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Abstra
t: We present a 
ompositional veri�
ation method for 
ontrol �ow based safety

properties of smart 
ard applets. Our method rests on a 
lose 
orresponden
e between

transition system models ordered by simulation and Hennessy-Milner logi
 extended with

simultaneous greatest �xed points. We show that simulation 
an be 
hara
terised logi
ally

and, vi
e versa, logi
al satisfa
tion 
an be represented behaviourally by a maximal model for

a given formula. Based on these results and earlier ideas by Grumberg and Long we develop

a 
ompositional veri�
ation te
hnique, where maximal models repla
e logi
al assumptions

to redu
e 
ompositional veri�
ation to standard model 
he
king. However, in the 
ontext

of applets, equipped with interfa
es, this te
hnique needs to be re�ned. Sin
e for a given

behavioural formula and interfa
e a maximal applet does not always exist, we propose a

two-level approa
h, where lo
al assumptions restri
t the 
ontrol �ow stru
ture of applets,

while the global property restri
ts the 
ontrol �ow behaviour of the system. By separating

the tasks of verifying global and lo
al properties of applets, our method supports se
ure

post-issuan
e loading of new applets onto a smart 
ard.
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urity, temporal logi
, 
ompositional veri�
ation, 
ontext-free

pro
esses.
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Logique de simulation, applets et véri�
ation


ompositionnelle

Résumé : Nous présentons une méthode de véri�
ation 
ompositionnelle pour des

propriétés de sûreté basées sur l'analyse de �ot de 
ontr�le des applets présentes sur

les 
artes à pu
e. Notre méthode s'appuie sur une 
orrespondan
e étroite entre modèles à

base de système de transition ordonné par simulation et la logique de Hennessy-Milner

étendue ave
 des plus grands points �xes simultanés. Nous montrons que la simulation peut

être 
ara
térisée logiquement et, vi
e versa, la satis�abilité logique peut être représentée


omportementalement par un modèle maximal pour une formule donnée. En s'appuyant

sur 
es résultats, ainsi que des idées antérieures de Grumberg et Long, nous dévelop-

pons une te
hnique de véri�
ation 
ompositionnelle, pour laquelle les modèles maximaux

rempla
ent les hypothèses logiques a�n de réduire la véri�
ation 
ompositionnelle à du

model-
he
king standard. Cependant, dans le 
ontexte des applets, munies d'interfa
es,


ette te
hnique doit être ra�née. Comme pour une formule 
omportementale et une inter-

fa
e données, une applet maximale n'existe pas toujours, nous proposons une appro
he à

deux niveaux, dans laquelle les hypothèses lo
ales restreignent la stru
ture du �ot de 
ontr�le

en même que la propriété globale restreint le 
omportement du �ot 
ontr�le. En séparant

les tâ
hes de véri�
ation des propriétés globales et lo
ales des applets, notre méthode est

adaptée au 
hargement post-issuan
e de nouvelles applets sur la 
arte à pu
e.

Mots-
lés : Applets, sé
urité, logique temporelle, véri�
ation 
ompositionnelle, pro
essus


ontext-free
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4 Sprenger, Gurov & Huisman

1 Introdu
tion

With the emergen
e of small se
ure devi
es, su
h as open platform smart 
ards and se-


ure modules as Palladium

1

and Embassy

2

, it be
omes important to set 
riteria to de
ide

whether an appli
ation 
an be a

epted on a devi
e. Sin
e su
h devi
es are typi
ally used to

store priva
y-sensitive data, for the a

eptan
e of this new te
hnology it is important that

potential users have full trust in the prote
tion of their priva
y.

For the new generation of smart 
ards, an interesting possibility is to have post-issuan
e

loading of appli
ations (applets). This means that on
e the 
ard is issued and given to the

user, the user 
an install new applets on the 
ard himself; he does not have to go ba
k to

the 
ard issuer in order to do this. In this 
ase automati
 
he
ks are needed to ensure that

the new applet 
an be trusted. These 
he
ks 
an involve for example type safety, memory


onsumption, and illi
it data or 
ontrol �ow.

In this paper we fo
us on the last 
ategory of properties: to be able to safely install

an applet post-issuan
e on a smart 
ard, it needs to respe
t 
ertain 
ontrol �ow properties

as spe
i�ed. More pre
isely, we study sequential (single-threaded) applets and propose a

spe
i�
ation and veri�
ation method for safety properties of interpro
edural 
ontrol �ow,

i.e. properties des
ribing sequen
es of method invo
ations whi
h are deemed safe for the

given appli
ation. Sin
e we are interested in post-issuan
e loading of applets, the imple-

mentation of applets might not be available at veri�
ation time. We therefore propose a


ompositional veri�
ation method, whi
h allows the veri�
ation problem to be redu
ed to

the following three tasks:

(i) de
omposing the global behavioural property by �nding lo
al stru
tural properties of

the 
omponents (here applets),

(ii) proving 
orre
tness of this de
omposition, that is, verifying that the lo
al applet prop-

erties (assumptions) are su�
ient to guarantee the global property (guarantee), and

(iii) verifying that applets satisfy their assumptions.

As explained below, assumptions are stru
tural rather than behavioural to allow algorithmi



he
king of 
orre
tness of property de
ompositions. This paper fo
uses on task (ii), while

for task (iii) standard algorithmi
 te
hniques already exist.

The 
ompositional veri�
ation method proposed here supports di�erent s
enarios for

se
ure post-issuan
e loading of applets w.r.t. 
ontrol �ow safety properties. In the �rst

s
enario, the 
ard issuer spe
i�es both the global and lo
al properties and veri�es � using

the te
hniques des
ribed in this paper � that the de
omposition is 
orre
t, meaning that the

lo
al spe
i�
ation is su�
ient to establish the global spe
i�
ation. Ea
h time an applet is

loaded post-issuan
e, an algorithm provided by the 
ard issuer 
he
ks whether the applet

implementation satis�es the required spe
i�
ation. An alternative s
enario is that the 
ard

issuer only provides the global spe
i�
ation (and lo
al spe
i�
ations for its own applets),

1

http://www.mi
rosoft.
om/resour
es/ngs
b/default.mspx

2

http://www.wavesys.
om/te
hnology/embassy.html
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and leaves it to the applet provider to 
ome up with an appropriate lo
al spe
i�
ation for

ea
h post-issuan
e loaded applet. As in the previous s
enario, an algorithm provided by

the 
ard issuer 
he
ks the applet against the lo
al spe
i�
ation upon loading, but in this

s
enario also the property de
omposition needs to be veri�ed at loading time, potentially

on-
ard.

1.1 Our Approa
h

In earlier work [2℄, a proof system based approa
h at proving 
orre
tness of property de-


ompositions is investigated, whi
h aims at semi-automati
 veri�
ation. However, for many

appli
ations an algorithmi
 veri�
ation method is preferable, even more so if su
h a 
he
k

is to be performed frequently as in our se
ond s
enario.

The approa
h that we take here is inspired by the work on modular veri�
ation by Grum-

berg and Long [9℄. Their framework is based on a behavioural simulation preorder whi
h (i)

is preserved under (parallel) 
omposition, and (ii) preserves satisfa
tion of properties spe
i-

�ed in ACTL, the universal-path fragment of the (bran
hing-time) temporal logi
 CTL [8℄.

This justi�es 
ompositional veri�
ation in the following style: to verify that the 
omposition

of 
omponents (that is, behaviours) X and Y satis�es a global temporal property ψ, one
�nds an abstra
tion of X , that is, a behaviourX ′

simulatingX , su
h that the 
omposition of

X ′
and Y satis�es ψ. Component Y 
an be treated similarly. In addition, a maximal model


onstru
tion θ is given, with the property that X satis�es φ exa
tly when X is simulated by

θ (φ). This 
onstru
tion allows behavioural abstra
tions to be given through temporal logi


formulae (rather than through behaviours), supporting veri�
ation in the following style: to

verify that the 
omposition of X and Y satis�es ψ, one �nds a property φ of X , su
h that the


omposition of θ (φ) and Y satis�es ψ. Components X and Y are assumed to be �nite-state

behaviours, allowing the veri�
ation of both resulting sub-problems to be performed with

standard model-
he
king te
hniques.

In 
ontrast to the above, we are fa
ed with potentially in�nite 
ontext-free applet be-

haviours, generated from �nite applet stru
tures. We 
onsider sequential applets only, where

applet 
omposition is stru
tural, that is, joins their stru
tures, without introdu
ing 
on
ur-

ren
y in the behaviour. In this 
ontext, the de
idability of the 
orre
tness problem of

property de
ompositions is an open problem. In our setup, even when restri
ting to safety

properties as mentioned above, in general there is no maximal applet stru
ture for a given

behavioural property ψ. For this reason, we adopt a s
heme where

(i) lo
al spe
i�
ations (assumptions) are stru
tural properties, that is, restri
t the 
ontrol-

�ow stru
ture of applets, and

(ii) global spe
i�
ations (guarantees) are behavioural properties, that is, restri
t the 
ontrol-

�ow behaviour of applets.

To verify that the 
omposition of applet stru
tures X and Y satis�es the behavioural prop-

erty ψ, one �nds a stru
tural property φ of X , su
h that the 
omposition of θ (φ) and Y
satis�es ψ. Again, the resulting veri�
ation sub-problems are algorithmi
ally 
he
kable:

RR n° 4890



6 Sprenger, Gurov & Huisman

showing that X satis�es φ is a standard model-
he
king problem (if the applet stru
ture

X is viewed as a Kripke stru
ture, see e.g. [16℄), while showing that the 
omposition of

θ (φ) and Y satis�es ψ 
an be 
he
ked by standard te
hniques for model-
he
king temporal

properties of 
ontext-free pro
esses [7℄.

To be able to handle applet stru
ture and behaviour in a uniform way, we �rst develop a

general framework for abstra
t spe
i�
ations (models with designated entry points). Then,

the method outlined above is obtained by 
ombining instantiations of this framework on

both the stru
tural and the behavioural level, with additional results to 
onne
t the two

levels.

1.2 Summary of Results

Se
tion 2 develops the general framework in the setting of abstra
t spe
i�
ations. After

the introdu
tion of simulation and a 
orresponding logi
, 
alled simulation logi
, we 
onne
t

these formally by de�ning maps between spe
i�
ations and logi
al formulae. We then present

two 
hara
terisation results. The �rst is a logi
al 
hara
terisation of simulation that states

that, for any (�nite) spe
i�
ation T , there is a 
hara
teristi
 formula χ(T ) su
h that

S ≤ T ⇐⇒ S |= χ(T ) (1)

that is, T simulates S pre
isely if S satis�es χ(T ). The se
ond, 
omplementary, result is

a behavioural 
hara
terisation of logi
al satisfa
tion that says that, for any formula φ of

simulation logi
, there is a maximal spe
i�
ation θ(φ) su
h that

S |= φ ⇐⇒ S ≤ θ(φ) (2)

Thus a spe
i�
ation satis�es a formula φ pre
isely if it simulates the maximal spe
i�
ation

θ(φ) obtained from φ. The map θ is �rst de�ned on formulas in so-
alled simulation normal

form and then extended to all formulas by de�ning an e�e
tive stepwise transformation of

formulas into simulation normal form. The two 
hara
terisations (1) and (2) 
ombine into a

Galois 
onne
tion between the preorder of �nite spe
i�
ations ordered by simulation and the

preorder of logi
al formulae ordered by logi
al 
onsequen
e. As another 
orollary, simulation

preserves the satisfa
tion of formulae of simulation logi
.

