
Practical Abstractions for Automated
Verification of Shared-Memory

Concurrency

Wytse Oortwijn1(B), Dilian Gurov2(B), and Marieke Huisman3(B)

1 Department of Computer Science, ETH Zürich, Zürich, Switzerland
woortwijn@inf.ethz.ch

2 KTH Royal Institute of Technology, Stockholm, Sweden
dilian@kth.se

3 University of Twente, Enschede, The Netherlands
m.huisman@utwente.nl

Abstract. Modern concurrent and distributed software is highly com-
plex. Techniques to reason about the correct behaviour of such software
are essential to ensure its reliability. To be able to reason about realistic
programs, these techniques must be modular and compositional as well as
practical by being supported by automated tools. However, many exist-
ing approaches for concurrency verification are theoretical and focus on
expressivity and generality. This paper contributes a technique for veri-
fying behavioural properties of concurrent and distributed programs that
makes a trade-off between expressivity and usability. The key idea of the
approach is that program behaviour is abstractly modelled using process
algebra, and analysed separately. The main difficulty is presented by
the typical abstraction gap between program implementations and their
models. Our approach bridges this gap by providing a deductive tech-
nique for formally linking programs with their process-algebraic models.
Our verification technique is modular and compositional, is proven sound
with Coq, and has been implemented in the automated concurrency ver-
ifier VerCors. Moreover, our technique is demonstrated on multiple case
studies, including the verification of a leader election protocol.

1 Introduction

Modern software is typically composed of multiple concurrent components that
communicate via shared or distributed interfaces. The concurrent nature of the
interactions between (sub)components makes such software highly complex as
well as notoriously difficult to develop correctly. To ensure the reliability of mod-
ern software, verification techniques are much-needed to aid software developers
to comprehend all possible concurrent system behaviours. To be able to reason
about realistic programs, these techniques must be modular and compositional,
but must also be practical by being supported by automated verifiers.

Even though verification of concurrent and distributed software is a very
active research field [11,13,30,41,44,50], most work is theoretical and focuses
c© Springer Nature Switzerland AG 2020
D. Beyer and D. Zufferey (Eds.): VMCAI 2020, LNCS 11990, pp. 401–425, 2020.
https://doi.org/10.1007/978-3-030-39322-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39322-9_19&domain=pdf
https://doi.org/10.1007/978-3-030-39322-9_19

402 W. Oortwijn et al.

primarily on expressivity and generality. This paper contributes a scalable and
practical technique for verifying global behavioural properties of concurrent and
distributed programs that makes a trade-off between expressivity and usability:
rather than aiming for a unified approach to concurrency reasoning, we propose
a powerful sound technique that is implemented in an automated verification
tool, to reason automatically about realistic programs.

Reasoning about complex concurrent program behaviours is only practical if
conducted at a suitable level of abstraction that hides irrelevant implementation
details. This is because any real concurrent programming language with shared
memory, threads and locks, has only very little algebraic behaviour. In contrast,
process algebra offers an abstract, mathematically elegant way of expressing pro-
gram behaviour. For this reason, many believe that process algebra provides a
language for modelling and reasoning about the behaviour of concurrent pro-
grams at a suitable level of abstraction [1]. Our approach therefore uses process
algebra as a language for specifying program behaviour. Such a specification
can be seen as a model, the properties of which can additionally be checked
(say, by model checking against temporal logic formulas). The main difficulty
of this approach is dealing with the typical abstraction gap between program
implementations and their models. The unique contribution of our approach is
that it bridges this gap by providing a deductive technique for formally linking
programs with their process-algebraic models. These formal links preserve safety
properties; we leave the preservation of liveness properties for future work.

The key idea of the approach rests in the use of concurrent separation logic
to reason not only about data races and memory safety, which is standard, but
also about process-algebraic models (i.e., specified program behaviours), viewing
the latter as resources that can be split and consumed. This results in a modular
and compositional approach to establish that a program behaves as specified by
its abstract model. Our approach is formally justified by correctness results that
have mechanically been proven using Coq, including a machine-checked sound-
ness proof of the proof system, stating that any verified program is a refinement
of its abstract model. The verification technique has been been implemented
in the VerCors verifier for automated deductive verification of concurrent soft-
ware [6]. Finally, the approach has been applied on various case studies [34],
including a leader election protocol that is included in this paper.

We also recently successfully applied the techniques presented in this paper
on an industrial case study, concerning the formal verification of a safety-critical
traffic tunnel control system that is currently in use in Dutch traffic [36]. For
this case study we made a process algebraic model of the control software that
we analysed with mCRL2, and used the techniques presented in this paper to
prove that this model is a sound abstraction of the program’s behaviour.

An extended version of this paper is available as a technical report [46], which
contains more details on the formalisation of the approach and the case study.

Practical Abstractions for Automated Verification 403

Contributions. This paper contributes a verification technique to reason about
the behaviour of shared-memory concurrent programs that is modular, compo-
sitional, sound (proven with Coq), and implemented in an automated verifier.

First Sect. 2 illustrates the technique on a small Owicki–Gries example. Then
Sect. 3 gives theoretical justification of the verification technique, as a concur-
rent separation logic with special constructs to handle process-algebraic models.
Section 4 gives more details on the Coq embedding of the program logic and its
soundness proof, and on its implementation in VerCors. Section 5 demonstrates
the approach on a larger case study: the verification of a leader election protocol.
Finally, Sect. 6 discusses related work and Sect. 7 concludes.

2 Approach

We first illustrate the approach on a simple example. In short, we abstractly
specify concurrent program behaviour as process algebra terms. Process algebra
terms are composed of atomic, indivisible actions. In our approach the actions are
logical descriptions of shared-memory modifications: they describe what changes
are allowed to a specified region of shared memory in the program. Actions
are then linked to the concrete instructions in the program code that compute
the memory updates. These links between the program and its abstract model
are established deductively, using a concurrent separation logic that is presented
later. Well-known techniques for process-algebraic reasoning can then be applied
to guarantee safety properties over all possible state changes, as described by
their compositions of actions. The novelty of the approach is that these safety
properties can then be relied upon in the program logic due to the established
formal connection between the program and its process-algebraic model.

Example Program. Consider the following program, which is a simple variant
of the classical concurrent Owicki–Gries example [38].

atomic
{

X := [E]; [E] := X + 4
} ∣∣∣∣∣

∣∣∣∣∣ atomic
{

Y := [E]; [E] := Y ∗ 4
}

This program consists of two concurrent threads: one that atomically incre-
ments the value at heap location E by four, while the other atomically multiplies
the value at E by four. The notation [E] denotes heap dereferencing, where E is
an expression whose evaluation determines the heap location to dereference.

The challenge is to modularly deduce the classical Owicki-Gries postcondi-
tion: after termination of both threads, the value at heap location E is either
4 ∗ (oldE + 4) or (4 ∗ oldE) + 4 (depending on the interleaving of threads), where
oldE is the old value at E—the value of E at the pre-state of the computation.

Well-known classical approaches to deal with such concurrent programs [42]
include auxiliary state [38] and interference abstraction via rely-guarantee rea-
soning [20]. Modern program logics employ more intricate constructs, like atomic
Hoare triples [41] in the context of TaDa, or higher-order ghost state [23] in the

404 W. Oortwijn et al.

context of Iris. However, the mentioned classical approaches typically do not
scale well, whereas such modern, theoretical approaches are hard to integrate
into (semi-)automated verifiers like VeriFast or VerCors.

In contrast, our approach is a balanced trade-off between expressivity and
usability: it is scalable as well as implemented in an automated deductive veri-
fier. The approach consists of the following three steps: (1) defining a process-
algebraic model OG = incr(4) ‖ mult(4) that is composed out of two actions, incr
and mult, that abstract the atomic sub-programs; (2) verifying the Owicki–Gries
postcondition algorithmically on the OG process; and (3) deductively verifying
that OG is a correct behavioural specification of the program’s execution flow
(i.e., verifying that all atomic state changes in the program have a corresponding
action in OG).The following paragraphs give more detail on these three steps.

Step 1: Specifying Program Behaviour. The first step is to construct a beha-
vioural specification OG of the example program. This process is defined as
the parallel composition of the actions incr(4) and mult(4), which specify the
behaviour of the atomic increment and multiplication in the program, respec-
tively. In our approach, program behaviour is specified logically, by associating
a contract to every action. For our example program, incr and mult have the
following contract:

requires true;
ensures x = \old(x) + n;
action incr(int n);

requires true;
ensures x = \old(x) ∗ n;
action mult(int n);

The variable x is a free, process-algebraic variable that is later linked to a
concrete heap location in the program (namely E). Moreover, the increment and
multiplication of 4 has now been generalised to an arbitrary integer n.

