
Int J Softw Tools Technol Transfer (2003) 4: 405–420 / Digital Object Identifier (DOI) 10.1007/s100090100071

Averification tool for ERLANG

Lars–Åke Fredlund1, Dilian Gurov1, Thomas Noll2,∗, Mads Dam1, Thomas Arts3, Gennady Chugunov1

1Formal Design Techniques Group, Sweden Institute of Computer Science, Sweden
E-mail: fred@sics.se,dilian@sics.se,mfd@sics.se,gena@sics.se
2Lehrstuhl für Informatik II, Aachen University of Technology (RWTH), Germany; E-mail: noll@cs.rwth-aachen.de
3Ericsson Computer Science Laboratory, Ericsson Utvecklings, Sweden; E-mail: thomas@cslab.ericsson.se

Published online: 19 November 2002 – Springer-Verlag 2002

Abstract. This paper presents an overview of the main
results of the project “Verification ofErlangPrograms”,
which is funded by the Swedish Business Development
Agency (NUTEK) and by Ericsson within the ASTEC
(Advanced Software TEChnology) initiative. Its main
outcome is the Erlang Verification Tool (EVT), a theo-
rem prover which assists in obtaining proofs thatErlang
applications satisfy their correctness requirements for-
mulated as behavioural properties in a modal logic with
recursion. We give a summary of the verification frame-
work as supported by EVT, discuss reasoning princi-
ples essential for successful proofs such as inductive and
compositional reasoning, and an efficient treatment of
side-effect-free code. The experiences of applying the
tool in an industrial case study are summarised, and an
approach for supporting verification in the presence of
program libraries is outlined.
EVT is essentially a classical proof assistant, or

theorem-proving tool, requiring users to intervene in the
proof process at crucial steps such as stating program in-
variants. However, the tool offers considerable support
for automatic proof discovery through higher-level tac-
tics tailored to the particular task of the verification of
Erlang programs. In addition, a graphical interface per-
mits easy navigation through proof tableaux, proof reuse,
andmeaningful feedback about the current proof state, to
assist users in taking informed proof decisions.

Keywords: Formal methods – Software verification –
Theorem proving

1 Introduction

Erlang is a programming language developed at the
Ericsson corporation for implementing telecommunica-
tion systems [1]. It provides a functional sublanguage,

∗ Most of the work was completed during the author’s employ-
ment at the Department of Teleinformatics, Royal Institute of
Technology (KTH), Stockholm.

enriched with constructs for dealing with side effects
such as process creation and inter-process communica-
tion. Today many commercially available products of-
fered by Ericsson are at least partly programmed in
Erlang. The software of such products is typically
organised into many, relatively small source modules,
which at runtime execute as a dynamically varying
number of processes operating in parallel and commu-
nicating through asynchronous message passing. The
highly concurrent and dynamic nature of such soft-
ware makes it particularly hard to debug and test. We
therefore explore the alternative of software verifica-
tion based on a formal proof system. The core frag-
ment of the Erlang language is economic and clean,
allowing a compact transitional semantics, and com-
ponent interfaces can be elegantly specified in a modal
logic with recursion, suggesting feasibility of such an
endeavour.
Rather than working with some abstract model of the

Erlang system under consideration, our verification ap-
proach is directly based on the code: we show that a con-
crete Erlang program satisfies a set of properties for-
malized in a suitable logic, a specification language based
on Park’s µ-calculus [20, 26], extended with Erlang-
specific features. This is a quite powerful logic, due to the
presence of least and greatest fixed-point recursion, al-
lowing the formalization of a wide range of behavioural
properties. It semantically subsumes the temporal log-
ics CTL, CTL∗, and LTL. The verification problem in
this rather general context is not decidable, but can be
automated to a considerable extent, requiring human in-
tervention at a few, but critical points.
Verifying recursive temporal properties of systems

with dynamically evolving process structures and un-
bounded data is known to be hard. It requires a rich
verification framework supporting reasoning which is
parametric on components, relativised on the properties
of components, compositional, and provides support for
inductive and co-inductive reasoning about recursively

406 L.-Å. Fredlund et al.: A verification tool for Erlang

defined components and properties [8, 9, 14]. Due to the
concurrency and dynamism inherent in the systems we
address, a variety of (mutual) induction schemes need to
be available; at the same time it is often unlikely to foresee
which of these might work. We therefore employ symbolic
program execution and instance checking to “discover”
induction schemes. Our machinery is based on fixed-point
ordinal approximation and well-founded ordinal induc-
tion, and on a global discharge proof rule for ensuring
consistency of the mutual inductions present in a proof
structure.
The effort on the verification of Erlang programs is

taking place within a collaborative project between the
Formal Design Techniques group at the Swedish Insti-
tute of Computer Science and the Ericsson Computer
Science Laboratory, and is funded by the ASTEC (Ad-
vanced Software TEChnology) competence center of the
Swedish Business Development Agency (NUTEK). So
far, the project activities have been directed towards es-
tablishing the mathematical machinery [7–10], providing
basic tool support [3, 13], performing case studies [2], and
motivating the chosen verification framework [14].
This paper presents an overview of the main re-

sults of this project, and focuses in particular on the
Erlang Verification Tool (EVT), a theorem prover that
assists in establishing formal correctness properties of
Erlang applications. Although EVT has been applied
in case studies working with real-life software (see be-
low), it must be stressed that it is not intended to be
used by the Erlang programmers themselves. In its cur-
rent state, it should rather be understood as a “proof of
concept”, demonstrating that applying formal methods
to Erlang programs is feasible. We are planning to
develop specific instances of or interfaces to EVT sup-
porting special verification tasks which can be performed
automatically.
Efficiency and user-friendliness being crucial aspects

of a practical verification tool, we opted for designing
a special-purpose theorem prover rather than trying to
embed our rich and complicated verification framework
into some existing general-purpose theorem proving en-
vironment such as Coq [11], Isabelle [27], NuPrl [6], or
PVS [25].
The paper is organized as follows. In Sect. 2 we sum-

marise the verification framework supported by EVT:
the Erlang programming language, its formal seman-
tics, the property specification language, and the proof
system. In Sect. 3 we describe the implementation of the
tool. Particular emphasis is placed on aspects which are
less often found in comparable tools, notably the dis-
charge mechanism which implements a well-founded in-
duction scheme to handle infinitary behaviour. Section 4
discusses the principles of inductive and compositional
reasoning applied to the verification of Erlang pro-
grams. Since large fragments of Erlang applications are
purely functional, i.e., do not rely on side-effects-like pro-
cess communication, an efficient and compositional ap-

proach for dealing with such classical functional code
is absolutely essential, and is also discussed in Sect. 4.
Section 5 uses a simple verification example to illustrate
some high-level reasoning principles and the correspond-
ing automation facilities as supported in the tool. Sec-
tion 6 summarises our experience with using EVT in
a typical case study: the verification of a distributed
database query evaluation protocol. Section 7 presents
an approach for dealing with modularity in an elegant
fashion. TypicalErlang applications make extensive use
of standard libraries which implement everything from
basic operations on lists to complex distributed data
bases. The paper proposes a semantic approach to ex-
tending the capabilities of EVT for handling library mod-
ules without considering the actual implementation of
these modules. In Sect. 8 related work is presented and
discussed.

2 Foundations

In this section we briefly highlight the foundations of our
approach: the Erlang programming language, a speci-
fication logic for capturing correctness requirements of
Erlang programs, and a proof system for proof deriva-
tion. The technical details can be found in [8–10].

2.1 The Erlang programming language

Erlang/OTP is a programming platform providing
the necessary functionality for implementing open dis-
tributed (telecom) systems: the language Erlang with
support for concurrency, and middleware OTP (Open
Telecom Platform) providing ready-to-use components
(libraries) and services such as a distributed data base
manager, support for “hot code replacement”, and design
guidelines for using the components.

