪ I2 if A1 : I1 and A2 : I2.

An applet A : (I+, I−) is losed if I− ⊆ I+
.

Note that, up to isomorphism, ⊎ is assoiative and ommutative and has the neutral

element ∅M . For an arbitrary spei�ation (M, E) we say that it is an applet with interfae

I if and only if we an deompose (M, E) following this de�nition. Notie that if A : I, then
for eah method m ∈ I+

the applet has to ontain a orresponding method graph. Thus,

an applet an only provide methods that it atually implements.

Lemma 4. Suppose A = (M, E) is an applet with M = (V, L,→, A, λ). Then its interfae

is (A− {r}, L− {ε}).

Proof. By indution on the struture of the applet.
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3.2 Strutural Level

As mentioned above, we express properties over applets at two levels: strutural and be-

havioural. The next subsetion onsiders behavioural properties, here we study strutural

ones, i.e. properties that allow one to restrit the possible method graphs in an applet.

Simulation An applet A1 struturally simulates another applet A2 if eah entry point

for a method m of A1 is simulated by some entry point for the same method of A2. Thus,

strutural simulation oinides diretly with simulation on models, as de�ned above. For

onveniene, we write A1 ≤s A2 instead of A1 ≤ A2 to denote strutural simulation. Stru-

tural simulation is preserved by applet omposition.

Theorem 6 (Strut-Mon). If A1 ≤s B1 and A2 ≤s B2 then A1 ⊎ A2 ≤s B1 ⊎ B2.

Proof. Suppose R1 and R2 are witnesses of A1 ≤s B1 and A2 ≤s B2, respetively. Then

R = {((s, i), (t, i)) | i ∈ {1, 2}∧(s, t) ∈ Ri} is a simulation between A1⊎A2 and B1⊎B2.

Logi We also instantiate the notion of satisfation to the strutural level. An applet

satis�es a formula of simulation logi if all its entry points satisfy the formula. For larity,

we de�ne strutural satisfation A |=s φ as A |= φ.

Maximal applets Let I = (I+, I−) be an applet interfae. De�ne φI [ΣI ], the harater-
isti formula for interfae I, by

φI =
∨

m∈I+ Xm

ΣI = {Xm = φm | m ∈ I+}
φm = [I−, ε]Xm ∧ pm

pm = m ∧
∧

{¬m′ | m′ ∈ I+,m′ 6= m}

The formula φI [ΣI ] axiomatises the basi struture of an applet with interfae I, namely

that eah initial node belongs to a unique method m and no transition leaves m. Note that

ΣI is in not in SNF (proposition r is missing).

Example 7. Given interfae I = ({m1,m2}, {m1,m3}), the basi struture of applets with
interfae I is haraterised by the formula φI [ΣI ], where φI = Xm1

∨Xm2
and

ΣI =

[

Xm1
= [m1,m3, ε]Xm1

∧m1 ∧ ¬m2

Xm2
= [m1,m3, ε]Xm2

∧m2 ∧ ¬m1

]

The following proposition haraterises applets interfae I as those spei�ations that

satisfy the harateristi formula φI for interfae I.

Proposition 2. Let I = (I+, I−) be an applet interfae, let (M, E) be any spei�ation

over L = I− ∪ {ε} and A = I+ ∪ {r}. We have (M, E) |=s φI [ΣI ] if and only if (M, E) is
an applet with interfae I, i.e. (M, E) : I.
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Proof. �⇒� Suppose (M, E) |=s φI [ΣI ]. We use indution on the size of I+
. Note that eah

of the ases below depends on Assumption 1.

Case I+ = ∅: In this ase φI ≡ ff, so the only spei�ation whih satis�es this property

is the empty applet ∅M .

