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Abstract— A major challenge in modeling with BNs is
learning the structure from both discrete and multivariate
continuous data. A common approach in such situations is to
discretize continuous data before structure learning. However
efficient methods to discretize high-dimensional variables are
largely lacking. This paper presents a novel method specifically
aiming at discretization of high-dimensional, high-correlated
data. The method consists of two integrated steps: non-linear
dimensionality reduction using sparse Gaussian process latent
variable models, and discretization by application of a mixture
model. The model is fully probabilistic and capable to facilitate
structure learning from discretized data, while at the same
time retain the continuous representation. We evaluate the
effectiveness of the method in the domain of robot grasping.
Compared with traditional discretization schemes, our model
excels both in task classification and prediction of hand grasp
configurations. Further, being a fully probabilistic model it
handles uncertainty in the data and can easily be integrated
into other frameworks in a principled manner.

I. INTRODUCTION

In the research field of robot grasping and manipulation,
an important challenge is to automatically plan a grasp on
an object that affords an assigned manipulation task. This
requires a robot to integrate a large range of sensory streams
in order to estimate the state of the scene, understand the
task requirements, and reason about its ability to plan and
control in an uncertain, open-ended environment. In recent
years, learning by imitation has been one important approach
to these problems [1], [2], [3], [4]. The goal is to design a
system whereby a robot learns a task by imitating a human
teacher. In order to observe a human demonstration, the
robot needs to obtain the state of the entire scene, not only
the objects, but also the human actions which often are
characterized using many variables (e.g. hand kinematics).
In addition, the robot also needs to recognize the intention
of the human to be able to reproduce the grasp in a goal-
directed way. This poses a significant modelling challenge.

To correctly describe a manipulation task, both conceptual
high-level information and continuous low-level sensorimo-
tor variables are needed. In previous work [5], we have
applied Bayesian Networks (BN) [6] to model the grasping
scenario. The aim is to exploit the strengh of BNs in
modeling complex joint distribution of these variables, so
that the robot is able to reason at both high-level task
representations and low-level planning and control using its

D. Song, C.H Ek, K. Huebner and D. Kragic are with KTH – Royal
Institute of Technology, Stockholm, Sweden, as members of the Com-
puter Vision & Active Perception Lab., Centre for Autonomous Sys-
tems, www: http://www.csc.kth.se/cvap, e-mail addresses:
{dsong,chek,khubner,danik}@csc.kth.se.

sensorimotor systems. Though the results are promising, the
approach suffers from inheritant disadvantages of BN, being
able to use only a small sub-set of the available sensory
streams.

These difficulties arise from several sources. When many
nodes are included, manually encoding the structure of
the network is non-trivial and poses significant challenges.
Therefore, we are motivated to learn the BN structure au-
tomatically from the data. A large body of work exists (see
review in [7]) learns the structure of BN in scenarios where
all the variables are discrete. However, our observations are
represented using both discrete and multivariate continuous
variables. In such scenarios, no directly applicable method
for learning the structure exists. To learn structure from
continuous data, several approaches have sought to discretize
continuous data as a prestep (see reviews in [8]). However,
as data-dimensions increases discretisation becomes signifi-
cantly more challenging. Recently, a multivariate discretiza-
tion scheme was developed in [9]. However, the method
suffers from ineffective clustering in high-dimensional spaces
and slow convergence.

The contribution in this paper is to introduce a novel
multi-variate discretization approach, which makes use of
high correlation of the high dimensional data, combining
a non-parametric dimensionality reduction approach (Gaus-
sian process latent variable model (GP-LVM) [10]), with a
Gaussian mixture model. In addition, the GP-LVM being a
generative model, when combined with BNs, can improve
the data reconstruction in the high-dimensional continuous
space. We evaluate our proposed discretization approach by
examining its effect on learning BNs. When compared with
other alternative approaches, the GP-LVM-based method
significantly improves the task classification accuracy, and
intuitive data reconstruction in high-dimensional space.