2.1.1 Syntax of core Erlang

In the following we consider a core fragment of the
Erlang programming language which allows us to im-
plement dynamic networks of processes operating on data
types such as integers, lists, tuples, or process identifiers
(pid’s), using asynchronous, call-by-value communication
via unbounded ordered message queues called mailboxes.
Real Erlang has several additional features such as
modules, mechanisms for controlling the distribution of
processes (onto computation nodes), and support for in-
teroperation with non-Erlang code written in, e.g., C or
Java.
Besides Erlang expressions e the syntactic cate-

gories of matches m, patterns p, guards g, and (basic)
values v (bv) are considered. The abstract syntax of Core
Erlang expressions is:

L.-Å. Fredlund et al.: A verification tool for Erlang 407

e::=bv | {e1, . . . ,en} | [e1|e2] | var
| e(e1, . . . ,en)
| begin e1 , . . . , en end
| case e ofm end
| catch e
| receivem end
| e1!e2

bv::=atom | number | pid | {} | []
v::=bv | [v1|v2] | {v1, . . . ,vn}

m::=p1 when g1 -> e1; · · · ;pn when gn -> en
p::=bv | var | {p1, . . . ,pn} | [p1—p2]
g::=e1, . . . ,en

The Erlang values, which represent the computation
normal forms of expressions, consist of a set of atom lit-
erals (with an initial lowercase letter), the numbers (here
integers only), process identifier constants ranged over by
pid , tuples (enclosed in curly brackets), and lists (with []
and [h|t] denoting the empty list and the list with head
h and tail t, respectively). The variables (ranged over by
var) are symbols starting with an uppercase letter.
To support the understanding of the remaining syn-

tactic constructs, we anticipate some elements of the
formal semantics which is going to be discussed in
Sect. 2.1.2. An Erlang process, here written <e,pid,q>, is
a container for the evaluation of an expression e. A pro-
cess has a unique process identifier (pid) which is used to
identify the recipient process in communications. Com-
munication is always binary, with one (anonymous) party
sending a message (a value) to a second party identified
by its process identifier. Messages sent to a process are
put in its mailbox q, queued in arriving order. The seman-
tics of Erlang specifies perfect (non-lossy) communication
channels of an unbounded size. The empty queue is eps,
[[v]] is the queue containing the one element v, and
q1@q2 concatenates the queues q1 and q2. To express the
concurrent execution of two sets of processes s1 and s2,
the syntax s1 || s2 is used.
The functional sublanguage ofErlang is rather stan-

dard: atoms, integers, lists, and tuples are value construc-
tors; e(e1, . . . , en) is a function call; begin e1, . . . , en end
is sequential composition. The main choice construct of
Erlang is by matching:

case e of
p1 when g1 -> e1;
...
pn when gn -> en
end

A guard gi can be omitted; in this case, the trivially
true guard true is assumed. The value that e evaluates
to is sequentially matched against patterns (values that
may contain unbound variables) pi, respecting the op-
tional guard expressions gi which are expressions that,

due to syntactic restrictions, are guaranteed to compute
without side effects and to terminate.
The constructs involving side effects (non-functional

behaviour) are: receive for reading from the mailbox
which is associated with the process evaluating the ex-
pression and “!” for sending a value to a process identified
by its pid. More concretely, upon evaluation of the ex-
pression e1!e2 the value of e2 is sent to the process with
process identifier e1, whereas receivem end inspects the
process mailbox q and retrieves (and removes) the first
element in q that matches some pattern in m. Once such
an element v has been found, evaluation proceeds analo-
gously to case v ofm end.
In addition side effects are possible through built-in

functions such as self(), yielding the process identifier
of the process evaluating this expression, throw(v) for
raising an exception v (that can be handled by a catch
expression), and spawn(f, [v1, . . . , vn]), resulting in a new
process being generated which executes the function call
f(v1, . . . , vn), where the process identifier of the new pro-
cess is returned in the spawning process.
Expressions are interpreted relative to an environ-

ment of “user-defined” functions of the shape:

f(p11, . . . , p1k) ->e1;
...

f(pn1, . . . , pnk) ->en.

Example 1. We shall illustrate the intuitive meaning of
Erlang programs using a simple but typical example.
Consider a concurrent server which repeatedly takes an
incoming request from its message queue and spawns off
a process to serve it:

central_server() ->

receive

{request, Request, Client} ->

spawn(serve, [Request, Client]),

central_server()

end.

serve(Request, Client) ->

Client!{response, handle(Request)}.

handle(Request) ->

ok.

Note above that Erlang variables are always upper-
case (Request and Client) while atoms are lower-case
(central_server, request etc.). The central_server
function is continuously prepared to receive tuples con-
taining a request Request and a process identifier Client.
It then spawns off a new process evaluating the serve
function, which simply invokes the handle function (just
returning an atom here) and sends the result back to the
process identified by Client.
Since Erlang is not statically typed a possible out-

come of sending a wrongly typed message to the server

408 L.-Å. Fredlund et al.: A verification tool for Erlang

process is that the newly spawned process will terminate
due to a runtime error, e.g., in the case that Client does
not refer to a valid process identifier.

2.1.2 A semantics for Erlang

The formal semantics of Erlang is given as an opera-
tional semantics in the form of a set of rules for deriv-
ing labelled transitions between structured states [28]. As
mentioned earlier, the latter are given by parallel prod-
ucts of processes. Our semantics for Erlang is a small-
step operational one [12], which is motivated by the free
intermixing of functional and side-effect concerns found
in Erlang.
Here we are faced with the question of how to han-

dle the different conceptual layers of entities in the lan-
guage, i.e., functional expressions and concurrent pro-
cesses, such that modular (i.e., compositional) reasoning
is supported. A natural approach is to organise the se-
mantics hierarchically, in layers, using different sets of
transition labels at each layer, and extending at each layer
the structure of the state with new components as needed.
More concretely, first the Erlang expressions are

provided with a semantics that does not require any no-
tion of processes. The actions here are a computation step
τ , an output pid !v, read(q, v) which represents the read-
ing of a value v from the queue of the process in whose
context the expression executes, and f(v1, . . . , vn)� v
which represents the calling of a built-in function f (such
as spawn for process spawning) with side effects on the
process level. Here the non-τ actions denote side effects of
expression evaluations on the next level of the semantics.
The second semantics layer concerns concurrent pro-

cesses executing expressions in the context of a unique
process identifier and a mailbox of incoming messages.
Their operational behaviour is captured through a set of
transition rules separated into two cases: (i) a single pro-
cess constraining the behaviours of an Erlang expres-
sion; and (ii) the (parallel) composition of two Erlang
systems into a single one, expressed by the parallel com-
position construct “ || ”. The system actions are silent
steps τ , output pid !v and input pid?v.

Example 2 (Erlang Semantics). We will illustrate the
operational semantics by considering the case of a built-
in function with side effects, such as spawn. On the level
of Erlang expressions the evaluation of such a function
is covered by the transition rule

isProcFun(f)

f (v1, . . . , vn)
f (v1,... ,vn)�v−−−−−−−−−→ v

where the isProcFun predicate recognizes the names of
built-in functions with side effects, and v represents any
Erlang value (akin to an input parameter). As seen
in the above rule the operational semantics is infinitely
branching, due to occurrence of the v placeholder. Any
complications caused by this are naturally handled on the

level of the proof system, via proper introduction of quan-
tifiers. On the process level spawning is handled more
directly in the following rule:

e
spawn(f,[v1,... ,vn])�pid

′

−−−−−−−−−−−−−−−−→ e′ pid ′ �= pid
<e,pid,q>

τ
−→

<e′,pid,q> || <f(v1, . . . , vn),pid
′,eps>

The condition pid ′ �= pid ensures that the process identi-
fier of the newly spawned process is locally unique. Note
also the occurrence of the expression e′ on the right-hand
side of the transition assertionwhich takes care of the case
when spawn is called in a proper subexpression of e.
One of the interleaving rules also makes a provision for

process spawning:

s1
τ
→ s1′ pids(s1′)∩pids(s2) = ∅

s1 || s2
τ
→ s1′ || s2

Here the condition pids(s1
′)∩pids(s2) = ∅, where pids(s)

returns the identifiers of the processes in s, guaran-
tees that process identifiers are unique under parallel
composition.

2.2 The property specification language

Verifying properties of applications programmed in
Erlang generally requires compositional reasoning, i.e.,
the capability to reduce arguments about the behaviour
of compound entities to arguments about the behaviours
of its parts. To support compositional reasoning, a speci-
fication language for Erlang has to capture the labelled
transitions at each layer of the transitional semantics (ex-
pressions and processes). Poly-modal logic is particularly
suitable for the task, offering box and diamondmodalities
employing the transition labels: a structured state s sat-
isfies the formula 〈α〉φ if there is an α-derivative of s (i.e.,
a state s′ such that s

α
−→ s′ is a valid labelled transition)

satisfying φ, while s satisfies [α]φ if all α-derivatives of s
satisfy φ.
Additionally, to support reasoning about data, the

usual logical connectives are brought in from (many-
sorted) first-order logic, including term equality, quanti-
fiers, lambda abstraction, and application. In the follow-
ing we let t range over general terms, T over variables
representing terms, and S over the sorts (types), although
these sorts will usually not be written out in formulas.
Sorts are used to distinguish terms of the different syn-
tactic categories of Erlang, such as expressions, process
identifiers, atoms, or processes.
The presence of recursion on different layers requires

also the specification language to be recursive. Adding
recursion in the form of least and greatest fixed points
to the modalities described above results in a pow-
erful specification language, broadly known as the µ-
calculus [20, 26]. Roughly speaking, least fixed-point for-

L.-Å. Fredlund et al.: A verification tool for Erlang 409

mulas, denoted by µX.φ, express eventuality (liveness)
properties, while greatest fixed-point formulas of the form
νX.φ formalize invariant (safety) properties. Nesting of
fixed points allows complicated reactivity and fairness
properties to be specified. Note that as usual references to
fixed points can be made only under an even number of
negations, to ensure that the corresponding fixed points
exists (due to monotonicity).
The syntax of the logic can then be summarised

by the following context-free grammar for formulas (or
assertions):

φ::=t1 = t2 (equality)
| true | false (truth values)
| ¬φ | φ1∧φ2 | φ1∨φ2 (connectives)
| ∃T : S.φ | ∀T : S.φ (quantifiers)
| λT : S.φ | φ t (abstraction/application)
| 〈α〉φ | [α]φ (modalities)
| νX.φ | µX.φ |X (fixed points)
| κ < κ′ (ordinal inequations)

| t1
α
−→ t2 (transition assertions)

This powerful logic is capable of expressing a wide
range of important system properties, ranging from type-
like assertions to complex reactivity properties of the
interaction behaviour of a telecommunication system.
As a syntactic convention fixed-point formulas can be
named, e.g., name⇐ φ abbreviates the least fixed point
µX.φ[X/name] and name⇒ φ abbreviates the greatest
fixed point νX.φ[X/name] (X is assumed fresh in φ).
Moreover we sometimes denote an application of the form
φ t by t : φ.
The semantics of a formula in the logic is defined in

the usual (denotational) fashion, as the set of Erlang
systems that satisfy the formula (see [8] for details).