Case I+ = {m}: Here φI [ΣI ] = Xm[Xm = [I−, ε]Xm ∧m]. Any spei�ation satisfying

this property is a single method graph. Thus (M, E) is an applet with interfae ({m}, I−).
Case I+ = I1 ⊎ I2: Sine (M, E) |=s φI [ΣI ], we know that every state in the model

satis�es exatly one of the atomi prediatesm ∈ I+
. We an de�ne (M1, E1) and (M2, E2)

as the restritions of (M, E) w.r.t. I1 and I2. Notie that (M1, E1) ⊎ (M2, E2) = (M, E).
We an deompose φI [ΣI ] = φ(I1,I−) ∧ φ(I2,I−)[Σ(I1,I−),Σ(I2,I−)]. By indution, (M1, E1) :
(I1, I

−) and (M2, E2) : (I2, I
−), thus by De�nition 16 (M, E) : I.

�⇐� By Theorem 4, it is su�ient to show (M, E) ≤s θ(φI [ΣI ]). First, we alulate

θ(φI [ΣI ]), whih gives for eah method name m ∈ I+
the method spei�ation ((Vm, I

− ∪
{ε},→m, {m, r}, λm), Vm), where

Vm = {Xm,r, Xm,¬r}
→m = Vm × (I− ∪ {ε})× Vm

λm = {(Xm,r, {m, r}), (Xm,¬r, {m})}

Using the relation R = {(s, t) | λ(s) = λ(t)}, it is easy to show that any applet (M, E) with
interfae I is simulated by this applet.

Finally, using the harateristi formula for interfae I, we de�ne the maximal applet

with interfae I w.r.t. a formula φ[Σ] as the onjuntion of φ[Σ] and φI [ΣI ].

De�nition 17 (Maximal applet). The maximal applet w.r.t. interfae I satisfying φ[Σ]
is de�ned as θI(φ[Σ]) = θ(φ∧φI [Σ,ΣI ]) (where it is assumed w.l.o.g. that the bound variables

of Σ and ΣI are disjoint).

Notie that by Proposition 2 θI(φ) : I, i.e. the maximal applet has interfae I. Also, by
de�nition θI(φ[Σ]) |=s φ[Σ], sine φ∧ φI [Σ,ΣI ] |= φ[Σ]. Finally, we show that to prove that

an applet satis�es formula φ[Σ], it is su�ient to show that it is simulated by the maximal

applet w.r.t. φ[Σ].

Theorem 7 (Strut-Max). Let A : I be an applet. Then A ≤s θI(φ[Σ]) if and only if

A |=s φ[Σ].

Proof. By Proposition 2, for applet A : I, A |=s φ[Σ] if and only if A |=s φ∧φI [Σ,ΣI ]. The
result then follows from Theorem 4.

3.3 Behavioural Level

Next, we hange our fous to properties on the behavioural level. The advantage of also

having this level for spei�ations is that it allows us to write more abstrat spei�ations.

The �rst step is to de�ne the behaviour of an applet.
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(transfer)

m ∈ I+ v →m v′ v |= ¬r

(v, σ)
ε
−→ (v′, σ)

(all)

m1,m2 ∈ I+ v1
m2−−→m1

v′1 v2 |= m2 v2 ∈ E

(v1, σ)
m1call m2−−−−−−→ (v2, v′1 · σ)

(return)

m1,m2 ∈ I+ v2 |= m2 ∧ r v1 |= m1

(v2, v1 · σ)
m2 ret m1−−−−−−→ (v1, σ)

Table 1: Applet Transition Rules

De�nition 18 (Behaviour). Let A = (M, E) : (I+, I−) be a losed applet and let

M = (V, L,→, A, λ). The behaviour of A is desribed by the spei�ation b(A) = (Mb, Eb),
where Mb = (Sb, Lb,→b, Ab, λb) is de�ned as follows.

� Sb = V × V ∗
, i.e. states are pairs of ontrol points and staks;

� Lb = {m1 l m2 | l ∈ {call, ret}, m1,m2 ∈ I+} ∪ {ε};

� →b is de�ned by the rules of Table 1;

� Ab = A; and

� p ∈ λb((v, σ)) if p ∈ λ(v) for p ∈ A.

