
Serdica J. Computing 9 (2015), No 1, 35–82 Serdica
Journal of Computing

Bulgarian Academy of Sciences
Institute of Mathematics and Informatics

MODEL MINING AND EFFICIENT VERIFICATION

OF SOFTWARE PRODUCT LINES

Siavash Soleimanifard, Dilian Gurov, Ina Schaefer,
Bjarte M. Østvold, Minko Markov

Abstract. Software product line modeling aims at capturing a set of soft-
ware products in an economic yet meaningful way. We introduce a class of
variability models that capture the sharing between the software artifacts
forming the products of a software product line (SPL) in a hierarchical fash-
ion, in terms of commonalities and orthogonalities. Such models are useful
when analyzing and verifying all products of an SPL, since they provide a
scheme for divide-and-conquer-style decomposition of the analysis or veri-
fication problem at hand. We define an abstract class of SPLs for which
variability models can be constructed that are optimal w.r.t. the chosen rep-
resentation of sharing. We show how the constructed models can be fed into
a previously developed algorithmic technique for compositional verification
of control-flow temporal safety properties, so that the properties to be ver-
ified are iteratively decomposed into simpler ones over orthogonal parts of
the SPL, and are not re-verified over the shared parts. We provide tool sup-
port for our technique, and evaluate our tool on a small but realistic SPL of
cash desks.

ACM Computing Classification System (1998): D.2.4, D.2.7.
Key words: Product families, Compositional verification, Model mining, Variability models,

Model checking, Maximal models.

36 S. Soleimanifard, D. Gurov, I. Schaefer, B. M. Østvold, M. Markov

1. Introduction.

Software Product Lines. System diversity is prevalent in modern software.
In order to comply with the varying requirements of a potentially large number of
customers, software systems often exist simultaneously in many different variants.
Software product line engineering aims at planning for and developing a family of
system variants through managed reuse, in order to decrease time to market and
improve software quality [36].

The variability of the different products in a software product line can be
represented at different levels [11]. Problem-space variability describes product
variation in terms of so-called features, that is user-visible product characteris-
tics. The set of valid feature configurations defines the set of possible products.
However, features are not necessarily related to the actual artifacts that are used
to realize the products. Problem-space variability based on features is at the
requirements level, while solution-space variability is at the design and implemen-
tation level. Solution-space variability describes product variation in terms of
artifacts that are used to build the actual products of the product line.

In this paper, we aim to capture solution-space variability in terms of
software artifacts that implement various functionalities. In the present context,
an artifact is a software component at a suitable level of granularity, such as a
Java method, a class, or a module.

Hierarchical Modeling. In order to describe the solution space variability in
a software product line, we propose a hierarchical variability model, or HVM. Such
a model represents, in a hierarchical manner, the artifacts that are common to all
products, and the artifact variations that can occur between different products.
On each hierarchical level, there is a common set of artifacts that represent parts
shared by all products, while variation points represent parts that can vary from
product to product. Every variation point is associated with a set of variants that
represents choices for realizing the variation point in different ways. A variant
is itself represented by a hierarchical variability model, potentially introducing a
new level of hierarchy. A product described by a hierarchical variability model
is obtained by selecting a variant at every variation point. The product line, or
family, described by the model is the set of all its products.

Consider as an example a product line of a web-based social network
application, shown graphically in Figure 1. This social network is to be used for
audio or video sharing and communication between users. It provides basic user
account support, content sharing facilities, and two communication environments,
namely chat and email. The commonality of all social networks of the product line
is that they all have user account support. This is modeled by the common artifact

Model Mining and Efficient Verification . . . 37

userAccount at the first level of hierarchy. The social networks, however, differ in
the content they allow to share and the facilities they provide for communication:
some allow only audio sharing, while others only allow video. In the model, this is
represented by the variation point content (depicted as a diamond node) with the
variants Audio and Video at the second level of hierarchy. Similarly, users of the
social networks can either communicate via email or a chat system. Common for
all social networks supporting chat is the text chat functionality, which only allows
text exchange between users while at a third level of hierarchy, two alternative
chat systems are realized, namely AudioChat and VideoChat. This hierarchical
variability model gives rise to 6 products, corresponding to the 6 ways of resolving
the variabilities.

Fig. 1. The Social Network hierarchical variability model

Analysis and Verification of Software Product Lines. For any given pro-
gram analysis, analyzing all products of a family individually may be infeasible for
larger families. However, the number of products generated by a hierarchical vari-
ability model is at worst exponential in the size of the model; or equivalently, the
model can be exponentially more succinct than the family. Exploiting the artifact
commonalities at the different levels of hierarchy—as revealed by the model—is
the key to achieving scalability of any analysis.

38 S. Soleimanifard, D. Gurov, I. Schaefer, B. M. Østvold, M. Markov

Factoring out common artifacts naturally reduces redundancy in the anal-
ysis: At variants with more than one variation point, the analysis problem is de-
composed into simpler subproblems, as long as variation points at the same level of
hierarchy expose orthogonality, while at variation points with more than one vari-
ant, the same problem is solved independently for each variant, as a case analysis,
as long as variants at the same level of hierarchy expose alternative implementa-
tions. Thus, a hierarchical variability model can be viewed as a divide-and-conquer
scheme for decomposing and splitting an analysis over a family of products.

In this paper, we develop the above idea by relativizing the correctness
of the properties that are to hold for all products of a family on local specifica-
tions associated with the variation points. Thus, the number of verification tasks
is reduced to the number of regions in the model (indicated by dotted lines in
Figure 1),which is linear in its size rather than exponential. The associated over-
head is that the designer has to provide specifications for the variation points.
Here, we adapt for this scenario our previously developed compositional verifica-
tion technique for temporal safety properties [19] and its automated tool support
ProMoVer [43].

Model Mining. The above considerations lead to the natural problem of
constructing a hierarchical variability model from an already realized software
product line. The problem where a model is inferred from a set of programs is
sometimes referred to as model mining.

In general, the HVMs giving rise to a particular software product line
are not unique. We would like to measure how amenable a hierarchical variabil-
ity model is to analysis by means of divide-and-conquer reasoning as suggested
above. To this end we define a quality measure, called the separation degree of
a model, as the ratio between the total number of artifacts from which products
are constructed and the total number of artifact occurrences in the leaves of the
model. High-quality models capture repetitions of products in a family without
repetition in the model. The maximum theoretically possible separation degree
of one is only reached in models where artifacts occur exactly once.

The problem then becomes to construct, from a given software product
line, an HVM with maximum separation degree. We introduce a natural class
of software product lines termed simple for which the optimal HVMs are unique
and have separation degree one. We present a model mining transformation that
constructs the unique optimal HVM from a given simple family.

Contributions. This paper combines and extends two of our earlier results:
The hierarchical variability model for software product lines [20] and a technique
for verification of families modeled in this way [39]. The combination essentially

Model Mining and Efficient Verification . . . 39

provides an efficient verification technique for simple families that have either been
originally described in a modeling language that does not capture solution space
variability, or families that have been produced in an ad hoc manner, for instance
as a result of evolving and adapting a piece of software for different customers. For
such families, the technique of the first paper allows the algorithmic extraction
of a variability model, which is then used by the technique of the second paper
to drive the verification of all products of the family. Thus, the main technical
contributions of this paper are:

• A formal definition of simple hierarchical variability models (SHVM), to-
gether with a quality measure called separation degree and a set of well-
formedness constraints yielding (by construction) models with maximal
measure (Subsection 2.1).

• A formal semantics for hierarchical variability models in terms of family
generation, and a proof that, for every well-formed variability model, the
generated family is simple (Subsection 2.2).

• A characterization result stating that, for well-formed hierarchical variabil-
ity models and simple families, family generation and hierarchical variability
model construction are inverses of each other, thus implying correctness of
model construction and uniqueness of well-formed models with respect to
the families they generate (Subsection 2.2).

• A procedure to construct hierarchical variability models from simple families
that produces well-formed models (Subsections 2.2 and 2.3).

• An adaptation of a previously developed compositional verification frame-
work and its tool support, ProMoVer, for verifying control flow temporal
safety properties of all products of simple families represented through (con-
structed) SHVMs (Section 3).

• Evaluation of the tools on a small but realistic case study (Section 4).

The proofs of all results presented in the paper can be found in the Ap-
pendix.

2. Hierarchical Variability Models. In this section, we present our
variability models and their semantics, and relate them with families of products.
We also illustrate our construction of variability models from families, by an
example.

40 S. Soleimanifard, D. Gurov, I. Schaefer, B. M. Østvold, M. Markov

2.1. Families and Variability Models. Here, we first present product
families as a semantic domain for our hierarchical variability models and then
define formally these models.

We develop our formalization using a straightforward notation. However,
the formalization can also be carried out in the terminology of relational algebra,
or the one of regular languages. We choose a neutral notation here since our
intended application domains are of a general nature.

Families. We consider products realized by a set of artifact implementa-
tions for a given set of artifact names. An artifact can be thought of as, e.g., a
component or a method. We fix a countably infinite set of artifact names Art .

Definition 1 (Product, family). An artifact implementation is an in-
dexed artifact name; let ai denote the i-th implementation of artifact name a.
A product P is a finite set of artifact implementations, where for each artifact
name there is at most one implementation. A family F is a finite non-empty set
of products.

Thus, products can be seen as partial maps from artifact names to natural
numbers, having a finite domain; we use NatArt to denote the set of all products
over Art . We refer to singleton set families as core families, or simply cores. The
family consisting of the empty product is denoted 1F .

Example 1. Here are some families that are used later to illustrate
various notions.

FA =
{

{a1, b1, c1, d1, e1} , {a1, b1, c1, d1, e2} , {a1, b1, c2, d2, e1} ,

{a1, b1, c2, d2, e2} , {a1, b1, c2, d3, e1} , {a1, b1, c2, d3, e2}
}

FB =
{

{a1, b1} , {a1, b2} , {a2, b1}
}

Next, we define two mappings for identifying the artifact names and arti-
fact implementations that occur in a family.

Definition 2 (Family names and implementations). The mapping
names (F) from families to sets of artifact names and the mapping impls(F)
from families to sets of artifact implementations are defined as follows, where
a1, . . . , an ∈ Art and i1, . . . , in ∈ Nat :

names (F)
def
=

⋃

P∈F names (P)

Model Mining and Efficient Verification . . . 41

where names
(

{a1i1 , . . . , a
n
in
}
) def
= {a1, . . . , an}

impls(F)
def
=

⋃

P∈F impls(P)

where impls({a1i1 , . . . , a
n
in})

def
= {a1i1 , . . . , a

n
in}

In this definition we abuse notation by also defining mappings with the
same names from products to the same co-domains.

We use two binary operations on families, the usual set union operation ∪
and the product union operation ⋊⋉ over families with disjoint sets of artifact
names defined by:

F1 ⋊⋉ F2
def
= {P1 ∪ P2 |P1 ∈ F1 ∧ P2 ∈ F2}

and generalized through
∏

i∈I

Fi to non-empty sets of families1. Intuitively, the

product union of two families is the family having as products all possible com-
binations of products of the original families. Both operations are commutative
and associative.

We now define a distinct class of families that we later relate to a specific
class of hierarchical variability models. The class of families contains all single-
product families consisting of a single artifact implementation, and is closed under
product union of families over disjoint sets of artifact names, and under union of
families over the same set of artifact names, but having disjoint implementations.

Definition 3 (Simple family). The class F of simple families is the least
set of families closed under the formation rules:

(F1)
{

{ai}
}

∈ F for any a ∈ Art and i ∈ Nat .

(F2) F1 ⋊⋉ F2 ∈ F for any F1,F2 ∈ F such that names (F1) ∩ names (F2) = ∅.

(F3) F1 ∪ F2 ∈ F for any F1,F2 ∈ F such that names (F1) = names (F2) and
impls(F1) ∩ impls(F2) = ∅.

Example 2. The family
{

{a1, b1} , {a1, b2}
}

is simple, as it can be pre-
sented as

{

{a1}
}

⋊⋉ (
{

{b1}
}

∪
{

{b2}
}

) which follows the above formation rules.