These two actions may be composed into a full behavioural specification of
the example program, by also assigning a top-level contract to OG:

requires true;
ensures x = (\old(x) + n) ∗ n ∨ x = (\old(x) ∗ n) + n;
process OG(int n) := incr(n) ‖ mult(n);

Step 2: Process-Algebraic Reasoning. The next step is to verify that OG satisfies
its contract, which can be reduced to standard process-algebraic analysis. We
say that OG satisfies its contract if all finite, action contract-complying traces of
OG satisfy the ensures clause. The standard approach to analyse OG is to first
linearise it to the bisimilar process term incr(n) · mult(n) + mult(n) · incr(n), and
then to prove its correctness by analysing all branches. VerCors currently does
the analysis by encoding the linearised process as input to the Viper verifier [29].
VerCors can indeed automatically establish that OG satisfies its postcondition.

Step 3: Deductively Linking Processes to Programs. The key idea of our approach
is that, by analysing how contract-complying action sequences change the values
of process-algebraic variables, we may indirectly reason about how the content

Practical Abstractions for Automated Verification 405

1 oldE := [E];
2 M := process OG(4) over {x �→ E};
3 atomic {
4 X := [E];
5 action incr(4) do {
6 [E] := X + 4;
7 }
8 }

9 atomic {
10 Y := [E];
11 action mult(4) do {
12 [E] := Y ∗ 4;
13 }
14 }

15 finish M ;
16 assert E

1
↪−→ (oldE + 4) ∗ 4 ∨ E

1
↪−→ (oldE ∗ 4) + 4;

Fig. 1. The annotated Owicki–Gries example (the annotations are coloured blue).
(Color figure online)

at heap location E evolves over time. So the final step is to project this process-
algebraic reasoning onto program behaviour, by annotating the program.

Figure 1 shows the required program annotations. First, x is connected to E
by initialising a new model M on line 2 that executes according to OG(4). The
actions incr and mult are then linked to the corresponding subprograms on lines
5–7 and 11–13 by identifying action blocks in the code, using special program
annotations. We use these action annotations to verify in a thread-modular way
that the left thread performs the incr(4) action (on lines 5–7) and that the right
thread performs mult(4) (lines 11–13). As a result, when the program reaches the
finish annotation on line 15 all the actions of OG will have been performed. This
indirectly means that the content at heap location E has evolved as described
by OG, thus allowing the asserted postcondition on line 16 to be derived.

3 Formalisation

This section gives theoretical justification of the verification approach and
explains the underlying logical machinery. First, Sects. 3.1 and 3.2 briefly discuss
the syntax and semantics of process algebraic models and programs, respectively.
Then Sect. 3.3 presents the program logic as a concurrent separation logic with
assertions that allow to specify program behaviour as a process algebraic model.
Section 3.4 discusses the proof rules. Finally, Sect. 3.6 discusses soundness of the
approach. All these components have been fully formalised in Coq.

Due to space constraints, the technical presentation assumes a certain famil-
iarity with process algebra and separation logic. For more details we refer to the
accompanying technical report or to the Coq formalisation [46].

3.1 Process Algebraic Models

Process algebraic models are defined by the language Proc as follows, with
a, b, · · · ∈ Act the domain of actions, x, y, z, · · · ∈ ProcVar the domain of process
algebraic variables, and m,n, · · · ∈ Lit the domain of literals.

406 W. Oortwijn et al.

Successful termination

ε↓ P ↓ Q↓
P · Q↓

P ↓
P + Q↓

Q↓
P + Q↓

P ↓ Q↓
P ‖ Q↓ P ∗ ↓

Small-step reduction rules (excerpt)

pstep-seq-l
(P, σ) a−−→ (P ′, σ′)

(P · Q, σ) a−−→ (P ′ · Q, σ′)

pstep-seq-r
P ↓ (Q, σ) a−−→ (Q′, σ′)

(P · Q, σ) a−−→ (Q′, σ′)

pstep-act
[[pre(a)]](σ) [[post(a)]](σ′)

(a, σ) a−−→ (ε, σ′)

Fig. 2. The small-step operational semantics of process algebraic models.

Definition 1 (Process expressions, Process conditions, Processes).

e ∈ ProcExpr ::= m | x | e + e | e − e | · · ·
b ∈ ProcCond ::= true | false | ¬b | b ∧ b | e = e | e < e | · · ·

P,Q ∈ Proc ::= ε | δ | a | P · Q | P + Q | P ‖ Q | P ∗

As usual, ε is the empty process that has no behaviour, whereas δ is the dead-
locked process that neither progresses nor terminates. The process P · Q is the
sequential composition of P and Q, while P +Q denotes their non-deterministic
choice. The process P ‖ Q is the parallel composition P and Q. Finally, P ∗ is
the Kleene iteration of P and denotes a sequence of zero or more P ’s.

The verification approach uses process algebraic models in the presence of
data, implemented via action contracts. These action contracts make the process
algebra language non-standard. Action contracts consist of pre- and postcondi-
tions that logically describe the state changes imposed by the action. Each action
is assumed to have an associated contract that can be obtained via the functions
pre, post : Act → ProcCond . All pre- and postconditions are of type ProcCond ,
which is the domain of Boolean expressions over process algebraic variables.

Semantics. The operational semantics of processes is expressed as a binary
reduction relation · ·−→ · ⊆ ProcConf × Act × ProcConf over process configura-
tions ProcConf � Proc ×ProcStore, labelled with actions from Act . The notion
of data is implemented via process stores σ ∈ ProcStore � ProcVar → Val that
map process algebraic variables to a semantic domain Val of values.

Most of the reduction rules are standard. Figure 2 gives an overview of the
non-standard rules. All other transition rules are deferred to [46].

To define the transition rule pstep-seq-r for sequential composition, it is
common in process algebra with ε to use an explicit notion of successful termi-
nation [4]. Successful termination P ↓ of any process P intuitively means that
P has the choice to have no further behaviour and thus to behave as ε. Further-
more, the pstep-act transition rule for action handling permits state to change
in any way that complies with the corresponding action contract.

Practical Abstractions for Automated Verification 407

step-proc-init
(X := process P over Π, h, s) � (skip, h, s)

step-proc-finish
(finish X, h, s) � (skip, h, s)

step-act
(C, h, s) � (C′, h′, s′)

(action X.a do C, h, s) � (action X.a do C′, h′, s′)

step-act-finish
(action X.a do skip, h, s) � (skip, h, s)

Fig. 3. An excerpt of the small-step operational semantics of programs.

The program logic allows one to handle process algebraic models up to bisim-
ulation. We write P ∼= Q to denote that P and Q are bisimilar (i.e., behaviourally
equivalent). Bisimilarity is a congruence with respect to all process algebraic
connectives. Moreover, we indeed have that P ↓ implies P ∼= P + ε for any P .

3.2 Programs

Our approach is formalised on the following simple concurrent pointer language,
where X,Y,Z, · · · ∈ Var are (program) variables.

Definition 2 (Expressions, Conditions, Programs).

E ∈ Expr ::= n | X | E + E | E − E | · · ·
B ∈ Cond ::= true | false | ¬B | B ∧ B | E = E | E < E | · · ·

Π ∈ AbstrBinder ::= {x0 �→ E0, . . . , xn �→ En}
C ∈ Cmd ::= skip | X := E | X := [E] | [E] := E | C;C | C ‖ C

| X := alloc E | dispose E | atomic C

| if B then C else C | while B do C

| X := process P over Π | action X.a do C | finish X

This language is a variation of the language proposed by [9,32], extended with
specification-only commands (displayed in blue) for handling process algebraic
models in the logic. These commands are ignored during program execution.

Specification-wise, X := process P over Π initialises a new process alge-
braic model that is represented by the process term P , with Π a finite mapping
from process algebraic variables to heap locations. Π is used to connect abstract
state (i.e., the state of process algebraic models) to concrete program state (i.e.,
heap entries) and is therefore referred to as an abstraction binder.

The finish X command concludes the model that is identified by X, given
that the associated process successfully terminates. By concludes we mean that
the model’s postcondition can be relied upon and used in the proof system.

Finally, action X.a do C executes the command C in the context of the
abstract model X as the action a. In particular, this specification command

408 W. Oortwijn et al.

states that, by executing C (according to the operational semantics of programs),
the action a is executed in the specified process algebraic model.