The set of initial states Eb is de�ned by Eb = E × {ε}.

Note that applet behaviour de�nes a ontext-free proess (see, e.g., [6℄ for an survey of

in�nite proess strutures).

Simulation Also on the behavioural level, we instantiate the general de�nition of simu-

lation. Applet A1 behaviourally simulates applet A2, written A1 ≤b A2, if b(A1) ≤ b(A2).
Any two applets that are related by strutural simulation, are also related by behavioural

simulation.

Theorem 8 (Simulation Correspondene). If A1 ≤s A2 then A1 ≤b A2.

Proof. Let R be a strutural simulation between A1 = (M1, E1) and A2 = (M2, E2). We

lift R on the strutural level to Rb on the behavioural level by de�ning

Rb = {(v, σ), (v′, σ′) | (v, v′) ∈ R, |σ| = |σ′| and
(σ(i), σ′(i)) ∈ R for all 0 ≤ i < |σ|}
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I = ({m1}, {m1})
E = {s1}

I = ({m1}, {m1})
E = {s1}

m1

s1 (m1)

s2 (m1)

b
m1

s1 (m1)

s2 (m1, r)

Figure 2: Counterexample, reverse of Theorem 9

We show that Rb is a behavioural simulation between A1 and A2.

Sine for eah entry point v1 ∈ E1 there is an entry point v2 ∈ E2, suh that (v1, v2) ∈
R, we have that for eah initial state (v1, ε), there is an initial state (v2, ε), suh that

((v1, ε), (v2, ε)) ∈ Rb.

Now suppose that ((v1, σ1), (v2, σ2)) ∈ Rb. Both states must belong to the same method,

say m. We proeed by ase analysis on the possible transitions from (v1, σ1).

Case 1. (Transfer) Suppose (v1, σ1)
ε
−→ (v′1, σ1). Sine (v1, v2) ∈ R and v1 →m v2, it follows

that there is a transition (v2, σ2)
ε
−→ (v′2, σ2) in A2 suh that ((v′1, σ1), (v

′
2, σ2)) ∈ Rb.

Case 2. (Call) Suppose (v1, σ1)
m call m′

−−−−−−→ (u1, v
′
1·σ

′
1). We know that v1

m′

−−→ v′1 , u1 |= m′
and

u1 ∈ E1. Sine (v1, v2) ∈ R we know there is a all edge v2
m′

−−→ v′2 in A2 suh that (v′1, v
′
2) ∈

R. Furthermore, sine u1 is an entry point of m in A1, there is a entry point u2 ∈ E2 suh

that (u1, u2) ∈ R and u2 |= m′
. Therefore, there is a transition (v2, σ2)

m call m′

−−−−−−→ (u2, v
′
2 ·σ

′
2)

in A2 suh that ((u1, v
′
1 · σ1), (u2, v

′
2 · σ2)) ∈ Rb.

Case 3. (Return) Suppose (v1, σ1)
m ret m′

−−−−−→ (w1, σ
′
1). We derive that v1 |= m∧r, σ1 = w1 ·σ

′
1

and w1 |= m′
. Sine ((v1, σ1), (v2, σ2)) ∈ Rb we have σ2 = w2 · σ′

2 and (w1, w2) ∈ R, thus
w2 |= m. Further, sine (v1, v2) ∈ R, we know that v2 |= m∧ r. Hene, there is a transition

(v2, w2 · σ
′
2)

m ret m′

−−−−−→ (w2, σ
′
2) and ((w1, σ

′
1), (w2, σ

′
2)) ∈ Rb

This shows that A1 ≤b A2.

The reverse is not the ase. Consider for example the two applets in Figure 2. The

left applet is behaviourally simulated by the right applet (in fat, they are behaviourally

equivalent), but there is no strutural simulation between these applets - in any diretion -

sine in the left applet the state s2 satis�es the atomi prediate r, while in the right applet

it does not.