1In relational algebra these are the usual union ∪ and Cartesian product × on relations with
disjoint sets of attributes, a partial case of the more general join operation ⋊⋉.

42 S. Soleimanifard, D. Gurov, I. Schaefer, B. M. Østvold, M. Markov

Family FA of Example 1 is also simple (as we shall see later in Example 6, while
family FB of Example 1 is not: there is no way of building this family with the
above formation rules.

Simplicity of families expresses that different functionalities in a product
line are always orthogonal, and that alternative realizations of the same function-
ality have always disjoint implementations. These assumptions are rather heavy
and may not always hold in practice. But only under such severe constraints can
one hope for such a (strong) uniqueness result as the one obtained later (Sec-
tion 2.1).

To characterize the applicability of the formation rules, we introduce the
concept of correlation between artifact names as a restriction on the possible
combinations of their implementations. If two artifact names are correlated, then
not all possible combinations of artifact implementations occur in the family which
means that the artifact implementations depend on each other.

Two distinct artifact names a, b ∈ names (F) are termed correlated in a
family F , denoted a CF b, if there are implementations ai, bj ∈ impls(F) such
that no product in F contains both implementations simultaneously. Otherwise,
names a and b are termed uncorrelated or orthogonal. The correlation relation CF

on names (F) is symmetric, and hence, its reflexive and transitive closure C∗
F is

an equivalence relation. As usual, we denote the partitioning induced by C∗
F on

names (F) by names (F) /C∗
F (quotient set).

Example 3. Consider family FA of Example 1. The only two correlated
names are c and d, evidenced by the lack of a product containing, for instance, c1
and d2. Thus, we have names (FA) /C

∗
FA

= {{a}, {b}, {c, d}, {e}}.

Correlation (and orthogonality) extends naturally to products in a family:
Products P and P ′ are correlated in F if some artifact name occurring in P is
correlated to some artifact name occurring in P ′.

Similarly, we define the sharing relation NF on F as P1NF P2
def
⇔ P1∩P2 6=

∅, and use its reflexive and transitive closure N∗
F to partition the family F .

The following result provides sufficient conditions for the applicability of
the three formation rules for simple families from Definition 3. The proof of this
proposition, as all other proofs can be found in the appendix. As usual, A denotes
the complement of set A in a given universe of elements.

Proposition 1. Let family F be simple. The following holds.

(i) Let ai ∈ impls(F), and let F ′ be the projection of F on names (F)\{a}. The

Model Mining and Efficient Verification . . . 43

name ai occurs in all products of F , i.e., ai ∈
⋂

P∈F

P , iff F =
{

{ai}
}

⋊⋉ F ′.

Then either F ′ = 1F and thus rule (F1) applies, or else F ′ is simple and
rule (F2) applies.

(ii) Let {A1, A2} be a non-trivial partitioning of names (F), and let F1 and F2

be the projections of F on A1 and A2, respectively. Every name in A1 is
orthogonal to every name in A2 in F , i.e., A1 ×A2 ⊆ CF , iff F = F1 ⋊⋉ F2

and F1 and F2 are simple. Formation rule (F2) applies in this case.

(iii) Let {F1,F2} be a non-trivial partitioning of F . No product of F1 shares
an artifact implementation with any product of F2, i.e., F1 × F2 ⊆ NF , iff
F = F1∪F2 and F1 and F2 are simple. Formation rule (F3) applies in this
case.

The following important property of simple families follows from the above
result: if a simple family F can be formed by formation rule (F2) with some
suitable F1 and F2 satisfying the rule’s condition, then it cannot be formed by
formation rule (F3), and vice versa.

When restricted to simple families, the two operations on families do not
distribute over each other. This entails that simple families have unique formation
trees modulo commutativity and associativity of the two operations associated
with the rules.

Variability Models. In order to represent solution space variability of fam-
ilies in terms of shared artifact implementations, we consider simple hierarchical
variability models.

Definition 4 (Simple hierarchical variability model). A simple hierarchi-
cal variability model (SHVM) S is inductively defined as:

(i) a (possibly empty) common set of artifact implementations MC , or

(ii) a pair (MC , {VP1, . . . ,VPn}) where MC is defined as above and the set
{VP1, . . . ,VPn} of variation points is non-empty. A variation point VP i =
{Si,j | 1 ≤ j ≤ ki}, where ki ≥ 2, is a set of (at least two) SHVMs called
variants.

We sometimes refer to an SHVM simply as a variability model. An SHVM
consisting of only a common set of artifact implementations is called ground model.

44 S. Soleimanifard, D. Gurov, I. Schaefer, B. M. Østvold, M. Markov

An SHVM generates a family F through all possible ways of resolving the vari-
abilities of the SHVM. This process recursively selects exactly one variant for
each variation point. We defer a formal definition of such a semantics for SHVMs
to Section 2.2. Variability models can be naturally depicted as trees, where the
leaves are common sets of artifact implementations, and the internal nodes are
the roots of SHVMs or variation points.

{}

{a1, b1,
c1, d1, e1}

{a1, b1,
c1, d1, e2}

{a1, b1,
c2, d2, e1}

{a1, b1,
c2, d2, e2}

{a1, b1,
c2, d3, e1}

{a1, b1,
c2, d3, e2}

SA1

{a1, b1}

{c1, d1}{c2}

{d2} {d3}

{e1} {e2}

SA2

Fig. 2. SHVMs SA1 and SA2 for the family FA in Example 1

Example 4. Figure 2 and Figure 3 show four variability models named
SA1, SA2, SB1, and SB2. In these figures, (sub)trees showing variability models
are rooted with boxes, and subtrees showing variation points are rooted with
diamonds.

Analogously to Definition 2, we define two mappings for identifying the
artifact names and artifact implementations that occur in SHVMs.

Definition 5 (SHVM names and implementations). The mapping
names (S) from SHVMs to sets of artifact names and the mapping impls(S)
from SHVMs to sets of artifact implementations are defined as follows, where

Model Mining and Efficient Verification . . . 45

{a1, b2}

{a1} {a2}

{b1}

SB1

{a1}

{b1} {b2}

{a2, b1}

SB2

Fig. 3. SHVMs SB1 and SB2 for the family FB in Example 1

a1, . . . , an ∈ Art and i1, . . . , in ∈ Nat :

names
(

{a1i1 , . . . , a
n
in}

) def
= {a1, . . . , an}

names ((MC , {VP1, . . . ,VPn}))
def
= names (MC) ∪

⋃

1≤i≤n names (VP i)

where names (VP)
def
=

⋃

S∈VP
names (S)

impls({a1i1 , . . . , a
n
in
})

def
= {a1i1 , . . . , a

n
in
}

impls((MC , {VP1, . . . ,VPn}))
def
= impls(MC) ∪

⋃

1≤i≤n impls(VP i)

where impls(VP)
def
=

⋃

S∈VP
impls(S)

Again we abuse notation by also defining mappings with the same names
from variation points to the same co-domains.

Next we define a measure of the degree of separation in a variability model
as the ratio between the cardinality of the set of artifact implementations and the
sum of the cardinalities of the leaves of the SHVM tree. The separation degree
is, thus, a number in the interval (0, 1] that captures the degree to which the
commonalities and orthogonalities of products are factored out as common sets
and variation points in a variability model, respectively: the higher this degree,
the less artifact implementations occur repeatedly in more than one leaf. The
maximum value of 1 holds when every artifact implementation occurs in exactly
one leaf; this is trivially the case for ground models.

46 S. Soleimanifard, D. Gurov, I. Schaefer, B. M. Østvold, M. Markov

Definition 6 (Separation degree). The separation degree sd(S) of a
variability model S is defined as:

sd({})
def
= 1

sd(S)
def
=

|impls(S)|

sd ′(S)
if S 6= {}

where |S| denotes the cardinality of set S, and sd ′(S) is inductively defined as
follows:

sd ′(MC)
def
= |MC |

sd ′((MC , {VP1, . . . ,VPn}))
def
= sd ′(MC) + Σ1≤i≤nsd

′(VP i)

where sd ′(VP)
def
= ΣS∈VPsd

′(S)

Intuitively this definition captures the extent to which orthogonal artifact
implementations are delegated to separate variation points, and the extent to
which disjointness of artifact implementations is delegated to separate variants.
Since this is the original intention of variation points and variants in our model,
separation degree is an obvious quality measure indicating how well the model is
used for the purpose of hierarchically representing a software family.

The following definition provides a set of well-formedness constraints on
SHVMs. Variability models satisfying these constraints always have separation
degree one, as we show in Proposition 2.

Definition 7 (Well-formed variability model). A ground variability model
S = MC is well-formed if constraint (S1) below is satisfied. A variability model
S = (MC , {VP1, . . . ,VPn}) with variation points VP i = {Si,j | 1 ≤ j ≤ ki} is
well-formed if all variants Si,j are well-formed, and furthermore, the following
constraints are satisfied:

(S1) MC implements artifact names at most once.

(S2) names (MC) ∩ names (VP i) = ∅ for all i, and
names (VP i1) ∩ names (VP i2) = ∅ whenever i1 6= i2.

(S3) names (Si,j1) = names (Si,j2) for all i, j1, j2, and
impls(Si,j1) ∩ impls(Si,j2) = ∅ whenever j1 6= j2.

Model Mining and Efficient Verification . . . 47

Example 5. Consider the SHVMs SA1 and SA2 depicted in Figure 2.
SA1 is not well-formed whereas SA2 is. The separation degrees are sd(SA1) =
9

6 · 5
= 0.3 and sd(SA2) =

9

9
= 1. Figure 3 depicts two other SHVMs, SB1 and

SB2. Neither of these are well-formed and both have separation degree
4

5
= 0.8.

The constraints in Definition 6 ensure that the separation degree of a
well-formed SHVM is equal to 1 and is thus maximum.

Proposition 2. If variability model S is well-formed then sd(S) = 1.

Note that the converse of Proposition 2 does not hold in general: The vari-
ability model {a1, a2} has separation degree 1, but well-formedness constraint (S1)
is not satisfied.

Proposition 3. For a given SHVM, let AND and OR denote the max-
imum branching factors at SHVM and variation point nodes, respectively, and
let ND be its nesting depth. The number of products generated by the SHVM is

bound by OR
AND·(AND

ND
−1)

AND−1 and is thus exponential in the size of the SHVM, which

is bound by
(OR ·AND)(ND+1) − 1

OR ·AND − 1
.

Inversely stated, SHVMs can be exponentially more succinct than the
underlying family.

2.2. Relating Families and Variability Models. In this subsection we
present translations between well-formed variability models and simple families
and show that they are inverses of each other. In particular, this entails that
the translation from simple families to variability models produces the unique
well-formed model generating the respective family, thus giving a procedure for
constructing a variability model from a given family.

From Variability Models to Families. The set of products generated by a
ground model is the singleton set comprising the set of common artifact imple-
mentations and, thus, representing one product. The set of products generated
by a variation point is the union of the product sets generated by its variants. Fi-
nally, the set of products generated by an SHVM with a non-empty set of variation
points is the set of all products consisting of the common artifact implementations
and of exactly one product from the set generated by each variation point.

48 S. Soleimanifard, D. Gurov, I. Schaefer, B. M. Østvold, M. Markov

Definition 8 (Family generation). The mapping family(S) from variabil-
ity models to families is inductively defined as follows:

family(MC)
def
= {MC}

family((MC , {VP1, . . . ,VPn}))
def
= {MC} ⋊⋉

∏

1≤i≤n family(VP i)

where family(VP)
def
=

⋃

S∈VP
family(S)

We say that variability model S generates family(S).

Here we again abuse notation by also defining a mapping with the same
name from variation points to the same co-domain. Family generation is well-
defined in the sense that well-formed variability models generate simple families.

Proposition 4. If variability model S is well-formed, then family(S) is
simple.