Semantics. The operational semantics of programs is expressed as a small-
step reduction relation · � · ⊆ Conf × Conf , between (program) configurations
Conf � Cmd × Heap × Store. Program configurations (C, h, s) ∈ Conf consist
of a program C, as well as a heap h ∈ Heap � Val ⇀fin Val that models shared
memory and a store s ∈ Store � Var → Val that models thread-local memory.

Figure 3 shows an excerpt of the new reduction rules for ghost commands.
All other reduction rules are standard in spirit and are deferred to [46].

Most importantly, all ghost commands are specification constructs: they do
not affect the program state and are essentially handled as if they were com-
ments. However, observe that step-proc-finish and step-act-finish are aux-
iliary transition steps that reduce a finished process or action to skip. These are
not strictly needed, but make it more convenient to prove soundness of the logic.

3.3 Program Logic

Our program logic builds on intuitionistic1 concurrent separation logic (CSL),
where the assertion language is defined by the following grammar.

Definition 3 (Assertions).

t ∈ PointsToType ::= std | proc | act
P,Q,R, · · · ∈ Assn ::= B | ∀X.P | ∃X.P | P ∨ Q | P ∗ Q | P −∗Q

| ∗i∈IPi | E
π

↪−→t E | Procπ(X, b, P,Π)

The assertion P ∗ Q is the separating conjunction of separation logic and
states that P and Q hold on disjoint parts of the heap. This for example means
that P and Q cannot both express write access to the same heap entry. The
assertion ∗i∈IPi is the iteration of ∗ and is equivalent to P0 ∗ · · · ∗ Pn given that
I = {0, . . . , n}. Furthermore, the −∗ connective from separation logic is known
as the magic wand and expresses hypothetical modifications of the current state.

Apart from these standard CSL connectives, the assertion language contains
three different heap ownership predicates π

↪−→t, with π ∈ (0, 1]Q a fractional per-
mission in the style of Boyland [8] and t the heap ownership type, where:

– E
π

↪−→std E′ is the standard heap ownership predicate from separation logic,
that provides read-only access for 0 < π < 1 and write access in case π = 1.

– E
π

↪−→proc E′ is the process heap ownership predicate, which indicates that
the heap location E is bound to an active process algebraic model, but in a
read-only manner: it only provides read-only access, even when π = 1.

1 This intuitively means that the program logic is able to “forget” about resources,
which fits naturally with garbage collecting languages like Java and C#.

Practical Abstractions for Automated Verification 409

– E
π

↪−→act E′ is the action heap ownership predicate, which indicates that the
heap location E is bound by an active process algebraic model and is used in
the context of an action block, in a read/write manner.

The distinction between different types of heap ownership is needed for the
program logic to be sound, for example to disallow the deallocation of memory
that is bound by a process algebraic model. Moreover, observe that E

π
↪−→proc E′

predicates never provide write access to E. However, we shall later see that the
proof system allows one to upgrade π

↪−→proc predicates to π
↪−→act inside action

blocks, and π
↪−→act again provides write access if π = 1. This system of upgrading

enforces that all modifications to E happen in the context of action X.a do C
commands, and can therefore be recorded in the model X as the action a.

Finally, the Procπ(X, b, P,Π) assertion expresses ownership of the program
model that is identified by X and is represented by the process P . The con-
dition b is the postcondition of the abstract model. Furthermore, Π connects
the abstract model to the concrete program, by mapping the models’ process
algebraic variables to heap locations in the program. And last, the fractional
permission π is needed to implement the ownership system of program models.
Fractional permissions are only used here to be able to reconstruct the full Proc1
predicate.

Semantics of Assertions. The interpretation of assertions is defined as a
modelling relation ph, pm, s, g |= P, where the models (ph, pm, s, g) consist of
the following four components:

– A permission heap, ph ∈ PermHeap � Var → free | 〈v〉π
t , that maps values

(heap locations) to either free (unoccupied) or to occupied entries 〈v〉π
t . Occu-

pied heap cells store a value v, as well as a type t to associate heap cells to
the three different kinds of heap ownership predicates used in the logic.

– A process map, pm ∈ ProcMap � Var → free | 〈b, P, Λ〉π, defined as a total
mapping from values (process identifiers) to process map entries. Occupied
entries have the form 〈b, P, Λ〉π and model ownership of process algebraic
models in the program logic. The components Λ ∈ ProcVar ⇀fin Val in turn
define the models of the abstraction binders (that were defined in Defini-
tion 2).

– Two stores, s, g ∈ Store, that gives an interpretation to all variables used in
program and ghost code, respectively. Ghost variables do not interfere with
regular program execution and are therefore separated from program variables
and maintained in an extra store g, referred to as the ghost store.

The semantics of assertions is defined as a modelling relation · |= · between
models of the logic PermHeap×ProcMap×Store2 and assertions Assn as follows:

Definition 4 (Semantics of assertions (excerpt)). The interpretation of
assertions ph, pm, s, g |= P is defined by structural recursion on P in the stan-
dard way, except for the following two cases:

410 W. Oortwijn et al.

↪−→-splitmerge
E1

π1+π2↪−−−−→t E2 �	 E1
π1↪−→t E2 ∗ E1

π2↪−→t E2

proc-splitmerge
Procπ1+π2(X, b, P1 ‖ P2, Π) �	 Procπ1(X, b, P1, Π) ∗ Procπ2(X, b, P2, Π)

proc-∼=
P ∼= Q

Procπ(X, b, P, Π) �	 Procπ(X, b, Q, Π)

Fig. 4. Selected entailment rules of the program logic.

ph, pm, s, g |= E1
π

↪−→t E2 iff ph([[E1]](s)) = 〈[[E2]](s)〉π′
t ∧ π ≤ π′

ph, pm, s, g |= Procπ(X, b, P,Π) iff ∃P ′ . pm(g(X)) = 〈b, P ‖P ′, [[Π]](s)〉π′

∧ π ≤ π′ ∧ (π = 1 =⇒ P ′ = ε)

The full definition of the semantics of assertions can be found in [46].
Clarifying the non-standard cases, E

π
↪−→t E′ is satisfied if ph holds an entry at

location E that matches with the ownership type t, with an associated fractional
permission that is at least π. Process ownership assertions Procπ(X, b, P,Π) are
satisfied if pm holds a matching entry with a fractional permission at least π, as
well as a process that has at least the behaviour of P . The denotation [[Π]](s)
gives the model of the abstraction binder Π, and is defined as follows:

Definition 5 (Semantics of abstraction binders).

[[{x0 �→ E0, . . . , xn �→ En}]](s) � {x0 �→ [[E0]](s), . . . , xn �→ [[En]](s)}

3.4 Entailment Rules

Figure 4 shows the non-standard entailment rules of the program logic. All other,
standard rules can be found in [46]. The notation P �� Q is a shorthand notation
for P � Q and Q � P, and indicates that the rule can be used in both directions.
All rules have shown to be sound in the standard sense, using Coq.

Clarifying the entailment rules, ↪−→-splitmerge expresses that heap owner-
ship predicates π

↪−→t of any type t may be split (in the left-to-right direction) and
be merged (right-to-left) along π. This allows one to distribute heap ownership
among the different threads in the program. Likewise, proc-splitmerge allows
one to split and merge process ownership along parallel compositions inside
abstract models, to distribute them over different threads. More specifically, by
splitting a predicate Procπ1+π2(X, b, P1 ‖ P2,Π) into two, both parts can be dis-
tributed over different concurrent threads, so that thread i can establish that it
executes as prescribed by its part Procπi

(X, b, Pi,Π) of the abstraction. After-
wards, when the threads join again, the remaining partial abstractions can be

Practical Abstractions for Automated Verification 411

ht-procinit
fv(b1) ⊆ dom(Π) = {x0, . . . , xn}

I = {0, . . . , n} X �∈ fv(R, E0, . . . , En) B = b1[xi/Ei]∀i∈I

Γ, {b1} P {b2};R 	

{
∗i∈IΠ(xi)

1
↪−→std Ei ∗ B

}
X := processP overΠ{∗i∈IΠ(xi)

1
↪−→proc Ei ∗ B ∗

Proc1(X, b2, P, Π)

}

ht-procupdate
fv(a) = {x0, . . . , xn} ⊆ dom(Π) I = {0, . . . , n}
B1 = pre(a)[xi/Ei]∀i∈I B2 = post(a)[xi/Ei]∀i∈I

Γ ;R 	 {∗i∈IΠ(xi)
πi↪−→act Ei ∗ B1 ∗ P} C {∗i∈IΠ(xi)

πi↪−→act E′
i ∗ B2 ∗ Q}

Γ ;R 	

{ ∗i∈IΠ(xi)
πi↪−→proc Ei ∗ B1 ∗

Procπ(X, b, a · P + Q, Π) ∗ P

}

action X.a do C{∗i∈IΠ(xi)
πi↪−→proc E′

i ∗ B2 ∗
Procπ(X, b, P, Π) ∗ Q

}

ht-procfinish
fv(b) ⊆ dom(Π) = {x0, . . . , xn} I = {0, . . . , n} B = b[xi/Ei]∀i∈I P ↓

Γ ;R 	
{∗i∈IΠ(xi)

1
↪−→proc Ei ∗

Proc1(X, b, P, Π)

}
finish X

{
∗i∈IΠ(xi)

1
↪−→std Ei ∗ B

}

Fig. 5. The non-standard Hoare proof rules related to abstract models.

merged back into a single predicate. This system thus provides a compositional
way of verifying that programs meet their abstract models.