Next, Se
tion 3 instantiates these general results to the notion of applets. An applet is

de�ned as a 
olle
tion of method spe
i�
ations, whi
h are essentially 
ontrol graph stru
tures

together with entry points. Further, to ea
h applet we asso
iate an interfa
e, de�ning whi
h

methods it provides and whi
h methods it uses. The behaviour of an applet is then a 
ontext-

free spe
i�
ation derived via a set of transition rules. By instantiation of the framework from

Se
tion 2, we obtain appropriate notions of simulation and logi
 on both the stru
tural and

the behavioural levels. Our 
ompositional reasoning prin
iple then looks as follows

A |=s φ θI(φ) ⊎ B |=b ψ

A ⊎ B |=b ψ
(3)

INRIA
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where A and B are applets, ⊎ is applet 
omposition, φ is an assumption in the stru
tural

logi
 and ψ is a behavioural guarantee. Its 
orre
tness mainly rests on an instantiation of

the 
hara
terisation (2) on the stru
tural level. In order to make sure that the maximal

spe
i�
ation θ(φ) is itself an applet, we introdu
e the 
hara
teristi
 formula φI for a given

applet interfa
e I, whi
h is 
onjoined to φ before applying θ. Doing this we obtain a variant

of (2) for applets, where θ is repla
ed by θI , so the maximal spe
i�
ation is guaranteed to

be an applet with interfa
e I.
The link between the stru
tural and behavioural levels is provided by the additional

result that stru
tural simulation is 
ontained in behavioural simulation. Together with the

fa
ts that simulation is preserved by applet 
omposition and that behavioural simulation

preserves satisfa
tion of behavioural formulae, this justi�es prin
iple (3). Moreover, by using

the 
hara
teristi
 formula χ(A) as the lo
al assumption on φ and invoking the stru
tural

version of (1), we also establish the 
ompleteness of prin
iple (3).

This paper fo
uses on the theoreti
al underpinning of the proposed 
ompositional ap-

proa
h. Se
tion 4 sket
hes how our te
hniques 
an be applied to an example. This example

is distilled from a larger 
ase study, des
ribed elsewhere in full detail [10℄, whi
h supports our


laim that this setup is su�
ient to handle relevant pra
ti
al appli
ations. Finally, Se
tion 5

draws 
on
lusions and presents dire
tions for future work.

1.3 Related Work

As stated above, our approa
h to 
ompositional veri�
ation of applets is inspired by the work

on modular veri�
ation by Grumberg and Long [9℄ (later developed further by Kupferman

and Vardi [14℄). We explained why and how we deviate from it; in addition, it should be

pointed out that the logi
 ACTL on whi
h their framework is based, allows safety as well

as liveness properties to be expressed, and that the models they 
onsider 
ontain fairness


onstraints, these being 
ru
ial for the existen
e and 
onstru
tion of maximal models for

liveness properties. Sin
e the properties we are mainly interested in are safety properties,

su
h as, e.g., the absen
e of illi
it 
ontrol �ow, there is no need to add fairness 
onstraints to

our models. Apart from these di�eren
es in setup, the maximal model 
onstru
tion in the

paper [9℄ is a global one, in the sense that it starts out by 
onstru
ting all possible states

of the maximal model. Sin
e these states are obtained as sets of 
ertain subformulae of the

property, the maximal model is always exponentially larger than the property formula. In


ontrast, our 
onstru
tion involves a step-wise transformation of the property formula into

simulation normal form whi
h then dire
tly 
orresponds to a maximal model. Thus, our

approa
h is of a more lo
al nature and avoids unne
essary exponential blow-ups.

The general treatment of simulation and its logi
al 
hara
terisation that we adopt here

follows the approa
h to logi
al 
hara
terisation of re�nement by Larsen and others [15, 5℄.

While on one hand we are more restri
tive in our notion of behaviour, using labelled transi-

tion systems rather than the more general notion of modal transition systems 
onsidered by

these authors, using simulation as re�nement, and dropping the diamond modality from the

logi
, on the other hand we extend their results to modal logi
 with re
ursion and re
ursive

pro
esses.

RR n° 4890



8 Sprenger, Gurov & Huisman

Our framework is also in�uen
ed in part by work by Jensen et al. [12℄, who provide

a (non-
ompositional) algorithmi
 veri�
ation method for 
ontrol �ow safety properties of

applets. In parti
ular, this work motivated us to represent applets as graphs.

2 Simulation versus Logi


This se
tion develops several general results about simulation and its relation to logi
. After

the introdu
tion of spe
i�
ations and simulations between spe
i�
ations, we present simu-

lation logi
, whi
h is a subset of Hennessy-Milner logi
 [11℄ with (
o-)re
ursion added. By

de�ning maps between spe
i�
ations and logi
al formulae we establish a logi
al 
hara
terisa-

tion of simulation in terms of simulation logi
 and, vi
e versa, a behavioural 
hara
terisation

of logi
al satisfa
tion. These two results 
ombine into a Galois 
onne
tion between the pre-

order of spe
i�
ations ordered by simulation and the preorder of logi
al formulae ordered by

logi
al 
onsequen
e. In parti
ular, the behavioural 
hara
terisation of satisfa
tion involves

the 
onstru
tion of a model from a formula, whi
h is maximal in the sense that it simulates

all spe
i�
ations satisfying the formula. This will serve as the basis for our 
ompositional

veri�
ation method for applets explained in the next se
tion.

2.1 Spe
i�
ations and Simulation

First we introdu
e the general notion of a model over a set of labels L and a set of atomi


propositions A.

De�nition 1 (Model). A model over L and A is a stru
ture M = (S,L,→, A, λ), where

� S is a set of states,

� L is a �nite set of labels,

� →⊆ S × L× S is a transition relation,

� A is a �nite set of atomi
 propositions, and

� λ : S → P(A) is a valuation assigning to ea
h state s the atomi
 propositions that hold

at s.

A spe
i�
ation S over L and A is a pair (M, E), where M is a model over L and A and

E ⊆ S is a set of states.

Intuitively, one 
an think of E as the set of entry states of the model. As usual, we will

write s
a
−→ t to denote (s, a, t) ∈→. For 
onvenien
e, we de�ne λ∗(p) = {s ∈ S | p ∈ λ(s)}

for p ∈ A, i.e. the set of all states satisfying atomi
 proposition p. A model M is �nitely

bran
hing models if for all s ∈ S and a ∈ L the set {t | s
a
−→ t} is �nite. A spe
i�
ation

(M, E) is �nitely bran
hing if M is �nitely bran
hing and E is �nite. A model is �nite if

its set of states is �nite, while a spe
i�
ation is �nite if the underlying model is. The next

step is to de�ne the (usual) notion of simulation on models and spe
i�
ations.

INRIA
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De�nition 2 (Simulation). A simulation is a binary relation R on S su
h that whenever

(s, t) ∈ R then

(i) λ(s) = λ(t), and

(ii) if s
a
−→ s′ then there is some t′ ∈ S su
h that t

a
−→ t′ and (s′, t′) ∈ R.

We say that t simulates s, written s ≤ t, if there is a simulation R su
h that (s, t) ∈ R.
States s and t are simulation equivalent, written s = t, if s ≤ t and t ≤ s.

The notion of simulation is extended to spe
i�
ations (M, E) and (M, E′) by de�ning

(M, E) ≤ (M, E′) if there is a simulation R su
h that for ea
h s ∈ E there is some t ∈ E′

with (s, t) ∈ R.
Next, we extend the de�nition of simulation to the 
ase where we have two spe
i�
ations

(M1, E1) and (M2, E2), based on di�erent models. We do this by �rst de�ning the �disjoint

union� M1⊎M2 of the underlying models as (S,L,→, A, λ), where S = (S1×{1})∪(S2×{2}),

L = L1 ∪ L2, A = A1 ∪ A2, λ(s, i) = λi(s) and (s, i)
a
−→ (t, j) if and only if i = j and

s
a
−→i t. Then we work with simulations on M1 ⊎M2, by de�ning (M1, E1) ≤ (M2, E2) if

(M1 ⊎M2, E1 × {1}) ≤ (M1 ⊎M2, E2 × {2}).

2.2 Simulation Logi


The next step is to de�ne a logi
 that 
hara
terises simulation. This logi
 is de�ned in

two steps: �rst we de�ne a basi
 logi
 and then we add re
ursion by using modal equation

systems. The resulting logi
 is equivalent to modal µ-
al
ulus [13℄ with greatest �xed points

and box modalities only.

De�nition 3 (Basi
 simulation logi
: syntax). Let V be a 
ountably in�nite set of

variables over sets of states, ranged over by X,Y, Z, . . .. The formulae of basi
 simulation

logi
 over a set L of labels and a set A of atomi
 propositions are indu
tively de�ned by

φ ::= p | ¬p | X | φ1 ∧ φ2 | φ1 ∨ φ2 | [a]φ

where p ∈ A and a ∈ L. The set of free variables fv(φ) ⊆ V of a formula φ is de�ned as

usual. Formulae of the shape p or ¬p are 
alled literals.

De�nition 4 (Basi
 simulation logi
: semanti
s). The semanti
s of a formula φ of

basi
 simulation logi
 over L and A with respe
t to a model M over L and A and an

environment ρ : V → P(S) is de�ned indu
tively by

‖p‖ρ = λ∗(p)
‖¬p‖ρ = S − λ∗(p)
‖X‖ρ = ρ(X)
‖φ1 ∧ φ2‖ρ = ‖φ1‖ρ ∩ ‖φ2‖ρ
‖φ1 ∨ φ2‖ρ = ‖φ1‖ρ ∪ ‖φ2‖ρ

‖[a]φ‖ρ = {s ∈ S | ∀t ∈ S . s
a
−→ t implies t ∈ ‖φ‖ρ}

RR n° 4890



10 Sprenger, Gurov & Huisman

We impli
itly assume the existen
e of the false proposition ff with λ∗(ff) = ∅ in all

models. We then de�ne tt = ¬ff. Let us introdu
e some useful notations. We often use

�nite generalisations of the boolean 
onne
tives for whi
h we use notations su
h as

∨

i φi

and

∨

Φ for a �nite set Φ of formulae. For the spe
ial 
ase of an empty set of formulae,

we make the identi�
ations

∨

∅ = ff and

∧

∅ = tt. For a more 
ompa
t representation of

modal formulae we will use [K]φ for K ⊆ L to denote the formula

∧

a∈K [a]φ. In 
on
rete


ases we will omit the 
urly bra
kets and write [a, b]φ instead of [{a, b}]φ. As a spe
ial 
ase,
we write [−]φ for [L]φ.