Example 3. The type of natural numbers is the least set
which contains zero and which is closed under successor.
The property of being a natural number can hence be de-
fined recursively as a least fixed point, assuming the term
constructors 0 and +1:

nat ⇐ λN. (N = 0 ∨ ∃V. (nat V ∧N = V +1))

Example 4. An interesting property of the concurrent
server (see Example 1) is stabilization, i.e., the conver-
gence on output and silent actions. This liveness property
expresses that, assuming that no input is being received,
the process is able to execute only a finite number of out-
put and silent steps:

stabilizes ⇐ λS.

(
∀P.∀V.[P !V]stabilizes S
∧[τ]stabilizes S

)

2.3 The proof system

Verifying correctness properties of open distributed sys-
tems written in Erlang requires reasoning about their

interface behaviour relativised by assumptions about cer-
tain system parameters. Technically, this can be achieved
by using a Gentzen-style proof system, allowing free pa-
rameters to occur within the proof judgments. The judg-
ments are of the form Γ ∆where Γ and∆ are sequences
of assertions. A judgment is deemed valid if, for any in-
terpretation of the free variables, some assertion in ∆ is
valid whenever all assertions in Γ are valid. Parameters
are simply variables ranging over specific types of entities,
such as messages, functions, or processes. For example,
the proof judgment x : ψ P (x) : φ states that object P
has property φ provided the parameter x of P satisfies
property ψ.
The proof rules of the proof system can be partitioned

into the following categories:

1. The structural rules govern the introduction and elim-
ination of formulas, and the logical rules introduce the
logical connectives to the left and to the right of the
turnstile.

2. The dynamical rules establishes the connection be-
tween modalities and the embedded operational se-
mantics.

3. The operational semantics rules implement the se-
mantics of the target language (here Erlang).

4. The term-cut rule provides for compositional reason-
ing.

5. The fixed-point rules handle the introduction of ordi-
nal variables and the unfolding of fixed points.

6. Finally the rule of discharge governs the discharging of
proof branches due to fixed-point reasoning.

Structural and logical rules. This set of proof rules is stan-
dard from accounts of first-order logic in Gentzen-style
proof systems. As an example, the rules for introducing
universal quantifiers are shown below:

(∀L)
Γ , φ{v/V } ∆
Γ ,∀V : S.φ ∆

v ∈ S

(∀R)
Γ φ,∆

Γ ∀V : S.φ,∆
V fresh

Here, “V fresh” means that V does not occur free in the
conclusion of the rule.

Dynamical rules. The dynamical rules establish the con-
nection between modalities and transition assertions in
the style of [9, 30]. For instance, a box modality to the
right of the turnstile can be introduced by the rule

Γ , s
α
−→X X : φ,∆
Γ s : [α]φ,∆

X fresh

Operational semantics rules. The Erlang language con-
structs are encoded as terms of the underlying many-
sorted first-order logic. A definition of the transition re-
lation(s) of Erlang as recursive predicates is feasible.
However, to improve the speed with which new transi-
tions are computed, a set of transition assertion rules is

410 L.-Å. Fredlund et al.: A verification tool for Erlang

available in the proof system, for inferring transitions of
the form t

α
−→ t′. An example of such a rule is shown below,

for the case of input under parallel composition to the left
(T is assumed fresh):

(‖?L)

Γ , s1
pid?v
−−−−→ T, s′ = T ‖ s2 ∆

Γ , s2
pid?v
−−−−→ T, s′ = s1 ‖ T ∆

Γ , s1 ‖ s2
pid?v
−−−−→ s′ ∆

The term-cut proof rule. This proof rule achieves compo-
sitional reasoning about syntactic components ofErlang
programs by reducing arguments about a component to
arguments about properties of its subcomponents:

(TermCut)
Γ t : ψ,∆ Γ , T : ψ s : φ,∆

Γ s[t/T] : φ,∆

A component s′ containing the term t can be represented
through term substitution as s[t/T], where T is a variable
ranging over entities of the type of t. We can relativise an
assertion s[t/T] : φ about the compound object s[t/T] to
a certain propertyψ of its component t by considering t as
a parameter for which propertyψ is assumed, providedwe
can show that t indeed satisfies the assumed property ψ.

Fixed-point rules. The fixed-point rules govern the un-
folding of fixed points, and the annotation of fixed points
with ordinal variables to represent the number of such
unfoldings. These ordinal variables are examined by
the global discharge rule, presented next, to determine
whether the proof structure contains a proper inductive
or co-inductive argument.
Unfolding a least fixed-point definition to the left of

the turnstile (i.e., in Γ) or a greatest fixed-point definition
to the right of the turnstile (in ∆) results in the replace-
ment of the ordinal variable κ associated with the fixed
point with a new ordinal variable κ′, and introduces an or-
dinal inequation κ′ < κ as an additional assumption in Γ .
For example, the rules for manipulating a greatest

fixed point on the right-hand side, occurring under appli-
cations, are (the ordinal variable κ is assumed fresh in the
first rule, κ′ in the second):

(AppR)
Γ ((µX.φ)κ) t1 . . . tn,∆
Γ (µX.φ) t1 . . . tn,∆

(UnfR)
Γ , κ′ < κ (φ{(µX.φ)κ

′
/X}) t1 . . . tn,∆

Γ ((µX.φ)κ) t1 . . . tn,∆

Above, κ ranges over ordinal variables. Intuitively the
first rule corresponds to commencing a co-inductive ar-
gument, and the second records the existence of a lesser
ordinal as the inequation κ′ < κ.

The global discharge rule. The global discharge rule is the
crucial proof rule on which inductive and co-inductive
reasoning relies. Roughly, the goal is to identify situations
where a latter proof node is an instance of an earlier one

on the same proof branch, and where appropriate fixed
points have been unfolded. The discharge rule thus takes
into account the history of assertions in the proof tree.
Consider a proof node Nd, henceforth called the dis-

charge node, representing an open proof goal of the form
Γd ∆d. Assume that there exists an ancestor node Nc
in the proof tree, henceforth called the companion node,
labelled by a sequent Γc ∆c.
Here the discharge proof rule can be used to check

whether the companion node, and some auxiliary condi-
tions formulated on the global proof graph, motivate the
discharging of the discharge node. A characterisation of
the conditions regulating when such a discharge step is
sound is given in [8, 10]; here only a sketch is given.
The discharge proof rule checks three conditions,

given a proof node Nd ≡ Γd ∆d and a candidate com-
panion node Nc ≡ Γc ∆c:

– IsNd an instance ofNc? That is, does a substitution ρ
(mapping parameters to terms) exist such that: (i) for
each φ∈ Γc, φρ ∈ Γd; and (ii) for each φ∈∆c, φρ ∈∆d.
– Does some ordinal decrease on the path between Nc
and Nd? That is, is there some ordinal variable κ oc-
curring in Nc such that Γd κρ < κ.
– The previous two conditions are local, i.e., involve
only one pair of discharge and companion nodes. The
third condition is a global one which examines all re-
lated discharges throughout the proof tree to ensure
that discharges cannot cancel each other (theoretical
details are elaborated in [8, 10]). In essence this cor-
responds to checking whether the global proof tree
defines a proper simultaneous fixed-point induction
scheme.

In combination, the term-cut rule and the discharge
rule allow general and powerful induction and co-induction
principles to be applied, ranging from induction on the
dynamically evolving architecture of a system to induc-
tion on finitary and co-induction on infinitary datatypes.
This point is further elaborated in Sect. 4.

3 The Erlang verification tool

The proof system introduced in the previous section has
been implemented in a proof assistant (or proof checker)
named the “ErlangVerification Tool” here, abbreviated
EVT1. This tool has been tailored to this proof system;
rather than working with a set of open goals, the underly-
ing data structure is an acyclic proof graph, to account for
the checking of the side conditions of the discharge rule.
The main reason for developing a new proof assistant tool
prototype is our desire to experiment with different im-
plementation strategies for the rule of discharge and the
underlying proof graph representation. Moreover, most
existing theorem provers are rather inflexible in that they
offer a set of predefined induction schemes, from which

1 http://www.sics.se/fdt/VeriCode/evt.html

L.-Å. Fredlund et al.: A verification tool for Erlang 411

the user has to choose one at the outset of the proof.
This contrasts with our ambition to discover induction
schemes through a lazy search procedure in the course of
the proof.
Two notable releases of EVT exist. The first release

was reported in [3] and was an experimental prototype
tailored especially to the verification of Erlang code.
The second and current tool release [13] is more general,
permitting the embedding of theories for other languages.
Apart from the support for Erlang, an experimental
embedding of a variant of the value-passing Calculus of
Communicating Systems [21] (CCS for short) exists. The
current tool is, like the theorem provers HOL [16] and Is-
abelle [27], implemented in Standard ML [22].

