Modular Software Verification

Dilian Gurov

KTH Royal Institute of Technology, Stockholm, Sweden

RTA-CSIT 2014 Invited Talk
Tirana, 13 December 2014
public class EvenOdd {

 //@ requires n >= 0;
 //@ ensures \result == (\exists int k; n == 2 * k);
 public boolean even(int n) {
 if (n == 0) return true;
 else return odd(n-1);
 }

 //@ requires n >= 0;
 //@ ensures \result == (\exists int k; n == 2 * k + 1);
 public boolean odd(int n) {
 if (n == 0) return false;
 else return even(n-1);
 }
}
Verification of Temporal Properties

- Temporal properties:
 "First call of even is not to itself"

- Temporal logics:
 - Linear-time Temporal Logic (LTL):
 \[\text{even} \Rightarrow X ((\text{even} \land \neg \text{entry}) W \text{odd}) \]
 - \(\mu \)-calculus:
 \[\text{even} \Rightarrow \nu X. [\text{even call even}] ff \land [\tau] X \]

- Algorithmic verification: Model Checking
 Decidable for finite-state and push-down systems
Model Checking of Procedural Programs

Various techniques:

- Ball et al 2001: Predicate Abstraction
- Das et al 2002: Property Simulation
- Esparza et al 2002: Pushdown Systems

Not modular!
Modular Model Checking

Can one infer a global property from the local specifications?

Idea: use **maximal models**!

- Grumberg & Long 1994: ACTL
- Kupferman & Vardi 2000: ACTL*

Developed for finite-state systems
Our work: Procedures + Temporal + Modular

- started in 2001
- original goal: verify JavaCard programs in the presence of post-issuance loading of applets on smart cards
- joint work with Marieke Huisman, Christoph Sprenger, Irem Aktug, Siavash Soleimanifard, Ina Schaefer, Afshin Amighi, Pedro Gomes
Compositionality and Modularity

Compositionality as a **mathematical principle**:
- express the meaning of the whole through the meaning of the parts
- example: denotational semantics
- example: definitions and proofs by structural induction

Modularity as a **systems design principle**:
- control the complexity of the system
 by braking it down into manageable pieces that are designed, implemented, tested and maintained **independently**
Verification

Verification as a **systems design task**:
- match a model of the system against a specification

Modular Verification:

- specify and verify every module independently
- infer system correctness from module correctness
 i.e., **relativize** global properties on local ones

This relativization allows verification in the presence of **variability**
Variability

Temporal variability:
- static code evolution
- dynamic code replacement
- dynamic code loading: code not available at verification time

Spacial variability:
- multiple variants, as arising from software product lines
Verification in the presence of variability

Consider a system with four modules (components):
- A implemented, stable
- B implemented, expected to evolve
- C implemented, multiple variants
- D not yet implemented/available

How shall one plan for the verification of a global property ψ?
- as early as possible
- with minimal effort: reuse results
Relativization

Relativize global property on local specifications. Three tasks:

1. specify modules B, C, D
2. verify

 \[\text{impl}(B) \models \text{spec}(B) \]
 \[\text{impl}(C) \models \text{spec}(C) \]
 \[\text{impl}(D) \models \text{spec}(D) \]

3. verify

 \[\text{impl}(A) + \text{spec}(B) + \text{spec}(C) + \text{spec}(D) \models \psi \]

Variability is then dealt with naturally.
But... how, and is there an algorithmic solution?
Program Model

Our approach is to use a unifying program model to represent modules and whole programs. Then, for the second task:

\[
\text{impl}(B) \models \text{spec}(B)
\]

\[
\text{impl}(C) \models \text{spec}(C)
\]

\[
\text{impl}(D) \models \text{spec}(D)
\]

perform the following steps:

1. from module implementations: extract models
2. model check models against local specifications:

\[
\text{mod(impl}(B)) \models \text{spec}(B)
\]

\[
\text{mod(impl}(C)) \models \text{spec}(C)
\]

\[
\text{mod(impl}(D)) \models \text{spec}(D)
\]
Program Model

For the third task:

\[impl(A) + spec(B) + spec(C) + spec(D) \models \psi \]

perform the following steps:

1. from module implementations: extract models
2. from module specifications: construct (so-called maximal) models
3. compose extracted with constructed models
4. model check composed model against global property \(\psi \):
 \[mod(impl(A)) + max(spec(B)) + max(spec(C)) + max(spec(D)) \models \psi \]
Our Setup