In order to make the logi
 expressive enough to 
hara
terise all �nite models, we follow

Larsen [15℄ and introdu
e modal equation systems over formulae of basi
 simulation logi
.

De�nition 5 (Modal equation system). A modal equation system Σ = {Xi = φi | i ∈ I}
over L and A is a �nite set of equations su
h that the variables Xi are pairwise distin
t and

ea
h φi is a formula of basi
 simulation logi
 over L and A. The set of variables o

urring

in Σ is partitioned into the set of bound variables, de�ned by bv(Σ) = {Xi | i ∈ I}, and the

set of free variables fv(Σ).

We will hen
eforth often use φX to refer to the formula φ in an equation (X = φ) ∈ Σ .

Example 1. An example of a modal equation system is Σ = {X1 = X2∧X3, X2 = Y,X3 =
Z}. For this system we have bv(Σ) = {X1, X2, X3} and fv(Σ) = {Y, Z}.

The next step is to de�ne the semanti
s of a modal equation system, in terms of its

greatest solution. A solution of a modal equation system Σ is a map η : bv(Σ) → P(S),
assigning to ea
h variableX ∈ bv(Σ) a set of states, su
h that all equations in Σ are satis�ed.

Maps η are ordered by point-wise in
lusion. We �rst de�ne the environment update ρ[η],
as ρ[η](X) = η(X) if X ∈ bv(Σ) and ρ[η](X) = ρ(X) otherwise. Then we de�ne the map

ΨΣ,ρ : P(S)bv(Σ) → P(S)bv(Σ)
indu
ed by the equations in Σ by ΨΣ,ρ(η)(X) = ‖φX‖ρ[η].

De�nition 6 (Solutions). A solution of a modal equation system Σ with respe
t to a model

M and an environment ρ is a map η : bv(Σ) → P(S) su
h that ΨΣ,ρ(η) = η. The semanti
s

of a modal equation system Σ with respe
t to M and ρ, denoted ‖Σ‖ρ, is its greatest solution.

Note that by the well-known Knaster-Tarski �xed point theorem [17℄ the greatest solution

of ΨΣ,ρ always exists, sin
e ΨΣ,ρ is a monotone map on the latti
e P(S)bv(Σ)
ordered by

point-wise in
lusion.

Example 2. For the example above, there is a unique solution ‖Σ‖ρ = {X1 7→ ρ(Y ) ∩
ρ(Z), X2 7→ ρ(Y ), X3 7→ ρ(Z)}.

We use modal equation systems to add re
ursion to basi
 simulation logi
. A formula

φ[Σ] of simulation logi
 is 
omposed of a formula φ of basi
 simulation logi
 and a modal

equation system Σ. The free variables of φ are interpreted by the greatest solution of Σ.
Formally:

INRIA
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De�nition 7 (Simulation Logi
). The formulae of simulation logi
 over L and A are

de�ned by φ[Σ], where φ is a formula of basi
 simulation logi
 and Σ is a modal equation

system. The set of free and bound variables are fv(φ[Σ]) = (fv(φ) ∪ fv(Σ)) − bv(Σ) and

bv(φ[Σ]) = bv(Σ), respe
tively.
The semanti
s of φ[Σ] with respe
t to model M and environment ρ is de�ned by

‖φ[Σ]‖ρ = ‖φ‖ρ[‖Σ‖ρ].

We say that a state s of a model M satis�es φ[Σ], written (M, s) |= φ[Σ], if s ∈ ‖φ[Σ]‖ρ for
all ρ. For spe
i�
ations (M, E) we de�ne (M, E) |= φ[Σ] if (M, s) |= φ[Σ] for all s ∈ E.

We hen
eforth often omit the equation system Σ from φ[Σ] if no 
onfusion 
an arise.

Further, from now one we restri
t our attention to 
losed formulae with no free variables,

for whi
h the semanti
s is independent of the environment.

We say that φ1 is a logi
al 
onsequen
e of φ0, written φ0 |= φ1, if for all spe
i�
ations

S, S |= φ0 implies S |= φ1. The formula φ0 is logi
ally equivalent to φ1, written φ0 ≡ φ1, if

φ0 |= φ1 and φ1 |= φ0.

Simulation logi
 is equally expressive as the modal µ-
al
ulus [13℄ with box modalities

and greatest �xed points only. The translation from this fragment of the modal µ-
al
ulus
to simulation logi
 is straightforward. As an example, the formula νX.p1∧(νY.X∧(p2∨Y ))
is translated to the equivalent simulation logi
 formula X [X = p1 ∧ Y, Y = X ∧ (p2 ∨ Y )].
The translation in the other dire
tion is based on Beki£'s prin
iple [3, 1℄, whi
h expresses a

�xed point in a produ
t latti
e in terms of a ve
tor of 
omponent-wise �xed points.

2.3 Representation Results

Next, we will relate simulation logi
 to simulation. We pro
eed by de�ning two translations:

χ and θ. The map χ translates a �nite spe
i�
ation into a formula, 
hara
terising the

spe
i�
ation, while θ translates formulae into (�nite) spe
i�
ations. The latter map is �rst

de�ned on formulae in so-
alled simulation normal form (SNF) and then extended to all

formulae by showing that any formula 
an be transformed into SNF. We show that χ logi
ally


hara
terises simulation and θ behaviourally 
hara
terises logi
al satisfa
tion. These two

maps form a Galois 
onne
tion between �nite spe
i�
ations and formulas: S ≤ θ(φ) if and
only if S |= φ if and only if χ(S) |= φ.

First we de�ne the mapping from �nite spe
i�
ations to formulae. A �nite spe
i�
ation

(M, E) is translated into its 
hara
teristi
 formula χ(M, E) = φE [ΣM], where ΣM is

de�ned by an equation

Xs =
∧

a∈L

[a]
∨

s
a
−→t

Xt ∧
∧

p∈λ(s)

p ∧
∧

q 6∈λ(s)

¬q

for ea
h s ∈ S, and φE =
∨

s∈E Xs. Re
all that we identify
∨

∅ with ff and

∧

∅ with tt, so

for example an empty set of a-transitions from state s will yield the box formula [a] ff.
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a

b
 a

 bb

A = {p, q}
L = {a, b}
E = {s1, s2}

s1(p, q) s2(p)

s3()

Figure 1: Example spe
i�
ation S

Example 3. To illustrate this de�nition, suppose we have the spe
i�
ation S displayed in

Figure 1 (where the notation s1(p, q) is used to denote a state s1 for whi
h λ(s1) = {p, q}).
The 
orresponding formula for this model is χ(S) = Xs1

∨Xs2
[Σ], where Σ is given by

Σ =





Xs1
= [a]Xs2

∧ [b]ff ∧ p ∧ q
Xs2

= [a] ff ∧[b](Xs1
∨Xs3

) ∧ p ∧ ¬q
Xs3

= [a]Xs2
∧ [b]Xs1

∧ ¬p ∧ ¬q





We 
an prove that if spe
i�
ation S1 is simulated by the �nite spe
i�
ation S2, this is

equivalent to saying that S1 satis�es the 
hara
teristi
 formula of S2. This is a variation of

an earlier result by Larsen [15℄

3

.

Theorem 1. Let S1, S2 be spe
i�
ations and suppose S2 is �nite. Then S1 ≤ S2 if and

only if S1 |= χ(S2).

Proof. (adapted from [15℄; in
luded here for 
ompleteness) Suppose Si = (Mi, Ei) for i =
1, 2.

�⇒� Let Ψ be the map on P(S)bv(Σ)
indu
ed by the equations in Σ (ΨΣ before De�ni-

tion 6). In order to prove that (M1, E1) |= (
∨

s∈E2
Xs)[ΣM2

] it is su�
ient to show that

the map η de�ned by η(Xs) = {t ∈ S1 | t ≤ s} is a post-�xed point of Ψ. It then follows by

�xed point indu
tion that η ⊆ ‖ΣM2
‖. Also, sin
e S1 ≤ S2, we have that for ea
h t ∈ E1

there is some s ∈ E2 su
h that t ∈ η(Xs). Hen
e t ∈ ‖Σ‖(Xs) and therefore t |= χ(S2).
It remains to be shown that η(Xs) ⊆ Ψ(η)(Xs) for all s ∈ S. Let t ∈ η(Xs), hen
e t ≤ s.

We have to establish t ∈ Ψ(η)(Xs), that is,

(i) t ∈ ‖[a]
∨

s
a
−→s′

Xs′‖ρ[η] for all a ∈ L, and

(ii) t ∈ ‖
∧

p∈λ(s) p ∧
∧

q 6∈λ(s) ¬q‖ρ[η].

For (i) suppose t
a
−→ t′. Sin
e t ≤ s, there is a s′ su
h that s

a
−→ s′ and t′ ≤ s′. Hen
e,

t′ ∈ η(Xs′). Point (ii) follows from t ≤ s and the de�nition of simulation.

�⇐� Let χ(S2) = (
∨

X )[Σ] with X = {Xs | s ∈ E2} and let η = ‖Σ‖ρ for some (arbitrary)

environment ρ. We show that R = {(s, t) | s ∈ η(Xt)} is a simulation between M1 and

3

By using in�nite equation systems this theorem easily generalises to �nitely bran
hing S2.
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M2. The result S1 ≤ S2 then easily follows. Let (s, t) ∈ R, that is, s ∈ η(Xt). Then s
and t satisfy the same propositions, sin
e s ∈ ‖

∧

p∈λ(t) p ∧
∧

q 6∈λ(t) ¬q‖ρ. Suppose now that

s
a
−→ s′. Sin
e s ∈ ‖[a]

∨

t
a
−→t′

Xt′‖ρ[η], we have s′ ∈ η(Xt′) for some t′ with t
a
−→ t′. This

shows that R is a simulation between M1 and M2.

Now that we have a translation from �nite spe
i�
ations to formulae, we are interested

in de�ning the inverse mapping. However, not all formulae 
orrespond dire
tly to a spe
i�-


ation, but those in so-
alled simulation normal form do.

De�nition 8 (Simulation normal form). A formula φ[Σ] of simulation logi
 over L and

A is in simulation normal form (SNF) if φ has the form

∨

X for some �nite set X ⊆ bv(Σ)
and all equations of Σ have the following state normal form

X =
∧

a∈L

[a]
∨

YX,a ∧
∧

p∈BX

p ∧
∧

q∈A−BX

¬q

where ea
h YX,a ⊆ bv(Σ) is a �nite set of variables and BX ⊆ A is a set of atomi
 proposi-

tions.

Noti
e that any formula χ(S) is always in SNF. From a formula (
∨

X )[Σ] over L and A
in SNF we derive the spe
i�
ation

θ((
∨

X )[Σ]) = ((S,L,→, A, λ), E)

where S = bv(Σ), E = X and the equation for X indu
es transitions {X
a
−→ Y | Y ∈ YX,a}

and truth assignment λ(X) = BX .