3.1 Terms, variables, formulas, and proofs

EVT has as foundation a simple variant of many-sorted
first-order logic. Accordingly terms are typed (based on
their unique term constructors), but there is also a notion
of subtyping to permit a hierarchy of types. Types can be
equipped with type-specific parsers and unparsers, to en-
able reading and printing of terms and formulas in native
formats (e.g., to support Erlang syntax). Likewise, de-
rived formula constructs, with language-specific seman-
tics, can be defined. The introduction of subtyping in the
underlying theory can, as usual, introduce typing-related
proof obligations during parsing of terms and formulas.
For types considered to be freely generated (intu-

itively those types where “semantic equality” coincides
with the syntactic notion of equality) such as the natural
numbers, recursive predicates can be automatically gen-
erated that permit structural induction-style arguments
about elements of the type.
Sequents Γ ∆ are pairs of ordered sequences of for-

mulas (assertions) Γ = φ1, . . . , φn and ∆ = ψ1, . . . , ψk.
These formulas may contain free variables, which are of
two kinds: parameterswhich are generatedby rules such as
(∀R) above, and meta-variables, the result of postponing
the choice of awitness inaproof rule suchas (∀L).To ensure
that assignments to meta-variables are sound, a simple
scheme associating indices with variables, based on [29], is
used. Bound variables are represented using de Bruijn in-
dices, to support the quick checking of equality between
formulasuptoα-conversion,which is important forobtain-
ing efficient implementations of the discharge rule.
From a user’s point of view, proving a property of

an Erlang program using EVT involves the “back-
ward” (i.e., goal-directed) construction of a proof graph
(tableau). A proof graph is, here, an acyclic directed
graph of proof nodes containing sequents and rooted in
an initial proof node. Each proof node in the graph is ei-
ther a leaf node, meaning that it either represents an open
goal or that the sequent was solved by the application of
an axiom proof rule without premises, or it is a parent
node that has been reduced by applying a proof rule such

that its children nodes correspond to the premises of the
rule. An application of the discharge rule is represented
in the proof graph by a directed arc from the discharged
node to the node of which it is an instance, called the com-
panion node. Arcs in the proof tree are labelled by the
proof rule that caused the arc to appear, to permit flexible
display of proofs and portable proofs (to allow for, as an
example, proof-carrying code schemes [23], which gener-
ally require the proof representation to be independent of
the underlying machinery).
Open proof goals may also be (copy)discharged (or

subsumed in more standard terminology) when instances
of the goal can be found elsewhere in the proof graph.
In practice the application of the copydischarge rule is
absolutely essential to, for example, combat the state ex-
plosion caused by the interleaving semantics of Erlang.
However, there are two restrictions to its use. First, no
open proof goal can be copydischarged against an ances-
tor proof node. Second, an acyclicity condition is enforced
to prevent cyclic copydischarges. A finished proof graph is
a proof graph that contains no open goals.
The application of a proof rule can be cancelled (un-

done), resulting potentially in non-local cancellation ef-
fects on the proof tree when, for example, the companion
node of a copydischarge node is cancelled, naturally also
causing the copydischarge to fail. Another such problem-
atic case is when a meta-variable is assigned or cancelled
in one proof branch, but where this variable is also present
in another branch. In such a situation both the assign-
ment and the cancellation may also affect the proof steps
in the second proof branch. To permit a sound cancella-
tion scheme in spite of these difficulties a global ordering
of proof sequents is introduced, based on the absolute
order in which proof nodes were introduced by applica-
tions of proof rules.
A proof graph can also contain discharges with re-

spect to nodes not actually in the same proof tree but in
another proof tree. Such non-local copydischarges are re-
ferred to as applications of lemmata, or lemmadischarges.
Again an acyclicity test is performed, to prohibit mutual
dependencies between lemmata.
A (finished) proof is then a collection of finished proof

graphs such that all non-local discharges are made within
the collection of proof graphs.

3.2 Rules, tactics, and tacticals

The basic proof rules of the proof assistant are imple-
mented in the tool as tactics, which are functions (in the
Standard ML sense) from a sequent (the current goal, or
the conclusion) to a tuple consisting of a list of sequents
(the premises of the rule) and a list of assignments to
meta-variables caused by the tactic. Thus, if the (SML)
type of sequents is sequent, meta-variables are of type
var, and if terms are represented by the type term, then
the type of a tactic is

412 L.-Å. Fredlund et al.: A verification tool for Erlang

type tactic =

sequent -> sequent list * (var * term) list

Most rules are implemented as triggering on a par-
ticular assertion position in a sequent, and thus require
a natural number argument to determine where in the
sequent the rule is applied. Assertions, on both sides of
a sequent, are numbered starting from one. Thus, for in-
stance, the tactic implementing the proof rule (∀R) has
the signature

forall_r: int -> tactic

Being applied to a position i where, in the current goal
sequent, the ith assertion on the right-hand side is uni-
versally quantified, the quantified variable is replaced by
a fresh variable.
As most other proof assistants do, EVT provides tac-

tic combinators (tacticals) to offer a facility to derive new
sound tactics from basic tactics. Examples of such tacti-
cals are

t_compose: tactic -> (tactic list) -> tactic

t_orelse: tactic -> tactic -> tactic

t_fix: ’a ->

(’a -> (’a -> tactic) -> tactic) ->

tactic

The tactical t_compose t tl applies the tactic t to the
current sequent and then applies the tactics in the list tl
to the corresponding resulting goals, failing if t does so or
if the number of goal sequents does not match the num-
ber of tactics in tl. To evaluate t_orelse t1 t2, first t1
is applied, and t2 is applied only if t1 fails. Finally t_fix
can be used to write recursive tactics, the first argument
being an arbitrary initialization value, the second a func-
tion of an arbitrary parameter and a “continuation”, and
returning a tactic.

3.3 User interface and commands

The standard user interface to the proof assistant is the
conventional command-line interface of Standard ML (of
New Jersey) to which a number of commands to inter-
act with the proof assistant has been added. Conceptually
the user interface defines notions such as “the current
proof graph” and “the current proof node”. The com-
mands of the proof assistant operate on proof graphs,
possibly with side effects. For instance, there are com-
mands to start a new proof, to define a lemma, to navigate
through proof graphs (i.e., to redefine the current proof
node), to navigate through the hierarchy of proof graphs,
to extend (or complete) a proof graph by applying a tac-
tic to its current sequent resulting possibly in new proof
branches, and to cancel a previous proof step. As another
example the discharge and copydischarge proof rules are
implemented as commands rather than tactics, since they
cause global effects on the graph structure.
A clear alternative to combining tactics using tacticals

is to directly use the StandardML programming language

Fig. 1. The graphical user interface of EVT

facilities to define functions executing proof commands.
This works reasonably well, but has the disadvantage that
all intermediate proof nodes are kept. In contrast, using
tactical combinators, no intermediate proof nodes are ever
kept. Moreover, as already mentioned, the soundness of
the resulting high-level proof rules is guaranteed.
A second, graphical, user interface is also available.

This user interface consists of two parts: the first is pro-
grammed in Java and provides additional user assistance
through the implementation of modern theorem prover
features [5] such as “proof-by-pointing” (to suggest,
based on the proof context, the next proof rule to apply),
a more structured database of lemmata, proof recording
and playback, etc. A screenshot of a proof session using
the graphical user interface is shown in Fig. 1. The sec-
ond component of the graphical user interface is used to
visualize and to navigate through the proof graph, and is
implemented by interfacing with the daVinci [15] graph
visualisation system. Experiences with the graphical in-
terface indicate that the initial training period required to
become familiar with the tool is considerably shortened in
comparison with the command-line interface.

3.4 An implementation of the global discharge rule

The tool contains an implementation of the global rule
of discharge which is rather faithful to the description in
Sect. 2.3, except for the following variations.
The global discharge mechanism is implemented in an

incremental fashion: there is no requirement that all “re-
lated” discharges be considered at the same time, thereby
freeing the user of the nearly impossible task of directly
devising a complex inductive argument over a set of ordi-
nal variables. Rather individual discharges are incremen-
tally added to the proof graph, and the (local) conditions

L.-Å. Fredlund et al.: A verification tool for Erlang 413

under which the discharge was successful are recorded in
the graph. When a new discharge is added to the proof
graph, the set of related discharges are computed, to
check whether a progressing measure can still be found.
As a further refinement to the basic scheme the imple-

mentation additionally employs a taggingmechanism [32]
such that the state vector under which a fixed point is
unfolded is recorded in the unfolded fixed point. For ex-
ample in the proof rule UnfR (see above) the arguments
t1 . . . tn are recorded together with the fixed point. Then,
in proof search, a fixed point is typically unfolded only
when the current state vector is not an instance of an ear-
lier (recorded) one.
The point of employing a tagging scheme is twofold:

first, automatic proof search can be efficiently guided by
the tags (when to stop unfolding a fixed point, and how
to discover an induction scheme); and second, to improve
the diagnostic result from an unsuccessful attempt at ap-
plying the discharge rule:

– Is there an earlier proof state with an identical “con-
trol state”? (suppose there is no such state in the fixed
point tag, then likely the decision to discharge here is
incorrect and proof search should continue)
– Is the current proof state an instance of an earlier one?
(if not, perhaps an additional argument about data is
required)
– Does some ordinal decrease? (otherwise perhaps an in-
ductive argument is missing from earlier proof steps)
– Do any related discharges interfere? (then perhaps the
whole induction argument has to be reconsidered)

These points will be further illustrated in the example in
Sect. 5.