Finally, proc-∼= allows one to replace program abstractions by bisimilar ones.
This rule is used to rewrite processes in a canonic form used by some other rules.

3.5 Program Judgments

Judgments of programs are defined as sequents of the form Γ ;R � {P}C {Q},
where R is a resource invariant [9], and Γ is a process environment :

Definition 6 (Process environment).

Γ ::= ∅ | Γ, {b}P {b}
Process environments are defined in the style of interface specifications [33],

and are essentially a series of Hoare-triples {b1}P {b2} for processes P , that
constitute the top-level contracts of the programs’ abstract models.

The intuitive meaning of a program judgment Γ ;R � {P}C {Q} is that,
starting from any state satisfying P ∗ R, the invariant R is maintained through-
out execution of C, and any final state upon termination of C will satisfy Q ∗ R.
Moreover, the proof derivation of C may use any abstract model that is in Γ .

412 W. Oortwijn et al.

Figure 5 presents the proof rules that handle process algebraic abstractions.
All other proof rules are deferred to [46] due to space constraints.

The ht-procinit rule handles initialisation of an abstract model P over a
set of heap locations as specified by Π. Standard points-to predicates with write-
permission are required for any heap location that is to be bound by P , and these
are converted to 1

↪−→proc. Moreover, ht-procinit requires that the precondition
of P holds, which is constructed from b1 by replacing all process variables by the
symbolic values at the corresponding heap locations. A Proc1 predicate with full
permission is ensured, containing the postcondition b2 of the abstract model.

The ht-procupdate rule handles updates to program abstractions, by per-
forming an action a in the context of an action X.a do C program, provided
that C respects the contract of a. As a precondition, a predicate of the form
Procπ(X, b, a · P + Q,Π) is required for some π. The process component of this
predicate must be of the form a · P + Q to allow performing the a action. After
performing a, this process component will be reduced to P , thereby discarding
Q as the choice is made not to follow execution as prescribed by Q. In order to
get process components into the required format a · P + Q, the proc-∼= rule can
be used to rewrite process components up to bisimilarity. Furthermore, π

↪−→proc

predicates are required for any heap location that is bound by Π. These points-to
predicates are needed to resolve the pre- and postcondition of a.

Finally, ht-procfinish handles finalisation of program models that success-
fully terminate. A predicate Proc1(X, b, P,Π) with full permission is required,
which means that no other thread can have any fragment of the model. This
predicate is exchanged for the postcondition of the abstraction. This postcon-
dition can be established, since (i) the contracts of processes in Γ are assumed
as their validity is checked externally, and b is a postcondition of one of these
contracts; (ii) the abstraction has been initialised in a state satisfying the pre-
condition of that contract; and (iii) the leftover process P is able to successfully
terminate. Lastly, all 1

↪−→proc predicates are converted back to 1
↪−→std to indicate

that the associated heap locations are no longer bound by the abstraction.

3.6 Soundness

The soundness proof of the program logic has been fully mechanised using the
Coq proof assistant, as a deep embedding that is inspired by [53]. The overall Coq
implementation comprises roughly 15.000 lines of code. Proving soundness was
non-trivial and required substantial auxiliary definitions. The Coq development
and its documentation can be found at [46].

The soundness theorem relates program judgments to the operational seman-
tics of programs, and amounts to the following: if a proof Γ ;R � {P}C {Q} can
be derived for any program C, and if the contracts in Γ of all abstract models
of C are satisfied, then C executes safely for any number of computation steps.
To concretise this, we first define the semantics of program judgments.

Practical Abstractions for Automated Verification 413

Definition 7 (Semantics of program judgments).

Γ ;R |= {P}C {Q} � |= Γ =⇒ ∀n, ph, pm, s, g .

ph, pm, s, g |= P =⇒ safen
Γ (C, ph, pm, s, g,R,Q)

The entailment |= Γ intuitively means that, for any Hoare triple {b1}P {b2}
in Γ and for any σ such that [[b1]](σ), we have that any run (P, σ) −→∗ (P ′, σ′)
that terminates (i.e., P ′ ↓) ends up with a store σ′ for which [[b2]](σ′) holds.

The predicate safen
Γ defines execution safety for n computation steps, mean-

ing that the program is: data-race free, memory safe, complies with its pre-
and postconditions, and refines its process algebraic models, for n computation
steps. This definition extends the well-known inductive definition of configura-
tion safety of Vafeiadis [53] by adding machinery to handle process algebraic
models. The most important extension is a simulation argument between pro-
gram execution (with respect to �) and the execution of all active models (with
respect to a−−→). However, as the reduction steps of these two semantics do not
directly correspond one-to-one, this simulation is established via an intermedi-
ate, instrumented semantics. This intermediate semantics is defined in terms of
�ghost transitions that define the lock-step execution of program transitions �
and the transitions a−−→ of their abstractions. Our definition of “executing safely
for n execution steps” includes that all � steps can be simulated by �ghost

steps and vice versa, for n execution steps. Thus, the end-result is a refinement
between programs and their abstract models.

Theorem 1 (Soundness). Γ ;R � {P}C {Q} =⇒ Γ ;R |= {P}C {Q}
The underlying idea of the above definition, i.e., having a continuation-

passing style definition for program judgments, has first been applied in [2] and
has further been generalised in [16] and [17]. Moreover, the idea of defining (pro-
gram) execution safety in terms of an inductive predicate originates from [3].
These two concepts have been reconciled in [53] into a formalisation for the clas-
sical CSL of Brookes [9], that has been encoded and mechanically been proven in
both Isabelle and Coq. Our definition builds on the latter, by having a refinement
between programs and abstractions encoded in safe.

4 Implementation

The verification approach has been implemented in the VerCors verifier, which
specialises in automated verification of parallel and concurrent programs writ-
ten in high-level languages, like (subsets of) Java and C [6]. VerCors applies a
correctness-preserving translation of the input program into a sequential imper-
ative language, and delegates the generation of verification conditions to the
Viper verifier [29] and their verification ultimately to Z3.

Tool support for our technique has been implemented in VerCors for lan-
guages with fork/join concurrency and statically-scoped parallel constructs [34].
This is done defining an axiomatic domain for processes in Viper, consisting of

414 W. Oortwijn et al.

constructors for all process-algebraic connectives, supported by standard process-
algebraic axioms. The Procπ assertions are encoded as predicates over these pro-
cess types. The three different ownership types π

↪−→t are encoded by defining extra
fields that maintain the ownership status t for each global reference.

To analyse process-algebraic models, VerCors first linearises all processes and
then encodes the linear processes and their contracts into Viper. The linearisa-
tion algorithm is based on a rewrite system that uses a subset of the standard
process-algebraic axioms as rewrite rules [51] to eliminate parallel connectives.

The VerCors implementation of the abstraction approach is much richer than
the simple language of Sect. 3 that is used to formalise the approach on. Notably,
the abstraction language in VerCors supports general recursion instead of Kleene
iteration, and allows parameterising process and action declarations by data.
VerCors also has support for several axiomatic data types that enrich the expres-
sivity of reasoning with abstractions, like (multi)sets and sequences.

5 Case Study

Finally, we demonstrate our verification approach on a well-known version of the
leader election protocol [35] that is based on shared memory. Most importantly,
this case study shows how our approach bridges the typical abstraction gap
between process algebraic models and program implementations. In particular,
it shows how a high-level process algebraic model of a leader election protocol,
together with a contract for this model (checked with mCRL2 for various inputs),
is formally connected to an actual program implementation of the protocol.