Lemma 1. χ and θ are ea
h others inverse up to equivalen
e, that is,

(i) θ(χ(S)) ∼= S (

∼= is isomorphism

4

) for �nite S, and

(ii) χ(θ(φ)) ≡α φ (≡α is α-
onvertibility) for φ in SNF.

Finally we are ready to relate simulation logi
 to simulation.

Theorem 2. For φ in simulation normal form, we have S ≤ θ(φ) if and only if S |= φ.

Proof. Follows from Theorem 1 by Lemma 1(ii).

Transformation to SNF

As mentioned above, all formulae of simulation logi
 have a semanti
ally equivalent simu-

lation normal form. To see this we present a stepwise transformation pro
ess of a formula

of the form X0[Σ0] over given sets of labels L and atomi
 propositions A into simulation

normal form. If ne
essary, we �rst transform a formula φ[Σ] into the equivalent formula

X [X = φ,Σ], where X is fresh. The transformation produ
es a formula ψ = (
∨

X )[Σ] for a
set of variables X and an equation system Σ su
h that

4

Here, isomorphism means a bije
tion of states and transitions, but labels have to mat
h on the nose.
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(i) ψ is equivalent to X0[Σ0], and

(ii) ψ is in simulation normal form.

Before des
ribing the transformation in detail, we introdu
e some auxiliary de�nitions. First,

we need a slightly non-standard variant of disjun
tive normal form (DNF).

De�nition 9 (DNF). A formula φ of basi
 simulation logi
 is in disjun
tive normal form

if it is a disjun
tion of 
onjun
tions of box formulae and literals, that is, it has the shape

φ =
∨

i

∧

j

[aij ]ψij ∧
∧

Li

where ea
h Li is a set of literals and the ψij 's are arbitrary formulae in basi
 simulation

logi
.

De�nition 10. The 
onjun
tive de
omposition c(ψ) of a formula ψ into its 
onjun
ts is

given by c(ψ) = {ψ1, . . . , ψm} su
h that no ψi is a 
onjun
tion and ψ =
∧

i ψi (modulo

asso
iativity and 
ommutativity).

Note that by 
onvention we have c(tt) = ∅. We 
all an o

urren
e of a subformula

top-level if it is not under the s
ope of a box operator. Next, we introdu
e the notions of

variable dependen
y and guardedness.

De�nition 11 (Variable dependen
y). For X,Y ∈ bv(Σ), we say that X depends on

Y , written X ≻ Y , if Y o

urs in φX . We 
all (bv(Σ),≻) the variable dependen
y graph of

Σ.

De�nition 12 (Guardedness). Let X,Y ∈ bv(Σ). Variable Y is guarded in φX if all

o

urren
es of Y in φX are in the s
ope of a box formula, and is unguarded otherwise. De�ne

the restri
tion of ≻ to unguarded dependen
ies by X ≻u Y if X ≻ Y and Y o

urs unguarded

in φ. An equation system Σ is 
alled weakly guarded if ≻u is a
y
li
 and strongly guarded if

≻u is empty. A formula φ[Σ] is weakly (strongly) guarded if Σ is weakly (strongly) guarded.

Example 4. Consider the modal equation system

Σ =

[

X = [a]X ∨ (q ∧ Y )
Y = [b] (X ∧ Y ) ∧ p

]

Its variable dependen
y graph is given by ≻ = {X,Y } × {X,Y }. In the equation for X
variable X is guarded but Y is not. In the equation for Y both X and Y are guarded.

Hen
e, ≻u = {(X,Y )} being a
y
li
 but not empty, Σ is weakly guarded but not strongly

guarded.

Lemma 2. Any formula φ of simulation logi
 is equivalent to a weakly and to a strongly

guarded formula.
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Proof. (Sket
h) To transform φ into a weakly guarded formula we �rst translate φ into a

modal µ-
al
ulus formula, use Kozen's pro
edure to obtain a guarded formula [18℄, and

then translate this ba
k into a weakly guarded formula φw of simulation logi
. In order to

obtain a strongly guarded formula from φw, we repeatedly rewrite unguarded o

urren
es of

variables by their de�ning equations. This pro
ess terminates by weak guardedness of φw.

After these auxiliary de�nitions, we are ready to present the transformation. It 
onsists

of three phases:

Phase I transforms an equation into a disjun
tion of formulae in state normal form, where

only variables appear under modalities,

Phase II eliminates the top-level disjun
tions by introdu
ing a new equation for ea
h dis-

jun
t, and

Phase III is a 
leanup phase that removes dupli
ated and unrea
hable equations.

The transformation relies on a partial fun
tion h mapping sets of formulae to variables.

The purpose of this map is to avoid the repeated introdu
tion of a new equation for the

same formula. If h maps a set of formulae Ψ to variable X , this means that at some point

a new equation X =
∧

Ψ has been added to Σ (in step I.4), so X is reused instead of

introdu
ing another equation for

∧

Ψ. This bookkeeping is essential for the termination of

the transformation.

Starting the transformation with the formulaX0[Σ0], we initially haveX = {X0}, Σ = Σ0

and h = ∅. By Lemma 2 we assume w.l.o.g. that Σ0 is weakly guarded.

Phase I (Disjun
tion of state normal forms) All steps of this phase are applied to ea
h

equation in
luding the new ones introdu
ed in step I.4 below. Phase I must be 
ompleted

for all equations before moving on to phase II. The des
ription of most steps ends by an

equation indi
ating the equation shape a
hieved by the respe
tive transformation step.

(1) (Strong guardedness) Make equation strongly guarded by repeatedly rewriting un-

guarded o

urren
es of variables using the original equation system Σ0.

(2) (DNF) Put equation into disjun
tive normal form and remove in
onsistent disjun
ts

(those where ff or both p and ¬p appear).

X =
∨

i

∧

j

[aij ]φij ∧
∧

Li

(3) (Box grouping and 
ompletion) Group boxes together using [a]φ1∧[a]φ2 ≡ [a] (φ1∧φ2)
and add missing boxes using tt ≡ [a] tt.

X =
∨

i

∧

a∈L

[a]ψia ∧
∧

Li
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(4) (Modal depth redu
tion) Apply the following to ea
h top-level box subformula [a]ψia

where ψia is not a variable. If (c(ψia), Y ) ∈ h for some variable Y then repla
e [a]ψia

by [a]Y ; otherwise, 
hoose a fresh variable Z 6∈ bv(Σ), add the new equation Z = ψia

to Σ, repla
e [a]ψia by [a]Z and extend h to h ∪ {(c(ψia), Z)}.

X =
∨

i

∧

a∈L

[a]Zia ∧
∧

Li

(5) (Literal 
ompletion) Repla
e equation X = φ by X = φ ∧
∧

p∈A(p ∨ ¬p), then repeat

step (2) to put equation ba
k into DNF. Equation shape is

X =
∨

i

∧

a∈L

[a]Zia ∧
∧

p∈B

p ∧
∧

q∈A−B

¬q (4)

for some B ⊆ A.

Phase II (Push disjun
tions inside) Remove an equation of shape X =
∨

i φi from Σ
(unless there is exa
tly one disjun
t). Add a new equation Xi = φi for ea
h non-variable

disjun
t φi of φX . Then substitute

∨

iXi for X in all equations of Σ, where Xi is a variable

disjun
t or the fresh variable introdu
ed for φi. Finally, in 
ase X in X , repla
e X by

(X − {X}) ∪ {Xi | i}.

X =
∧

a∈L

[a]
∨

Ya ∧
∧

p∈B

p ∧
∧

q∈A−B

¬q

where Ya is a (possibly empty) set of variables. Repeat this step until all equations are in

SNF.

Phase III (Cleanup) This optimisation phase iteratively removes dupli
ated and un-

rea
hable equations.

(1) If there are equations Z1 = ψ1 and Z2 = ψ2 in Σ su
h that ψ2[Z1/Z2] = ψ1, then

remove Z2 = ψ2 from Σ and substitute Z1 for Z2 in the remaining equations as well

as in X .

(2) Remove an equation Z = ψ from Σ in 
ase Z 
an not be rea
hed from any variable in

X via the variable dependen
y graph.

The algorithm transforms any formula φ into its simulation normal form, denoted by snf(φ).

Remark 1. It is important to use the original equation system Σ0 for rewriting to strongly

guarded form in step I.1 as the following example shows. Consider the equation system

Σ0 = {X = [a] (X ∧ Y ), Y = [a]X}

and let us look at the transformation of the equation for X . The �rst transformation step

with any e�e
t is step I.4, where we introdu
e a new equation Z = X ∧Y and transform the
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old one to X = [a]Z. The map h be
omes ({X,Y }, Z). Rewriting X and Y in Z = X ∧ Y
using the new equation for X and grouping boxes yields Z = [a] (Z ∧ X). This looks

suspi
iously like the initial equation for X and indeed this pro
ess of �unfolding� 
ontinues

ad in�nitum: introdu
e a new equation for U = Z ∧X (as {Z,X} is not in the domain of h)
and rewrite the old one to Z = [a]U . Then transform the equation for U to U = [a] (U ∧X)
and so on. Su
h s
enarios are avoided by using Σ0 for rewriting to strong normal form.

Remark 2. The des
ription of the pro
edure 
an be slightly simpli�ed by moving the literal


ompletion (step I.5) to an earlier stage, e.g. before step I.2. However, for the 
al
ulation

of our examples, we found it useful to push the 
ombinatorial blowup that this step in
urs

to the end of the transformation

Remark 3. Note that there are many ways to optimise the translation above. For example,

steps III.1-2 of phase III 
an be applied at any point of the transformation if h is updated

in the obvious way. However, for the sake of a 
learer presentation, we only do these

optimisations at the end.

Example 5. Here we present a very simple example of the transformation to SNF. A

more elaborate example appears in Se
tion 4. Let φ = tt be interpreted as a formula over

L = {a, b} and A = {p}. We �rst translate this to X [Σ0] with Σ0 = {X = tt}. This is


learly strongly guarded (I.1) and in DNF (I.2). Box 
ompletion (step I.3) transforms the

equation to X = [a] tt∧ [b] tt. Then step I.4 produ
es Σ = {X = [a]Y ∧ [b]Y, Y = tt} and

h = {(∅, Y )} (re
all c(tt) = ∅). Applying steps I.1-3 to Y yields Y = [a] tt∧ [b] tt. Step

I.4 then yields Y = [a]Y ∧ [b]Y , sin
e h(∅) = Y . Now we have φX = φY [X/Y ], so, using
remark 3, we drop the equation for Y and get Σ = {X = [a]X ∧ [b]X}. Step I.5 turns this

into Σ = {X = ([a]X ∧ [b]X ∧ p) ∨ ([a]X ∧ [b]X ∧ ¬p)}. Phase II produ
es X = {X1, X2}
and

Σ =

[

X1 = [a] (X1 ∨X2) ∧ [b] (X1 ∨X2) ∧ p
X2 = [a] (X1 ∨X2) ∧ [b] (X1 ∨X2) ∧ ¬p

]

whi
h is in SNF, so snf(φ) = (X1 ∨X2)[Σ].