Example 6. SHVMs SA1 and SA2 in Figure 2 both generate family FA in
Example 1, implying that family FA is simple since SA2 is well-formed. SHVMs
SB1 and SB2 in Figure 2 both generate family FB in Example 1. Among these
four SHVMs, SA2, SB1 and SB2 have maximum separation degree in the sense
that, for each of the families FA and FB , no other SHVMs for the same family
have higher separation degree.

From Families to Variability Models. We now present a reverse transfor-
mation from simple families to well-formed variability models. Recall that simple
families have unique formation trees modulo commutativity and associativity of
the two operations. Well-formed SHVMs can thus be seen as a uniform way of
grouping the formation terms. Every family F can be decomposed into the form:

F = {P} ⋊⋉ FV , FV =
∏

1≤i≤nFi, Fi =
⋃

1≤j≤ki
Fi,j

where P is a product, or equivalently, as a single equation:

F = {P} ⋊⋉

∏

1≤i≤n

⋃

1≤j≤ki
Fi,j(∗)

The existence of the decomposition is ensured since every family F can be trivially

decomposed as {∅} ⋊⋉

∏⋃

F , i.e., with product P being empty and n = k1 = 1.

Decomposition (∗) is only unique under additional constraints, under which the
decomposition is called canonical.

Model Mining and Efficient Verification . . . 49

Definition 9 (Canonical form of family). A family F , decomposed as
equation (∗) above, is in canonical form if the following conditions hold:

(C1) The product P is the set of artifact implementations that are common to all
products in F .

(C2) The set of artifact names in FV has n equivalence classes w.r.t. correlated
artifact names C∗

FV
, and for the i-th equivalence class, the family Fi is the

projection of FV onto the artifact names of the class.

(C3) For all i, 1 ≤ i ≤ n, Fi,j are the ki equivalence classes of Fi w.r.t. imple-
mentation sharing N∗

Fi
.

A consequence of the following proposition is that definitions and proofs
may exploit the canonical form to proceed by induction on the size of simple
families.

Proposition 5. If F is a simple non-core family in canonical form then
for all i, 1 ≤ i ≤ n, and ki ≥ 2 all Fi,j are simple and of strictly smaller size
than F .

The decomposition into canonical form is clearly unique for a simple fam-
ily, and exposes one level of hierarchy. Thus, by iterative application of the de-
composition, we obtain a mapping from families to hierarchical variability models.

Definition 10 (Variability model generation). The mapping shvm(F)
from simple families presented in canonical form to variability models is induc-
tively defined as follows:

shvm({P})
def
= P

shvm
(

{P} ⋊⋉

∏

1≤i≤n

⋃

1≤j≤ki
Fi,j

) def
= (P, {VP1, . . . ,VPn})

where VP i
def
= {shvm(Fi,j) | 1 ≤ j ≤ ki}

We say that family F generates variability model shvm(F).

Proposition 5 guarantees that the above mapping is well-defined, in the
sense that shvm(F) is indeed an SHVM. Furthermore, as the next result shows,
the generated variability model is well-formed.

Proposition 6. If family F is simple, then shvm(F) is well-formed.

Example 7. Consider the family FA from Example 1.

50 S. Soleimanifard, D. Gurov, I. Schaefer, B. M. Østvold, M. Markov

• In the first step of the decomposition of FA into canonical form we obtain
the common set P = {a1, b1} and the family FV = {{c1, d1, e1} , {c1, d1, e2} ,
{c2, d2, e1} , {c2, d2, e2} , {c2, d3, e1} , {c2, d3, e2}}.

• In the next step, we analyze FV to find that only artifact names c and d are
correlated. Projecting FV onto the two resulting equivalence classes {c, d}
and {e} we obtain the two variation points F1 = {{c1, d1} , {c2, d2} , {c2, d3}}
and F2 = {{e1} , {e2}}.

• In the third step, we analyze F1 and see that two products share the ar-
tifact implementation c2, which gives us the variants F1,1 = {{c1, d1}}
and F1,2 = {{c2, d2} , {c2, d3}}, and then analyze F2 to obtain the variants
F2,1 = {{e1}} and F2,2 = {{e2}}.

Only F1,2 is not a ground model. Applying the above steps decomposes it into a
common set {c2} and a single variation point with two variants consisting of the
common sets {d2} and {d3}. It is easy to see that shvm(FA) is the variability
model SA2 in Figure 2.

Characterization Results. Our first result establishes correctness of model
extraction.

Lemma 1. For every simple family F we have:

family(shvm(F)) = F

The second result establishes uniqueness of well-formed models w.r.t. the
generated (simple) family.

Lemma 2. For every well-formed variability model S we have:

shvm(family(S)) = S

An immediate consequence of the above two lemmas is our main charac-
terization result, which essentially states that the two transformations relating
variability models and families are inverses of each other.

Theorem 1 (Characterization Theorem). For every simple family F and
every well-formed variability model S we have:

family(S) = F ⇐⇒ shvm(F) = S

Model Mining and Efficient Verification . . . 51

2.3. Model Extraction from Code. Here we explain, using an ex-
ample, how to extract variability models from program code of simple product
families. The example is written in Java, but our method is independent of the
programming language.

public class CashDesk {

public void s a l e () {
int prodNu = 10;
for (int i = 0 ; i < 10 ; i++) {

int prod = enterProd () ;
wr i t eRece i p t (prod) ;
prodNu = updateStock (prodNu) ;
payment () ;

}
}

public int enterProd () {
return useKeyboard () ;

}

public void payment () {
cardPay (enterCard ()) ;

}

public stat i c void main (S t r i ng [] args) {
(new CashDesk ()) . s a l e () ;

}

/∗ The implementation of the private
methods , including methods
writeReceipt , updateStock , cardPay ,
enterCard , and useKeyboard are not
shown here .

∗/
}

public class CashDesk {

public void s a l e () {
int prodNu = 10;
for (int i = 0 ; i < 10 ; i++) {

int prod = enterProd () ;
wr i t eRece i p t (prod) ;
prodNu = updateStock (prodNu) ;
payment () ;

}
}

public int enterProd () {
return useScanner () ;

}

public void payment () {
cashPay () ;

}

public stat i c void main (S t r i ng [] args) {
(new CashDesk ()) . s a l e () ;

}

/∗ The implementation of the private
methods , including methods
writeReceipt , updateStock , cardPay ,
enterCard , and useScanner are not
shown here .

∗/
}

Fig. 4. Products P2 (left) and P4 (right) from the Cash Desk product line

Example 8. As a running example in the rest of this paper, we consider
a product line of cash desks that is a simplified version of a case study from the
HATS project [37]. A cash desk processes purchases by retrieving the prices for
all items to be purchased and calculates the total price. After the customer has
paid, a receipt is printed and the stock is updated. All cash desks have in common
that every purchase is processed following the same process. However, the cash
desks differ in how items are entered. Some cash desks allow entering products
using a keyboard, others only provide a scanner, and a third group provides both
options. Payment at some cash desks can only be made in cash. Other cash desks
only accept credit cards, while a third group allows the choice between cash and
credit card payment.

Figure 4 shows two of nine products from the product line where each
product takes the form of a Java class called CashDesk. At the top is product

52 S. Soleimanifard, D. Gurov, I. Schaefer, B. M. Østvold, M. Markov

code for a cash desk for entering with keyboard and paying with credit card only.
At the bottom of the figure is product code for a cash desk that scans products and
accepts cash payment only. These nine Java classes can be converted into a family
of products in the sense of Definition 1 by considering public method names as
artifact names and the corresponding method bodies as artifact implementations.
This yields the following simple family:

FCashDesk = {P1, P2, P3, P4, P5, P6, P7, P8, P9}

where:

P1 = {saleCashDesk, enterProdKeyboard, paymentCash}

P2 = {saleCashDesk, enterProdKeyboard, paymentCard}

P3 = {saleCashDesk, enterProdKeyboard, paymentCashOrCard}

P4 = {saleCashDesk, enterProdScanner, paymentCash}

P5 = {saleCashDesk, enterProdScanner, paymentCard}

P6 = {saleCashDesk, enterProdScanner, paymentCashOrCard}

P7 = {saleCashDesk, enterProdKeyboardOrScanner , paymentCash}

P8 = {saleCashDesk, enterProdKeyboardOrScanner , paymentCard}

P9 = {saleCashDesk, enterProdKeyboardOrScanner , paymentCashOrCard}

The common purchase process of all cash desks is modeled by the artifact name
sale and implementation (subscript) CashDesk. The artifact names enterProd

and payment are common to all products, but their implementations vary: Cash,
Card, or CashOrCard. Starting form family FCashDesk, and following steps similar

Model Mining and Efficient Verification . . . 53

to those of Example 7, gives the following SHVM.

shvm(CashDesk) =
(

{saleCashDesk} , {@EnterProducts,@Payment}
)

where @EnterProducts = {Keyboard,Scanner,KeyboardOrScanner}
@Payment = {Cash,Card,CashOrCard}

and Keyboard = {enterProdKeyboard}
Scanner = {enterProdScanner}

KeyboardOrScanner = {enterProdKeyboardOrScanner}
Cash = {paymentCash}
Card = {paymentCard}

CashOrCard = {paymentCashOrCard}

The two variation points @EnterProducts and @Payment represent the variabil-
ities of the cash desks. Variation point @EnterProducts has associated variants
Keyboard, Scanner and KeyboardOrScanner, while variation point @Payment has
associated variants Cash, Card and CashOrCard. Figure 5 shows the model as a
diagram.

As we describe in Section 4.1, the extraction of SHVM models from an ex-
isting simple family of products (explained by the above example) is implemented
as a part of our tool support. These models can be used for hierarchical analyses
of product families. In the next section, we show how they facilitate efficient
verification of temporal safety properties.

3. Verification of Temporal Safety Properties of Software

Product Lines. Suppose we have a large software family that has either been
produced in an ad hoc manner (for instance as a result of evolving and adapting
a software product for different customers) or that has been developed by some
methodology that does not capture solution space variability. Suppose also that
we want to apply some given standard static program analysis technique, such
as formal verification, on the implementations (i.e., the code) of all products of
the family. Naturally in such a case we should strive to minimize the overall
effort by maximizing the reuse of partial verification results obtained for the
shared artifacts. In the previous section we developed a technique to extract
automatically SHVMs from the implementations of simple families. Since the
extracted SHVMs capture the sharing of artifacts in the solution space, they
contain, in a succinct representation (see Proposition 3), precisely the information
that is needed to maximize the reuse of analysis results.

54 S. Soleimanifard, D. Gurov, I. Schaefer, B. M. Østvold, M. Markov

{saleCashDesk}

{enterProdKeyboard}

{enterProdScanner}

{enterProdKeyboardOrScanner}

{paymentCash}

{paymentCard}

{paymentCashOrCard}

CashDesk

Keyboard

KeyboardOrScanner

Scanner

Cash

Card

CashOrCard

@EnterProducts

@Payment

Fig. 5. The CashDesk hierarchical variability model (drawn sideways)

The exact way of utilizing SHVMs for software product line verification
depends heavily on the concrete verification technique at hand. Especially suited
for the task are compositional techniques, since they reduce the verification of
whole products to the individual verification of their components (i.e., artifacts),
and thus allow the reuse of the latter in case they are shared. In this paper,
we illustrate this idea by adapting a previously developed compositional verifica-
tion technique for temporal safety properties [19] and its automated tool support
ProMoVer [43], to the setting of software product lines. Let us first explain
intuitively our original compositional verification framework, and then describe
its adaptation for product families.

Our original framework for compositional verification is a realization of
assume-guarantee reasoning for the verification of incomplete programs, i.e. pro-
grams where the implementation of some of their components are not available.
Hence, such programs consist of so-called concrete components available through
their implementations and of unavailable abstract components. To verify incom-
plete programs, we require a user provided local specification for each abstract
component that describes its legal behavior (assumption). Our verification frame-

Model Mining and Efficient Verification . . . 55

work relativizes the correctness of global properties of such programs on the local
specifications of their abstract components and the implementation of the con-
crete ones, thus dividing the verification task into the following two independent
subtasks:

(a) a check that the composition of the local specifications of abstract compo-
nents together with the implementation of concrete ones entails the global
property, and

(b) a check that the implementation of each abstract component (once it be-
comes available) satisfies its local specification.