Logi Finally, we instantiate simulation logi on the behavioural level by de�ning be-

havioural satisfation A |=b ψ as b(A) |= ψ.
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3.4 Compositional Reasoning

Having instantiated the results from Setion 2 both at the strutural and at the behavioural

level, we are now ready to relate the two. The main result of this paper is the following

ompositional reasoning priniple. Let A : I and B : J be applets, let φ be a formula in

strutural simulation logi, and ψ be a formula in behavioural simulation logi. Then we

have

A |=s φ θI(φ) ⊎ B |=b ψ

A ⊎ B |=b ψ
(beh-omp)

This priniple says that in order to show that a a omposed applet A⊎B has a behavioural

property ψ, it is su�ient to �nd a strutural property φ, satis�ed by A, suh that θI(φ) ⊎
B |=b ψ. By using the harateristi formula χ(A) as instantiation for φ we an also show

that this priniple is omplete.

Theorem 9. (Soundness and Completeness) Suppose A : I. Let ψ be a behavioural formula.

Then there is a strutural formula φ suh that A |=s φ and θI(φ) ⊎ B |=b ψ if and only if

A ⊎ B |=b ψ.

Proof. �⇒� Suppose A |=s φ and θI(φ)⊎B |=b ψ. By Theorem 7 and the �rst assumption, we

have A ≤s θI(φ). It follows that A⊎B ≤b θI(φ)⊎B by Theorems 6 and 8. Hene, A⊎B |=b ψ
by Corollary 2 (instantiated to the behavioural level) and the seond assumption.

�⇐� Suppose A ⊎ B |=b ψ and set φ = χ(A). We have to show that A |=s χ(A) and

θI(χ(A)) ⊎ B |=b ψ. The former follows from Theorem 1 (for S1 = S2, instantiated to

strutural level). To see the latter, we start by the observation that χ(A)∧φI [ΣI ] |=s χ(A).
By the monotoniity of θ (Corollary 1), we get θI(χ(A)) ≤ θ(χ(A)). Lemma 1 states that

θ(χ(A)) ∼= A. Hene, using the de�nition of strutural simulation, θI(χ(A)) ≤s A. It follows
by Theorems 6 and 8 that θI(χ(A)) ⊎ B ≤b A⊎B. Finally, Corollary 2 and the assumption

imply that θI(χ(A)) ⊎ B |=b ψ.

Note that by taking B to be the empty applet ∅J−
, the ompositional reasoning priniple

above relates behavioural properties to strutural ones. Given applet A : I, the satisfation
of behavioural property ψ an be redued to the satisfation of strutural property φ if and

only if the maximal applet w.r.t. I and φ (behaviourally) satis�es property ψ.

A |=s φ θI(φ) |=b ψ

A |=b ψ
(strut-beh)

In the rule beh-omp, strutural property φ an play the r�le of a spei�ation for applet

A. The ompleteness result guarantees the usefulness of the rule only when φ is meant to

serve as a omplete spei�ation for A. However, in the ase of a yet unknown (or not

yet implemented) applet, produing a omplete spei�ation might be too muh to ask in

pratie. In this ase, one would rather like to use the weakest (that is, most abstrat) loal

strutural spei�ation φ implying the desired global behavioural property ψ. A natural
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question is thus whether suh a weakest spei�ation always exists. Let φ be alled a ut-

formula for I, B and ψ whenever θI(φ) ⊎ B |=b ψ, and let the rule be said to possess the

weakest-ut property if for any I, B and ψ there is a weakest ut-formula. Unfortunately, it

is easy to show that the rule above does not possess this desirable property. For otherwise

φ1 ∨ φ2 would be a ut-formula for I, B and ψ whenever φ1 and φ2 are so; however, it is

easy to provide onrete I, B, ψ, φ1 and φ2 suh that φ1 and φ2 are ut-formulae for I, B
and ψ, but φ1 ∨ φ2 is not. The fundamental reason for this, we believe, is that the set of

applets behaviourally satisfying a property ψ is in general not losed under disjoint union.