A. Program model: Flow graphs capturing control flow
 - behaviour as induced pushdown automaton

B. Properties: legal sequences of method invocations
 - temporal safety properties

C. Verification: pushdown automata model checking
 - essentially a language inclusion problem

Compositional Verification of Sequential Programs with Procedures
Dilian Gurov, Marieke Huisman and Christoph Sprenger
Journal of Information and Computation
A. Program Model

Flow Graph:

class Number {
 public static boolean even(int n){
 if (n == 0)
 return true;
 else
 return odd(n-1);
 }
 public static boolean odd(int n){
 if (n == 0)
 return false;
 else
 return even(n-1);
 }
}

Example run through the behaviour, from an initial configuration:

\[(v_0, \epsilon) \xrightarrow{\tau} (v_1, \epsilon) \xrightarrow{\tau} (v_2, \epsilon) \xrightarrow{\text{even call odd}} (v_5, v_3) \xrightarrow{\tau} (v_6, v_3) \xrightarrow{\tau} (v_8, v_3) \xrightarrow{\text{odd ret even}} (v_3, \epsilon)\]
Simulation: A refinement pre–order on models

We require the following conditions:

1. extracted models simulate module implementations
2. maximal models simulate models satisfying module specifications
3. simulation is monotone w.r.t. composition
4. simulation preserves properties (backwards)

The third task:

\[\text{mod(impl(A)) + max(spec(B)) + max(spec(C)) + max(spec(D)) } \models \psi \]

thus entails:

\[\text{impl(A) + impl(B) + impl(C) + impl(D) } \models \psi \]
Flow Graph Extraction from Java Bytecode

Java program:

```java
public static void Meth(boolean flag, ExtA myobj) {
    try {
        if (flag) myobj.Meth();
    } catch (NullPointerException e) {}
}
```

Corresponding bytecode:

```java
public static void Meth(boolean, ExtA);
Code:
0: iload_1
1: ifeq 8
4: aload_0
5: invokevirtual
8: goto 12
11: astore_2
12: return
```

Exception table:

```
from to target type
0 8 11 NullPointerException
```

Sound Control–Flow Graph Extraction for Java Programs with Exceptions
Afshin Amighi, Pedro Gomes, Dilian Gurov and Marieke Huisman
In Proceedings of SEFM 2012, LNCS 7504, pp. 33–47
B. Properties

Example **structural** property:

- “The program is tail recursive”:

 \[\nu X. [\text{even}] r \land [\text{odd}] r \land [\varepsilon] X \]

- can be checked with standard finite–state model checking

Example **behavioural** property:

- “The first call of \texttt{even} is not to itself”:

 \[\text{even} \Rightarrow \nu X. [\text{even call even}] \text{ff} \land [\tau] X \]

- can be checked with PDA model checking
More behavioural properties

- “No send after read”
- “A vote is only submitted after validation”
- “Votes are only counted after voting has finished”
- “No non-atomic operations within transactions”
Behavioural property “No send after read”:

\[\phi = \nu X. [\tau] X \land [\text{a caret send}] X \land [\text{a call a}] X \land [\text{a ret a}] X \land [\text{a caret read}] \phi' \]
\[\phi' = \nu Y. [\tau] Y \land [\text{a caret read}] Y \land [\text{a call a}] Y \land [\text{a ret a}] Y \land [\text{a caret send}] \text{ff} \]

gives rise to several structural properties, most notably:

\[\psi = \nu X. [\varepsilon] X \land [\text{send}] X \land [\text{a}] \psi' \land [\text{read}] \psi' \]
\[\psi' = \nu Y. [\varepsilon] Y \land [\text{read}] Y \land [\text{a}] \text{ff} \land [\text{send}] \text{ff} \]

Reducing Behavioural to Structural Properties
Dilian Gurov and Marieke Huisman
Theoretical Computer Science
vol. 480, pp. 69–103, 2013
Atoms \{p\}, labels \{a, b\}, formula \([b] \text{ff} \land p\)

The formula as an **equation system**:

\[
X = [b] \text{ff} \land p
\]