Technically, for subtask (b) a control flow graph is extracted from the code of each
abstract component (once it becomes available), and is model checked against its
local specification. A control flow graph, here called flow graph, is a collection of
method graphs, each representing the control flow structure of the code of a method
(see Definition 12 and Example 9). For subtask (a), however, so-called maximal
flow graphs are constructed from the local specifications of abstract components.
Intuitively, a maximal flow graph for a local specification φ is the most general
flow graph satisfying φ. Thus it can be used, for the purposes of verification, as
a representation of any implementation of the component that satisfies φ. These
maximal models are composed with the flow graphs extracted from the code of
concrete ones, and then the behavior of the result represented as a pushdown
automaton is model checked against the global property of the program.

To adapt our framework to the verification of temporal safety properties
of SHVMs, we require user provided local properties at all variation points. These
properties should abstractly express the legal behavior of all their underlying vari-
ants (see Example 11 for concrete properties). The idea is that for the verification
of variants their underlying variation points and core methods (i.e., their children
variation point and core nodes in the graph) can be viewed as abstract and con-
crete components, respectively. Then the verification of the variants is relativized
on the properties of their underlying variation points, while the correctness of the
variation points is established through verifying their underlying variants (i.e.,
their children variant nodes in the graph). This results in a hierarchical verifica-
tion scheme that is realized by the following two steps:

1. Verify each variation point by checking, using step (2), that all its underlying
variants satisfy its specification. This essentially means that underlying
variants attached to a variation point inherit the property of their parent
variation point.

56 S. Soleimanifard, D. Gurov, I. Schaefer, B. M. Østvold, M. Markov

2. Verify each variant by checking that the composition of maximal flow graphs
constructed from the local specifications of its underlying variation points,
together with the flow graphs extracted from its core methods, satisfy the
property of the variant. By this, we basically verify that all sub-products
constructed by composing the different artifact implementations below a
variant satisfy its property.

Since the family corresponds to the root variant, the global property of the soft-
ware family is the property of the top-level variant of its SHVM.

As we show in Section 3.2, this verification procedure is sound : If it
succeeds for SHVM S and global property φ, then all products of S satisfy φ.

For example, to verify the CashDesk product line modeled by the SHVM in
Figure 5, the variation points @EnterProducts and @Payment are locally specified,
and the desired global property of all products would be the property of variant
CashDesk. Then the verification procedure follows the steps below:

1. Verify that each individual variation point satisfies its property indepen-
dently. This is achieved for instance for variation point @EnterProducts by
independently checking that the variants Keyboard, Scanner, and
KeyboardOrScanner satisfy the local specification of @EnterProducts.

2. Construct maximal flow graph for the variation points @EnterProducts

and @Payment, compose these with the flow graphs extracted from the core
method sale, and model check the result against the property of CashDesk.

In the remainder of this section, we first present our compositional verifi-
cation framework formally, and then describe how it is adapted to the verification
of software families represented by SHVMs.

3.1. A Framework for Compositional Verification. Here, we define
our program models and specification language and present our compositional
verification principle.

Program Model. In order to reason algorithmically about sequences of
method invocations, we abstract the set of methods defining our program by
ignoring all data. An initialized model serves as an abstract representation of a
program’s structure and behavior.

Definition 11 (Model). A model is a (Kripke) structure M = (S,L,→,
A, λ) where S is a set of states, L a set of labels, →⊆ S×L×S a labeled transition
relation, A a set of atomic propositions, and λ : S → P(A) a valuation, assigning

Model Mining and Efficient Verification . . . 57

to each state s the set of atomic propositions that hold in s. An initialized model
is a pair (M, E) with M a model and E ⊆ S a set of initial states.

A method graph is an instance of an initialized model which is obtained
by ignoring all data from a method implementation. A flow graph is a collection
of method graphs, one for each method of the program. It is a standard model for
the analysis of control flow based properties [6].

Definition 12 (Method graph). Let Meth be a countably infinite set of
methods names. A method graph for method m ∈ Meth over a set of method
names M ⊆Meth is an initialized model (Mm, Em) where Mm = (Vm, Lm,→m,
Am, λm) is a finite model and Em ⊆ Vm is a non-empty set of entry points
of m. Vm is the set of control nodes of m, Lm =M ∪ {ε}, Am = {m, r}, and
λm : Vm → P(Am) so that m ∈ λm(v) for all v ∈ Vm (i.e., each node is tagged
with its method name). The nodes v ∈ Vm with r ∈ λm(v) are return points.

Note that according to the above definition, methods can have multiple
entry points. Flow graphs that are extracted from a program source have single
entry points, but the maximal models that we generate for compositional verifi-
cation can have multiple entry points.

Every flow graph G is equipped with an interface I = (I+, I−), denoted
G : I, where I+, I− ⊆ Meth are the provided and externally required methods,
respectively. Interfaces are needed when constructing maximal flow graphs. A
flow graph is closed if its interface does not require any methods (i.e., I− = ∅)
and it is open otherwise. Flow graph composition is defined as the disjoint union ⊎
of their method graphs.

Example 9. Figure 6 shows a simple Java class and the (simplified) flow

Fig. 6. A simple Java class and its flow graph

graph it induces. It consists of two method graphs, for method even and method

58 S. Soleimanifard, D. Gurov, I. Schaefer, B. M. Østvold, M. Markov

odd, respectively. Entry nodes are depicted as usual by incoming edges without
source. Its interface is ({even, odd}, ∅), thus the flow graph is closed.

The operational semantics of flow graphs, here called flow graph behav-
ior, is also defined as an instance of an initialized model, induced through the
flow graph structure. We use transition label τ for internal transfer of control,
m1 callm2 for the invocation of method m2 by method m1 when method m2 is
provided by the program and m1 call!m2 when method m2 is external (e.g., API
methods), and m2 retm1 respectively m2 ret? m1 for the corresponding return
from the call.

Definition 13 (Flow Graph Behavior). Let G = (M, E) : (I+, I−)
be a flow graph such that M = (V,L,→, A, λ). The behavior of G is defined
as an initialized model b(G) = (Mb, Eb), where Mb = (Sb, Lb,→b, Ab, λb), such
that Sb = (V ∪ I−) × V ∗, i.e., states are pairs of control points v or required
method names m, and stacks σ, Lb = {m1 k m2 | k ∈ {call, ret},m1,m2 ∈
I+}∪{m1 call! m2 | m1 ∈ I+,m2 /∈ I+}∪{m2 ret? m1 | m1 ∈ I+,m2 /∈ I+}∪{τ},
Ab = A, λb((v, σ)) = λ(v) and λb((m,σ)) = m, and →b⊆ Sb × Lb × Sb is defined
by the following rules:

[transfer] (v, σ)
τ
−→(v′, σ) if m ∈ I+, v

ε
−→mv

′, v |= ¬r

[call] (v1, σ)
m1 callm2−−−−−−−→(v2, v

′
1 · σ) if m1,m2 ∈ I+, v1

m2−−→m1v
′
1, v1 |= ¬r,

v2 |= m2, v2 ∈ E

[ret] (v2, v1 · σ)
m2 retm1−−−−−−→(v1, σ) if m1,m2 ∈ I+, v2 |= m2 ∧ r, v1 |= m1

[call!] (v1, σ)
m1 call!m2−−−−−−−→(m2, v

′
1 · σ) if m1 ∈ I+,m2 ∈ I−, v1

m2−−→m1v
′
1, v1 |= ¬r

[ret?] (m2, v1 · σ)
m2 ret? m1−−−−−−−→(v1, σ) if m1 ∈ I+,m2 ∈ I−, v1 |= m1

The set of initial states is defined by Eb = E × {ε}, where ε denotes the empty
sequence over V ∪ I−.

Notice that return transitions always hand back control to the caller of
the method. Calls to external methods are modeled with an intermediate state,
from which only an immediate return is possible. In this way possible callbacks
from external methods are not captured in the behavior. This simplification is
justified, since we abstract away from data in the model and the behavior is thus
context-free, but has to be kept in mind when writing specifications; in particular
one cannot specify that callbacks are not allowed.

Example 10. Consider the flow graph of Example 9. One example
run through its (branching, infinite-state) behavior, from an initial to a final

Model Mining and Efficient Verification . . . 59

configuration, is:

(v0, ε)
τ
−→(v1, ε)

τ
−→(v2, ε)

even call odd

−−−−−−−−→(v5, v3)
τ
−→(v6, v3)

τ
−→

(v8, v3)
odd ret even

−−−−−−−→(v3, ε)

Now, consider just the method graph of method even as an open flow graph,
having interface ({even}, {odd}). The local contribution of method even to the
above global behavior is the following run:

(v0, ε)
τ
−→(v1, ε)

τ
−→(v2, ε)

even call! odd
−−−−−−−−→(odd, v3)

odd ret? even
−−−−−−−−→(v3, ε)

An alternative way to express flow graph behavior is by means of pushdown
systems (PDS). We exploit this by using pushdown system model checking to
verify behavioral properties [41].

Specification Language. To specify global and local properties we hare use
the safety fragment of linear temporal logic (LTL) that uses the weak version of
until2.

Definition 14 (Safety LTL). The formulas of sLTL are inductively de-
fined by:

φ ::= p | ¬p | φ1 ∧ φ2 | φ1 ∨ φ2 | X φ | G φ | φ1 W φ2

where p ∈ Ab denotes the set of atomic propositions.

Satisfaction on states (Mb, s) |= φ is defined in the standard fashion [44]
as validity of φ over all runs starting from state s ∈ Sb in model Mb. For instance,
formula X φ holds of state s in model Mb if φ holds in the second state of every
run starting from s, while φ W ψ holds in s if for every run starting in s, either
φ holds in all states of the run, or ψ holds in some state of the run and φ holds
in all previous states. Satisfaction of a formula φ in flow graph G with behavior
b(G) = (Mb, Eb) is defined as satisfaction of φ on all initial states s ∈ Eb.

Satisfaction is generalized to product lines in the obvious way: A product
line described by a variability model S satisfies a formula φ if the behavior b(Gp)
of the flow graph Gp of every product p ∈ products(S) satisfies φ.

2The theoretical underpinnings of our compositional verification framework are actually based
on a slightly more expressive specification language, namely simulation logic, the fragment of
the modal µ-calculus [25] with boxes and greatest fixed-points only. For details see again our
previous work [19].

60 S. Soleimanifard, D. Gurov, I. Schaefer, B. M. Østvold, M. Markov

Compositional Verification. As mentioned, our method for compositional
verification is based on the construction of maximal flow graphs for properties of
sets of methods. For a given property ψ and interface I consisting of provided
and required methods, consider the class of all flow graphs with interface I sat-
isfying ψ. A maximal flow graph for ψ and I is a flow graph Max(ψ, I) that
satisfies exactly those properties that hold for all members of the class. Thus,
the maximal flow graph can be used as a representative of the class for the pur-
pose of checking properties. Using maximal models for compositional verification
was first proposed by Grumberg and Long [17] for finite-state systems, and was
generalized for flow graphs by Gurov and others in [19, 18].

Suppose a system with n components that are partitioned into two sets:
The set of abstract components G1, . . . ,Gk specified with their local properties and
interfaces (ψ1, I1), . . . , (ψk, Ik), and the set of concrete components Gk+1, . . . ,Gn.
The main principle of compositional verification based on maximal flow graphs,
can relativize the global correctness of such systems on the local specifications
(ψ1, I1), . . . , (ψk, Ik), by the proof rule presented below.

(1)

G1 |= ψ1 · · · Gk |= ψk

⊎

j=k+1,...,n

Gj ⊎
⊎

i=1,...,k

Max(ψi, Ii) |= φ

⊎

i=1,...,n

Gi |= φ

The principle states that the composition of n components (here a set of meth-
ods), in which k of them are specified by their local specifications, satisfies global
property φ if (i) each specified (abstract) component Gi satisfies its respective lo-
cal property ψi and (ii) the composition of the k maximal flow graphs Max(ψi, Ii)
with the flow graphs extracted from the code of the other components (concrete
components) Gk+1, . . . ,Gn satisfies φ.