Theorem 3. For any formula of simulation logi
, there is a logi
ally equivalent formula in

simulation normal form.

Proof. By Lemma 2, we assume w.l.o.g. that the equations in Σ0 are weakly guarded. For

the purpose of the proof, we think of the transformation as produ
ing a series of triples

(Xi,Σi, hi) 
onsisting of the 
urrent values of X , Σ and h after ea
h transformation step.

We have to show that

(1) ea
h of the transformation steps preserves the semanti
s of the formula, that is,

(
∨

Xi)[Σi] ≡ X0[Σ0]

(2) the transformation terminates after, say, n steps with (
∨

Xn)[Σn] in SNF.

We 
on
entrate here on showing that phase I preserves the meaning of formulae and termi-

nates with all equations in shape (4). It is then not di�
ult to see that phases II and III

terminate and produ
e an equivalent formula in SNF.
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Partial 
orre
tness For phase I we establish the following two invariants:

J1. for all Y ∈ bv(Σ0) we have Y ∈ bv(Σi) and Y [Σi] ≡ Y [Σ0], and

J2. if (Ψ, Z) ∈ hi then Z ∈ bv(Σi) and Z[Σi] ≡ (
∧

Ψ)[Σi].

The preservation of meaning (point 1) in phase I is then a 
onsequen
e of J1 - sin
eX remains

un
hanged, while J2 is an auxiliary invariant expressing a property of ea
h hi, whi
h will be

needed to establish invariant J1.

Both invariants hold trivially for i = 0. We have to 
he
k that they are preserved by

steps I.1-I.5. This is easy to see for steps I.2 and I.5, whi
h are justi�ed by propositional

equivalen
es and the fa
t that hi+1 = hi. Similarly, for step I.3 whi
h is based on modal

equivalen
es. We dis
uss the proof for the remaining steps I.1 and I.4 in some detail.

Given equation (X = φ) ∈ Σi, in step I.1 we repeatedly rewrite unguarded o

urren
es

of variables in φ using equations of Σ0. Suppose we rewrite equation (Y = ψ) ∈ Σ0 in φ.
By the �xed point property we have Y [Σ0] ≡ ψ[Σ0]. It then follows by invariant J1 and a

routine indu
tion on the stru
ture of ψ that Y [Σi] ≡ ψ[Σi]. Hen
e, X [Σi] ≡ X [Σ′
i], where

Σ′
i is obtained from Σi by repla
ing X = φ with X = φ[ψ/Y ]. By repeatedly applying

this argument we get X [Σi] ≡ X [Σi+1], and thus the preservation of J1. Sin
e hi+1 = hi,

invariant J2 is also preserved.

In step I.4 we 
onsider an equation (X = φ) ∈ Σi and a top-level o

urren
e of a

subformula [a]ψ in φ su
h that ψ is not a variable. Two 
ases are distinguished. If (c(ψ), Y ) ∈
hi then Σ′

i = (Σi−{X = φ})∪{X = φ′}, where the given o

urren
e of [a]ψ in φ is repla
ed

by [a]Y in φ′. By invariant J2 we know that Y [Σi] ≡ ψ[Σi], so both J1 and J2 are preserved.

If, on the other hand, c(ψ) 6∈ dom(hi) then we set Σ′
i = (Σi − {X = φ}) ∪ {X = φ′, Z = ψ},

where the given o

urren
e of [a]ψ in φ is repla
ed by [a]Z in φ′ and Z 6∈ bv(Σi) is a

fresh variable. We also set h′i to hi ∪ {(c(ψ), Z)}. Invariant J1 is preserved. In parti
ular,

X [Σi] ≡ X [Σ′
i], as we are just introdu
ing a new name for the subformula ψ of φ. Invariant

J2 
ertainly holds for the new mapping (c(ψ), Z) ∈ h′i and it holds for all elements in hi

by J1. Again, by repeating this argument one 
an easily see that both invariants hold for

(Xi+1,Σi+1, hi+1).

Termination It remains to be proven that phase I terminates. There are two points to


onsider. First, the rewriting pro
ess in step I.1 might fail to terminate. However, this is

prevented by our assumption that the initial equation system Σ0 is weakly guarded (see

also Lemma 2). All transformation steps preserve the weak guardedness of equations. In

parti
ular, any new equation introdu
ed in step I.4 is weakly guarded, sin
e it simply gives

name to a subformula of an existing equation and does therefore not add any 
y
les to the

variable dependen
y graph.

The se
ond potential sour
e of non-termination is the introdu
tion of new equations in

step I.4. Let us 
all a formula ψ boxed in φ if there is some a ∈ L su
h that [a]ψ is a

subformula of φ. Non-termination of step I.4 is ruled out by the following invariant:

J3. whenever (Ψ, Z) ∈ hi then ea
h ψ ∈ Ψ appears boxed in the right-hand side of an

original equation in Σ0.
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Sin
e there are only a �nite number of boxed subformulae, the map h eventually �lls up into

a total fun
tion at whi
h point no further equations will be added. Then phase I terminates,

sin
e ea
h of the individual steps does.

To see that J3 holds, observe that steps I.1 and I.2 do not a�e
t boxed formulae and

in step I.3 boxed formulae might be 
ombined into 
onjun
tions. Therefore, these steps

preserve the property

P. all boxed formulae of an equation (X = φ) ∈ Σi are 
onjun
tions of boxed formulae of

Σ0.

This property trivially holds initially for the equations in Σ0. But then it also holds for any

new equations introdu
ed in step I.4. Hen
e, any pair (Ψ, Z) that is added to hi satis�es

invariant J3. This 
ompletes the proof of termination.

We extend the mapping θ to all formulae of simulation logi
 by de�ning θ(φ) = θ(snf(φ)).
Then, sin
e snf preserves the semanti
s of formulae, Theorem 2 
an be extended to all

formulae.

Theorem 4. For all spe
i�
ations S and formulae φ, we have S ≤ θ(φ) if and only if

S |= φ.

Thus, for any spe
i�
ation S and any property φ, if we want to 
he
k whether the

spe
i�
ation satis�es the property, it is su�
ient to 
he
k that S is simulated by θ(φ).

Consequen
es We mention a few 
onsequen
es of Theorems 1 and 4. Let (S,≤) be the

preorder of (isomorphism 
lasses of) �nite spe
i�
ations over given L and A ordered by

simulation and let (L, |=) be the preorder of formulae of simulation logi
 over L and A
ordered by the logi
al 
onsequen
e relation.

Corollary 1. χ and θ are monotone.

Simulation preserves logi
al properties:

Corollary 2. For all spe
i�
ations S1 and S2 we have S1 ≤ S2 and S2 |= φ imply S1 |= φ.

The pair (χ, θ) of maps forms a Galois 
onne
tion between the preorders (L, |=) and

(S,≤):

Corollary 3. For �nite spe
i�
ations S and all formulas φ, we have S ≤ θ(φ) if and only

if χ(S) |= φ.

2.4 Weak Simulation

Often, one is only interested in the observable behaviour of systems. To a
hieve this, one 
an

identify a distinguished a
tion ε ∈ A, 
alled the silent a
tion, and de�ne weak transitions

s
a
⇒ t in terms of the usual (strong) transitions as follows: s

ε
⇒ t whenever s(

ε
−→)∗t, and s

a
⇒ t
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whenever s
ε
⇒

a
−→

ε
⇒ t for all a 6= ε. Weak simulation ≤w (weak simulation equivalen
e =w)

is then de�ned as simulation (simulation equivalen
e) w.r.t. weak transitions. Similarly, we


an interpret the box modality of simulation logi
 over the weak transitions rather than the

strong transitions of models. To distinguish the two interpretations, we shall rede�ne the

notion of satisfa
tion and write S |=w φ in that 
ase. Thus, s |=w [a]φ if all states that 
an

be rea
hed from s by a transition labelled a, pre
eded and followed by an arbitrary number

of ε-steps, satisfy φ.

Example 6. Suppose we have a model with states S = {s1, s2, s3} and transitions s1
a
−→ s2

and s2
ε
−→ s3. Further, suppose that λ(s2) = {p, q} and λ(s3) = {p}. Then s1 |=w [a] p, but

not s1 |=w [a] q, sin
e s3 does not satisfy the atomi
 proposition q.

A natural question is whether the results of the previous subse
tion 
an be used to relate

weak simulation and simulation logi
 in the same way as simulation and simulation logi


are related by the transformation θ (and its inverse χ). Note that applying θ on a formula

of simulation logi
 interpreted over weak transitions would only give us a model in terms of

weak transitions, without the underlying strong transitions. However, there is a standard

translation of formulae interpreted over weak transitions into equivalent formulae interpreted

over strong transitions [16℄. This translation, let us denote it by σ, is easily adapted to our

setting. It has the property that S |=w φ exa
tly when S |= σ(φ). We show that θ ◦ σ
provides the desired transformation relating weak simulation and simulation logi
.

To this end, we �rst introdu
e the notion of saturated model, i.e. a model in whi
h s
a
−→ t

whenever s
a
⇒ t. We show that for all formulae φ, θ (σ (φ)) is simulation equivalent to its

saturation, and therefore it is su�
ient for a model to be weakly simulated by θ (σ (φ)) in
order to satisfy φ when interpreted over weak transitions.

De�nition 13. Let M = (S,L,→, A, λ) be a model. The saturation of M is the model

sat(M) = (S,L,→s, A, λ) in whi
h s
a
−→s t exa
tly when s

a
⇒ t. The saturation of a

spe
i�
ation (M, E) is the spe
i�
ation sat(M, E) = (sat(M), E).

Thus, sat(M) is the least saturated model w.r.t. the subset ordering on the powerset of

S×L×S, 
ontaining M. In the example above, we have to add the transition s1
a
−→ s3 and

ε-self-loops to saturate the model. We have s
a
⇒s t in sat(S) whenever s

a
−→s t in sat(S)

whenever s
a
⇒ t in S. As 
onsequen
es, we have the following properties of weak simulation

and simulation logi
.

Proposition 1. (i) S1 ≤w S2 i� S1 ≤ sat(S2), and
(ii) S |=w φ i� sat(S) |=w φ i� S |= σ(φ).

Lemma 3. θ (σ (φ)) = sat(θ (σ (φ))).

Proof. Clearly, θ (σ (φ)) ≤ sat(θ (σ (φ))) holds; it remains to show the other dire
tion. From

re�exivity of ≤ and Theorem 4 we know that θ (σ (φ)) |= σ(φ). Then, by Proposition 1(ii),

sat(θ (σ (φ))) |= σ(φ), and again by Theorem 4, sat(θ (σ (φ))) ≤ θ (σ (φ)).
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These results allow the following 
hara
terisation of simulation logi
, in the style of

Theorem 4.

Theorem 5. S ≤w θ (σ (φ)) if and only if S |=w φ.