The protocol is performed by N concurrent workers that are organised in a
ring, so that worker i only sends to worker i + 1 and only receives from worker
i−1, modulo N . The goal is to determine a leader among these workers. To find
a leader, the election procedure assumes that each worker i receives a unique
integer value to start with, and then operates in N rounds. In every round (i)
each worker sends the highest value it encountered so far to its right neighbour,
(ii) receives a value from its left neighbour, and (iii) remembers the highest of
the two. The result after N rounds is that all workers know the highest unique
value in the network, allowing its original owner to announce itself as leader.

The case study has been verified with VerCors using the presented approach.
All workers communicate via two standard non-blocking operations for message
passing: mp send(r,msg) for sending a message msg to the worker with rank
r2, and msg := mp recv(r) for receiving a message from worker r. The election
protocol is implemented on top of this message passing system.

The main challenge of this case study is to define a message passing system
on the process algebra level that matches this implementation. To design such
a system we follow the ideas of [35]; by defining two actions, send(r,msg) and
recv(r,msg), that abstractly describe the behaviour of the concrete implementa-
tions in mp send and mp recv, respectively. Moreover, process algebraic summa-
tion Σx∈DP is used to quantify over the possible messages that mp recv might
2 The identifiers of workers are typically called ranks in message passing terminology.

Practical Abstractions for Automated Verification 415

1 seq〈seq〈Msg〉〉 chan; // communication channels between workers
2 int lead ; // rank of the worker that is announced as leader
3

4 /∗ Action for sending messages. ∗/
5 requires 0 ≤ rank < |chan|;
6 ensures chan[rank] = \old(chan[rank]) + {msg};
7 ensures ∀r′ : int . (0 ≤ r′ < |chan| ∧ r′ �= rank) ⇒ chan[r′] = \old(chan[r′]);
8 action send(int rank , Msg msg);
9

10 /∗ Action for receiving messages. ∗/
11 requires 0 ≤ rank < |chan|;
12 ensures {msg} + chan[rank] = \old(chan[rank]);
13 ensures ∀r′ : int . (0 ≤ r′ < |chan| ∧ r′ �= rank) ⇒ chan[r′] = \old(chan[r′]);
14 action recv(int rank, Msg msg);
15

16 /∗ Action for announcing a leader. ∗/
17 requires 0 ≤ rank < |chan|;
18 ensures lead = rank ;
19 action announce(int rank);
20

21 /∗ Local behavioural specification for each worker. ∗/
22 requires 0 ≤ n ≤ |chan| ∧ 0 ≤ rank < |chan|;
23 process Elect(int rank , Msg v0, Msg v, int n) �
24 if 0 < n then send((rank + 1)% |chan|, v) ·
25 Σv′∈Msg recv(rank , v′) · Elect(rank , v0, (v, v′), n − 1)
26 else (if v = v0 then announce(rank) else ε);
27

28 /∗ Global behavioural specification of the election protocol. ∗/
29 requires |vs| = |chan|;
30 requires ∀i, j : int . (0 ≤ i < |vs| ∧ 0 ≤ j < |vs| ∧ vs[i] = vs[j]) ⇒ i = j;
31 ensures |vs| = |chan| ∧ 0 ≤ lead < |vs|;
32 ensures ∀i : int . (0 ≤ i < |vs|) ⇒ vs[i] ≤ vs[lead];
33 process ParElect(seq〈Msg〉 vs) �
34 Elect(0, vs[0], vs[0], |vs|) ‖ · · · ‖ Elect(|vs|−1, vs[|vs|−1], vs[|vs|−1], |vs|);

Fig. 6. Behavioural specification of the leader election protocol.

receive. The summation operator Σx∈DP quantifies over a set D = {d0, . . . , dn}
of data and is defined as the (finite) sequence P [x/d0] + · · · + P [x/dn] of non-
deterministic choices. The following two rules illustrate how the abstract send
and recv actions are connected to mp send and mp recv (observe that both these
actions are parameterised by data3).

3 Recall that the VerCors implementation of our abstraction technique is much richer
than the simple language of Sect. 3 that is used to formalise the approach on.

416 W. Oortwijn et al.

{send(r,msg) · P} mp send(r,msg) {P}
{Σx∈Msg recv(r, x) · P}msg := mp recv(r) {P [x/msg]}

Finally, we construct a process-algebraic model of the election protocol using
send and recv, and verify that the implementation adheres to this model. This
model has been analysed with mCRL2 for various inputs (since mCRL2 is essen-
tially finite-state) to establish the global property of announcing the correct
leader. The deductive proof of the program can then rely on this property.

5.1 Behavioural Specification

Our main goal is proving that the implementation determines the correct leader
upon termination. To prove this, we first define a behavioural specification of
the election protocol that hides all irrelevant implementation details, and prove
the correctness property on this specification. Process algebra provides a proper
abstraction level that suits our needs well, as the behaviour of leader election
can concisely be specified in terms of sequences of sends and receives.

Figure 6 presents the process algebraic specification. In particular, ParElect
specifies the global behaviour whereas Elect specifies the thread-local behaviour.
The ParElect process encodes the parallel composition of all eligible participants.
ParElect takes a sequence vs of initial values as argument, whose length equals
the total number of workers by its precondition. ParElect’s postcondition states
that lead must be a valid rank after termination and that vs[lead] be the highest
initial worker value. It follows that worker lead is the correctly chosen leader.

The Elect process takes four arguments, which are: the rank of the worker, the
initial unique value v0 of that worker, the current highest value v encountered
by that worker, and finally the number n of remaining rounds. The rounds are
implemented via general recursion. In each round all workers send their current
highest value v to their right neighbour (on line 24), receive a value v’ in return
from their left neighbour (line 25), and continue with the highest of the two.
The extra announce action is declared and used to announce the leader after n
rounds. The postcondition of announce is that lead stores the leader’s rank.

The contracts of send and recv describe the behaviour of standard non-
blocking message passing. Communication on the specification level is imple-
mented via message queues. Message queues are defined as sequences of messages
that are taken from a finite domain Msg . Since workers are organised in a ring
in this case, every worker can do with only a single queue and the global com-
munication channel architecture can be defined as a sequence of message queues:
chan in the figure. The action contract of send(r,msg) expresses enqueuing the
message msg onto the message queue chan[r] of the worker with rank r. The
postcondition of send is that msg has been enqueued onto chan[r] and that
the queues chan[r′] for any r′ �= r have not been altered. Likewise, the contract
of recv(r,msg) expresses dequeuing msg from chan[r]. The expression \old(e)
indicates that e is to be evaluated with respect to the pre-state of computation.

Practical Abstractions for Automated Verification 417

1 global seq〈seq〈Msg〉〉 C; // implementation of communication channels
2 global int N ; // total number of workers
3 global int L; // rank of the leader to be announced
4

5 lock invariant L
1

↪−→proc − ∗ ∃c : seq〈seq〈Msg〉〉 . C
1

↪−→proc c ∗ N
1
2↪−→proc |c|;

6

7 given p, P, Q, Π, π, π′;
8 context {chan �→ C} ∈ Π ∗ ∃n . N

π
↪−→proc n ∗ 0 ≤ rank < n;

9 requires Procπ′(X, p, send(rank , msg) · P + Q, Π);
10 ensures Procπ′(X, p, P, Π);
11 void (ref X, int rank , Msg msg) { /∗ omitted ∗/ }
12

13 given p, P, Q, Π, π, π′;
14 context {chan �→ C} ∈ Π ∗ ∃n . N

π
↪−→proc n ∗ 0 ≤ rank < n;

15 requires Procπ′(X, p, Σm∈Msg recv(rank , m) · P + Q, Π);
16 ensures Procπ′(X, p, P [m/\result], Π);
17 Msg (ref X, int rank) { /∗ omitted ∗/ }
18

19 given n, p, Π, π, π′;
20 context {lead �→ L, chan �→ C} ∈ Π ∗ N

π
↪−→proc n ∗ 0 ≤ rank < n;

21 requires Procπ′(X, p,Elect(rank , v0, v, n), Π);
22 ensures Procπ′(X, p, ε, Π);
23 void (ref X, int rank , Msg v0, Msg v) {
24 loop invariant 0 ≤ i ≤ n;
25 loop invariant Procπ′(X, p,Elect(rank , v0, v, n − i), Π);
26 for (int i := 0 to N) {
27 (X, (rank + 1)%N , v) with {
28 P := Σx∈Msg recv(rank , x) · Elect(rank , v0, (v, x), n − i − 1),
29 Q := ε, p := p, Π := Π, π := π, π′ := π′

30 };
31 Msg v′ := (X, rank) with {
32 P := Elect(rank , v0, (v, v′), n − i − 1),
33 Q := ε, p := p, Π := Π, π := π, π′ := π′

34 };
35 v := (v, v′);
36 }
37 if (v = v0) {
38 atomic { action X.announce(rank) do L := rank ; }
39 }
40 }

Fig. 7. The annotated implementation of the leader election protocol. Annotations of
the form context P are shorthand for requires P; ensures P.