II. RELATED WORK

Graphical models such as Bayesian networks [6] aim at
exploiting conditional independencies in the data in order to
factorize the joint distribution of the data. For interpretable
scenarios such as object manipulation, the factorization en-
codes the semantic relationships between groups of variables
that represents the entire scene of manipulation tasks. Fur-
ther, being a generative model, a BN can be directly applied
for reasoning and planning of new grasps outside the training
data. In [3] a discrete BN is applied to model affordances
of objects while a robot is interacting with them in simple
manipulation tasks to explore its sensorimotor capabilities.
In our recent work [5], we extended the domain to complex,



task-oriented grasp planning problems, and tackled chal-
lenges in both object/task recognitions and grasp selection
under uncertain environments. The model allows not only to
reason about high-level task representations, but also to make
detailed decisions on which object to use and which grasp
to apply in order to fulfill the requirements of an assigned
task. However, the BN models both discrete and continuous
variables, which presents the limitations when a large number
of variables are to be modeled, and when the structure of the
network is to be learned.

Learning BN structure from both continuous and discrete
data is difficult, particularly when continuous data is high-
dimensional and has complex distributions. Most algorithms
for structure learning only work with discrete variables.
Therefore, a common approach is to convert the mixed
modeling scenario into a completely discrete one by dis-
cretizing the continuous variables [8]. In data discretization,
most techniques are based on either heuristic evaluation
[3], or equal-frequency and equal-width binning methods
[7], [8], [11]. In latter, the data is divided into a set of
bins, and then the number and the location of the bins
are optimized based on some information criterion such as
Akaike’s criterion [7], [12]. However, the method is only
applicable for continuous variables with only one dimension.
Multivariate discretization has been explored for association
rule discovery in the field of data mining. A recent work
in [9] introduced a novel approach that is based on density-
based clustering techniques. The method assumes that high
density data clusters often occur when there are high associ-
ations between the continuous variables. Once these clusters
were identified, a genetic algorithm was applied to optimize
the cut points for the discretization intervals.

The idea behind the method in [9] is similar to ours
in that we also use the clusters discovered in the data as
the class information used for discretization. However, [9]
explored the clustering in the original observation space of
the data which will suffer when the variable is very high-
dimensional and thus density learning becomes inefficient.
In robotic applications, many variables of interest such as
hand joint kinematics are high-dimensional. However, the
intrinsic dimensionality or the number of degrees of freedom
are often much smaller due to significant between-dimension
correlation in the observed space. In dimensionality reduction
the aim is to exploit such correlation in order to find a more
compact and efficient representation.

The field of dimensionality reduction has received signif-
icant attention over the last decade. Originating from simple
linear algorithms such as Multi-Dimensional-Scaling [13]
and Principle Component Analysis, several non-linear ex-
tensions were suggested [14], [15]. However, these methods
often rely on assumptions that significantly limits their ap-
plication. Therefore more general, generative interpretations
such as Probabilistic PCA (PPCA) [16] were proposed. Of
particular success has been the GP-LVM being a non-linear
generalization of PPCA based on non-parametric regression
using Gaussian Processes (GP). In next two sections, we
will first introduce GPs and the GP-LVM. Based on this

background, we will proceed to explain our proposed dis-
cretization model.

III. GAUSSIAN PROCESSES

A GP [17] is defined as a collection of random variables,
any finite number of which follows a joint Gaussian dis-
tribution. GPs are commonly used to model distributions
over functional spaces making probabilistic treatment of such
possible.

Given a set of data X = [x1, . . . ,xN ]T, xi ∈ <q and
Y = [y1, . . . , yN ]T, yi ∈ <, we assume that yi are related
to xi through an underlying functional relationship f where
the observations Y have been corrupted by additive Gaussian
noise,

yi = f(xi) + ε, (1)

where ε ∼ N (0, σ2). We assume that the unknown function
values f can be modeled using a GP,

p(f(X)|X) = N
(
µ(X), k(X,X)

)
, (2)

where µ(·) is the mean and k(·, ·) the covariance function
respectively. Without loss of generality we can remove the
bias from the data and set the mean funtion to be constant
zero. The covariance function defines what types of functions
are more prominent in the prior, and are specified using a
set of parameters Φ which will be referred to as the hyper-
parameters of the GP. The hyper-parameters are difficult
to know a-priori, so we want to learn them from data.
Combining the prior with the likelihood, which is Gaussian
due to the noise assumption, and marginalizing,

p(Y|X,Φ) =

∫
p(Y|f(X))p(f(X)|X,Φ)df(X), (3)

leads to the marginal likelihood of the observed data. We
can then find the hyper-parameter Φ̂ that maximizes Eq.3.