Proof. S ≤w θ (σ (φ)) holds by Proposition 1(i) exa
tly when S ≤ sat(θ (σ (φ))), whi
h by

Lemma 3 holds exa
tly when S ≤ θ (σ (φ)). Theorem 4 together with Proposition 1(ii) then

establish the result.

3 Compositional Veri�
ation of Applets

So far, all our results have been developed for arbitrary spe
i�
ations. From now on, we shall


on
entrate on a parti
ular appli
ation, namely the representation of applets (i.e. smart 
ard

appli
ations) in our general notion of spe
i�
ation. We study sequential (single-threaded)

applets and safety properties of their interpro
edural 
ontrol �ow. As explained above,

we are interested in the de
omposition of properties, in order to guarantee the se
ure post-

issuan
e loading of applets. We do this by instantiating the general framework of the previous

se
tion on two di�erent levels:

(i) the stru
tural level, where a spe
i�
ation represents the 
ontrol �ow graph of a method,

and applets are viewed as 
olle
tions of methods, with an appropriate interfa
e;

(ii) the behavioural level, where a spe
i�
ation represents the behaviour of an applet.

This yields a version of simulation logi
 for ea
h level. The 
ompositional veri�
ation prin
i-

ple that we develop allows us to state assumptions about individual applets in the stru
tural

simulation logi
, in order to establish behavioural simulation logi
 properties for the 
om-

posed system. For this and the next se
tion, it will be 
onvenient to make the following

assumption.

Assumption 1 (Rea
hability). In all spe
i�
ations (M, E), ea
h state of M is rea
hable

from a state in E.

Note that all results of Se
tion 2 
arry over to this restri
ted setting.

3.1 Applets

Applets are de�ned as a 
olle
tion of methods, where ea
h method is an instan
e of a model.

However, for a realisti
 program model of applets, it is ne
essary to know whi
h methods

exist and/or are used. Therefore, we �rst de�ne the notion of an applet interfa
e, whi
h

spe
i�es whi
h methods are provided and required by an applet.

Let Meth be a 
ountably in�nite set of method names.
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De�nition 14 (Applet interfa
e). An applet interfa
e is a pair I = (I+, I−), where
I+, I− ⊆ Meth are �nite sets of names of provided and required methods, respe
tively.

The 
omposition of two interfa
es I1 = (I+
1 , I

−
1 ) and I2 = (I+

2 , I
−
2 ) is de�ned by I1 ∪ I2 =

(I+
1 ∪ I+

2 , I
−
1 ∪ I−2 ).

As mentioned above, methods are an instan
e of the general notion of spe
i�
ation.

De�nition 15 (Method spe
i�
ation). A method graph for m ∈ Meth over a set M of

method names is a �nite model

Mm = (Vm, Lm,→m, Am, λm)

where Vm is the set of 
ontrol nodes of m, Lm = M ∪ {ε}, Am = {m, r}, λ∗m(m) = Vm,

i.e. ea
h node is tagged with the method name, and λ∗m(r) ⊆ Vm is a set of return points. A

method spe
i�
ation for m ∈ Meth over M is a pair (Mm, Em), where Mm is a method

graph for m over M and Em ⊆ Vm is a non-empty set of entry points of m.

An applet is basi
ally a 
olle
tion of method spe
i�
ations. For the formal de�nition we

extend the notion of disjoint union from models (as de�ned for simulation between models,

below De�nition 2) to spe
i�
ations: given spe
i�
ations (M1, E1) and (M2, E2) de�ne

(M1, E1)⊎(M2, E2) = (M1⊎M2, in1(E1)∪ in2(E2)) where in1 and in2 are inje
tions from

states of M1 and M2 to states of M1 ⊎M2, respe
tively.

De�nition 16 (Applet). An applet A with interfa
e I, written A : I, is de�ned indu
tively
by

� ∅M : (∅,M), where ∅M = ((∅,M ∪ {ε},∅, {r},∅),∅) is the empty applet over M ,

� (Mm, Em) : ({m},M) if (Mm, Em) is a method spe
i�
ation for m ∈ Meth over M ,

and

� A1 ⊎ A2 : I1 ∪ I2 if A1 : I1 and A2 : I2.

An applet A : (I+, I−) is 
losed if I− ⊆ I+
.

Note that, up to isomorphism, ⊎ is asso
iative and 
ommutative and has the neutral

element ∅M . For an arbitrary spe
i�
ation (M, E) we say that it is an applet with interfa
e

I if and only if we 
an de
ompose (M, E) following this de�nition. Noti
e that if A : I, then
for ea
h method m ∈ I+

the applet has to 
ontain a 
orresponding method graph. Thus,

an applet 
an only provide methods that it a
tually implements.

Lemma 4. Suppose A = (M, E) is an applet with M = (V, L,→, A, λ). Then its interfa
e

is (A− {r}, L− {ε}).

Proof. By indu
tion on the stru
ture of the applet.
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3.2 Stru
tural Level

As mentioned above, we express properties over applets at two levels: stru
tural and be-

havioural. The next subse
tion 
onsiders behavioural properties, here we study stru
tural

ones, i.e. properties that allow one to restri
t the possible method graphs in an applet.

Simulation An applet A1 stru
turally simulates another applet A2 if ea
h entry point

for a method m of A1 is simulated by some entry point for the same method of A2. Thus,

stru
tural simulation 
oin
ides dire
tly with simulation on models, as de�ned above. For


onvenien
e, we write A1 ≤s A2 instead of A1 ≤ A2 to denote stru
tural simulation. Stru
-

tural simulation is preserved by applet 
omposition.

Theorem 6 (Stru
t-Mon). If A1 ≤s B1 and A2 ≤s B2 then A1 ⊎ A2 ≤s B1 ⊎ B2.

Proof. Suppose R1 and R2 are witnesses of A1 ≤s B1 and A2 ≤s B2, respe
tively. Then

R = {((s, i), (t, i)) | i ∈ {1, 2}∧(s, t) ∈ Ri} is a simulation between A1⊎A2 and B1⊎B2.

Logi
 We also instantiate the notion of satisfa
tion to the stru
tural level. An applet

satis�es a formula of simulation logi
 if all its entry points satisfy the formula. For 
larity,

we de�ne stru
tural satisfa
tion A |=s φ as A |= φ.

Maximal applets Let I = (I+, I−) be an applet interfa
e. De�ne φI [ΣI ], the 
hara
ter-
isti
 formula for interfa
e I, by

φI =
∨

m∈I+ Xm

ΣI = {Xm = φm | m ∈ I+}
φm = [I−, ε]Xm ∧ pm

pm = m ∧
∧

{¬m′ | m′ ∈ I+,m′ 6= m}

The formula φI [ΣI ] axiomatises the basi
 stru
ture of an applet with interfa
e I, namely

that ea
h initial node belongs to a unique method m and no transition leaves m. Note that

ΣI is in not in SNF (proposition r is missing).

Example 7. Given interfa
e I = ({m1,m2}, {m1,m3}), the basi
 stru
ture of applets with
interfa
e I is 
hara
terised by the formula φI [ΣI ], where φI = Xm1

∨Xm2
and

ΣI =

[

Xm1
= [m1,m3, ε]Xm1

∧m1 ∧ ¬m2

Xm2
= [m1,m3, ε]Xm2

∧m2 ∧ ¬m1

]

The following proposition 
hara
terises applets interfa
e I as those spe
i�
ations that

satisfy the 
hara
teristi
 formula φI for interfa
e I.

Proposition 2. Let I = (I+, I−) be an applet interfa
e, let (M, E) be any spe
i�
ation

over L = I− ∪ {ε} and A = I+ ∪ {r}. We have (M, E) |=s φI [ΣI ] if and only if (M, E) is
an applet with interfa
e I, i.e. (M, E) : I.
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Proof. �⇒� Suppose (M, E) |=s φI [ΣI ]. We use indu
tion on the size of I+
. Note that ea
h

of the 
ases below depends on Assumption 1.

Case I+ = ∅: In this 
ase φI ≡ ff, so the only spe
i�
ation whi
h satis�es this property

is the empty applet ∅M .

Case I+ = {m}: Here φI [ΣI ] = Xm[Xm = [I−, ε]Xm ∧m]. Any spe
i�
ation satisfying

this property is a single method graph. Thus (M, E) is an applet with interfa
e ({m}, I−).
Case I+ = I1 ⊎ I2: Sin
e (M, E) |=s φI [ΣI ], we know that every state in the model

satis�es exa
tly one of the atomi
 predi
atesm ∈ I+
. We 
an de�ne (M1, E1) and (M2, E2)

as the restri
tions of (M, E) w.r.t. I1 and I2. Noti
e that (M1, E1) ⊎ (M2, E2) = (M, E).
We 
an de
ompose φI [ΣI ] = φ(I1,I−) ∧ φ(I2,I−)[Σ(I1,I−),Σ(I2,I−)]. By indu
tion, (M1, E1) :
(I1, I

−) and (M2, E2) : (I2, I
−), thus by De�nition 16 (M, E) : I.

�⇐� By Theorem 4, it is su�
ient to show (M, E) ≤s θ(φI [ΣI ]). First, we 
al
ulate

θ(φI [ΣI ]), whi
h gives for ea
h method name m ∈ I+
the method spe
i�
ation ((Vm, I

− ∪
{ε},→m, {m, r}, λm), Vm), where

Vm = {Xm,r, Xm,¬r}
→m = Vm × (I− ∪ {ε})× Vm

λm = {(Xm,r, {m, r}), (Xm,¬r, {m})}

Using the relation R = {(s, t) | λ(s) = λ(t)}, it is easy to show that any applet (M, E) with
interfa
e I is simulated by this applet.

Finally, using the 
hara
teristi
 formula for interfa
e I, we de�ne the maximal applet

with interfa
e I w.r.t. a formula φ[Σ] as the 
onjun
tion of φ[Σ] and φI [ΣI ].

De�nition 17 (Maximal applet). The maximal applet w.r.t. interfa
e I satisfying φ[Σ]
is de�ned as θI(φ[Σ]) = θ(φ∧φI [Σ,ΣI ]) (where it is assumed w.l.o.g. that the bound variables

of Σ and ΣI are disjoint).

Noti
e that by Proposition 2 θI(φ) : I, i.e. the maximal applet has interfa
e I. Also, by
de�nition θI(φ[Σ]) |=s φ[Σ], sin
e φ∧ φI [Σ,ΣI ] |= φ[Σ]. Finally, we show that to prove that

an applet satis�es formula φ[Σ], it is su�
ient to show that it is simulated by the maximal

applet w.r.t. φ[Σ].

Theorem 7 (Stru
t-Max). Let A : I be an applet. Then A ≤s θI(φ[Σ]) if and only if

A |=s φ[Σ].

Proof. By Proposition 2, for applet A : I, A |=s φ[Σ] if and only if A |=s φ∧φI [Σ,ΣI ]. The
result then follows from Theorem 4.

3.3 Behavioural Level

Next, we 
hange our fo
us to properties on the behavioural level. The advantage of also

having this level for spe
i�
ations is that it allows us to write more abstra
t spe
i�
ations.