3.5 High-level tactics for deriving transitions

In general the handling of the operational semantics
in EVT is split into two parts: a language-dependent
part where tactics corresponding to the operational se-
mantics of the language in question are introduced and
a second, largely language-independent part, for deriving
valid transitions from such sets of operational semantics
tactics.
The present tool implements four high-level tactics,

diasem_l, diasem_r, boxsem_l and boxsem_r, for rea-
soning about combinations of program terms and modal-
ities. For example, the diasem_r and boxsem_r tactics
try to achieve the result of the proof rules 〈 〉R and []R
below. An underlying assumption of these rules is that
the program term t induces a sequence of transitions
t
α
−→ t1, . . . , t

α
−→ tn under the action α, and that no other

such continuation state tx exists.

(〈 〉R)
Γ t1 : φ, . . . , tn : φ,∆
Γ s : 〈α〉φ,∆

([]R)
Γ t1 : φ,∆ . . . Γ tn : φ,∆

Γ s : [α]φ,∆

The means of realising tactics achieving the effect of
these rules is by repeatedly applying language-specific op-
erational semantic proof rules such as, e.g., ‖?L shown
earlier, together with general simplification steps such as
term equality reasoning. In addition language dependent
lemmata for handling data are appealed to.

4 Inductive and compositional reasoning

Code verification is an inherently complex activity in
which the complexity of the program behaviour is es-
sentially multiplied with the complexity of the property
being analyzed. Using the proof system without any plan-
ning requires a large amount of low-level inference steps
and decisions to be taken which prohibits the verifica-
tion of industrial-scale software. To make our verification
method applicable in this setting, we have to lift the rea-
soning to a suitably high level of abstraction. High-level
reasoning means proving “in chunks”, i.e., decomposing
proof obligations about compound objects to proof obli-
gations about the components, and dealing with these
using tactics designed to automate the lower-level rea-
soning steps. At the same time, reasoning about ongoing
behaviour involves inductive and co-inductive arguments
which have sometimes to be combined with compositional
reasoning. Below we discuss (co-)inductive and composi-
tional reasoning and their rôle in structuring proofs and
higher-level reasoning.
There is clearly no general method for verification of

arbitraryErlang programs which is effective and, at the
same time, leads to economic proofs. However, one can
do much better in specialised cases which are well under-
stood. A main direction of research is the identification
of fragments of Erlang and of the property specification
language for which efficient verification methods exist.
One such fragment is the side-effect-free one, in which an
Erlang expression is evaluated purely for its value, and
is not affecting the environment in which it is evaluated
in terms of sending messages, reading from the message
queue, or process spawning. Section 4.3 gives a high-level
treatment of side-effect-free function calls based on com-
positional reasoning.

4.1 Induction and discharge

Automating the verification of components usually faces
the difficulty of handling recursively defined behaviour.
This requires inductive and co-inductive reasoning, de-
pending on whether one investigates properties of termi-
nating or ongoing behaviour. Many types of induction are
involved in examples such as the case study considered in
Sect. 6:

– induction on the number of evaluation steps,
– induction on the size of data values, such as numbers
or lengths of lists, and

414 L.-Å. Fredlund et al.: A verification tool for Erlang

– induction on the structure of function expressions.

Induction on the number of evaluation steps from some
initial configuration is for example used if we prove that
computing the length of a list results in a natural num-
ber, or that comparing two numbers results in a Boolean.
Co-induction is typically used for invariants, by show-
ing that the invariant remains unbroken after any num-
ber of computation steps. General programs involve data
type operations, communication, and, maybe, dynamic
creation of new processes, in manners which are inter-
woven to a considerable extent. To handle these compli-
cations, most parts of the proof will involve induction
and co-induction at many levels simultaneously, which,
when properly formalized, may be exceedingly compli-
cated. Our proof-theoretic approach, using loop detection
or discharge, allows very substantial parts of this formal-
isation to be almost completely hidden from the user. In
fact the discharge mechanism as described in the previ-
ous section attempts to cast the proof as constructed so
far as a proof by simultaneous induction, by seeking an
ordering that makes the dependency relation between in-
duction and co-induction variables a well-founded one.
Maintaining the constraints on this dependency ordering
is done by the proof editor. Thus there is no need for
users to specify the sequence, nesting, or mutual depen-
dencies of simultaneous inductive arguments, or even to
state that induction is being used at all. All this is man-
aged by the tool. Furthermore, the tool supports, through
the discharge mechanism, the discovery of successful in-
duction schemes; for making informed decisions, however,
the user will need to have a basic understanding of the
general principles of simultaneous fixed-point induction.

4.2 Compositional reasoning

The essence of compositional verification is the reduction
of an argument about the behaviour of a compound sys-
tem to arguments about the behaviour of its components.
To achieve this the term-cut proof rule is utilised (recall
its definition from Sect. 2.3):

(TermCut)
Γ t : ψ,∆ Γ , T : ψ s : φ,∆

Γ s[t/T] : φ,∆

Very often, constructors occurring within the scope
of recursion give rise to unbounded state spaces. An ex-
ample is a process spawning statement, giving rise to the
formation of an unbounded process set. In such cases
we have to combine (co-)inductive with compositional
reasoning. For example, after a new process s has been
spawned off by a recursive process t one can apply the
above term-cut rule to relativise the proof on the specifi-
cation of t rather than on its implementation, thus avoid-
ing new processes from being generated by t explicitly
in the process term, and thus allowing the (co-)induction
through loop detection and discharge to go through.

The above term-cut rule provides the basic low-level
facility for compositional reasoning. Applying the rule re-
quires a suitable choice of the cut property ψ. It should
capture the essence of the behaviour of t needed for com-
pleting the proof. In some special cases we can give a con-
crete structure to the formation of ψ, as illustrated in the
next section, and give (and support through tactics) more
high-level decomposition principles exploiting this addi-
tional structure.

4.3 Dealing with side-effect-free Erlang code

A frequent case in practice is dealing with function calls
where the body of the definition of the function is side-
effect-free, i.e., is evaluated purely for its value, and does
not affect the environment in which it is evaluated in
terms of sending messages, reading from the message
queue, or process spawning. The libraries offer a large
number of such functions. For example, the list-sorting
function sort could be used by the handle function in the
concurrent server (see Example 1) to process list sorting
requests:

handle({srt, L}) ->

sort(L).

If we want to prove a property of such a sorting server,
we would like to reason on a high level and replace func-
tion calls to the list sorting library function sort with
argument L, with a value variable V , by adding the as-
sumption that V is a sorted permutation of L. What we
abstract from in this case are the internal steps required
to evaluate the sort function call. It is safe to do so since
this computation does not affect the rest of the system.
It only affects the number of silent (i.e., side-effect-free)
steps, therefore such a decomposition assumes the prop-
erty we are analysing to be “insensitive” to silent actions.
In general, under the assumptions that

– e is a call of a function f , that
– the body of the definition of f is side-effect-free, and
that
– the formula φ is insensitive to (the number of) side-
effect-free actions,

the following decomposition principle is applicable:

(SefCut)

Γ e : prepost(ψ, θ),∆
Γ ψ,∆

Γ , V : θ 〈V, pid, q〉 : φ,∆
Γ 〈e, pid, q〉 : φ,∆

where prepost is as defined below.
Once a side-effect-free function call has been factored

out, it can be specified and verified using well-known
techniques. A classical method for the verification of se-
quential programs is the axiomatic method of Hoare [18].
It is based on assertions of the shape {ψ}e{θ}, the intu-
itive semantics of which, in our context, is: if the param-
eters of e satisfy the precondition ψ, the execution of e,

L.-Å. Fredlund et al.: A verification tool for Erlang 415

provided it terminates, results in a value satisfying the
postcondition θ. We follow the same idea, but require ter-
mination; a correctness notion known as total correctness.
We use assertions of the form e : prepost(ψ, θ) where

e : prepost(ψ, θ) = (ψ→ e : eval θ)

e : eval θ⇐
∃V : erlangValue.(e= V ∧ V : θ)
∨ e : 〈τ〉 true∧ [τ] eval θ

For example, the required behaviour of the sort func-
tion can be specified as a satisfaction pair of the form
sort(L) : prepost(L : list, θsortL) where the type list is
defined by:

L : list ⇐
L= []
∨∃P,R : erlangValue.L= [P |R] ∧R : list

and the assertion θsortL is defined by:

V : θsortL =
isSortedV
∧ isPermutation V L

A more detailed account of how to deal with side-
effect-free Erlang code can be found in [17].