Through the definition of a GP, the joint distribution of
X and a set of new input locations X∗ can be formulated.
Marginalization of the observed data X leads to the predic-
tive distribution,

p(f(X∗)|Y,X,Φ) = N
(
k(X∗,X)

(
k(X,X) + σ2I

)−1
Y,

k(X∗,X∗)− k(X∗,X)
(
k(X,X) + σ2I

)−1
k(X,X∗)

)
, (4)

from which inference can be performed.
As can be seen above, learning in the GP framework

requires invertion of a N× N matrix, an operation of cubic
complexity. This places significant constraints on the size
of the datasets for which the framework can be applied.
This has led to a significant amount of work on methods
which aim to reduce the computational cost associated with
the model. In specific, a set of methods which introduce an
additional set of input variables U referred to as the inducing
variables have been proposed. By assuming the observed
data to be independent given the inducing points, the prior
can be written as p(f(X)) =

∫
p(f(X)|U)p(U)dU. When

substituted into the derivation of the predictive distribution,
the inducing conditional takes the following form,

p(f(X)|U) = N
(
k(X,U)k(U,U)−1U,

k(X,X)− k(X,U)k(U,U)−1k(U,X)
)
. (5)



Note that the matrix inversion in Eq. 5 is only applied to
the covariance matrix on the inducing points.

By using a much smaller number of inducing points com-
pared to the original data, several different approximations
have been suggested. Explaining the different approximation
in detail is beyond the scope of this paper. However, we
briefly note that one kind of approximation method adds
the inducing points as parameters of the covariance func-
tion and estimates their location jointly with the remaining
hyper-parameters. Intuitive as this might be, it significantly
increases the number of parameters to be estimated which
makes such an approach prone to over-fitting. A recent work
by [18] suggested a variational framework to circumvent
this problem. The method treats the inducing points as pa-
rameters, and proceeds by minimizing the Kullback-Leibler
divergence between the exact posterior distribution and the
variational distribution. In this paper we will make use of
this variational approximation in [18].

The GP-LVM [10] is a generative model for dimension-
ality reduction based on GPs. We assume a set of observed
data Y = [y1, . . . ,yN ]T, with yi ∈ <D, is generated from a
low-dimensional variable X = [x1, . . . ,xN ], with xi ∈ <q ,
through a mapping f corrupted by additive Gaussian noise,
yi = f(xi) + ε, where ε ∼ N (0, σ2I). Each dimension of
the output is modeled as an independent GP,

p(f(X)|X) =

D∏
i

p(f(X)Tei|X)) (6)

where ei is standard basis vector. The GP-LVM proceeds
in analog with the regression framework with one significant
difference. In the GP-LVM the input variables X are treated
as random variables, and the solution to X is found together
with the hyper-parameters through maximum likelihood,

{Φ̂, X̂} = argmax{Φ,X}p(Y|X,Φ). (7)
This might seem non-sensical as clearly the combination of
mappings f and input locations X that could have generated
the observed data Y is infinite. However, by fixing the di-
mensionality of the latent space q to be significantly smaller
compared to the observed data, and by the regularizing effect
of the GP-prior, a solution can be found efficiently.

IV. GP-LVM DISCRETIZATION

In this section, we explain a novel descretization approach,
which, by exploiting recent advances in sparse GPs and the
GP-LVM, is able to compactly represent high-dimensional
continuous data using a low-dimensional discrete mixture
model in a principled way.