418 W. Oortwijn et al.

41 given p, Π;
42 context N

1
2↪−→proc |vs| ∗ 0 < |vs|;

43 requires Proc1(X, p,ParElect(vs), Π);
44 ensures Proc1(X, p, ε, Π);
45 void parelect(ref X, seq〈Msg〉 vs) {
46 context 0 ≤ rank < |vs|;
47 requires Proc1/|vs|(X, p,Elect(rank , vs[rank], vs[rank], |vs|), Π ′);
48 ensures Proc1/|vs|(X, p, ε, Π);
49 par (int rank := 0 to N) {
50 elect(X, vs[rank], vs[rank]) with {
51 n := N , p := p, Π := Π, π := 1/(4|vs|), π′ := 1/|vs|
52 };
53 }
54 }
55

56 context N
1

↪−→std − ∗ C
1

↪−→std − ∗ L
1

↪−→std −;
57 requires ∀i, j : int . (0 ≤ i < |vs| ∧ 0 ≤ j < |vs| ∧ vs[i] = vs[j]) ⇒ i = j;
58 ensures 0 ≤ \result < |vs|;
59 ensures ∀i : int . (0 ≤ i < |vs|) ⇒ vs[i] ≤ vs[\result];
60 int main(seq〈Msg〉 vs) {
61 N := |vs|, C := initialiseChannels(N);
62 X := process ParElect(vs) over {chan �→ C, lead �→ L};
63 commitLock(); // initialise the lock invariant
64 parelect(X, vs) with { p := ParElect(vs), Π := {chan �→ C, lead �→ L} };
65 uncommitLock(); // reclaim the lock invariant
66 finish X; // obtain the global correctness property from the abstraction
67 return L; // return rank of leader
68 }

Fig. 8. Bootstrap procedures of the leader election protocol.

5.2 Protocol Implementation

Figure 7 presents the annotated implementation of the election protocol4. The
elect method contains the code that is executed by every worker. The contract
of elect(X, rank , v0, v) states that the method body adheres to the behavioural
description Elect(rank , v0, v, N) of the election protocol. Each worker perform-
ing elect enters a for-loop that iterates N times, whose loop invariant states
that, at iteration i, the remaining program behaves as prescribed by the process
Elect(rank , v0, v, i − 1). The invocations to mp send and mp recv on lines 27 and
31 are annotated with with clauses that resolve the assignments required by the

4 It should be noted that the presentation is slightly different from the version that is
verified by VerCors, to better connect to the theory discussed in the earlier sections to
the case study. Notably, VerCors uses Implicit Dynamic Frames [27] as the underlying
logical framework, which is equivalent to separation logic [39] but handles ownership
slightly differently. The details of this are deferred to [6,21].

Practical Abstractions for Automated Verification 419

given clauses in the contracts of mp send and mp recv. The given η annotation
expresses that the parameter list η are extra ghost arguments for the sake of
specification. After N rounds all workers with v = v0 announce themselves as
leader. However, since the initial values are chosen to be unique there can only
be one such worker. Finally, we can verify that at the post-state of elect the
abstract model has been fully executed and thus reduced to ε.

The mp send(X, rank , msg) method implements the operation of enqueuing
msg onto the message queue of worker rank . Its implementation has been omitted
for brevity. The contract of mp send expresses that the enqueuing operation is
encapsulated as a send(rank , msg) action that is prescribed by an abstract model
identified by X. The mp recv(X, rank) function implements the operation of
dequeuing and returns the first message of the message queue of worker rank .
The receive is prescribed as the recv action on the abstraction level, where the
potential received message is ranged over by the summation on lines 15.

Figure 8 presents bootstrapping code for the implementation of message pass-
ing. The main function initialises the communication channels whereas parelect
spawns all worker threads. main(vs) additionally initialises and finalises the
abstraction ParElect(vs) on the specification level (on line 62 and 66, respec-
tively), whose analysis allows one to establish the postconditions of main. The
function parelect(X, vs) implements the abstract model ParElect(vs) by spawn-
ing N workers that all execute the elect program. The contract associated to
the parallel block (lines 46–48) is called an iteration contract and assigns pre-
and postconditions to every parallel instance. For more details on iteration con-
tracts we refer to [5]. Most importantly, the iteration contract of each parallel
worker states (on line 47) that the worker behaves as specified by Elect. Thus,
we deductively verify in a thread-modular way that the program implements its
behavioural specification. Lastly, all the required ownership for the global fields
and the Proc1 predicate is split and distributed among the individual workers
via the iteration contract and the with clause on lines 50–52.

6 Related Work

Significant progress has been made on the theory of concurrent software veri-
fication over the last years [11–13,30,41,48–50]. This line of research proposes
advanced program logics that all provide some notion of expressing and restrict-
ing thread interference of various complexity, via protocols [24]: formal descrip-
tions of how shared-memory is allowed to evolve over time. In our approach
protocols have the form of process algebraic abstractions.

The original work on CSL [32] allows specifying simple thread interference
in shared-memory programs via resource invariants and critical regions. Later,
RGSep [54] merges CSL with rely-guarantee reasoning to enable describing more
fine-grained inter-thread interference by identifying atomic concurrent actions.
Many modern program logics build on these principles and propose even more
advanced ways of verifying shared-memory concurrency. For example, TaDa [41]
and CaReSL [50] express thread interference protocols through state-transition

420 W. Oortwijn et al.

systems. iCAP [48] and Iris [25] propose a more unified approach by accept-
ing user-defined monoids to express protocols on shared state, together with
invariants restricting these protocols. Iris provides reasoning support for proving
language properties in Coq, where our focus is on proving programs correct.

In the distributed setting, Disel [44] allows specifying protocols for distributed
systems. Disel builds on dependent type theory and is implemented as a shallow
embedding in Coq. Even though their approach is more expressive than ours, it
can only semi-automatically be applied in the context of Coq. Villard et al. [55]
present a program logic for message passing concurrency, where threads may
communicate over channels using native send/receive primitives. This program
logic allows specifying protocols via contracts, which are state-machines in the
style of Session Types [18], to describe channel behaviour. Our technique is more
general, as the approach of Villard et al. is tailored specifically to basic shared-
memory message passing. Actor Services [47] is a program logic with assertions
to express the consequences of asynchronous message transfers between actors.
However, the meta-theory of Actor Services has not been proven sound.

Most of the related work given so far is essentially theoretical and mainly
focuses on expressiveness and generality. Our approach is a trade-off between
expressivity and usability. It allows specifying process algebraic protocols over
a general class of concurrent systems, while also allowing the approach to be
implemented in automated verifiers for concurrency like VerCors. Related con-
currency verifiers are SmallfootRG [10], VeriFast [19], CIVL [45], Threader [14]
and Viper [22,29]; the latter tool is used as the main back-end of VerCors. Small-
footRG is a memory-safety verifier based on RGSep. VeriFast is a rich toolset for
verifying (multi-threaded) Java and C programs using separation logic. Notably,
Penninckx et al. [40] extend VeriFast with a Petri-net extension to reason about
the I/O behaviour of programs. This Petri-net approach is similar to ours, how-
ever our technique supports reasoning about abstract models and allows reason-
ing about more than just I/O behaviour. The CIVL framework can reason about
race-freedom and functional correctness of MPI programs written in C [28,57].
The reasoning is done via bounded model checking combined with symbolic
execution. Threader is an automated verifier for multi-threaded C, based on
model checking and counterexample-guided abstraction refinement.

Apart from the proposed technique, VerCors also allows using process alge-
braic abstractions as histories [7,56]. Also related in this respect are the time-
stamped histories of [43], which records atomic state changes in concurrent pro-
grams as a history, which are, likewise to our approach, handled as resources in
the logic. However, history recording is only suitable for terminating programs.

Finally, there is a lot of more general work on proving linearisability [15,26,
52], which essentially allows reasoning about fine-grained concurrency by using
sequential verification techniques. Our technique, as well as the history-based
technique of [7], uses process algebraic linearisation to do so.