5 An example: the concurrent server revisited

We shall illustrate the ideas presented above using the
Erlang program from Example 1. Recall the definition
of the concurrent server which repeatedly takes a re-
quest from its message queue and spawns off a process to
serve it by handling the request, here always assumed to
succeed, and responding with the obtained result to the
client specified in the request:

central_server() ->

receive

{request, Request, Client} ->

spawn(serve, [Request, Client]),

central_server()

end.

serve(Request, Client) ->

Client!{response, handle(Request)}.

handle(Request) ->

ok.

The property we consider is the liveness property from
Example 4, namely stabilization, i.e., the convergence on
output and silent (estep) actions. We recall its definition
from Example 4:

stabilizes ⇐ λS.

(
∀P.∀V.[P !V]stabilizes S
∧[τ]stabilizes S

)

Thus, the initial proof goal is declared as:

declare P:erlangPid, Q:erlangQueue in

|- <central_server(), P, Q> : stabilizes

In the proof sketch below we illustrate the interplay
between automated proof search – leading to the discov-
ery of proof structures such as induction strategies – and
manual proof steps realising the discoveries in a revised
proof attempt.
The following proof search script results in a symbolic

execution of the process until either a system which is not
a singleton process, or a repetition of the same control
state is encountered:

loop

(case_by

[(sp_and (sp_sat_sysproc_r 1)

(sp_not (sp_sat_is_queue_var_r 1)),

t_queue_flat_r 1),

(sp_and (sp_sat_sysproc_r 1)

(sp_unfoldable_r 1),

t_gen_unfold_r 1)

]);

In the first case, if the first right-hand side formula is
a satisfaction pair the first part of which is a single
process the queue term of which is not a variable, the
t_queue_flat_r tactic is applied which replaces the
term with a fresh variable and adds an equation to the
left equating this fresh variable with the queue term.
This is done to insure that, in the second case, the pre-
instance checkingmechanism based on sp_unfoldable_r
detects control-point repetition. Execution of the above
proof search script terminates because a new process was
spawned (and thus sp_sat_sysproc_r failed). The result
is the sequent:

Q = Q2@[[{request,Req,ClPid}]]@Q3,

Q1 = Q2@Q3, not (P = P1) |-

<begin P1, central_server() end, P, Q1>

|| <serve (Req, ClPid), P1, eps> : stabilizes

The queue Q2@[[{request,Req,ClPid}]]@Q3 is
built from the concatenation of three parts, Q1, the
value [[{request,Req,ClPid}]] and Q3. We have
now a clear indication that the number of processes in
the system will grow without bound, so a blind proof
search is bound to fail. Rather, one has to proceed by
induction on the system structure. This is achieved
through compositional reasoning by abstracting away
the first process component which is responsible for the
unbounded dynamic process creation, and by relativising
the argument on a property of this component. The
choice of a suitable property is crucial, of course, for
the induction to succeed. In our particular example
it happens that stabilizes composes. We apply the
term-cut rule to obtain the two new goals:

|- <begin P1, central_server() end, P, Q1> :

stabilizes

416 L.-Å. Fredlund et al.: A verification tool for Erlang

X : stabilizes |-

X || <serve (Req, ClPid), P1, eps> :

stabilizes

the first of which corresponding to the induction basis,
and the second corresponding to the induction step. The
first of these can be be analysed by the script presented
above, terminating with the goal

|- <central_server(), P, Q1> : stabilizes

because of detecting a pre-instance (we looped back to the
initial control point), causing sp_unfoldable_r to fail.
One might expect to be able to discharge here with re-
spect to the initial goal, but this fails. The reason is that
no ordinal has been decreased. However, by inspecting
the proof state we realize that the length of the queue of
the process has decreased, and that indeed stabilization
of the server is a consequence of the well-foundedness of
message queues. We therefore return to the initial goal
and redeclare it by adding an explicit assumption on the
well-foundedness of the queue, which will be maintained
throughout the proof:

declare P:erlangPid, Q:erlangQueue in

Q : queue |-

<central_server(), P, Q> : stabilizes

queue ⇐
λQ : erlangQueue.(
Q= eps
∨∃V.∃Q1.∃Q2.Q=Q1@[[V]]@Q2∧queue Q1@Q2

)

The revised proof will turn out to be, at least partly,
by induction on the queue-term structure. All we have
to change in the beginning is to approximate the left
formula, resulting in Q : queue being replaced by
Q : queue(K) where K is an approximation ordinal, and
to proceed as before. This eventually results in:

Q2@[[{request,Req,ClPid}]]@Q3 : queue(K),

Q1 = Q2@Q3 |-

<central_server(), P, Q1> : stabilizes

in place of the unsuccessful goal we ended up with
earlier. This goal is “almost” dischargeable with
respect to the initial goal after approximation.
For the instance check to go through, one needs
Q1 : queue(K1), for some ordinal variable K1<K, instead
of Q2@[[{request,Req,ClPid}]]@Q3 : queue(K) to
appear as an assumption in the sequent. We therefore
unfold queue(K) via t_gen_unfold_l, followed by trans-
ferring the queue-term assumption via t_queue_invar_l
to obtain a dischargeable goal.
The important goal we are left with is the sequent

corresponding to the induction step. Fortunately, it can
be dealt with by the same proof script as the initial
goal, with the important difference that no new pro-
cesses will be spawned. Parameter-assumption transfer,
however, concerns in this case not the queue but the
process parameter X. In addition, the number of control
states will grow due to the presence of two concurrent
processes.

6 Report on a verification experience:
the analysis of a distributed database
lookupmanager

Erlang is used extensively for writing robust distributed
telecommunication applications. Central in many of these
applications is a distributed database, Mnesia [31], also
written in Erlang. The Mnesia system is crucial for the
robustness of many Erlang-based products developed
at Ericsson. It is, for instance, responsible for error recov-
ery, the prompt and safe handling of which is essential in
telecommunication applications. These features make the
Mnesia system a rewarding object of study when trying
out new verification techniques.
The case study at hand concerns only a small part

of the Mnesia system, a protocol for the evaluation of
a query which is distributed over several computers in
a network. The starting point for this case study was the
Erlang code implementing the distributed database.
We extracted, from the real implementation, the code
for the distributed query evaluation protocol and added
some code to provide a very simple simulated interface
to parts of the system that were irrelevant for the prob-
lem at hand. The result was an Erlang program that
could be seen as a very precise, and in some sense formal,
description of the underlying algorithm. Isolation of the
code responsible for the lookup mechanism and analysing
the intended behaviour of the code resulted, as a side ef-
fect, in a clear and patentable picture of the underlying
protocol [24].
As input the protocol receives a database query di-

vided into subqueries. These subqueries are distributed
over the network in the form of processes on those com-
puters where the specific data for a subquery is stored.
Whenever a subquery process receives a message, it ex-
tracts the corresponding data from the database tables
and sends it along the network.
One process is responsible for initialising the lookup

process ring, and for collecting the resulting data. To
avoid excessive delays and storage consumption, query
answers are collected in segments, managed by the lookup
manager (see Fig. 2). The task we set ourselves was to

Fig. 2. Ring of processes attached to tables, with P1 the initial
process

L.-Å. Fredlund et al.: A verification tool for Erlang 417

prove that the implementation provided a responsive-
ness property: that input queries are eventually being
replied to.

6.1 Using the tool in practice

Mixing automated and interactive verification in the
manner we propose puts very considerable demands on
the user interface, which has to aid users in controlling
possibly very large proofs. The tactic programming lan-
guage gives a lot of help, providing facilities for naming
and retrieving nodes, and for defining search and navi-
gation procedures. The simple tactics we developed for
“model checking”, type check, and termination, turned
out to be surprisingly robust, requiring little adaptation
even for quite substantial modifications of the functions
and properties being checked. In our case study so far we
have proved a number of properties for the ring process,
and for various approximations of it. The most sophisti-
cated of those proofs contains about 2000 proof nodes,
two third of which have been generated automatically. To
help visualisation the daVinci graph display facility [15]
was used. Small graphs of less than 1000 nodes are eas-
ily displayed by daVinci, and it provides good help, for
instance in debugging proof tactics. Larger proof graphs
really need to be displayed incrementally (which is not
very well supported currently) or in segments, to avoid
excessive delays.

