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1 Introduction

The functional programming language Erlang was developed by the Ericsson cor-
poration to address the complexities of developing large{scale programs within
a concurrent and distributed setting. It is successfully used in the design and
implementation of telecommunication systems.

Software written for this application domain usually has to meet high qual-
ity demands such as correctness. Due to the high degree of concurrency and to
the dynamic behaviour of systems, testing is generally not suÆcient to guaran-
tee these properties to a satisfactory degree. We therefore follow a veri�cation
approach, i.e., we employ formalmethods to prove that a telecommunication sys-
tem implemented in Erlang has certain properties speci�ed in a suitable logic.

In view of the complexity of the veri�cation problem in general it is manda-
tory to provide the user with powerful tool support. Therefore, in 1997 the
development of the EVT Erlang Veri�cation Tool was started at the Swedish
Institute of Computer Science in collaboration with and with �nancial support
from the Ericsson Computer Science Lab and the Swedish ASTEC (Advanced
Software TEChnology) competence centre.

To cope with the challenges of software veri�cation in a highly dynamic set-
ting, a semi{automatic theorem{proving approach was chosen as the underlying
framework. EVT is a proof assistant which o�ers powerful induction techniques
to handle dynamic process creation and unbounded data structures. Its graph-
ical user interface provides comfortable access to proof resources. Several case
studies such as a billing agent [3] and a distributed database lookup manager [2]
have demonstrated the usefulness of the tool.

2 Foundations

2.1 The Erlang Programming Language

Erlang [1] is a concurrent functional programming language which allows to
implement dynamic networks of processes operating on data types such as inte-
gers, lists, tuples, or process identi�ers (pids), using asynchronous, call{by{value
communication via unbounded ordered message queues called mailboxes.

The following code fragment speci�es a simple concurrent server which re-
peatedly accepts an incoming query in form of a triple which is tagged by the
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request constant, and which contains the request itself (matched by the variable
Request) and the pid of the client process (Client). It then spawns o� a pro-
cess to serve the request (by using the handle function which is not considered
here), and sends the result back to the client as a tuple tagged by the response
constant.

server () ->

receive

{request, Request, Client} ->

spawn (serve, [Request, Client]),

server ()

end.

serve (Request, Client) ->

Client ! {response, handle (Request)}.

The starting point of any kind of rigorous veri�cation is a formal semantics.
Here we use an operational semantics (a variant of the semantics presented
in [3]) by associating a transition system with an Erlang program, giving a
precise account of its possible computations. The states are parallel products
of processes, each of the form he; p; qi, where e is an Erlang expression to be
evaluated in the context of a unique pid p and a mailbox q for incomingmessages.
A set of rules is provided to derive labelled transitions between such states.

This semantics is embedded in the proof system by allowing transition as-
sertions to be used as atomic propositions, and by considering the modalities as
derived formulae that are de�ned in terms of the transition relation (analogously
to the treatment of CCS in [5,4]).

2.2 The Property Speci�cation Logic

The logic that we use to capture the desired behaviour of Erlang programs
and their components combines both temporal and functional features. It can
be characterized as a many{sorted �rst{order predicate logic, extended with
temporal modalities, least and greatest �xed{point operators, and some Erlang{
speci�c atomic predicates. Due to its generality, it can be used to express a
wide range of important system properties, ranging from more static, type{like
assertions to complex safety and liveness features of the interaction between
processes. An example for the latter is the following property of our concurrent
server. It expresses that the process stabilizes on internal (`� ') and output (`!')
actions, that is, only a �nite number of these can occur consecutively:

stabilizes= �Z:[�; !]Z:

2.3 The Proof System

At the very heart of our approach is a tableau{based proof system [3,4] embody-
ing the basic proof rules by which complex correctness assertions can be reduced
to (hopefully) less complex ones. It operates on Gentzen{style sequents of the
form � ` � where � and � are sets of assertions representing the premises and
the conclusions, respectively, of the proof. For example, the following sequent
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expresses that the server process has the stabilizes property provided that
the same holds, given any request r, for the handle function:

8q0:8r:hhandle(r); p; q0i : stabilizes ` 8q:hserver(); p; qi : stabilizes

Summarizing, our proof system can be characterized by the following at-
tributes:

{ laziness: only those parts of the state space and of the formula are taken
into account which are needed to establish the desired property, and so{
called metavariables are used to postpone the choice of witnesses in a proof
rule.

{ parametricity : by representing parts of the system by placeholder variables
(parameters), a relativised reasoning style for open systems is supported.

{ compositionality : using a `cut' rule, the end{system requirements can be
decomposed in a modular and iterative way into properties to hold of the
component processes.

{ induction: to support reasoning about unbounded (or even non{well{founded)
structures, inductive and co{inductive reasoning is provided based on the ex-
plicit approximation of �xed points and on well{founded ordinal induction.
Inductive assertions are discovered during the proof rather than being en-
forced right from its beginning.

{ reuse: by sharing subproofs and using lemmata, already established proper-
ties can be reused in di�erent settings.

3 The EVT Tool

The veri�cation task in our setting amounts to the goal{directed construction
of a proof tree. Starting from the root with a goal sequent like the stabilization
property of the server, the proof tree is built up by successively applying tactics
until every leaf is labeled by an axiom. These tactics can attempt to construct
complete proofs, or they can return partial proofs, stopping once in a while to
prompt the user for guidance. The atomic tactics are given by the rules of the
proof system, and more complex ones can be built up using special combina-
tors called tacticals to obtain more powerful proof steps and, thus, to automate
proofs, and to raise the abstraction level of reasoning.

Besides the actual construction of the proof tree, EVT provides support
for proof reuse, navigation, and visualization. Due to the global character of
the discharge rule which checks whether the current node of the proof tree is
labeled by an instance of a previous proof sequent, the whole proof tree has to
be maintained. EVT can thus be understood as a proof tree editor, extended
with facilities for semi{automatic proof search.

A screen snapshot of EVT's graphical user interface is given in Fig. 1. It
provides an easy and context{sensitive access to the proof resources like proof
trees and their nodes, tactics, lemmata, and others. In the concrete situation, an
example goal sequent is shown (with the premises and the conclusions above and
below, respectively, the turnstile), and the user is just about to select a tactic
which should be applied to the highlighted assertion.

A binary version of EVT can be downloaded from
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Fig. 1. The graphical user interface

ftp://ftp.sics.se/pub/fdt/evt/index.html

It is available for Intel x86 and Sparc architectures running under Linux and
Solaris, respectively.
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