As we proved previously [19], the rule is sound and complete when inter-
faces describe all provided and required methods3.

3.2. SHVM-driven Algorithmic Verification. For efficient verifica-
tion of product families represented by SHVMs, we introduce the notion of regions
in SHVMs, each of which is formed by an SHVM node (variant) and its underly-
ing variation points and artifacts implementations, e.g., regions of the SHVM in
Figure 1 are indicated by dotted lines. In this section, we propose a compositional

3Our proof [19] is for global properties φ written in behavioral simulation logic and local
properties ψi in structural simulation logic; here in the context of sLTL we use translations into
the respective logic.

Model Mining and Efficient Verification . . . 61

reasoning approach that is linear in the number of regions in the SHVM descrip-
tion of the product line rather than linear in the number of generated products
(which is exponential in the number of regions). This approach is an instantiation
of the compositional verification principle presented above to SHVMs.

To show that all products generated from an SHVM satisfy global property
Φ, the top-level region of the SHVM is specified with Φ, and also every variation
point VP of the SHVM is specified by a behavioral property ψVP and its inter-
face IVP = (I+

VP
, I−

VP
) declaring the names of the provided and required methods.

The underlying variants attached to a variation point inherit the corresponding
variation point specification. Then, our verification procedure for SHVMs is as
follows.

Verification Procedure. For every regionM = (MC , {VP1, . . . ,VPn})
of the SHVM with the property φ, perform the following two tasks:

(i) For every artifact name a ∈ Art(MC), extract the flow graph Ga from
Imp(a).

(ii) For all variation points VP i with specification (ψVP i
, IVP i

), construct the
maximal flow graph Max(ψV Pi

, IV Pi
). Then, compose the constructed

graphs with the flow graphs of task (i), and model check the resulting flow
graph against the region property φ, i.e.,

(2)
⊎

a∈Art(MC)

Ga ⊎
⊎

1≤i≤n

Max(ψVP i
, IVP i

) |= φ

For properties given in sLTL, the behavior of GMax is represented as a PDS
and standard PDS model checking is used.

The presented verification procedure is sound, as established by the fol-
lowing theorem.

Theorem 2. Let S be an SHVM with global property φ. If the verification
procedure succeeds for S, then p |= φ for all its products p ∈ products(S).

The total number of verification tasks needed to establish the global prod-
uct line property is, thus, equal to the number of regions, since we have to com-
plete one verification task per region. In contrast, the number of products is
exponential in the number of regions.

Example 11. To illustrate our compositional verification approach, we
use the cash desk product line described in Example 8. The global behavioral
property we want to verify is informally stated as follows:

62 S. Soleimanifard, D. Gurov, I. Schaefer, B. M. Østvold, M. Markov

The entering of products has to be finished before the payment process
has started.

Taking into account the distribution of functionality to artifact intended by the
variability model from the example, the specification can be approximated as:

If control starts in method sale, it cannot reach method payment

before it has already been in method enterProd and then back in
sale.

In terms of the (global) behavior of the flow graphs of the products induced by
the product line, this property can be formalized in sLTL as follows:

ϕCD = sale → (¬payment W (enterProd ∧ r ∧ X sale))

where the subformula enterProd ∧ r ∧ X sale captures a return from enterProd

to sale.
First, we have to specify all variation points of the cash desk SHVM. The

specification of the @EnterProd and @Payment variation points are as follows:

• The interface of variation point @EnterProducts is IEP = ({enterProd} ,
{payment}). The property required for the variation point is that the
enterProd method never makes calls to payment method. Formally, this
property can be expressed by the formula4:

ϕEP = G ¬payment

• The interface of variation point @Payment is IP = ({payment} , {enterProd}).
Similarly to the variation point above, the property required for this varia-
tion point is that the payment method never makes calls to the enterProd

method:
ϕP = G ¬enterProd

The variants Keyboard, Scanner, and KeyboardOrScanner inherit their specifica-
tions from the @EnterProducts variation point, and the variants Cash, Card and
CashOrCard from the @Payment variation point.

Finally, we have to establish that all regions satisfy their respective prop-
erty. For the top-level region, we construct the maximal flow graphs for the specifi-
cations of the variation points @EnterProducts and @Payment and compose these

4This and the following property would trivialize if we specified the set of required methods
to be empty. For now, however, our tool does not check interfaces.

Model Mining and Efficient Verification . . . 63

with the flow graph of method sale, and model check ϕCD against the composi-
tion result. Then variants Keyboard, Scanner, KeyboardOrScanner, Cash, Card
and CashOrCard are verified also by model checking the flow graph extracted from
their implementation against their inherited verification point property.

4. Tool Support and Evaluation. Our tool support for the verifi-
cation of product families consists of two tools: A tool that constructs SHVMs
from families, and another one that automatically verifies temporal properties of
SHVMs. Using these tools, we verify a simple family in two steps; first we con-
struct the SHVM representation of the family and then we verify temporal safety
properties of the constructed SHVM.

4.1. Construction of Simple Hierarchical Variability Models. We
have implemented an algorithm that takes as input a simple family and produces
its SHVM decomposition. The algorithm is not written explicitly in this paper
but can be unambiguously inferred from Definition 9 and Definition 10. Our im-
plementation is written in OCaml. Its input is a text file containing the products
of the family. The constructed family is a list of sets, each set representing one
product. The sets’ elements are records, each record having two fields: name and
number. Each record represents an implementation, the name being the name of
the artifact and the number, the corresponding index. Having constructed the
family F we proceed as dictated by Definition 10. First we factor out the common
implementations, if any, and then we proceed with the remainder FV . We identify
the equivalence classes of the C∗

FV
relation using Union-Find structures. For each

equivalence class Fi we identify the equivalence classes of the N∗
Fi

relation. If
there are no common implementations and each of the two equivalence relations
has a single equivalence class, by Proposition 5 the family F is not simple and the
program exits with an appropriate message. Otherwise, recursive calls are made
on each of the equivalence classes of the N∗

Fi
relation. A very crude upper bound

on the running time is O(n4), n being the size of the family.

4.2. Automated Modular Verification of SHVMs. ProMoVer [43]
is a fully automated tool for the procedure-modular verification of control flow
temporal safety properties of Java programs5. It supports compositional verifica-
tion by relativizing the correctness of a global program property on properties of
individual methods and their interfaces. All interfaces, variation points and global

5
ProMoVer is available via the web interface www.csc.kth.se/~siavashs/ProMoVer

64 S. Soleimanifard, D. Gurov, I. Schaefer, B. M. Østvold, M. Markov

properties are provided to the tool as assertions in the form of program annota-
tions. ProMoVer accepts a JML-like syntax for annotations (cf. [27]) as special
comments called pragmas. For scalability, ProMoVer provides a proof storage
and reuse mechanism which stores flow graphs, maximal models and model check-
ing results and reuses these the next time the same program is verified. To reuse
the stored information, ProMoVer checks for each method of the program: if
the source code of the method has not changed, the stored flow graph of the
method is used, if a local specification has not changed the stored maximal model
for the specification is used. Further, it provides users with a library of global
properties which contains platform as well as application specific properties. For
details about ProMoVer, the reader is referred to [43].

We have adapted ProMoVer for verifying properties of SHVMs accord-
ing to the compositionality principle described in Section 3.2.For this adaptation,
we have extended the annotation language to support the definition of variants
and variation points and the associated specifications by designated pragmas. The
tool takes as input a source code file in which the SHVM to be analyzed is repre-
sented by annotations. The product property and the variation point properties
are also provided by annotations. Figure 7 shows in the left column the anno-
tation for the @EnterProd variation point, while the annotation for its Keyboard

variant is shown in the right column. ProMoVer fully automatically extracts
the SHVM modules and the corresponding flow graphs from the annotated source
code and performs the associated model checking tasks.

/**

* @variation_point :

* EnterProd

* @variation_point_interface:

* provided enterProd

* @variation_point_ltl_prop:

* G ! payment

* @variants :

* Keyboard ,Scanner ,

* KeyboardOrScanner

*/

/** @variant : Keyboard

* @variant_interface :

* provided enterProd ()

* @variation_points :

*/

public int enterProd (){

...

Fig. 7. Annotations for variation point @EnterProd and its variant Keyboard

For evaluating our compositional verification approach, we considered the
verification of the safety property explained in Example 11 for different versions
of the trading system product line [37]. The product lines of cash desks were
described as SHVMs with different hierarchical depths and different total numbers
of modules. As a basis, we used the product line described in Example 8 and

Model Mining and Efficient Verification . . . 65

Table 1. Evaluation Results

Product Line Depth # Modules # Products tind[s] tcomp[s]

CD 1 7 9 79 9
CD/CH 1 9 18 177 10
CD/CT 2 15 27 278 11
CD/CH/CT 2 17 54 652 12

extended it by an optional coupon handling functionality within the sale method,
and a variation point for accepting different card types as a hierarchical refinement
of variant Card. For each product line, we compared the time required to verify all
induced products individually with the time for compositional verification. The
experiments were performed on a SUN SPARC machine6.

The results are summarized in Table 1 where CD denotes the product line
of Example 8, CD/CH the version with coupon handling, CD/CT the version with
different card types and CD/CH/CT the version with coupon handling and different
card types. As can be observed from the table, the processing time tind for verify-
ing every product individually grows dramatically when new modules and levels
of hierarchy are added to the SHVM. This is easily explained by the analytical
bounds presented in Section 3.2. In contrast, the growth of the processing time
tcomp for compositional SHVM verification is insignificant, since the preprocessing
and flow graph extraction is only performed once by ProMoVer for the com-
plete SHVM. The experiment suggests that for large software products comprising
many products, the compositional verification technique based on the SHVM rep-
resentation of the product line increases efficiency of verification dramatically.

Scalability of our method comes at the price of having to provide specifica-
tions for variation points. This additional effort is justified for large systems that
render infeasible the verification of the product line by verifying all its products
individually. Also, the specifications only need to be written once and are later
reused when the code has been changed, or for proving other global properties.

SHVMs do not allow to express that a variant requires or excludes another
variant. Without these constraints, the set of products that can be derived from
an SHVM is larger than with requires/excludes constraints. If a desired property
can be shown for the larger set of products defined by an SHVM, the property
immediately holds for the original product set defined by the hierarchical vari-
ability model. However, this leaves the possibility that not all products defined

6The focus of the evaluation is on comparing the times required for verification, and not on
the total times themselves.

66 S. Soleimanifard, D. Gurov, I. Schaefer, B. M. Østvold, M. Markov

by an SHVM satisfy a property such that verification procedure fails, while the
property is satisfied by the products defined by an hierarchical variability model
containing variant constraints. In this case, an additional check of the excluded
products would be required.

5. Related Work.

Variability Modeling. Hierarchical variability models represent solution
space variability. The existing approaches to represent solution space product
line variability can be divided into three directions [40]. First, annotative ap-
proaches consider one model representing all products of a product line. Variant
annotations, e.g., using UML stereotypes [51, 15], presence conditions [10], or
separate variability representations, such as orthogonal variability models [36],
define which parts of the model have to be removed to generate the model of a
concrete product. Second, compositional approaches [4, 49, 34, 3] associate prod-
uct fragments with product features which are composed for particular feature
configurations, such as hierarchical variability models. Third, transformational
approaches [22, 8] represent variability by rules determining how a base model
has to be changed for a particular product model. All these approaches consider
a representation of artifact variability without any hierarchy.

Our hierarchical variability model generalizes the ideas of the Koala com-
ponent model [48] for the implementation of variant-rich component-based sys-
tems. In Koala, the variability of a component is described by the variability of its
subcomponents which can be selected by switches and explicit diversity interfaces.
Diversity switches and interfaces in Koala can be understood as concrete language
constructs at the implementation level targeted to express variation points and
associated variants. Plastic partial components [35] are an architectural modeling
approach where component variability is defined by extending partially defined
components with variation points and associated variants. However, variants
cannot contain variable components so this modeling approach is not truly hier-
archical. Hierarchical variability modeling for software architectures [21] applies
the modeling concepts for solution space variability presented in this paper to
component-based software engineering and provides a concrete modeling language
for variable software architectures that is truly hierarchical.