6.2 Conclusions on the database case study

Our report is a tentative one, reporting more on qualita-
tive than quantitative experiences with the use of a novel
approach to code verification for distributed systems. It
must be stressed that there really are not many tools or
proof approaches around with a similar scope of address-
ing dynamic process networks on the level of actually run-
ning code without resorting to approximate techniques.
The database lookup manager which we addressed was
about 200 lines of code and explored most “core” features
of the Erlang language including list and number pro-
cessing, communication, and dynamic process creation.
Experience withErlang at Ericsson has indicated that –
as a rule of thumb – one line ofErlang code corresponds
to six lines of C code.
A central issue on which we have as yet little to say is

scalability. Since our proof system is highly compositional
it is actually realistic to hope that it is possible to reuse
proofs together with their associated code modules. At
the moment, however, we have little practical experience
with this.
The proof approach which we follow requires user in-

tervention. We have developed tactics which are quite ro-
bust and manage to produce large parts of proofs without
any user intervention at all. Moreover it is quite realistic
in many cases to hope to automate almost the entire proof

search process, even in cases when model checking-like
techniques fail. The critical point at which user interven-
tion is really essential is, of course, in the identification
of inductive assertions. In the example studied here this
was not at all easy. A particular source of headache was
the handling of process identifiers which in Erlang play
a rôle not unlike names in the π-calculus. Even though
our handling of process identifiers and their creation in
Erlang is as yet imperfect, the tool was able to assist the
identification of inductive assertions quite substantially,
by having tactics which were sufficiently robust to often
accommodate smaller formula modifications completely
automatically.
The reader is referred to [2] for a more detailed de-

scription of this case study.

7 Extension: support for program libraries

As pointed out in the preceding explanations, the veri-
fication of complex distributed systems requires compo-
sitional reasoning methods. Aiming to bring verification
technology into industrial applications and to support re-
search on industrially relevant problems in software de-
velopment, it is neither meaningful nor manageable to
start completely from scratch when a new or modified
verification problem is being addressed. Instead it should
be possible to exploit known properties of subsystems by
reusing their proofs.
A compositional reasoning framework will turn out

to be useful especially in connection with standard pro-
gram libraries and programming techniques. Since these
are developed to be used frequently, it is worth spend-
ing a considerable effort in analysing and describing their
properties since many applications will potentially bene-
fit from this knowledge.
An alternative to the approach we advocated in

Sect. 4.2 is to capture the behaviour of library functions
by specifying their operational semantics on an abstract
level, regardless of their concrete implementation. To this
aim we provide rules in the style of Sect. 2.1.2 which de-
scribe the possible transitions that any Erlang process
evaluating the respective function can take, restricted by
the shape of the environment if necessary. Adding these
rules to the general proof system of Sect. 2.3 enables us
to argue about any program that uses the library mod-
ule without having to consider the module’s source code.
In this way we support a compositional style of reasoning
which is relativised by the assumption that the concrete
implementation of a library follows its specification.
From a pragmatical point of view we can argue that

such assumptions are justified since software libraries
are usually well-tested, and since their frequent use un-
covers unexpected behaviour very soon. From a concep-
tual point of view however, the consistency between the
library-specific transition rules and the concrete imple-
mentation with respect to the general proof system is an

418 L.-Å. Fredlund et al.: A verification tool for Erlang

issue: do the specific rules fully reflect the behaviour of
the library functions, or are they too abstract in the sense
that certain details of the implementation are ignored al-
though they have an impact on the verification problem?
Or, in other words: is the (low-level) implementation of
the library module correct with respect to the (high-level)
specification?
Pragmatically, our concern is to provide a framework

in which we can prove properties of the code in an ab-
stract setting, where we use one abstraction for all pos-
sible properties. This abstraction is very close to the real
implementation, but there will always exist properties for
which it turns out to be too general. However, if we can
prove a certain property about the abstraction, then we
increased the level of confidence in the code; if we find
that a certain property does not hold by reasoning in this
abstracted setting, then, most likely, this corresponds to
an error in the real program.
We now concretely demonstrate our ideas using a spe-

cific class of programs which plays an important rôle in
open distributed applications. The essential characteris-
tics of this class are described in the following section.

7.1 Generic client-server implementations

To support the software development process, the
Erlang/OTP Development Team has devised a wide
range of design principles which describe how to structure
a concrete Erlang software architecture. In particular
several kinds of behaviour modules are offered as tem-
plates to build concrete systems. Among these one finds
the gen_server behaviour which is widely used to im-
plement client-server applications in a standardized way.
The gen_servermodule offers a number of interface

functions which provide synchronous communication, de-
bugging support, error handling, and other administra-
tive tasks. The actual, application-specific implementa-
tion of the server has to be provided by the user in a sep-
arate module, named the callback module. Whenever the
generic part of a server receives a request, the correspond-
ing callback function is being invoked.
For example, gen_server provides the call func-

tion which can be invoked in the user process to send
a request to a server:

gen_server:call(Server, Req)

This request is handled by the generic server process
by executing the corresponding callback function:

callback:handle_call(Req, User, State)

Here, callback is the name of the callback module, User
identifies the user process, and State is a term rep-
resenting the current state of the server. The callback
function now decides whether the user should receive
a reply immediately ({reply, Answer, NewState}), later
({noreply, NewState}), or whether the server process
should terminate as the result of the request ({stop,

Reason, NewState}). In the first case, Answer is the
call return value.

7.2 Abstraction from implementation details

To support the verification of client-server systems that
employ the above generic implementation scheme, one
might think of the following strategies:

– the complete system specification including the call-
back and the gen_server modules is fed into EVT,
or
– the generic server implementation in background is
eliminated by deriving a standaloneErlang program
which reflects the essential behaviour of the system.

The first approach requires no intermediate translation of
the program system, but the proof will become much too
complicated due to the necessity to consider the details of
the generic server implementation. Using the second idea,
the proof system has to deal with only one, comparatively
simple piece of software. However, the source code has to
be translated, and synchronous communication has to be
implemented by asynchronous messages, involving a po-
tential state-space overhead.
As explained above, we follow a third approach here.

We facilitate the proofs by ignoring the concrete imple-
mentation of the gen_servermodule. Instead, we spec-
ify its abstract behaviour by including its syntactic con-
structs in theErlang syntax, and by adding appropriate
transition rules to the proof system. Thus, the intuitive
meaning of the call/handle_call mechanism as de-
scribed above gives rise to the following set of rules.
A call in the user process can be handled by the

server if the latter is in an idle state, as indicated by the
loop atom. In this case, the server process executes the
handle_call callback function, and the user process is
put into a wait state until the request has been answered.
Formally, this is reflected by the following rule:

〈call(pid ′, req), pid , q〉 ‖ 〈loop(state), pid ′, q′〉
−→ 〈wait(pid ′), pid , q〉 ‖
〈handle_call(req, pid , state), pid ′, q′〉

When the handle_call function yields an answer, it
is immediately returned to the waiting user process, and
the server changes into the idle state again:

〈wait(pid ′), pid , q〉 ‖
〈{reply, answer ,newstate}, pid ′, q′〉

−→ 〈answer , pid , q〉 ‖ 〈loop(newstate), pid ′, q′〉

As can be seen, the asynchronous communication actions
that are used in the gen_server module to implement
synchronousmessage passing are collapsed into an atomic
handshake. The remaining functions are represented in
a similar fashion.
So far we have extended the proof system by appro-

priate transition rules and applied it to simple examples,

L.-Å. Fredlund et al.: A verification tool for Erlang 419

starting with systems which consist of a finite number
of clients and servers. The details are described in [4].
Currently, for more elaborated case studies, we are try-
ing to identify tactics and tacticals which automatically
take (most of) the decisions described in Sect. 3, and we
will try to extend the method to programs which involve
dynamic process creation. The whole approach should
also be easily adaptable to several other libraries in the
Erlang distribution, such as systems of finite-state ma-
chines implemented by the generic gen_fsm module.

8 Related work

In this section we briefly review other verification frame-
works which support deductive systems tailored towards
formal reasoning about programming languages, ignoring
theorem-proving systems designed for the formalization
of classical or constructive mathematics, such as Coq,
HOL, or Nuprl.
ACL2 2, the successor of the “Boyer–Moore theorem

prover” Nqthm, supports the first-order logic of total re-
cursive functions with equality, offering mathematical in-
duction on ordinals as the main proof method. Within
this framework it is possible to define models of vari-
ous kinds of computing systems and to prove theorems
about them. Successful industrial-scale applications of
this approach include correctness proofs of several assem-
bler programs for a Motorola signal processor and of the
floating-point division unit of an AMD microprocessor.
Another popular system is the Isabelle generic theo-

rem proving environment3. Its meta-logic, called Isa-
belle/Pure, is used to declare the (concrete and abstract)
syntax and the semantics (i.e., the inference rules) of
a concrete logic. Moreover, it allows us to instantiate
generic proof tools such as a general tableau prover to
obtain a specific prover, or to manually code specialized
proof procedures. Concrete programming-oriented appli-
cations of this framework comprise verification tools for
the Java programming language, for distributed systems
specified using I/O automata or the UNITY language,
and for object-oriented programs.
Examples for other verification systems of this kind

are ELAN 4 and Larch5.
The specification language of thePVS theoremprover6

is based on classical, typed higher-order logic supporting
functions, sets, records, tuples, enumerations, recursively-
defined abstract data types, predicate subtypes, and de-
pendent typing. PVS provides a collection of proof rules
that are applied interactively under user guidance within
a sequent calculus framework. Just like EVT the prover
maintains a proof tree where the nodes are labelled by