The �rst step is to de�ne the behaviour of an applet.
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(transfer)

m ∈ I+ v →m v′ v |= ¬r

(v, σ)
ε
−→ (v′, σ)

(
all)

m1,m2 ∈ I+ v1
m2−−→m1

v′1 v2 |= m2 v2 ∈ E

(v1, σ)
m1call m2−−−−−−→ (v2, v′1 · σ)

(return)

m1,m2 ∈ I+ v2 |= m2 ∧ r v1 |= m1

(v2, v1 · σ)
m2 ret m1−−−−−−→ (v1, σ)

Table 1: Applet Transition Rules

De�nition 18 (Behaviour). Let A = (M, E) : (I+, I−) be a 
losed applet and let

M = (V, L,→, A, λ). The behaviour of A is des
ribed by the spe
i�
ation b(A) = (Mb, Eb),
where Mb = (Sb, Lb,→b, Ab, λb) is de�ned as follows.

� Sb = V × V ∗
, i.e. states are pairs of 
ontrol points and sta
ks;

� Lb = {m1 l m2 | l ∈ {call, ret}, m1,m2 ∈ I+} ∪ {ε};

� →b is de�ned by the rules of Table 1;

� Ab = A; and

� p ∈ λb((v, σ)) if p ∈ λ(v) for p ∈ A.

The set of initial states Eb is de�ned by Eb = E × {ε}.

Note that applet behaviour de�nes a 
ontext-free pro
ess (see, e.g., [6℄ for an survey of

in�nite pro
ess stru
tures).

Simulation Also on the behavioural level, we instantiate the general de�nition of simu-

lation. Applet A1 behaviourally simulates applet A2, written A1 ≤b A2, if b(A1) ≤ b(A2).
Any two applets that are related by stru
tural simulation, are also related by behavioural

simulation.

Theorem 8 (Simulation Corresponden
e). If A1 ≤s A2 then A1 ≤b A2.

Proof. Let R be a stru
tural simulation between A1 = (M1, E1) and A2 = (M2, E2). We

lift R on the stru
tural level to Rb on the behavioural level by de�ning

Rb = {(v, σ), (v′, σ′) | (v, v′) ∈ R, |σ| = |σ′| and
(σ(i), σ′(i)) ∈ R for all 0 ≤ i < |σ|}
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I = ({m1}, {m1})
E = {s1}

I = ({m1}, {m1})
E = {s1}

m1

s1 (m1)

s2 (m1)

b
m1

s1 (m1)

s2 (m1, r)

Figure 2: Counterexample, reverse of Theorem 9

We show that Rb is a behavioural simulation between A1 and A2.

Sin
e for ea
h entry point v1 ∈ E1 there is an entry point v2 ∈ E2, su
h that (v1, v2) ∈
R, we have that for ea
h initial state (v1, ε), there is an initial state (v2, ε), su
h that

((v1, ε), (v2, ε)) ∈ Rb.

Now suppose that ((v1, σ1), (v2, σ2)) ∈ Rb. Both states must belong to the same method,

say m. We pro
eed by 
ase analysis on the possible transitions from (v1, σ1).

Case 1. (Transfer) Suppose (v1, σ1)
ε
−→ (v′1, σ1). Sin
e (v1, v2) ∈ R and v1 →m v2, it follows

that there is a transition (v2, σ2)
ε
−→ (v′2, σ2) in A2 su
h that ((v′1, σ1), (v

′
2, σ2)) ∈ Rb.

Case 2. (Call) Suppose (v1, σ1)
m call m′

−−−−−−→ (u1, v
′
1·σ

′
1). We know that v1

m′

−−→ v′1 , u1 |= m′
and

u1 ∈ E1. Sin
e (v1, v2) ∈ R we know there is a 
all edge v2
m′

−−→ v′2 in A2 su
h that (v′1, v
′
2) ∈

R. Furthermore, sin
e u1 is an entry point of m in A1, there is a entry point u2 ∈ E2 su
h

that (u1, u2) ∈ R and u2 |= m′
. Therefore, there is a transition (v2, σ2)

m call m′

−−−−−−→ (u2, v
′
2 ·σ

′
2)

in A2 su
h that ((u1, v
′
1 · σ1), (u2, v

′
2 · σ2)) ∈ Rb.

Case 3. (Return) Suppose (v1, σ1)
m ret m′

−−−−−→ (w1, σ
′
1). We derive that v1 |= m∧r, σ1 = w1 ·σ

′
1

and w1 |= m′
. Sin
e ((v1, σ1), (v2, σ2)) ∈ Rb we have σ2 = w2 · σ′

2 and (w1, w2) ∈ R, thus
w2 |= m. Further, sin
e (v1, v2) ∈ R, we know that v2 |= m∧ r. Hen
e, there is a transition

(v2, w2 · σ
′
2)

m ret m′

−−−−−→ (w2, σ
′
2) and ((w1, σ

′
1), (w2, σ

′
2)) ∈ Rb

This shows that A1 ≤b A2.

The reverse is not the 
ase. Consider for example the two applets in Figure 2. The

left applet is behaviourally simulated by the right applet (in fa
t, they are behaviourally

equivalent), but there is no stru
tural simulation between these applets - in any dire
tion -

sin
e in the left applet the state s2 satis�es the atomi
 predi
ate r, while in the right applet

it does not.

Logi
 Finally, we instantiate simulation logi
 on the behavioural level by de�ning be-

havioural satisfa
tion A |=b ψ as b(A) |= ψ.
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3.4 Compositional Reasoning

Having instantiated the results from Se
tion 2 both at the stru
tural and at the behavioural

level, we are now ready to relate the two. The main result of this paper is the following


ompositional reasoning prin
iple. Let A : I and B : J be applets, let φ be a formula in

stru
tural simulation logi
, and ψ be a formula in behavioural simulation logi
. Then we

have

A |=s φ θI(φ) ⊎ B |=b ψ

A ⊎ B |=b ψ
(beh-
omp)

This prin
iple says that in order to show that a a 
omposed applet A⊎B has a behavioural

property ψ, it is su�
ient to �nd a stru
tural property φ, satis�ed by A, su
h that θI(φ) ⊎
B |=b ψ. By using the 
hara
teristi
 formula χ(A) as instantiation for φ we 
an also show

that this prin
iple is 
omplete.

Theorem 9. (Soundness and Completeness) Suppose A : I. Let ψ be a behavioural formula.

Then there is a stru
tural formula φ su
h that A |=s φ and θI(φ) ⊎ B |=b ψ if and only if

A ⊎ B |=b ψ.

Proof. �⇒� Suppose A |=s φ and θI(φ)⊎B |=b ψ. By Theorem 7 and the �rst assumption, we

have A ≤s θI(φ). It follows that A⊎B ≤b θI(φ)⊎B by Theorems 6 and 8. Hen
e, A⊎B |=b ψ
by Corollary 2 (instantiated to the behavioural level) and the se
ond assumption.

�⇐� Suppose A ⊎ B |=b ψ and set φ = χ(A). We have to show that A |=s χ(A) and

θI(χ(A)) ⊎ B |=b ψ. The former follows from Theorem 1 (for S1 = S2, instantiated to

stru
tural level). To see the latter, we start by the observation that χ(A)∧φI [ΣI ] |=s χ(A).
By the monotoni
ity of θ (Corollary 1), we get θI(χ(A)) ≤ θ(χ(A)). Lemma 1 states that

θ(χ(A)) ∼= A. Hen
e, using the de�nition of stru
tural simulation, θI(χ(A)) ≤s A. It follows
by Theorems 6 and 8 that θI(χ(A)) ⊎ B ≤b A⊎B. Finally, Corollary 2 and the assumption

imply that θI(χ(A)) ⊎ B |=b ψ.

Note that by taking B to be the empty applet ∅J−
, the 
ompositional reasoning prin
iple

above relates behavioural properties to stru
tural ones. Given applet A : I, the satisfa
tion
of behavioural property ψ 
an be redu
ed to the satisfa
tion of stru
tural property φ if and

only if the maximal applet w.r.t. I and φ (behaviourally) satis�es property ψ.

A |=s φ θI(φ) |=b ψ

A |=b ψ
(stru
t-beh)

In the rule beh-
omp, stru
tural property φ 
an play the r�le of a spe
i�
ation for applet

A. The 
ompleteness result guarantees the usefulness of the rule only when φ is meant to

serve as a 
omplete spe
i�
ation for A. However, in the 
ase of a yet unknown (or not

yet implemented) applet, produ
ing a 
omplete spe
i�
ation might be too mu
h to ask in

pra
ti
e. In this 
ase, one would rather like to use the weakest (that is, most abstra
t) lo
al

stru
tural spe
i�
ation φ implying the desired global behavioural property ψ. A natural
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question is thus whether su
h a weakest spe
i�
ation always exists. Let φ be 
alled a 
ut-

formula for I, B and ψ whenever θI(φ) ⊎ B |=b ψ, and let the rule be said to possess the

weakest-
ut property if for any I, B and ψ there is a weakest 
ut-formula. Unfortunately, it

is easy to show that the rule above does not possess this desirable property. For otherwise

φ1 ∨ φ2 would be a 
ut-formula for I, B and ψ whenever φ1 and φ2 are so; however, it is

easy to provide 
on
rete I, B, ψ, φ1 and φ2 su
h that φ1 and φ2 are 
ut-formulae for I, B
and ψ, but φ1 ∨ φ2 is not. The fundamental reason for this, we believe, is that the set of

applets behaviourally satisfying a property ψ is in general not 
losed under disjoint union.

The above observation suggests that having to stru
turally spe
ify a 
omponent by a

single formula might in 
ertain 
ases for
e the spe
i�
ation to be
ome unne
essarily 
on
rete.

To a
hieve the desired level of abstra
tness, we propose the use of sets of formulae as

spe
i�
ations, by de�ning, for a set of formulae F , S |= F to hold if S |= φ for some φ ∈ F .
Other useful 
ompositional reasoning prin
iples are also thinkable. For example, a rule

of the shape of the above rule, but involving stru
tural properties only, is easily justi�able

with the results presented above.

A |=s φ θI(φ) ⊎ B |=s ψ

A ⊎ B |=s ψ
(stru
t-
omp)

Apart from being able to show soundness and 
ompleteness for this rule (using a similar

proof as for the rule beh-
omp), we 
an also show that it possesses the weakest-
ut property.

4 Example

Finally, to demonstrate the use of our approa
h in pra
ti
e, we present a small example. This

example is a smaller, distilled version of a larger 
ase study on veri�
ation of behavioural

safety properties for an ele
troni
 purse. This 
ase study is des
ribed elsewhere in more

detail [10℄, and we refer to this paper for a more detailed motivation why this kind of se
urity

properties are important for smart 
ard appli
ations and how they should be formalised.