However, none of these approaches formally defines the semantics of hier-
archical variability models, nor reasons about their well-formedness or uniqueness.
Simple hierarchical variability models strike a balance between the expressiveness
of the modeling formalism—no bindings and being grammar-like—and the desir-
able property of uniqueness of models: With a more expressive modeling formal-

Model Mining and Efficient Verification . . . 67

ism, uniqueness may not be achievable. To the best of our knowledge, this work
is the first to provide a formal semantics for hierarchical variability models in the
solution space, and to characterize a class of variability models through the class
of generated product families.

Variability Model Mining. This paper presents the first approach for con-
structing a hierarchical variability model for solution space variability from a given
product family. So far, there have only been approaches to construct feature mod-
els for representing problem space variability for a given set of products. Czarnecki
et al. [12] re-construct a feature model from a set of sample feature combinations
using data mining techniques [1]. Other approaches aim at constructing feature
models from sample mappings between products and their features using formal
concept analysis [14], for instance, to derive logical dependencies between code
variants from pre-processor annotations [42], or to construct a feature model for
function-block based systems after determining model variants by similarity [38].
Loesch and Ploedereder [29] use formal concept analysis to optimize feature mod-
els in case of product line evolution, e.g., to remove unused features or to combine
features that always occur together. Niu and Easterbrook [33] apply formal con-
cept analysis to functional and non-functional product line requirements in order
to construct a feature model as a more abstract representation of the requirements.
Also, information retrieval techniques are applied to obtain a feature model from
heterogeneous product line requirements [2]. Using hierarchical clustering, a tree
structure of textually similar requirements is constructed. Requirement clusters
in the leaves are more similar to each other than requirements clusters closer to
the root giving rise to the structure of a feature model.

In our work, we abstract from the need to determine the different variants
of the same conceptual entity by assuming fixed artifact names and corresponding
artifact implementations. However, if we relax this assumption, techniques, such
as similarity analysis [38] or formal concept analysis [14] could be applied to infer
the relationship between different variants of the same conceptual entity, and thus
make our approach applicable.

Regular expressions and relational algebras. Regular expressions (reg-
exps) were introduced by Kleene [24]. Several variants of the original definition
are known [45]. A certain analogy between simple families and regexps without
Kleene star can be noticed, where individual implementations, the ∪ operation,
and the ⊲⊳ operation on families correspond to alphabet symbols, the + operation,
and concatenation ·, respectively. There are two major differences, however: in
our domain there is a two-level hierarchy names-implementations with no ana-
logue in Formal Languages, and, since products are sets, there is no repetition

68 S. Soleimanifard, D. Gurov, I. Schaefer, B. M. Østvold, M. Markov

of implementations in them, while strings can have arbitrary repetitions of sym-
bols. Our goal to construct an optimal SHVM for a given family corresponds
to constructing a smallest regexp for a given (finite) language. It is known that
regexp minimization is intractable: even without Kleene star or complement it
is still co-NP-complete [45, problem INEQ({0, 1}, {∪, ·})] while in general it is
PSPACE-complete [31, 23]. That discouraging result, however, is with respect to
languages that have no restriction of non-repeating symbols. It is worth investi-
gating whether the problem still remains intractable after the said restriction.

Our problem domain bears substantial similarity to relational algebra as
well. Our concepts of name, product, family, and product union translate to active
domain, tuple, database relation, union, and join of relations, a minor difference
being that database theory allows join of relations that share attributes. For
a detailed introduction to relational databases and relational algebra, see [30].
Using database terminology, our goal is, given a database relation to deduce
aspects of its design. That is, to perform some sort of model mining. Database
decomposition has been intensely studied for the purposes of forward design. To
the best of our knowledge there are no results on mining the relational database
model from a given database.

Verification of Product Families. Most approaches to algorithmic verifi-
cation of behavioral properties of software product lines rely on an annotative
model of the product line comprising all possible product variants in the same
model [50, 47]. Existing model checking techniques are adapted to deal with op-
tional behavior defined by variant annotations. For instance, in [13], modal tran-
sition systems are extended by variability operators from deontic logic. In [16],
the process calculus CCS is extended with a variant operator to represent a family
of processes. In [26], transitions of I/O-automata are related to variants. In [9],
product families are modeled by transition systems where transitions are labeled
with features, so that state reachability modulo a set of features can be computed.
Also, in [5], safety specifications of features are identified and combined for the
analysis of the products.

These approaches do not scale for large product lines since the used anno-
tative product line models easily get very large. To counter this, Blundell et al. [7],
Liu et al. [28], and Beek et al. [46] propose techniques for compositional verifi-
cation of product features. In these approaches, the behavior of a feature is
represented by a state machine to which other features may attach in designated
states (interface states or variation points). For a temporal property of a feature,
constraints for these states are generated which have to be satisfied by composed
features. In another work, Millo et al. [32] check the conformance of variability

Model Mining and Efficient Verification . . . 69

information at the requirement and design level in a feature-based compositional
fashion, but they do not address the reuse of verification results. In all these
works, the compositionality results are based on the applied notion of features
and feature composition, while SHVMs provide a more flexible means to define
product variability.

The presented approach is one of the first compositional verification tech-
niques for software product lines. It allows to guarantee efficiently that all prod-
ucts of a product line satisfy certain desired control-flow based safety properties.
With respect to model checking behavioral properties of product lines, only Blun-
dell et al. [7] and Liu et al. [28] propose compositional verification techniques
based on assume-guarantee style reasoning for product features. Other model
checking approaches for product lines [13, 16, 26, 9] use a monolithic model of the
complete product line such that they face severe state-space explosion problems
since all possible products are analyzed in the same analysis step.

6. Conclusion. In this article, we present hierarchical solution space
variability models for software product lines and we generalize a previously de-
veloped compositional technique and tool set for the automatic verification of
control-flow based temporal safety properties to software families that can be
described by such models.

We give a formal semantics of hierarchical variability models in terms of
sets—or families—of products, where each product is a set of artifact implemen-
tations. We introduce the separation degree as a quality measure of hierarchical
variability models. We identify well-formed variability models as a class of models
for which the measure is maximal (and equal to one) and which are unique for the
family they generate; the class of families generated by such models is the class
of simple families. Furthermore, we present an algorithm that accepts as input a
simple family and outputs the unique well-formed model that generates it. We
prove uniqueness by showing that family generation and model construction are
inverses of each other for this class of models. While maximum separation degree
and uniqueness of models with maximal measure are theoretically appealing, in
practice, product families might not be simple. Still, the separation degree is
a useful measure for hierarchical variability models, and, as Examples 5 and 6
suggest, searching for the set of models with a maximal measure (not necessarily
equal to one) for a given family is equally meaningful.

Using the introduced variability model, we adapt a previously developed
method and tool set for compositional verification of procedural programs, which
allows to avoid the combinatorial explosion of verifying all products individually.

70 S. Soleimanifard, D. Gurov, I. Schaefer, B. M. Østvold, M. Markov

The number of verification tasks resulting from our method is linear in the size
of the variability model rather than in the number of products. This is achieved
by introducing variation point specifications on which product properties are rel-
ativized, and by constructing maximal flow graphs that replace the specifications
when model checking specifications on the next higher level of hierarchy. The
class of properties that can be handled fully automatically is the class of control
flow-based temporal safety properties, specifying illegal sequences of method calls.
The input to our verification tool is the description of a product line in form of an
annotated Java program defining the variability model and the necessary specifi-
cations. Our first experiments with the tool show a dramatic gain in performance
even for models with a low hierarchical depth.

Future work. Future work will focus on the practical evaluation of the
proposed method for variability model mining, considering in particular sets of
(legacy code) products that have not been designed as a family from the outset.
Further effort is planned on generalizing the model with optional and multiple
variant selections and with requires/excludes constraints between variants, and
on adapting accordingly the model reconstruction transformation. Another gen-
eralization will deal with the more abstract domain of products over implemen-
tations only, where the names are not given in advance, but must be inferred.
Additionally, the restriction that all variants associated to a variation point have
to provide the same artifact names will be lifted.

R EFER EN CES

[1] Agrawal R., T. Imielinski, A. Swami. Mining association rules between
sets of items in large databases. In: Proceedings of the SIGMOD Conference,
Washington, D.C., USA, 1993, 207–216.

[2] Alves V., C. Schwanninger, L. Barbosa, A. Rashid, P. Sawyer,

P. Rayson, C. Pohl, A. Rummler. An exploratory study of information
retrieval techniques in domain analysis. In: Software Product Line Conference
(SPLC), 2008, 67–76.

[3] Apel S., F. Janda, S. Trujillo, C. Kästner. Model Superimposition
in Software Product Lines. In: International Conference on Model Transfor-
mation (ICMT), LNCS, Vol. 5563, Springer, 2009, 4–19.

Model Mining and Efficient Verification . . . 71

[4] Batory D., J. Neal Sarvela, A. Rauschmayer. Scaling Step-Wise Re-
finement. IEEE Transaction Software Engineering, 30 (2004), No 6, 355–371.

[5] Bessling S., M. Huhn. Towards formal safety analysis in feature-oriented
product line development. In: Jeremy Gibbons and Wendy MacCaull, editors,
Foundations of Health Information Engineering and Systems, LNCS, Vol.
8315, Springer Berlin Heidelberg, 2014, 217–235.

[6] Besson F., T. Jensen, D. Le Métayer, T. Thorn. Model checking
security properties of control flow graphs. J. of Computer Security, 9 (2001),
No 3, 217–250.

[7] Blundell C., K. Fisler, S. Krishnamurthi, P. Van Hentenryck.

Parameterized Interfaces for Open System Verification of Product Lines. In:
Proceedings of the 19th IEEE international conference on Automated soft-
ware engineering, 2004, 258–267.

[8] Clarke D., M. Helvensteijn, I. Schaefer. Abstract delta modeling.
Generative Programming and Component Engineering (GPCE), Springer,
2010.

[9] Classen A., P. Heymans, P.-Y. Schobbens, A. Legay, J.-F. Raskin.

Model Checking Lots of Systems: Efficient Verification of Temporal Proper-
ties in Software Product Lines. In: Proceedings of the International Confer-
ence on Software Engineering (ICSE), IEEE, 2010, 335–344.

[10] Czarnecki K., M. Antkiewicz. Mapping Features to Models: A Template
Approach Based on Superimposed Variants. In: Generative Programming and
Component Engineering (GPCE), LNCS, Vol. 3676, Springer, 2005, 422–437.

[11] Czarnecki K., U. W. Eisenecker. Generative Programming: Methods,
Tools, and Applications. Addison-Wesley, 2000.

[12] Czarnecki K., S. She, A. Wasowski. Sample spaces and feature models:
There and back again. In: Proceedings of the Software Product Line Confer-
ence (SPLC), 2008, 22–31.

[13] Fantechi A., S. Gnesi. Formal Modeling for Product Families Engineering.
In: Proceedings of the Software Product Line Conference (SPLC), IEEE,
2008, 193–202.

[14] Ganter B., R. Wille. Formal Concept Analysis: Mathematical Founda-
tions. Springer, 1996.

72 S. Soleimanifard, D. Gurov, I. Schaefer, B. M. Østvold, M. Markov

[15] Gomaa H. Designing Software Product Lines with UML. Addison Wesley,
2004.

[16] Gruler A., M. Leucker, K. Scheidemann. Modeling and model check-
ing software product lines. In: Formal Methods for Open Object-based Dis-
tributed Systems (FMOODS), LNCS, Vol. 5051, Springer, 2008, 113–131.

[17] Grumberg O., D. E. Long. Model checking and modular verification.
ACM Transactions on Programming Languages and Systems, 16 (1994),
No 3, 843–871.

[18] Gurov D., M. Huisman. Reducing behavioural to structural properties
of programs with procedures. Theoretical Computer Science, 480 (2013),
69–103.