Our approach is a straight-forward two-stage framework,
as exemplified in Fig. 1. Given a set of observed high-
dimensional data Y, in this example the 20D feature fcon,
we wish to find a compact discrete representation of the data
which can be efficiently used in a BN. In the first stage
we use a GP-LVM model where the generative mapping is
formulated as a sparse GP from a small sub-set of inducing
points. Using the sparse variational approximation of [18],
the location of the inducing points (the red star markers
in Fig. 1 a) and the hyper-parameters of the generative
mapping can be found. Further, in order to avoid setting the

a) Step1: GP-LVM → 2D Latent Space b) Step2: GMM → Discretization

Fig. 1. GP-LVM-based discretization for fcon: a) 2D latent space learned
using sparce GP-LVM, b) discretization using GMM in the 2D latent space.

dimensionality by hand and reduce reliance on initialization,
we include the rank-regularization framework of [19].

In the second stage, one could directly use the inducing
points of the GP as cluster-centers to discretize the data.
However, when training GP-LVM, we use a spherical covari-
ance function in order to reduce the number of parameters
that need to be estimated from data. But this might lead to a
less compact representation since variances in the dimensions
with high correlation will be modeled as the same as those
with low correlations. Our solution is, in the second stage, to
learn a more compact representation using a mixture model
that allows full covarances therefore more flexible compo-
nent representations. More specifically, we learn a Gaussian
mixture model (GMM) explaining the latent locations X.
The inducing points are used as the initial centers of all
mixture components, and the model is optimized through the
standard Expectaion Maximization approach. Fig. 1 b) shows
the resulted mixture model, with the ellipsoids representing
one standard deviation of the Gaussian components, and the
colored data points being the resulted discretization.

For runtime evaluation, an unoptimized Matlab implemen-
tation with 1800 data points, it takes about 100 seconds to
train the discretization model for the worst case data.

V. DATA GENERATION

In this section, we will briefly introduce how the variables,
i.e. the feature values, are extracted. Tab. I shows the features
used in this work. The features describing each grasp are
divided into three sub-sets: object features (O) extracted from
the object representation, action features (A) extracted from
the planned grasps, and constraint features (C) resulting
from the complementation of both, i.e. the hand-object con-
figuration. Each grasp is visualized in GraspIt! to a human
tutor who associates it with a task label (T ).

Fig. 2 shows the schematic of the data generation process.
To extract those features, we first generate grasp hypotheses
using the grasp-planner BADGr [20], and evaluate them
as scenes of object-grasp configurations in a grasp simu-
lator, GraspIt! [21]. BADGr includes extraction and labeling
modules to provide the set of variables presented in Tab.
I. The interested reader is referred to [5], [20] for more
details on the feature extraction. We emphasize that the
grasp representation does not have to be non-redundant,
e.g. cvex and shcv are allowed variables to both represent
object shapes. Such an “over-representation” of the featured



TABLE I
USED FEATURES WITH THEIR DIMENSIONALITY D (FOR CONTINUOUS)

AND NUMBER OF STATES N AFTER DISCRETIZATION.

Name D N Description
T task - 3 Task Identifier
O1 obcl - 6 Object Class
O2 size 3 8 Object Dimensions
O3 cvex 1 4 Convexity Value [0, 1]
O4 shcv 3 7 Shape Class Vector (Zernike Similarity)
A1 fcon 20 20 Final Hand Configuration
A2 dir 4 20 Approach Direction (Quaternion)
A3 pos 3 14 Grasp Position
A4 egpc 2 6 Eigengrasp Pre-Configuration
A5 upos 3 11 Unified Spherical Grasp Position
C1 fvol 1 6 Free Volume
C2 gbvl 1 4 Volume of Grasped Boxes
C3 pshcv 3 7 Part Shape Class Vector (Zernike Similarity)
C4 pecce 1 3 Part Eccentricity [0, 1]
C5 g1bx 1 2 Grasped-1-Box Value [0, 1]
C6 qeps 1 5 Grasp Stability Measure (eps)
C7 qvol 1 3 Grasp Stability Measure (vol)

{Object}
{Hand} Plan

(BADGr) {Grasp} Generate
(GraspIt2) {Scene}

Label
(BADGr) Tutor

{Task}Extract
(BADGr){T,O,A,C}

Task-related
Grasp Database

Fig. 2. Schematic diagram for generating task-related grasp database.

variables allows us to use BNs to identify the importance of,
and dependencies between these variables in the scenarios
of robot grasping and manipulation.