The above observation suggests that having to struturally speify a omponent by a

single formula might in ertain ases fore the spei�ation to beome unneessarily onrete.

To ahieve the desired level of abstratness, we propose the use of sets of formulae as

spei�ations, by de�ning, for a set of formulae F , S |= F to hold if S |= φ for some φ ∈ F .
Other useful ompositional reasoning priniples are also thinkable. For example, a rule

of the shape of the above rule, but involving strutural properties only, is easily justi�able

with the results presented above.

A |=s φ θI(φ) ⊎ B |=s ψ

A ⊎ B |=s ψ
(strut-omp)

Apart from being able to show soundness and ompleteness for this rule (using a similar

proof as for the rule beh-omp), we an also show that it possesses the weakest-ut property.

4 Example

Finally, to demonstrate the use of our approah in pratie, we present a small example. This

example is a smaller, distilled version of a larger ase study on veri�ation of behavioural

safety properties for an eletroni purse. This ase study is desribed elsewhere in more

detail [10℄, and we refer to this paper for a more detailed motivation why this kind of seurity

properties are important for smart ard appliations and how they should be formalised.

Suppose we have a smart ard, on whih we allow instanes of applets A and B with the

following interfaes: A : ({m1,m2}, {m1,m2,m3}) and B : ({m3}, {m1,m2,m3}), respe-
tively. Now, suppose that the method m1 is a method that is alled by an instane of the

applet B when it is in a partiular state. However, it might be the ase that only ertain

instanes of applet A are supposed to know that this instane of B is in this state - possibly

beause they have paid to get this information

5

. Thus, as a global seurity property we

require that when method m1 is alled, this does not trigger any other alls to instanes of

A (until the method has �nished). We speify this as the following global seurity property.

(ϕ) ¬m1 ∨ Z [Z = (m1 ∧ r) ∨ ([K]� ∧ [−]Z)]

5

In the ase study on whih this example is based, this is the ase for a method whih signals that a

ertain table is full. Other applets an register to get the information that this table is full, and thus that

they better read its ontents before it will be emptied. However, this information should not be passed on

to third party applets who did not pay for this information.
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where K = { m1 allm1,m1 allm2,m2 allm1,m2 allm2, m3 allm1,m3 allm2 }. Notie

that this an be onsidered as a on�dentiality property: it prevents ertain information to

�ow to unauthorised appliations [4℄.

This formula expresses that within method m1, i.e. until the model desribing the

behaviour of the applet reahes a state satisfying m1 ∧ r, there annot be any alls to other

methods delared in the interfae of A. Notie that this also restrits the alls that an be

made from an instane of applet B, i.e. m3 is also not allowed to all a method delared in

the interfae of A. To make it easier to express this kind of properties, we are developing

a ommon set of spei�ation patterns, with appropriate de�nitions as modal µ-alulus
formulae.

There are several ways in whih this property an be established. A trivial one is by

speifying that method m1 should not make any method alls. However, this would exlude

many sensible implementations of m1, therefore we prefer to be less restritive, and we

propose the following strutural spei�ations for A and B6

.

(σA) ¬m1 ∨ (X ∧m1)[X = [m1,m2]� ∧ [ε,m3]X ]
(σB) ¬m3 ∨ (Y ∧m3)[Y = [m1,m2]� ∧ [ε,m3]Y ]

The spei�ation for A expresses that the method graph for m1 should not ontain any

all edge labelled m1 or m2. The spei�ation for B expresses a similar property for the

method graph of m3.