Suppose we have a smart 
ard, on whi
h we allow instan
es of applets A and B with the

following interfa
es: A : ({m1,m2}, {m1,m2,m3}) and B : ({m3}, {m1,m2,m3}), respe
-
tively. Now, suppose that the method m1 is a method that is 
alled by an instan
e of the

applet B when it is in a parti
ular state. However, it might be the 
ase that only 
ertain

instan
es of applet A are supposed to know that this instan
e of B is in this state - possibly

be
ause they have paid to get this information

5

. Thus, as a global se
urity property we

require that when method m1 is 
alled, this does not trigger any other 
alls to instan
es of

A (until the method has �nished). We spe
ify this as the following global se
urity property.

(ϕ) ¬m1 ∨ Z [Z = (m1 ∧ r) ∨ ([K]� ∧ [−]Z)]

5

In the 
ase study on whi
h this example is based, this is the 
ase for a method whi
h signals that a


ertain table is full. Other applets 
an register to get the information that this table is full, and thus that

they better read its 
ontents before it will be emptied. However, this information should not be passed on

to third party applets who did not pay for this information.
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where K = { m1 
allm1,m1 
allm2,m2 
allm1,m2 
allm2, m3 
allm1,m3 
allm2 }. Noti
e

that this 
an be 
onsidered as a 
on�dentiality property: it prevents 
ertain information to

�ow to unauthorised appli
ations [4℄.

This formula expresses that within method m1, i.e. until the model des
ribing the

behaviour of the applet rea
hes a state satisfying m1 ∧ r, there 
annot be any 
alls to other

methods de
lared in the interfa
e of A. Noti
e that this also restri
ts the 
alls that 
an be

made from an instan
e of applet B, i.e. m3 is also not allowed to 
all a method de
lared in

the interfa
e of A. To make it easier to express this kind of properties, we are developing

a 
ommon set of spe
i�
ation patterns, with appropriate de�nitions as modal µ-
al
ulus
formulae.

There are several ways in whi
h this property 
an be established. A trivial one is by

spe
ifying that method m1 should not make any method 
alls. However, this would ex
lude

many sensible implementations of m1, therefore we prefer to be less restri
tive, and we

propose the following stru
tural spe
i�
ations for A and B6

.

(σA) ¬m1 ∨ (X ∧m1)[X = [m1,m2]� ∧ [ε,m3]X ]
(σB) ¬m3 ∨ (Y ∧m3)[Y = [m1,m2]� ∧ [ε,m3]Y ]

The spe
i�
ation for A expresses that the method graph for m1 should not 
ontain any


all edge labelled m1 or m2. The spe
i�
ation for B expresses a similar property for the

method graph of m3.

Applying the 
ompositional reasoning prin
iple beh-
omp twi
e, we know that for any

instan
es of applets A and B, in order to prove that their 
omposition A ⊎ B respe
ts the

property ϕ, it is su�
ient to prove for these instan
es that A |=s σA and B |=s σB, and
�nally, that θIA(σA) ⊎ θIB (σB) |=b ϕ. The properties for the individual applets 
an be


he
ked using existing model 
he
king te
hniques, so here we fo
us on the proof of the last

sequent, using the maximal model 
onstru
tion presented earlier. Following De�nition 17,

the maximal applet is 
onstru
ted as follows:

(1) take the 
onjun
tion of the stru
tural spe
i�
ation and the 
hara
teristi
 formula for

the given interfa
e;

(2) transform the resulting formula into simulation normal form; and

(3) use the mapping θ to 
onstru
t the applet 
orresponding to this formula in SNF.

We present in some detail the 
onstru
tion of the maximal applet for σB; the 
onstru
tion of

the maximal applet for σA is similar. As a �rst step, the 
hara
teristi
 formula for interfa
e

IB is the following.

(φIB ) Xm3
[Xm3

= [m1,m2,m3, ε]Xm3
∧m3]

6

In the formula ¬m1 ∨ (X ∧ m1), the 
onjun
t m1 is redundant in the se
ond disjun
t. However, we

found that adding it allows to eliminate qui
kly in
onsistent or redundant 
ases during the transformation

into SNF. Not adding the 
onjun
t produ
es the same result, but requires more logi
al simpli�
ations.

RR n° 4890



30 Sprenger, Gurov & Huisman

Thus, the 
onjun
tion with σB gives the following formula, after desugaring.

Z





Z = (¬m3 ∨ Y ) ∧Xm3

Y = [m1,m2]� ∧ [m3, ε]Y
Xm3

= [m1,m2,m3, ε]Xm3
∧m3





The next step is to transform this formula into SNF. First, in phase 1 of the transforma-

tion, ea
h equation is transformed into a disjun
tion of state normal forms. Suppose that

we start with the equation de�ning Z.

(1) Make the equation strongly guarded, by rewriting with the original equation system.

Z = (¬m3 ∨ [m1,m2]� ∧ [m3, ε]Y )∧
[m1,m2,m3, ε]Xm3

∧m3

(2) Put the equation into DNF

Z = (¬m3 ∧ [m1,m2,m3, ε]Xm3
∧m3) ∨

([m1,m2]� ∧ [m3, ε]Y ∧ [m1,m2,m3, ε]Xm3
∧m3)

and simplify

Z = [m1,m2]� ∧ [m3, ε]Y ∧ [m1,m2,m3, ε]Xm3
∧m3

(3) Group and 
omplete boxes. Here no boxes are missing, therefore we only group boxes

7

.

Z = [m1,m2]� ∧ [m3, ε](Y ∧Xm3
) ∧m3

(4) Introdu
e new equations for formula under boxes. Sin
e the map h does not 
ontain

a mapping for {Y,Xm3
} yet, we introdu
e a new variable U and add the mapping

({Y,Xm3
}, U) to h. The equation de�ning Z then be
omes

Z = [m1,m2]� ∧ [m3, ε]U ∧m3

while we introdu
e the equation

U = Y ∧Xm3

7

If we follow the algorithm pre
isely, we would get [m1, m2](� ∧ Xm3
), for whi
h the next step would

introdu
e an equation F = � ∧ Xm3
, whi
h (when transforming it into DNF) would simplify to F = �. In

Phase 2, all o

urren
es of the variable would get repla
ed again by �, thus for simpli
ity of presentation we

ignore this in this example. However, it is important to noti
e that our algorithm is general and thus 
an

handle these 
ases as well.
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(5) Finally, we 
omplete the equation for Z by adding missing literals and putting the

formula into DNF again. In this 
ase, the only literal that is missing is r. Adding this

literal gives us the following result.

Z = ([m1,m2]� ∧ [m3, ε]U ∧m3 ∧ r) ∨

([m1,m2]� ∧ [m3, ε]U ∧m3 ∧ ¬r)

The equations de�ning Y and Xm3
are handled in a similar way. The only step that has

some e�e
t is step 5, whi
h introdu
es the missing literal r. More interesting is to look how

phase 1 is applied to the new equation U = Y ∧Xm3
.

(1) Rewriting into strongly guarded form gives

U = [m1,m2]� ∧ [m3, ε]Y ∧
[m1,m2,m3, ε]Xm3

∧m3

(2) The formula is already in DNF, and 
annot be simpli�ed.

(3) Grouping boxes results in the following.

U = [m1,m2]� ∧ [m3, ε](Y ∧Xm3
) ∧m3

(4) The mapping h 
ontains a map ({Y,Xm3
}, U). Therefore, we repla
e Y ∧Xm3

by U .

U = [m1,m2]� ∧ [m3, ε]U ∧m3

(5) Literal 
ompletion again introdu
es r.

U = ([m1,m2]� ∧ [m3, ε]U ∧m3 ∧ r) ∨

([m1,m2]� ∧ [m3, ε]U ∧m3 ∧ ¬r)

Now, phase I has been 
ompleted for all equations. Phase II introdu
es a single equation

for ea
h disjun
tion, and it repla
es the variables by the disjun
tions. For example, the

equation de�ning U gets repla
ed by the two following equations.

U1 = [m1,m2]� ∧ [m3, ε](U1 ∨ U2) ∧m3 ∧ r,

U2 = [m1,m2]� ∧ [m3, ε](U1 ∨ U2) ∧m3 ∧ ¬r

The remaining equations are treated similarly. Noti
e that also Z in X gets repla
ed by

{Z1, Z2}, where Z1 and Z2 are the equations repla
ing Z.
Finally, we are ready for the 
leanup in phase III. We �nd that the equations for Z1 and

U1, and Z2 and U2 are dupli
ates of ea
h other. Therefore, we remove the equations for Z1

and Z2, and we repla
e {Z1, Z2} in X by {U1, U2}. We also �nd that the equations Y1, Y2,
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m3,
ε

m3,
ε

m3,
ε

m3,
ε

U2(m3)

U1(m3, r)

E = {U1, U2}
A = {m3, r}

m3,
ε

m3,
ε

m3,
ε

m3,
ε

m1,m2,m3
   ε

m1,m2,m3
   ε

m1,m2,m3
   ε

X12(m1)

X11(m1,r)

E = {X11,X12,X21,X22}

X21(m2)

m1,m2,m3
               ε

X21(m2,r)

A = {m1,m2,r}

θIB (σB) θIA(σA)

Figure 3: Maximal applets for σB and σA

Xm31 and Xm32 (repla
ing Y and Xm3
in Phase II, respe
tively), are not rea
hable from any

variable in X = {U1, U2}. Therefore, the �nal result of the transformation is the following

formula.

U1 ∨ U2

[

U1 = [m1,m2]� ∧ [m3, ε](U1 ∨ U2) ∧m3 ∧ r
U2 = [m1,m2]� ∧ [m3, ε](U1 ∨ U2) ∧m3 ∧ ¬r

]

Figure 3 displays the maximal applet 
orresponding to this equation system (in its left


olumn). Also, it displays the maximal applet found for the property σA, whi
h is found in

a similar way. Using a model 
he
king algorithm for 
ontext-free pro
esses [7℄, it 
an easily

be veri�ed that the 
omposition of these two maximal applets indeed satis�es the global

behavioural spe
i�
ation φ, and thus that the property de
omposition is 
orre
t.

5 Con
lusions

We propose a 
ompositional veri�
ation method for 
ontrol �ow based safety properties of

smart 
ard applets. Our method supports di�erent s
enarios for se
ure post-issuan
e loading

of applets. Lo
al applet assumptions are stru
tural, while global guarantees are behavioural,

both written in a modal logi
 with greatest �xed point re
ursion.

In a general setting, we establish the 
orresponden
e between models (whi
h 
an be

stru
tures as well as behaviours) and properties by means of a Galois 
onne
tion. Maximal

(or 
hara
teristi
) models are used to algorithmi
ally de
ide 
orre
tness of property de
om-

positions by redu
ing the problem to a standard model 
he
king problem for 
ontext-free

pro
esses. A distilled version of a realisti
 
ase study illustrates the pra
ti
al appli
ability

of the approa
h.

Future work will fo
us on extending our results in two dire
tions: (i) adding diamond

modalities to the simulation logi
, and (ii) investigating under what restri
tions the proposed

method 
an be adapted to behavioural assumptions.
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