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Overview

1. A Framework for Algorithmic Compositional Verification

(a) General Framework based on Maximal Models

(b) Program Model: Flow Graphs and Flow Graph Behaviour

(c) Maximal Flow Graphs for Structural and Behavioural Properties

2. Property Translation

(a) Example and Applications

(b) Tableau Construction

(c) Correctness
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1. Framework for Model Checking Open Systems

Open system: some components are only given by a specification:

abstract components

A

B

φ

ϕ

: θ

General Method [Grumberg-Long-94]: replace every abstract component by a

concrete representative: maximal model
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Refinement Preorder:

M1 � M2
def
⇐⇒ ∀φ. (M2 |= φ ⇒ M1 |= φ) (simulation)

Framework Conditions:

1. for any formula ψ, the set of models for ψ has a greatest element

Max(ψ) w.r.t. the preorder: maximal model

2. preorder preserved by model composition

Our Set-up:

• Models: Labelled Transition Systems with Valuations

• Logic: φ ::= p | ¬p | X | φ1 ∧ φ2 | φ1 ∨ φ2 | [a]φ | νX.φ
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Program Model

Control Flow Structure: Flow Graphs
class Number {

}

      if (n == 0)
   public static boolean even(int n){

         return true;
      else 
         return odd(n−1);
   }

   public static boolean odd(int n){
      if (n == 0)

      else 
         return even(n−1);  

   }

         return false;     
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Flow graph composition: (disjoint) union of graphs
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Flow Graph Behaviour

• flow graph induces pushdown automaton (PDA):

◦ configurations (v, σ) are pairs of control point v and call stack σ

◦ productions induced by:

☞ non-call edges

☞ call edges

☞ return nodes

• flow graph behaviour is behaviour of induced PDA
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Example Flow Graph:
class Number {

}

      if (n == 0)
   public static boolean even(int n){

         return true;
      else 
         return odd(n−1);
   }

   public static boolean odd(int n){
      if (n == 0)

      else 
         return even(n−1);  

   }

         return false;     
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Example Run:

(v0, ε)
τ
−→b (v1, ε)

τ
−→b (v2, ε)

even call odd
−−−−−−−−−→b (v5, v3)

τ
−→b (v6, v3)

τ
−→b

(v7, v3)
odd call even
−−−−−−−−−→b (v0, v9 · v3)

τ
−→b (v1, v9 · v3)

τ
−→b

(v4, v9 · v3)
even ret odd
−−−−−−−−→b (v9, v3)

odd ret even
−−−−−−−−→b (v3, ε)
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Property Specification

Logic:

• fragment of µ-calculus: safety properties

• instantiated to structure and behaviour

Example structural property:

• program is tail–recursive: νX. [even] r ∧ [odd] r ∧ [ε]X

Example behavioural property:

• first call of even is not to itself: even ⇒ νX. [even call even]ff ∧ [τ ]X

Dilian Gurov: From Behavioural to Structural Properties 7



Model Checking Closed Systems

• Extract flow graph from program code

• For structural properties:

1. cast flow graph as finite automaton

2. apply standard, finite–state model checking

• For behavioural properties:

1. cast flow graph as pushdown automaton

2. apply PDA model checking
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Model Checking Open Systems

A

B

φ

ϕ

: θ

Idea: replace every abstract component by a flow graph

Structural Properties: unique maximal flow graph for given sets of provided

and required methods: flow graph interface, part of the specification

Behavioural Properties: more problematic
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Problem

• in general: maximal flow graphs for behavioural properties not unique

• example: [a call b] r gives rise to two maximal flow graphs

• question: how can we compute these?

Proposed Approach: via property translation (present contribution)

• characterise behavioural property through set of structural ones:

◦ structural property: a⇒ [b] ff

◦ structural property: b⇒ r

• eliminate subsumed properties (optional)

• construct the maximal flow graphs for the structural properties
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Verification Method for Open Systems:

1. for concrete components:

• extract flow graphs

2. for abstract components, from specification:

• if structural, construct maximal flow graph

• if behavioural,

(a) translate to equivalent set of structural properties

(b) construct maximal flow graphs

3. for all compositions of extracted with constructed flow graphs:

• model check system flow graph against system property
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2. Property Translation

Example for programs with methods a and b only

• Behavioural property:

◦ “method a never calls method b”

νX. [a call b] ff ∧ [τ ]X ∧ [a call a]X ∧ [a ret a]X

• is characterised by the structural properties:

◦ “in the text of method a there is no call–to–b instruction”

a⇒ νX. [b] ff ∧ [ε]X ∧ [a]X

◦ “in the text of method a every return instruction and every call–to–b

instruction is preceded by some call–to–a instruction”

a⇒ νX.¬r ∧ [b]ff ∧ [ε]X)
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Applications of Translation