2 http://www.cs.utexas.edu/users/moore/acl2/
3 http://www.cl.cam.ac.uk/Research/HVG/Isabelle/
4 http://www.loria.fr/ELAN/
5 http://www.sds.lcs.mit.edu/spd/larch/
6 http://pvs.csl.sri.com/

sequents. The primitive proof rules include propositional
and quantifier rules, equational reasoning, induction,
rewriting, and decision procedures for linear arithmetic.
All of the above frameworks could be applied, at

least in principle, to the verification ofErlang programs
as well. To this aim, the syntactic constructs and their
meaning had to be defined in the corresponding speci-
fication formalism. With regard to the logic, however,
one would be dependent on those proof methods which
are predefined in the respective system. For example this
means that, at the outset of a proof, the user has to choose
from a collection of predefined induction schemes. This
requirement is in contradiction to our intention to sup-
port the lazy discovery of complicated induction schemes
through symbolic program execution, which is essential
for the practical verification of temporal properties of
programs with dynamic behaviour.
Of course the price to be paid for this flexibility is

the missing generality of our system with respect to the
specification language, which makes it a special-purpose
theorem prover tailored towards the Erlang language.
Another example for a language-specific verification

approach is the VerifiCard7 project in which validation
techniques for smart card applets written in the JavaCard
language are investigated.
An alternative approach to the verification ofErlang

programs is the use of abstract interpretation techniques
to create a finite-state model of the given program which
can be handled with standardmodel-checking techniques.
This approach is taken by Huch [19], where a concrete
abstract interpretation is suggested, essentially reducing
infinite data domains to finite ones. However, the infinite
state spaces arising from unbounded message queues or
unbounded process spawning, which are characteristic for
open distributed systems, are not handled there.

9 Conclusion

We have given an overview of the main results obtained
in the ASTEC project Verification of Erlang Programs,
focusing in particular on the Erlang Verification Tool,
a theorem-proving tool which assists in obtaining proofs
that Erlang applications satisfy their correctness re-
quirements formulated in a specification logic. We pre-
sented a summary of the verification framework as sup-
ported by EVT, discussed reasoning principles essential
for successful verification such as inductive and com-
positional reasoning and reasoning about side-effect-free
code, summarized our experience drawn from a larger
industrial case study, and suggested a practical method
for supporting verification in the presence of program
libraries.
The experience gained in the project clearly shows the

potential of the chosen framework. We were able to ver-
ify Erlang systems which, due to their dynamic nature,

7 http://www.verificard.org

420 L.-Å. Fredlund et al.: A verification tool for Erlang

are beyond the scope of most other existing verification
approaches. The price to pay is the undecidability of the
general verification problem. The whole task has to be
split into automatable and manually assisted parts. Thus,
the success of the approach crucially depends on the ef-
ficiency of the decision procedures employed and on the
support provided for minimizing the need for human in-
tervention in terms of high-level reasoning principles and
user interface.
To make the presented verification method practi-

cally useful considerable additional effort is required in
several research directions. These include providing au-
tomatic support for identifying appropriate induction
schemes, designing efficient decision procedures automat-
ing the straightforward low-level reasoning and finite-
state space exploration, and more efficient symbolic next-
state generation.

References

1. Armstrong J., Virding R., Wikström C., Williams M.: Concur-
rent programming in Erlang. Prentice-Hall, London, 2nd edn,
1996

2. Arts T., Dam M.: Verifying a distributed database lookup
manager written in Erlang. In: Wing J.M., Woodcock J.,
Davies J., (eds.), Formal Methods Europe (FM’99), Lecture
Notes in Computer Science, vol. 1708. Springer, Berlin Heidel-
berg New York, 1999, pp. 682–700

3. Arts T., Dam M., Fredlund L.-Å., Gurov D.: System descrip-
tion: verification of distributed Erlang programs. In: Proc.
CADE’98, Lecture Notes in Computer Science, vol. 1421.
Springer, Berlin Heidelberg New York, 1998, pp. 38–41

4. Arts T., Noll T.: Verifying generic Erlang client–server im-
plementations. In: Proc. 12th Int. Workshop on the Imple-
mentation of Functional Languages (IFL’00), Lecture Notes in
Computer Science, vol. 2011. Springer, Berlin Heidelberg New
York, 2001, pp. 37–52

5. Bertot Y., Thery L.: A generic approach to building user inter-
faces for theorem provers. J Symbolic Comput 25(7):161–194,
1998

6. Constable R.L., Allen S.F., Bromley H.M., Cleaveland W.R.,
Cremer J.F., Harper R.W., Howe D.J., Knoblock T.B.,
Mendler N.P, Panangaden P., Sasaki J.T., Smith S.F.: Im-
plementing mathematics with the Nuprl proof development
system. Prentice-Hall, Englewood Cliffs, N.J., USA, 1986

7. Dam M.: Proving properties of dynamic process networks. Inf
Computat 140:95–114, 1998

8. Dam M., Fredlund L.-Å., Gurov D.: Toward parametric verifi-
cation of open distributed systems. In: Langmaack H., Pnueli
A., de Roever W.-P., (eds), Compositionality: the significant
difference, Lecture Notes in Computer Science, vol. 1536.
Springer, Berlin Heidelberg New York, 1998, pp. 150–185

9. Dam M., Gurov D.: Compositional verification of CCS pro-
cesses. In: Proc. PSI’99, Lecture Notes in Computer Science,
vol. 1705. Springer, Berlin Heidelberg New York, 1999, pp.
247–256

10. Dam M., Gurov D.: µ-calculus with explicit points and ap-
proximations. In: Proc. FICS’2000, 2000

11. Dowek G., Felty A., Herbelin H., Huet G., Murthy C., Parent
C., Paulin-Mohring C., Werner B.: The Coq proof assistant
user’s guide version 5.8. Technical Report 154, INRIA, 1993

12. Fredlund L.-Å.: A Framework for Reasoning about Erlang
Code. PhD thesis, Department of Microelectronics and In-
formation Technology, Royal Institute of Technology, 2001.
KTH/IT/AVH–01/04–SE

13. Fredlund L.-Å., Gurov D., Noll T.: The Erlang Verification
Tool. In: Proc. 7th Int. Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’01),
Lecture Notes in Computer Science, vol. 2031. Springer, Berlin
Heidelberg New York, 2001, pp. 582–585

14. Fredlund L.-Å., Gurov D.: A framework for formal reasoning
about open distributed systems. In: Proc. ASIAN’99, Lecture
Notes in Computer Science, vol. 1742. Springer, Berlin Heidel-
berg New York, 1999, pp. 87–100

15. FröhlichM.,WernerM.:Thegraphvisualization systemdaVinci
– a user interface for applications. Technical Report 5/94, De-
partment of Computer Science; Universität Bremen, 1994

16. Gordon M.J.C., Melham T.F. (eds.): Introduction to HOL:
a theorem proving environment for higher order logic. Cam-
bridge University, Cambridge, UK, 1993

17. Gurov D., Chugunov G.: Verification of Erlang programs: fac-
toring out the side-effect-free fragment. In: Proc. FMICS 2000,
GMD Report No.91, pp. 109–122, 2000

18. Hoare C.A.R.: An axiomatic basis for computer programming.
Comm ACM 12:576–580, 1969

19. Huch F.: Verification of Erlang programs using abstract in-
terpretation and model checking. In: Proc. ICFP ’99, ACM
SIGPLAN Notices, 34(9):261–272, 1999

20. Kozen D.: Results on the propositional µ-calculus. Theoret
Comput Sci 27:333–354, 1983

21. Milner R.: Communication and Concurrency. Prentice-Hall,
Englewood Cliffs, N.J., USA, 1989

22. Milner R., Tofte M., Harper R.: The definition of Standard
ML – revised. MIT, Boston, Mass., USA, 1997

23. Necula G.C.: Proof–carrying code. In: Proc. POPL’97, pp.
106–119. ACM, 1997

24. Nilsson H.: Patent Application, 1999
25. Owre S., Rajan S., Rushby J.M., Shankar N., Srivas M.K.
PVS: combining specification, proof checking, model checking.
In: Proc. CAV’96, Lecture Notes in Computer Science, vol.
1102. Springer, Berlin Heidelberg New York, 1996, pp. 411–
414

26. Park D.: Finiteness is mu-Ineffable. Theoret Comput Sci
3:173–181, 1976

27. Paulson L.C.: Isabelle: a generic theorem prover, Lecture
Notes in Computer Science, vol. 828. Springer, Berlin Heidel-
berg New York, 1994

28. Plotkin G.D.: A structural approach to operational semantics.
Aarhus University report DAIMI FN-19, 1981

29. Sahlin D., Franzén T., Haridi S.: An intuitionistic predicate
logic theorem prover. In: J Logic Comput 2(5):619–656, 1992

30. Simpson A.: Compositionality via cut-elimination: Hennessy-
Milner logic for an arbitrary GSOS. In: Proc. LICS, pp. 420–
430. IEEE Computer Society, New York, 1995

31. Wikström C., Nilsson H., Mattson H.: Mnesia database man-
agement system. In: Open Telecom Platform Users Manual.
Open Systems, EricssonUtvecklings, Stockholm, Sweden, 1997

32. Winskel G.: A note on model checking the modal ν-calculus.
Theoret Comput Sci 83:157–187, 1991