Practical Abstractions for Automated Verification 421

7 Conclusion

To reason effectively about realistic concurrent and distributed software, we have
presented a verification technique that performs the reasoning at a suitable level
of abstraction that hides irrelevant implementation details, is scalable to real-
istic programs by being modular and compositional, and is practical by being
supported by automated tools. The approach is expressive enough to allow rea-
soning about realistic software as is demonstrated by the case study as well as
by [36], and can be implemented as part of an automated deductive program
verifier (viz. VerCors). The proof system underlying our technique has mechan-
ically been proven sound using Coq. Our technique is therefore supported by a
strong combination of theoretical justification and practical usability.

We consider the presented technique as just the beginning of a comprehen-
sive verification framework that aims to capture many different concurrent and
distributed programming paradigms. To illustrate, we recently adapted the pre-
sented approach to the distributed case, by allowing process algebraic models to
describe message passing behaviour of distributed programs [37].

We are currently further investigating the use of mCRL2 and Ivy to reason
algorithmically about program abstractions, e.g., [31]. Moreover, we are planning
to investigate the preservation of liveness properties in addition to safety.

Acknowledgements. This work is partially supported by the NWO VICI 639.023.710
Mercedes project and by the NWO TOP 612.001.403 VerDi project.

References

1. Aldini, A., Bernardo, M., Corradini, F.: A Process Algebraic Approach to Soft-
ware Architecture Design. Springer, London (2010). https://doi.org/10.1007/978-
1-84800-223-4

2. Appel, A.W., Blazy, S.: Separation logic for small-step cminor. In: Schneider, K.,
Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 5–21. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-74591-4 3

3. Appel, A., Melliès, P., Richards, C., Vouillon, J.: A very modal model of a modern,
major, general type system. In: POPL, vol. 42, pp. 109–122. ACM (2007). https://
doi.org/10.1145/1190216.1190235

4. Baeten, J.: Process Algebra with Explicit Termination. Eindhoven University of
Technology, Department of Mathematics and Computing Science (2000)

5. Blom, S., Darabi, S., Huisman, M.: Verification of loop parallelisations. In: Egyed,
A., Schaefer, I. (eds.) FASE 2015. LNCS, vol. 9033, pp. 202–217. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-46675-9 14

6. Blom, S., Darabi, S., Huisman, M., Oortwijn, W.: The VerCors tool set: verification
of parallel and concurrent software. In: Polikarpova, N., Schneider, S. (eds.) IFM
2017. LNCS, vol. 10510, pp. 102–110. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-66845-1 7

7. Blom, S., Huisman, M., Zaharieva-Stojanovski, M.: History-based verification of
functional behaviour of concurrent programs. In: Calinescu, R., Rumpe, B. (eds.)
SEFM 2015. LNCS, vol. 9276, pp. 84–98. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-22969-0 6

https://doi.org/10.1007/978-1-84800-223-4
https://doi.org/10.1007/978-1-84800-223-4
https://doi.org/10.1007/978-3-540-74591-4_3
https://doi.org/10.1145/1190216.1190235
https://doi.org/10.1145/1190216.1190235
https://doi.org/10.1007/978-3-662-46675-9_14
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/978-3-319-22969-0_6
https://doi.org/10.1007/978-3-319-22969-0_6

422 W. Oortwijn et al.

8. Boyland, J.: Checking interference with fractional permissions. In: Cousot, R. (ed.)
SAS 2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003). https://doi.
org/10.1007/3-540-44898-5 4

9. Brookes, S.: A semantics for concurrent separation logic. Theor. Comput. Sci.
375(1–3), 227–270 (2007). https://doi.org/10.1016/j.tcs.2006.12.034

10. Calcagno, C., Parkinson, M., Vafeiadis, V.: Modular safety checking for fine-grained
concurrency. In: Nielson, H.R., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 233–
248. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74061-2 15

11. Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis, V.: Con-
current abstract predicates. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol.
6183, pp. 504–528. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
14107-2 24

12. Feng, X.: Local rely-guarantee reasoning. In: POPL, vol. 44, pp. 315–327. ACM
(2009). https://doi.org/10.1145/1480881.1480922

13. Feng, X., Ferreira, R., Shao, Z.: On the relationship between concurrent separation
logic and assume-guarantee reasoning. In: De Nicola, R. (ed.) ESOP 2007. LNCS,
vol. 4421, pp. 173–188. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-71316-6 13

14. Gupta, A., Popeea, C., Rybalchenko, A.: Threader: a constraint-based verifier for
multi-threaded programs. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 412–417. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1 32

15. Herlihy, M., Wing, J.: Linearizability: a correctness condition for concurrent
objects. TOPLAS 12(3), 463–492 (1990). https://doi.org/10.1145/78969.78972

16. Hobor, A.: Oracle semantics. Ph.D. thesis, Princeton University (2008)
17. Hobor, A., Appel, A.W., Nardelli, F.Z.: Oracle semantics for concurrent separa-

tion logic. In: Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 353–367.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78739-6 27

18. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0053567

19. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.: Ver-
iFast: a powerful, sound, predictable, fast verifier for C and Java. In: Bobaru, M.,
Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp.
41–55. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-5 4

20. Jones, C.: Tentative steps toward a development method for interfering programs.
TOPLAS 5(4), 596–619 (1983). https://doi.org/10.1145/69575.69577

21. Joosten, S., Oortwijn, W., Safari, M., Huisman, M.: An exercise in verifying sequen-
tial programs with VerCors. In: Summers, A. (ed.) FTfJP, pp. 40–45. ACM (2018).
https://doi.org/10.1145/3236454.3236479

22. Juhasz, U., Kassios, I., Müller, P., Novacek, M., Schwerhoff, M., Summers,
A.: Viper: a verification infrastructure for permission-based reasoning. Technical
report, ETH Zürich (2014)

23. Jung, R., Krebbers, R., Birkedal, L., Dreyer, D.: Higher-order ghost state. In: ICFP,
vol. 51, pp. 256–269. ACM (2016). https://doi.org/10.1145/2951913.2951943

24. Jung, R., et al.: Iris: monoids and invariants as an orthogonal basis for concurrent
reasoning. In: POPL, vol. 50, pp. 637–650. ACM (2015). https://doi.org/10.1145/
2676726.2676980

https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1016/j.tcs.2006.12.034
https://doi.org/10.1007/978-3-540-74061-2_15
https://doi.org/10.1007/978-3-642-14107-2_24
https://doi.org/10.1007/978-3-642-14107-2_24
https://doi.org/10.1145/1480881.1480922
https://doi.org/10.1007/978-3-540-71316-6_13
https://doi.org/10.1007/978-3-540-71316-6_13
https://doi.org/10.1007/978-3-642-22110-1_32
https://doi.org/10.1007/978-3-642-22110-1_32
https://doi.org/10.1145/78969.78972
https://doi.org/10.1007/978-3-540-78739-6_27
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1145/69575.69577
https://doi.org/10.1145/3236454.3236479
https://doi.org/10.1145/2951913.2951943
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/2676726.2676980

Practical Abstractions for Automated Verification 423

25. Krebbers, R., Jung, R., Bizjak, A., Jourdan, J.-H., Dreyer, D., Birkedal, L.: The
essence of higher-order concurrent separation logic. In: Yang, H. (ed.) ESOP 2017.
LNCS, vol. 10201, pp. 696–723. Springer, Heidelberg (2017). https://doi.org/10.
1007/978-3-662-54434-1 26

26. Krishna, S., Shasha, D., Wies, T.: Go with the flow: compositional abstractions
for concurrent data structures. POPL 2, 1–31 (2017). https://doi.org/10.1145/
3158125

27. Leino, K.R.M., Müller, P., Smans, J.: Verification of concurrent programs with
Chalice. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.) FOSAD 2007-2009. LNCS,
vol. 5705, pp. 195–222. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-03829-7 7

28. Luo, Z., Zheng, M., Siegel, S.: Verification of MPI programs using CIVL. In:
EuroMPI. ACM (2017). https://doi.org/10.1145/3127024.3127032

29. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastructure for
permission-based reasoning. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016.
LNCS, vol. 9583, pp. 41–62. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49122-5 2

30. Nanevski, A., Ley-Wild, R., Sergey, I., Delbianco, G.A.: Communicating state tran-
sition systems for fine-grained concurrent resources. In: Shao, Z. (ed.) ESOP 2014.
LNCS, vol. 8410, pp. 290–310. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-54833-8 16

31. Neele, T., Willemse, T.A.C., Groote, J.F.: Solving parameterised Boolean equation
systems with infinite data through quotienting. In: Bae, K., Ölveczky, P.C. (eds.)
FACS 2018. LNCS, vol. 11222, pp. 216–236. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-02146-7 11