Converted into **simulation normal form**:

\[
X = [a] (Y_1 \lor Y_2) \land [b] \text{ff} \land p
\]

\[
Y_1 = [a] (Y_1 \lor Y_2) \land [b] (Y_1 \lor Y_2) \land p
\]

\[
Y_2 = [a] (Y_1 \lor Y_2) \land [b] (Y_1 \lor Y_2) \land \neg p
\]
C. Verification

Structural specification for even:

Interface: prov. even, req. odd

\[\phi_{\text{even}} = \nu X \cdot [\text{even}] \text{ff} \land [\text{odd}] \phi'_{\text{even}} \land [\varepsilon] X \]

\[\phi'_{\text{even}} = \nu Y \cdot [\text{even}] \text{ff} \land [\text{odd}] \text{ff} \land [\varepsilon] Y \]

Structural specification for odd:

Interface: prov. odd, req. even

\[\phi_{\text{odd}} = \nu X \cdot [\text{odd}] \text{ff} \land [\text{even}] \phi'_{\text{odd}} \land [\varepsilon] X \]

\[\phi'_{\text{odd}} = \nu Y \cdot [\text{odd}] \text{ff} \land [\text{even}] \text{ff} \land [\varepsilon] Y \]

Verify the global behavioural specification:

\[\text{even} \Rightarrow \nu X \cdot [\text{even call even}] \text{ff} \land [\tau] X \]
The CVPP Tool Set

- Graph
 - compose
 - convert
 - inline

- Model
 - flow graph
 - FSM
 - PDS

- ModCheck
 - Moped
 - CWB

- MaxMod

- Formula
 - simplify
 - convert
 - CWB/LTL
 - beh2struct

- Formula
 - structure
 - behaviour
 - eqsys

Program → Analyser → Model → MaxMod → Formula
Full automation would require:

- single input to the checker
- local and global specs as annotations/comments
- inspired from JML based verification tools like ESC/Java
- pre- and post-processing

```java
/** @global_LTL_prop:
 *   even -> X ((even && !entry) W odd)
 */
public class EvenOdd {

/** @local_interface: requires {odd}
 * *
 *  @local_SL_prop:
 *  nu X1. (([even call even]ff) \ ( [tau]X1) \ 
 *    [even caret odd] nu X2.
 *  *    ( [even call even]ff) \ 
 *    ( [even caret odd]ff) \ ([tau]X2))
 */
public boolean even(int n) {
    if (n == 0) return true;
    else return odd(n-1);
}

/** @local_interface: requires {even}
 * *
 *  @local_SL_prop:
 *  nu X1. (([odd call odd]ff) \ ( [tau]X1) \ 
 *    [odd caret even] nu X2.
 *  *    ( [odd call odd]ff) \ 
 *    ( [odd caret even]ff) \ ([tau]X2))
 */
public boolean odd(int n) {
    if (n == 0) return false;
    else return even(n-1);
}
```
ProMoVer: A wrapper around CVPP

Procedure-Modular Verification of Temporal Safety Properties
Siavash Soleimanifard, Dilian Gurov and Marieke Huisman
A hierarchical variability model for software product lines:

- CashDesk
- Keyboard Scanner Cash
 - UseKeyboard
 - UseScanner
- Card
 - EnterCard
 - PayCash
- Payment
 - PayCredit
 - PayDebit
 - PayPrepaid

Dilian Gurov (KTH Stockholm)
The number of products can be exponential in the size (number of regions) of the variability model! Needs compositional treatment!

Solution: relativize on properties of variation points!

Results in one verification task per region!

Compositional Algorithmic Verification of Software Product Lines
Ina Schaefer, Dilian Gurov and Siavash Soleimanifard
In Post-proceedings of FMCO 2010, LNCS 6957, pp. 184–203
Conclusion

Strengths:

- algorithmic verification of temporal safety properties
- modular: allows dealing with variability
- sound and complete at flow graph level
- tools and wrappers for various scenarios

Limitations:

- limited properties if no data
- computationally expensive:
 - flow graph extraction
 - maximal flow graph construction
 - PDA model checking
 - property translation and simplification
Future Work

- Take pragmatic approaches to deal with bottlenecks:
 - flow graph extraction: sacrifice precision
 - maximal flow graph construction: avoid when possible
 - PDA model checking: use FSM model checking instead
 - property translation and simplification: restrict logics

- Add data in a controlled way:
 - Boolean data
 - object references