Applying the ompositional reasoning priniple beh-omp twie, we know that for any

instanes of applets A and B, in order to prove that their omposition A ⊎ B respets the

property ϕ, it is su�ient to prove for these instanes that A |=s σA and B |=s σB, and
�nally, that θIA(σA) ⊎ θIB (σB) |=b ϕ. The properties for the individual applets an be

heked using existing model heking tehniques, so here we fous on the proof of the last

sequent, using the maximal model onstrution presented earlier. Following De�nition 17,

the maximal applet is onstruted as follows:

(1) take the onjuntion of the strutural spei�ation and the harateristi formula for

the given interfae;

(2) transform the resulting formula into simulation normal form; and

(3) use the mapping θ to onstrut the applet orresponding to this formula in SNF.

We present in some detail the onstrution of the maximal applet for σB; the onstrution of

the maximal applet for σA is similar. As a �rst step, the harateristi formula for interfae

IB is the following.

(φIB ) Xm3
[Xm3

= [m1,m2,m3, ε]Xm3
∧m3]

6

In the formula ¬m1 ∨ (X ∧ m1), the onjunt m1 is redundant in the seond disjunt. However, we

found that adding it allows to eliminate quikly inonsistent or redundant ases during the transformation

into SNF. Not adding the onjunt produes the same result, but requires more logial simpli�ations.
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Thus, the onjuntion with σB gives the following formula, after desugaring.

Z





Z = (¬m3 ∨ Y ) ∧Xm3

Y = [m1,m2]� ∧ [m3, ε]Y
Xm3

= [m1,m2,m3, ε]Xm3
∧m3





The next step is to transform this formula into SNF. First, in phase 1 of the transforma-

tion, eah equation is transformed into a disjuntion of state normal forms. Suppose that

we start with the equation de�ning Z.

(1) Make the equation strongly guarded, by rewriting with the original equation system.

Z = (¬m3 ∨ [m1,m2]� ∧ [m3, ε]Y )∧
[m1,m2,m3, ε]Xm3

∧m3

(2) Put the equation into DNF

Z = (¬m3 ∧ [m1,m2,m3, ε]Xm3
∧m3) ∨

([m1,m2]� ∧ [m3, ε]Y ∧ [m1,m2,m3, ε]Xm3
∧m3)

and simplify

Z = [m1,m2]� ∧ [m3, ε]Y ∧ [m1,m2,m3, ε]Xm3
∧m3

(3) Group and omplete boxes. Here no boxes are missing, therefore we only group boxes

7

.

Z = [m1,m2]� ∧ [m3, ε](Y ∧Xm3
) ∧m3

(4) Introdue new equations for formula under boxes. Sine the map h does not ontain

a mapping for {Y,Xm3
} yet, we introdue a new variable U and add the mapping

({Y,Xm3
}, U) to h. The equation de�ning Z then beomes

Z = [m1,m2]� ∧ [m3, ε]U ∧m3

while we introdue the equation

U = Y ∧Xm3

7

If we follow the algorithm preisely, we would get [m1, m2](� ∧ Xm3
), for whih the next step would

introdue an equation F = � ∧ Xm3
, whih (when transforming it into DNF) would simplify to F = �. In

Phase 2, all ourrenes of the variable would get replaed again by �, thus for simpliity of presentation we

ignore this in this example. However, it is important to notie that our algorithm is general and thus an

handle these ases as well.
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(5) Finally, we omplete the equation for Z by adding missing literals and putting the

formula into DNF again. In this ase, the only literal that is missing is r. Adding this

literal gives us the following result.

Z = ([m1,m2]� ∧ [m3, ε]U ∧m3 ∧ r) ∨

([m1,m2]� ∧ [m3, ε]U ∧m3 ∧ ¬r)

The equations de�ning Y and Xm3
are handled in a similar way. The only step that has

some e�et is step 5, whih introdues the missing literal r. More interesting is to look how

phase 1 is applied to the new equation U = Y ∧Xm3
.