32. O’Hearn, P.: Resources, concurrency and local reasoning. Theor. Comput. Sci.
375(1–3), 271–307 (2007). https://doi.org/10.1016/j.tcs.2006.12.035

33. O’Hearn, P., Yang, H., Reynolds, J.: Separation and information hiding. In: POPL,
vol. 39, pp. 268–280. ACM (2004). https://doi.org/10.1145/964001.964024

34. Oortwijn, W., Blom, S., Gurov, D., Huisman, M., Zaharieva-Stojanovski, M.: An
abstraction technique for describing concurrent program behaviour. In: Paskevich,
A., Wies, T. (eds.) VSTTE 2017. LNCS, vol. 10712, pp. 191–209. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-72308-2 12

35. Oortwijn, W., Blom, S., Huisman, M.: Future-based static analysis of message
passing programs. In: Programming Language Approaches to Concurrency- &
Communication-cEntric Software (PLACES), pp. 65–72. Open Publishing Asso-
ciation (2016). https://doi.org/10.4204/EPTCS.211.7

36. Oortwijn, W., Huisman, M.: Formal verification of an industrial safety-critical traf-
fic tunnel control system. In: Ahrendt, W., Tapia Tarifa, S.L. (eds.) IFM 2019.
LNCS, vol. 11918, pp. 418–436. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-34968-4 23

37. Oortwijn, W., Huisman, M.: Practical abstractions for automated verification of
message passing concurrency. In: Ahrendt, W., Tapia Tarifa, S.L. (eds.) IFM 2019.
LNCS, vol. 11918, pp. 399–417. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-34968-4 22

38. Owicki, S., Gries, D.: An axiomatic proof technique for parallel programs. Acta
Informatica 6, 319–340 (1975)

39. Parkinson, M.J., Summers, A.J.: The relationship between separation logic and
implicit dynamic frames. In: Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602, pp.
439–458. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19718-
5 23

https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1145/3158125
https://doi.org/10.1145/3158125
https://doi.org/10.1007/978-3-642-03829-7_7
https://doi.org/10.1007/978-3-642-03829-7_7
https://doi.org/10.1145/3127024.3127032
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-642-54833-8_16
https://doi.org/10.1007/978-3-642-54833-8_16
https://doi.org/10.1007/978-3-030-02146-7_11
https://doi.org/10.1007/978-3-030-02146-7_11
https://doi.org/10.1016/j.tcs.2006.12.035
https://doi.org/10.1145/964001.964024
https://doi.org/10.1007/978-3-319-72308-2_12
https://doi.org/10.4204/EPTCS.211.7
https://doi.org/10.1007/978-3-030-34968-4_23
https://doi.org/10.1007/978-3-030-34968-4_23
https://doi.org/10.1007/978-3-030-34968-4_22
https://doi.org/10.1007/978-3-030-34968-4_22
https://doi.org/10.1007/978-3-642-19718-5_23
https://doi.org/10.1007/978-3-642-19718-5_23

424 W. Oortwijn et al.

40. Penninckx, W., Jacobs, B., Piessens, F.: Sound, modular and compositional veri-
fication of the input/output behavior of programs. In: Vitek, J. (ed.) ESOP 2015.
LNCS, vol. 9032, pp. 158–182. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46669-8 7

41. da Rocha Pinto, P., Dinsdale-Young, T., Gardner, P.: TaDA: a logic for time and
data abstraction. In: Jones, R. (ed.) ECOOP 2014. LNCS, vol. 8586, pp. 207–231.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44202-9 9

42. da Rocha Pinto, P., Dinsdale-Young, T., Gardner, P.: Steps in modular specifica-
tions for concurrent modules. In: MFPS, pp. 3–18 (2015). https://doi.org/10.1016/
j.entcs.2015.12.002

43. Sergey, I., Nanevski, A., Banerjee, A.: Specifying and verifying concurrent algo-
rithms with histories and subjectivity. In: Vitek, J. (ed.) ESOP 2015. LNCS, vol.
9032, pp. 333–358. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46669-8 14

44. Sergey, I., Wilcox, J., Tatlock, Z.: Programming and proving with distributed pro-
tocols. POPL 2, 1–30 (2017). https://doi.org/10.1145/3158116

45. Siegel, S., et al.: CIVL: the concurrency intermediate verification language. In:
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC), p. 61. ACM (2015). https://doi.org/10.1145/2807591.2807635

46. Supplementary Material. The supplementary material for this paper, consisting of
a technical report, the Coq formalisation and the case study, can be found online
at https://github.com/wytseoortwijn/VMCAI20-SharedMemAbstr

47. Summers, A.J., Müller, P.: Actor services – modular verification of message pass-
ing programs. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632, pp. 699–726.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49498-1 27

48. Svendsen, K., Birkedal, L.: Impredicative concurrent abstract predicates. In: Shao,
Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 149–168. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-54833-8 9

49. Svendsen, K., Birkedal, L., Parkinson, M.: Modular reasoning about separation of
concurrent data structures. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS,
vol. 7792, pp. 169–188. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-37036-6 11

50. Turon, A., Dreyer, D., Birkedal, L.: Unifying refinement and Hoare-style reason-
ing in a logic for higher-order concurrency. In: ICFP, pp. 377–390. ACM (2013).
https://doi.org/10.1145/2500365.2500600

51. Usenko, Y.: Linearization in µCRL. Technische Universiteit Eindhoven (2002)
52. Vafeiadis, V.: Automatically proving linearizability. In: Touili, T., Cook, B., Jack-

son, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 450–464. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14295-6 40

53. Vafeiadis, V.: Concurrent separation logic and operational semantics. In: MFPS,
volume 276 of ENTCS, pp. 335–351 (2011). https://doi.org/10.1016/j.entcs.2011.
09.029

54. Vafeiadis, V., Parkinson, M.: A marriage of rely/guarantee and separation logic. In:
Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 256–271.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74407-8 18

https://doi.org/10.1007/978-3-662-46669-8_7
https://doi.org/10.1007/978-3-662-46669-8_7
https://doi.org/10.1007/978-3-662-44202-9_9
https://doi.org/10.1016/j.entcs.2015.12.002
https://doi.org/10.1016/j.entcs.2015.12.002
https://doi.org/10.1007/978-3-662-46669-8_14
https://doi.org/10.1007/978-3-662-46669-8_14
https://doi.org/10.1145/3158116
https://doi.org/10.1145/2807591.2807635
https://github.com/wytseoortwijn/VMCAI20-SharedMemAbstr
https://doi.org/10.1007/978-3-662-49498-1_27
https://doi.org/10.1007/978-3-642-54833-8_9
https://doi.org/10.1007/978-3-642-37036-6_11
https://doi.org/10.1007/978-3-642-37036-6_11
https://doi.org/10.1145/2500365.2500600
https://doi.org/10.1007/978-3-642-14295-6_40
https://doi.org/10.1016/j.entcs.2011.09.029
https://doi.org/10.1016/j.entcs.2011.09.029
https://doi.org/10.1007/978-3-540-74407-8_18

Practical Abstractions for Automated Verification 425

55. Villard, J., Lozes, É., Calcagno, C.: Proving copyless message passing. In: Hu, Z.
(ed.) APLAS 2009. LNCS, vol. 5904, pp. 194–209. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-10672-9 15

56. Zaharieva-Stojanovski, M.: Closer to reliable software: verifying functional
behaviour of concurrent programs. Ph.D. thesis, University of Twente (2015).
https://doi.org/10.3990/1.9789036539241

57. Zheng, M., Rogers, M., Luo, Z., Dwyer, M., Siegel, S.: CIVL: formal verification of
parallel programs. In: ASE, pp. 830–835. IEEE (2015). https://doi.org/10.1109/
ASE.2015.99

https://doi.org/10.1007/978-3-642-10672-9_15
https://doi.org/10.3990/1.9789036539241
https://doi.org/10.1109/ASE.2015.99
https://doi.org/10.1109/ASE.2015.99

	Practical Abstractions for Automated Verification of Shared-Memory Concurrency
	1 Introduction
	2 Approach
	3 Formalisation
	3.1 Process Algebraic Models
	3.2 Programs
	3.3 Program Logic
	3.4 Entailment Rules
	3.5 Program Judgments
	3.6 Soundness

	4 Implementation
	5 Case Study
	5.1 Behavioural Specification
	5.2 Protocol Implementation

	6 Related Work
	7 Conclusion
	References