• Maximal flow graphs for

◦ compositional verification of behavioural properties

◦ synthesis of program skeletons from behavioural specifications

• Foundational value: structure ↔ behaviour

in terms of temporal logic

• Enforcing behavioural properties through structure

• Reducing infinite–state behavioural model checking

to finite–state structural model checking
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The Translation

Idea

• symbolic execution of behavioural formula

• accumulating structural constraints on the way

• by means of history stack: (m,F ) ·H

For modal fragment

• simple mapping πH

defined inductively on the structure of the formula

• presented at: FESCA 2007
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Modal Fragment: Mapping πH

π(i,F )·H(p) = {i ⇒ [F ] p} ∪ {i′ ⇒
ˆ

F ′
˜

ff | (i′, F ′) ∈ H}

π(i,F )·H(¬p) = {i ⇒ [F ]¬p} ∪ {i′ ⇒
ˆ

F ′
˜

ff | (i′, F ′) ∈ H}

π(i,F )·H(φ1 ∧ φ2) = {σ1 ∧ σ2 | σ1 ∈ π(i,F )·H(φ1), σ2 ∈ π(i,F )·H(φ2)}

π(i,F )·H(φ1 ∨ φ2) = π(i,F )·H(φ1) ∪ π(i,F )·H(φ2)

π(i,F )·H([τ ] φ) = π(i,F ·ε)·H(φ)

π(i,F )·H([a call b] φ) =

(

{tt} if i 6= a

π(b,ε)·(i,F ·b)·H(φ) if i = a

π(i,F )·H([a ret b] φ) =

(

{tt} if i 6= a ∨ . . .

{i ⇒ [F ]¬r} ∪ πH(φ) if i = a ∧ . . .
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Modal Fragment: Examples

Example1

π(a,ε)([a call b] r) = π(b,ε)·(a,b)(r)

= {b⇒ r, a⇒ [b]ff}

Example2

π(a,ε)([a call b] [a call b] r) = π(b,ε)·(a,b)([a call b] r)

= {tt}
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Full Logic

Dealing with fixed points: much more involved

• we need to identify termination conditions that guarantee:

◦ structural constraints can be “folded” into fixed–point formulae

◦ no new structural constraints will emerge

Approach

• in the frames, record also current formula

• use tableau construction, define global repeat conditions

– allows correctness proof by viewing tableaux as proofs!

• from leaves, extract accumulated constraints
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Tableau Construction

Tableau for behavioural formula: νX. [a call b]X ∧ [b ret a] (¬r ∧X)

`(a,ε),∅U ,∅C
νX. [a call b] X ∧ [b ret a] (¬r ∧ X)

νX

*`(a,ε),X=φ,∅C
X

X unf

`(a,X4),X=φ,∅C
[a call b] X ∧ [b ret a] (¬r ∧ X)

∧

`(a,X4·X1),X=φ,∅C
[a call b] X

call1

`(b,ε)·(a,X4·X1·X2·b),X=φ,∅C
X

X unf

`(b,X4)·(a,X4·X1·X2·b),X=φ,∅C
[a call b] X ∧ [b ret a] (¬r ∧ X)

∧

`(b,X4·X1)·(a,X4·X1·X2·b),X=φ,∅C
[a call b] X

call0

−

(*)

`(a,X4·X1),X=φ,∅C
[b ret a] (¬r ∧ X)

ret0

−
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(*)

∧

`(b,X4·X1)·(a,X4·X1·X2·b),X=φ,∅C
[b ret a] (¬r ∧ X)

ret1

`(a,X4·X1·X2·b),X=φ,{(b,X4·X1,¬r)} ¬r ∧ X

∧

`(a,X4·X1·X2·b·X5),X=φ,{(b,X4·X1,¬r)} ¬r

¬r

(a, X4 · X1 · X2 · b · X5, ¬r)

(b, X4 · X1, ¬r)

`(a,X4·X1·X2·b·X5),X=φ,{(b,X4·X1,¬r)} X

IRep(∗)

(a, X4 · X1 · X2 · b · X5, X4)

(b, X4 · X1, ¬r)

Extracted structural formulae

• a⇒ νX. [b] (¬r ∧X)

• b⇒ ¬r
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Correctness of Tableau Construction

Idea

• view tableau rules as proof rules for proving that

a set of structural properties χ entails a behavioural property φ

• a tableau for φ inducing χ converts to

a proof that χ entails φ

Results

• soundness for full logic

• completeness for logic without disjunction
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3. Conclusions

Achieved

• translation from behavioural to structural properties

of program control flow

• implementation of translation, web–based interface

• application to compositional verification

Current limitations

• disjunction is over–approximated

• construction defined for closed interfaces
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Future Work

We need to

• study disjunction: is there a complete translation?

• generalize construction to open interfaces, richer program models etc.

• study complexity of translation:

◦ how many formulae?

◦ of what size?

• study optimizations, subsumption checking etc.
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