(1) Rewriting into strongly guarded form gives

U = [m1,m2]� ∧ [m3, ε]Y ∧
[m1,m2,m3, ε]Xm3

∧m3

(2) The formula is already in DNF, and annot be simpli�ed.

(3) Grouping boxes results in the following.

U = [m1,m2]� ∧ [m3, ε](Y ∧Xm3
) ∧m3

(4) The mapping h ontains a map ({Y,Xm3
}, U). Therefore, we replae Y ∧Xm3

by U .

U = [m1,m2]� ∧ [m3, ε]U ∧m3

(5) Literal ompletion again introdues r.

U = ([m1,m2]� ∧ [m3, ε]U ∧m3 ∧ r) ∨

([m1,m2]� ∧ [m3, ε]U ∧m3 ∧ ¬r)

Now, phase I has been ompleted for all equations. Phase II introdues a single equation

for eah disjuntion, and it replaes the variables by the disjuntions. For example, the

equation de�ning U gets replaed by the two following equations.

U1 = [m1,m2]� ∧ [m3, ε](U1 ∨ U2) ∧m3 ∧ r,

U2 = [m1,m2]� ∧ [m3, ε](U1 ∨ U2) ∧m3 ∧ ¬r

The remaining equations are treated similarly. Notie that also Z in X gets replaed by

{Z1, Z2}, where Z1 and Z2 are the equations replaing Z.
Finally, we are ready for the leanup in phase III. We �nd that the equations for Z1 and

U1, and Z2 and U2 are dupliates of eah other. Therefore, we remove the equations for Z1

and Z2, and we replae {Z1, Z2} in X by {U1, U2}. We also �nd that the equations Y1, Y2,
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m3,
ε

m3,
ε

m3,
ε

m3,
ε

U2(m3)

U1(m3, r)

E = {U1, U2}
A = {m3, r}

m3,
ε

m3,
ε

m3,
ε

m3,
ε

m1,m2,m3
   ε

m1,m2,m3
   ε

m1,m2,m3
   ε

X12(m1)

X11(m1,r)

E = {X11,X12,X21,X22}

X21(m2)

m1,m2,m3
               ε

X21(m2,r)

A = {m1,m2,r}

θIB (σB) θIA(σA)

Figure 3: Maximal applets for σB and σA

Xm31 and Xm32 (replaing Y and Xm3
in Phase II, respetively), are not reahable from any

variable in X = {U1, U2}. Therefore, the �nal result of the transformation is the following

formula.

U1 ∨ U2

[

U1 = [m1,m2]� ∧ [m3, ε](U1 ∨ U2) ∧m3 ∧ r
U2 = [m1,m2]� ∧ [m3, ε](U1 ∨ U2) ∧m3 ∧ ¬r

]

Figure 3 displays the maximal applet orresponding to this equation system (in its left

olumn). Also, it displays the maximal applet found for the property σA, whih is found in

a similar way. Using a model heking algorithm for ontext-free proesses [7℄, it an easily

be veri�ed that the omposition of these two maximal applets indeed satis�es the global

behavioural spei�ation φ, and thus that the property deomposition is orret.

5 Conlusions

We propose a ompositional veri�ation method for ontrol �ow based safety properties of

smart ard applets. Our method supports di�erent senarios for seure post-issuane loading

of applets. Loal applet assumptions are strutural, while global guarantees are behavioural,

both written in a modal logi with greatest �xed point reursion.

In a general setting, we establish the orrespondene between models (whih an be

strutures as well as behaviours) and properties by means of a Galois onnetion. Maximal

(or harateristi) models are used to algorithmially deide orretness of property deom-

positions by reduing the problem to a standard model heking problem for ontext-free

proesses. A distilled version of a realisti ase study illustrates the pratial appliability

of the approah.

Future work will fous on extending our results in two diretions: (i) adding diamond

modalities to the simulation logi, and (ii) investigating under what restritions the proposed

method an be adapted to behavioural assumptions.
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