[19] Gurov D., M. Huisman, C. Sprenger. Compositional verification of
sequential programs with procedures. Information and Computation, 206
(2008), No 7, 840–868.

[20] Gurov D., B. M. Østvold, I. Schaefer. A hierarchical variability model
for software product lines. In: Post-proceedings of ISoLA 2011 Workshops,
CCIS, 336 (2012), 181–199.

[21] Haber A., H. Rendel, B. Rumpe, I. Schaefer, F. van der Linden.

Hierarchical variability modeling for software architectures. In: Proceedings
of the Software Product Line Conference (SPLC), IEEE, 2011, 150–159.

[22] Haugen Ø., B. Møller-Pedersen, J. Oldevik, G. K. Olsen, A.

Svendsen. Adding Standardized Variability to Domain Specific Languages.
In: Proceedings of the Software Product Line Conference (SPLC), IEEE,
2008, 139–148.

[23] Jiang T., B. Ravikumar. Minimal nfa problems are hard. SIAM J. Com-
put., 22 (1993), No 6, 1117–1141.

[24] Kleene S. Representation of events in nerve nets and finite automata. Au-
tomata Studies, 1956.

[25] Kozen D. Results on the propositional µ-calculus. Theoretical Computer
Science, 27 (1983), 333–354.

Model Mining and Efficient Verification . . . 73

[26] Lauenroth K., K. Pohl, S. Toehning. Model checking of domain arti-
facts in product line engineering. In: Automated Software Engineering (ASE),
IEEE, 2009, 467–481.

[27] Leavens G., E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, P.

Müller, J. Kiniry, P. Chalin. JML Reference Manual, February 2007.
Department of Computer Science, Iowa State University.
http://www.jmlspecs.org

[28] Liu J., S. Basu, R. R. Lutz. Compositional model checking of software
product lines using variation point obligations. Automated Software Engi-
neering (ASE), 18 (2011), No 1, 39–76.

[29] Loesch F., E. Ploedereder. Optimization of variability in software prod-
uct lines. In: Software Product Line Conference (SPLC), 2007, 151–162.

[30] Maier D. The Theory of Relational Databases. Computer Science Press,
1983.

[31] Meyer A., L. Stockmeyer. The equivalence problem for regular expres-
sions with squaring requires exponential space. In: Proceedings of the 13th
Annual Symposium on Switching and Automata Theory SWAT’72, IEEE
Computer Society, 1972, 125–129.

[32] Millo J.-V., S. Ramesh, S. Krishna, G. Narwane. Compositional ver-
ification of software product lines. In: Integrated Formal Methods (Eds E.
Johnsen, Luigia Petre), LNCS, Vol. 7940, Springer Berlin Heidelberg, 2013,
109–123.

[33] Niu N., S. Easterbrook. Concept analysis for product line requirements.
In:Proceedings of the ACM International Conference on Aspect-Oriented
Software Development (AOSD), 2009, 137–148.

[34] Noda N., T. Kishi. Aspect-Oriented Modeling for Variability Management.
In: Proceedings of the Software Product Line Conference (SPLC), IEEE,
2008, 213–222.

[35] Pérez J., J. Díaz, C. C. Soria, J. Garbajosa. Plastic Partial Com-
ponents: A solution to support variability in architectural components. In:
Proceedings of the Working IEEE/IFIP Conference on Software Architecture
(WICSA), 2009, 221–230.

74 S. Soleimanifard, D. Gurov, I. Schaefer, B. M. Østvold, M. Markov

[36] Pohl K., G. Böckle, F. J. van der Linden. Software Product Line
Engineering – Foundations, Principles, and Techniques. Springer, 2005.

[37] Requirement Elicitation, August 2009. Deliverable 5.1 of project FP7-231620
(HATS). http://www.hats-project.eu

[38] Ryssel U., J. Ploennigs, K. Kabitzsch. Automatic variation-point iden-
tification in function-block-based models. In: Generative Programming and
Component Engineering (GPCE), New York, USA, 2010, ACM, 23–32.

[39] Schaefer I., D. Gurov, S. Soleimanifard. Compositional algorithmic
verification of software product lines. In: Postproceedings of the Intlerna-
tional Symposium on Formal Methods for Components and Objects (FMCO
2010), Vol. 6957, LNCS, Springer, 2011, 184–203.

[40] Schaefer I., R. Rabiser, D. Clarke, L. Bettini, D. Benavides, G.

Botterweck, A. Pathak, S. Trujillo, K. Villela. Software diversity:
state of the art and perspectives. Software Tools for Technology Transfer
(STTT), 14(2012), No 5, 477–495.

[41] Schwoon S. Model-Checking Pushdown Systems. PhD thesis, Technische
Universität München, 2002.

[42] Snelting G. Reengineering of configurations based on mathematical con-
cept analysis. ACM Transaction on Software Engineering and Methodology,
5 (1996), 146–189.

[43] Soleimanifard S., D. Gurov, M. Huisman. Procedure-modular specifi-
cation and verification of temporal safety properties. Software and System
Modeling, 14(2015), No 1, 83–100.

[44] Stirling C. Modal and Temporal Logics of Processes. Springer, 2001.

[45] Stockmeyer L., A. Meyer. Word problems requiring exponential time:
Preliminary report. In: Proceedings of the ACM Symposium on the Theory
of Computing (STOC), 1973, 1–9.

[46] Beek M., E. Vink. Towards Modular Verification of Software Product Lines
with mCRL2. In: Part I of the Proceedings of the 6th International Sympo-
sium on Leveraging Applications of Formal Methods, Verification and Valida-
tion, Technologies for Mastering Change, LNCS, Vol. 8802, Springer-Verlag
New York, Inc. 2014, 368–385.

Model Mining and Efficient Verification . . . 75

[47] Thüm T., S. Apel, C. Kästner, I. Schaefer, G. Saake. A classification
and survey of analysis strategies for software product lines. ACM Comput.
Surv., 47 2014, No 1, 1–45.

[48] Rob C. van Ommering. Software reuse in product populations. IEEE
Transaction on Software Engineering, 31 (2005), No 7, 537–550.

[49] Völter M., I. Groher. Product Line Implementation using Aspect-
Oriented and Model-Driven Software Development. In: Proceedings of the
Software Product Line Conference (SPLC), IEEE, 2007, 233–242.

[50] Von Rhein A., S. Apel, C. Kästner, T. Thüm, I. Schaefer. The
pla model: on the combination of product-line analyses. In: Proceedings of
the Seventh International Workshop on Variability Modelling of Software-
intensive Systems, 2013, 14–24.

[51] Ziadi T., L. Hélouët, J.-M. Jézéquel. Towards a UML Profile for Soft-
ware Product Lines. In: Software Product Familiy Engineering (PFE), Vol.
3014, LNCS, Springer, 2003, 129–139.

Appendix A. Proofs.

Proposition 1. Let family F be simple. The following holds.

(i) Let ai ∈ impls(F), and let F ′ be the projection of F on names (F) \ {a}.

ai occurs in all products of F , i.e., ai ∈
⋂

P∈F

P , iff F =
{

{ai}
}

⋊⋉ F ′. Then

either F ′ = 1F and thus rule (F1) applies, or else F ′ is simple and rule (F2)
applies.

(ii) Let {A1, A2} be a non-trivial partitioning of names (F), and let F1 and F2

be the projections of F on A1 and A2, respectively. Every name in A1 is
orthogonal to every name in A2 in F , i.e., A1 ×A2 ⊆ CF , iff F = F1 ⋊⋉ F2

and F1 and F2 are simple. Formation rule (F2) applies in this case.

(iii) Let {F1,F2} be a non-trivial partitioning of F . No product of F1 shares
an artifact implementation with any product of F2, i.e., F1 × F2 ⊆ NF , iff
F = F1 ∪F2 and F1 and F2 are simple. Formation rule (F3) applies in this
case.

76 S. Soleimanifard, D. Gurov, I. Schaefer, B. M. Østvold, M. Markov

P r o o f. The if parts of each case are immediate from Def. 3. The only-if
parts are established by structural induction on the formation of F .

(i) Let ai ∈ impls(F), F ′ be the projection of F on names (F) \ {a}, and

let ai ∈
⋂

P∈F

P . We consider the three possible ways of forming the simple

family F .

(a) Let F =
{

{bj}
}

. Then ai = bj, and so F =
{

{ai}
}

⋊⋉ 1F .

(b) Let F = F1 ⋊⋉ F2 for simple F1 and F2 such that names (F1) ∩
names (F2) = ∅. Assume w.l.o.g. that a ∈ names (F1). Then ai ∈
⋂

P∈F1

P and, by the induction hypothesis, F1 =
{

{ai}
}

⋊⋉ F ′
1 where

either F ′
1 = 1F or else F ′

1 is simple. In both cases, by the associativity
of ⋊⋉, F =

{

{ai}
}

⋊⋉ F ′ for F ′ = F ′
1 ⋊⋉ F2, and hence F ′ is simple.

(c) The case F = F1 ∪ F2 for simple F1 and F2 such that names (F1) =
names (F2) and impls(F1) ∩ impls(F2) = ∅ is not possible when ai ∈
⋂

P∈F

P .

(ii) Let {A1, A2} be a non-trivial partitioning of names (F), let F1 and F2 be the
projections of F on A1 and A2, respectively, and let A1 × A2 ⊆ CF . Again
we consider three cases.

(a) The case F =
{

{bj}
}

is not possible when {A1, A2} is non-trivial.

(b) Let F = F ′
1 ⋊⋉ F ′

2 for simple F ′
1 and F ′

2 such that names
(

F ′
1

)

∩
names

(

F ′
2

)

= ∅. Let A′
1 = names

(

F ′
1

)

and A′
2 = names

(

F ′
2

)

. If
A′

1 = A1 then A′
2 = A2 and the result follows immediately. Other-

wise, let A′
1,1

def
= A′

1 ∩ A1, A
′
1,2

def
= A′

1 ∩ A2, A
′
2,1

def
= A′

2 ∩ A1 and

A′
2,2

def
= A′

2∩A2. Then {A′
1,1, A

′
1,2} and {A′

2,1, A
′
2,2} are non-trivial parti-

tionings of A′
1 and A′

2, respectively. Furthermore, A′
1,1×A

′
1,2 ⊆ CF ′

1
and

A′
2,1×A

′
2,2 ⊆ CF ′

2
. Then, by the induction hypothesis, F ′

1 = F ′
1,1 ⋊⋉ F ′

1,2

and F ′
2 = F ′

2,1 ⋊⋉ F ′
2,2 where, for all i, j ∈ {1, 2}, Fi,j is the projection

of Fi on Aj and is simple. Then F1 = F ′
1,1 ⋊⋉ F ′

2,1 and F2 = F ′
1,2 ⋊⋉ F ′

2,2

are simple, and, by the associativity of ⋊⋉, F = F1 ⋊⋉ F2.

(c) The case F = F ′
1 ∪ F ′

2 for simple F ′
1 and F ′

2 such that names
(

F ′
1

)

=
names

(

F ′
2

)

and impls(F ′
1)∩impls(F ′

2) = ∅ is not possible when {A1, A2}
is non-trivial and A1 ×A2 ⊆ CF .

Model Mining and Efficient Verification . . . 77

(iii) Let {F1,F2} be a non-trivial partitioning of F and let F1×F2 ⊆ NF . Again
we consider three cases.

(a) The case F =
{

{bj}
}

is not possible when {F1,F2} is non-trivial.

(b) The case F = F ′
1 ⋊⋉ F ′

2 for simple F ′
1 and F ′

2 such that names
(

F ′
1

)

∩
names

(

F ′
2

)

= ∅ is also not possible when {F1,F2} is non-trivial and
F1 ×F2 ⊆ NF .

(c) Let F = F ′
1 ∪ F ′

2 for simple F ′
1 and F ′

2 such that names
(

F ′
1

)

=
names

(

F ′
2

)

and impls(F ′
1) ∩ impls(F ′

2) = ∅. If F ′
1 = F1 then F ′

2 = F2

and the result follows immediately. Otherwise, let F ′
1,1

def
= F ′

1 ∩ F1,

F ′
1,2

def
= F ′

1 ∩F2, F
′
2,1

def
= F ′

2 ∩F1 and F ′
2,2

def
= F ′

2 ∩F2. Then {F ′
1,1,F

′
1,2}

and {F ′
2,1,F

′
2,2} are non-trivial partitionings of F ′

1 and F ′
2, respectively.

Furthermore, F ′
1,1 × F ′

1,2 ⊆ NF ′

1
and F ′

2,1 × F ′
2,2 ⊆ NF ′

2
. Then, by the

induction hypothesis, F ′
1,1, F

′
1,2, F

′
2,1 and F ′

2,2 are all simple, and hence
F1 = F ′

1,1∪F
′
2,1 and F2 = F ′

1,2∪F
′
2,2 are simple, too. Furthermore, since

F1 ×F2 ⊆ NF implies impls(F1) ∩ impls(F2) = ∅, rule (F3) applies.

This concludes the proof. �

Proposition 2. If variability model S is well-formed then sd(S) = 1.

P r o o f. We show sd ′(S) = |impls(S)| by structural induction. First, let S
be a ground model with common set MC . We have:

sd ′(MC)

= |MC | {Def. 6}

= |impls(MC)| {Def. 5}

Next, let S be a variability model (MC , {VP1, . . . ,VPn}) with variation points
VP i = {Si,j | 1 ≤ j ≤ ki}. As the induction hypothesis, assume the result holds
for all Si,j. We have:

sd ′((MC , {VP1, . . . ,VPn}))

= |MC |+Σ1≤i≤nΣ1≤j≤kisd
′(Si,j) {Def. 6}

= |MC |+Σ1≤i≤nΣ1≤j≤ki|impls(Si,j)| {Ind. hyp.}

= |MC ∪
⋃

1≤i≤n

⋃

1≤j≤ki
impls(Si,j)| {Def. 7}

= |impls((MC , {VP1, . . . ,VPn}))| {Def. 5}

78 S. Soleimanifard, D. Gurov, I. Schaefer, B. M. Østvold, M. Markov

This concludes the proof. �

Proposition 3. For a given SHVM, let AND and OR denote the maxi-
mum branching factors at SHVM and variation point nodes, respectively, and let
ND be its nesting depth. The number of products induced by the SHVM is bound

by OR
AND·(AND

ND
−1)

AND−1 and is thus exponential in the size of the SHVM, which is

bound by
(OR · AND)(ND+1) − 1

OR · AND − 1
.

P r o o f. The bounds on the number of products and size of an SHVM is
obtained by solving the following recurrence equations in a routine fashion.

T (0) = T0

T (n) = OR · T (n− 1)AND

T (0) = T0

T (n) = OR · AND · T (n− 1) + 1 �

Proposition 4. If variability model S is well-formed, then family(S) is
simple.

P r o o f. By structural induction. First, let S be a well-formed ground
model with common artifact implementations MC . In that case family(MC) has
a single product MC that implements artifact names at most once. Then MC

can be represented as a product union over its artifact implementations taken as
single-product families, and is hence simple.

Next, let S be a well-formed variability model (MC , {VP1, . . . , VPn}) with
variation points VP i = {Si,j | 1 ≤ j ≤ ki}. As the induction hypothesis, assume
the result holds for all Si,j. Since S is well-formed, so are all Si,j by Definition 7,
and hence, by the induction hypothesis, all families family(Si,j) are simple. For
every variation point VP i we have

family(VP i) =
⋃

1≤j≤ki
family(Si,j)

by Definition 8. Further, by well-formedness constraint (S3) of Definition 7,
we have that names (Si,j1) = names (Si,j2) for all i, j1, j2, and impls(Si,j1) ∩
impls(Si,j2) = ∅ whenever j1 6= j2. Hence, by formation rule (F3) of Definition 3,
all family(VP i) are simple. Furthermore, we have

family(S) = {MC} ⋊⋉

∏

1≤i≤n family(VP i)

Model Mining and Efficient Verification . . . 79

by Definition 8. Further, by well-formedness constraint (S2) of Definition 7,
we have that names (MC) ∩ names (VP i) = ∅ for all i, and names (VP i1) ∩
names (VP i2) = ∅ whenever i1 6= i2. Now, MC is simple due to well-formedness
constraint (S1) of Definition 7 (see base case), and since all family(VP i) are
simple, by formation rule (F2) of Definition 3, family(S) is also simple. �

Proposition 5. If F is a simple non-core family in canonical form then
for all i, 1 ≤ i ≤ n, and ki ≥ 2 all Fi,j are simple and of strictly smaller size
than F .

P r o o f. For every i, by Proposition 1, Fi is simple. Furthermore, by con-
dition (C2), all names of Fi are correlated, and hence, by Proposition 1, Fi is
not formed by rule (F2). Since F is non-core, Fi is also non-core and is therefore
formed by (F3). Hence, again by Proposition 1, there are at least two equivalence
classes of impls(Fi) w.r.t. implementation sharing N∗

Fi
, and thus ki ≥ 2.

That all Fi,j are simple is guaranteed by the three properties of simple
families stated in Proposition 1 that match the three conditions in Definition 9.

That all Fi,j are strictly smaller is enforced through the formation rules
for simple families from Definition 3: rule (F1) requires the existence of a shared
artifact implementation, rule (F2) requires at least two equivalence classes on
names, and rule (F3) requires at least two equivalence classes on implementations,
and thus the decomposition into canonical form is never trivial. �

Proposition 6. If family F is simple, then shvm(F) is well-formed.

P r o o f. By induction on the size of F . First, let F be a core {P}. Then,
by Definition 10, shvm(F) = P , which is a well-formed variability model.

Next, let F be a non-core family decomposed into canonical form. As the
induction hypothesis, assume the result holds for all families smaller than F . We
have:

shvm({P} ⋊⋉

∏

1≤i≤n

⋃

1≤j≤ki
Fi,j)

= (P, {VP1, . . . ,VPn}) {Def. 10}

whereVP i = {shvm(Fi,j) | 1 ≤ j ≤ ki}

By Proposition 5, all Fi,j are simple and strictly smaller than F and hence, by
the induction hypothesis, all shvm(Fi,j) are well-formed variability models. Now,
since F is in canonical form, conditions (C1) to (C3) hold, ensuring the well-
formedness constraints (S1) to (S3), respectively, and hence also shvm(F) is a
well-formed variability model. �

80 S. Soleimanifard, D. Gurov, I. Schaefer, B. M. Østvold, M. Markov

Lemma 1. For every simple family F we have:

family(shvm(F)) = F

P r o o f. By induction on the size of F . First, let F be a core {P}. We
have:

family(shvm({P}))

= family(P) {Def. 10}

= {P} {Def. 8}

Next, let F be a non-core family decomposed into canonical form presented as
above. As the induction hypothesis, assume the result holds for all families smaller
that F , and thus, by Proposition 5, for all Fi,j . We have:

family(shvm({P} ⋊⋉

∏

1≤i≤n

⋃

1≤j≤ki
Fi,j))

= family((P, {VP1, . . . ,VPn}))) {Def. 10}

where VP i = {shvm(Fi,j) | 1 ≤ j ≤ ki}

= {P} ⋊⋉

∏

1≤i≤n

⋃

1≤j≤ki
family(shvm(Fi,j)) {Def. 8}

= {P} ⋊⋉

∏

1≤i≤n

⋃

1≤j≤ki
Fi,j {Ind. hyp.}

This concludes the proof of the lemma. �

Lemma 2. For every well-formed variability model S we have:

shvm(family(S)) = S

P r o o f. By structural induction. First, let S be a ground model with
common set MC . We have:

shvm(family(MC))

= shvm({MC}) {Def. 8}

= MC {Def. 10}

Next, let S be a variability model (MC , {VP1, . . . ,VPn}) with variation
points VP i = {Si,j | 1 ≤ j ≤ ki}. As the induction hypothesis, assume the result
holds for all Si,j. We have:

shvm(family((MC , {VP1, . . . ,VPn})))

Model Mining and Efficient Verification . . . 81

= shvm({MC} ⋊⋉

∏

1≤i≤n

⋃

1≤j≤ki
family(Si,j)) {Def. 8}

= (MC , {VP
′
1, . . . ,VP

′
n}) {Def. 10}

where VP ′
i = {shvm(family(Si,j)) | 1 ≤ j ≤ ki}

= (MC , {VP
′
1, . . . ,VP

′
n}) {Ind. hyp.}

where VP ′
i = {Si,j | 1 ≤ j ≤ ki}

= (MC , {VP1, . . . ,VPn}) {Def. S}

To justify the second step above we need to show that

{MC} ⋊⋉

∏

1≤i≤n

⋃

1≤j≤ki
family(Si,j)

is in canonical form. This is established as follows, using that S is simple. First, the
restriction that variation points have at least two variants and the constraint (S3)
guarantee that just the artifact implementations in MC and no other artifact im-
plementations are shared by all products of S, and thus condition (C1) is satisfied.

Next, constraint (S2) guarantees that artifact names implemented by dif-
ferent variation points are orthogonal. On the other hand, the restriction that
variation points have at least two variants and the constraint (S3) guarantee that
artifact names implemented by the same variation point must be correlated, and
thus condition (C2) is satisfied.

And finally, constraint (S3) guarantees that variants do not share any
artifact implementation. On the other hand, the restriction guarantees that any
two products of the same variant share an artifact implementation, and thus
condition (C3) is satisfied. This concludes the proof of the lemma. �

Theorem 2. Let S be an SHVM with global property φ. If the verification
procedure succeeds for S, then p |= φ for all its products p ∈ products(S).

P r o o f. The proof is by induction on the structure of S. For the base
case, let S be a ground model with common set MC . Assume the verification

procedure succeeds for S. It has then established:
⊎

a∈Art(MC)

Ga |= φ. From this,

and by soundness of rule (1), it follows that MC |= φ. Since products(S) = {MC}
in this case, we have p |= φ for all p ∈ products(S).

For the induction step, let S be a non-ground model (MC , {VP1, . . . ,VPn})
with variation points VP i = {Si,j | 1 ≤ j ≤ ki}, where ki is the number of variants
of VP i. Further, let (ψVP i

, IVP i
) be the specification of VP i. Assume the result

for all Si,j (induction hypothesis). Next, assume that the verification procedure
succeeds for S. The following has then been established for the top-level module:

82 S. Soleimanifard, D. Gurov, I. Schaefer, B. M. Østvold, M. Markov

(i)
⊎

a∈Art(MC)

Ga ⊎
⊎

1≤i≤n

Max(ψVP i
, IVP i

) |= φ

By the assumption, the verification procedure has also succeeded for all Si,j. Thus,
by the induction hypothesis, and since the SHVM nodes of variants attached to
a variation point inherit the corresponding variation point specification, we have:

∀i : 1 ≤ i ≤ n. ∀j : 1 ≤ j ≤ ki. ∀p ∈ products(Si,j). p |= ψVP i

By Definition 8 we have products(VP i) =
⋃

1≤j≤ki

products(Si,j), and hence:

(ii) ∀i : 1 ≤ i ≤ n. ∀p ∈ products(VP i). p |= ψVP i

Also by Definition 8, we know that every product p of S is the union of the
core MC and exactly one subproduct from every variation point. Due to (ii), all
subproducts meet their respective specifications. Also, by (i) and from soundness
of rule (1) follows that p |= φ. This concludes the proof. �

Siavash Soleimanifard

Dilian Gurov

KTH Royal Institute of Technology

Stockholm, Sweden

e-mails: {siavashs,dilian}@csc.kth.se

Ina Schaefer

Technical University of Braunschweig

Braunschweig, Germany

e-mail: i.schaefer@tu-braunschweig.de

Bjarte M. Østvold

Norwegian Computing Center

Oslo, Norway

e-mail: bjarte@nr.no

Minko Markov

University of Sofia

Sofia, Bulgaria

e-mail: minkom@fmi.uni-sofia.bg

Received June 23, 2015

Final Accepted October 8, 2015