VI. RESULTS

In this section, we will describe four experiments to
evaluate our framework. In order to compare the suggested
approach with other methods we also present results obtained
by discretizing using a mixture model in either the observed
data space (NoReduce), or in the space spanned by the dom-
inant principle components (PCA). To compare them under
the same level of model complexity, the dimensionality of
the mixture model and the number of principle components
are set to be the same as for those learned by the GP-LVM.

To generate data, the grasp hypotheses are produced on
24 object models evenly covering six object classes (obcl)
including knifes, hammers, screwdrivers, glasses, bottles and
mugs. The grasps are labeled according to three manipulation
tasks: hand-over, pouring and tool-use. The total data-set
consists of 1800 data points uniformly divided over the three
tasks. We use 80% of the data for training and the remainng
360 instances for testing.

In all the experiments, when feature set O is observed, all
object features except the object class obcl are observed. We
assume that obcl is unknown in order to simulate the real-
world scenarios where recognizing object categories from its
raw features is still a hard problem for robot sensor systems.

A. Experiment I: Structure Learning
The first experiment is to learn structure of BNs from the

discretized data by using the three different discretization

schemes. We use a greedy search algorithm to find the
structure, or the directed acyclic graph (DAG), in a neigbor-
hood of graphs that maximizes the network score (Bayesian
information criterion [22]). The search is local and in the
space of DAGs, so the effectiveness of the algorithm relies
on the initial DAG. As suggested by [7], we use another
simpler algorithm, the maximum weight spanning tree [23],
to find an oriented tree structure as the initial DAG. We
assume the task class variable is the ‘cause’ of the systems
thus the root node of the network.

Fig. 3 shows the results of learned DAGs from the
three models. We note that learning the structure from
data reveals complicated relationships among these large
pool of variables, which will otherwise be very difficult to
encode by human experts. From an initial inspection, the
DAGs associated with the different discretization schemes
share much of their structure. And they conform to our
intuitive knowledge of the dependency relations between
the variables. For example, the three action features – pos,
upos and dir – are fully connected because the unified
spherical grasp position upos is directly derived from the
grasp position pos and the hand orientation with respect to
the object dir. We also see that task has a direct connection
to obcl which in turn directly determines the other object
features. This make perfect sense as among the six object
classes, 3 classes are tools therefore afford the tool-use task,
and the other 3 classes are containers therefore afford the
pouring task.

When comparing the DAG of GP-LVM to those of PCA
and NoReduce models, the main difference lies in the
connections involving fcon. This is not surprising. As fcon
represents the final grasp configuration of the hand which
is high-dimensional and contains a lot of information, it is
therefore expected to be most affected by the discretization
methods. As we can see, fcon in the GP-LVM model has
more parents thus more family members than that of the
other two models. This indicates that the GP-LVM-based
discretization of fcon captured a different representation
in the continuous, high-dimensional space of the variable,
therefore, the dependencies of fcon with other variables are
different. In specific, in the GP-LVM model, fcon is con-
nected to pecce, the eccentricity of the grasped part, which
clearly has a big impact on the final grasp configuration.
This dependency is discovered when using GP-LVM-based
discretization scheme, but is lost by both PCA and NoReduce
models.

B. Experiment II: Task Classification
As we do not have the true structure of the BN to evaluate

the learned DAGs, in this section we evaluate the effec-
tiveness of the structure learning using the three different
discretization schemes by comparing their task classification
performance. As shown in Fig. 4, this task classification is
based on the inference of task variable given observation
of different set of other variables that form a complete
permutation of the 3 feature sub-sets: O, A and C.

There are three major observations from the result of this
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Fig. 3. Experiment I: The three resulting DAGs by applying structural learning on (left) GP-LVM, (middle) PCA and (right) NoReduce discretization
schemes. The differences in DAGs are highlighted by thick arrows. Square nodes represent discrete variables and circled nodes continuous. Continuous
nodes with thick boundaries identify high-dimensional variables onto which different discretization schemes have been applied.
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Fig. 4. Experiment II: Confusion matrices for task classification given different observations spaces: permutations of O,A,C features. For each 3 × 3
matrix, from left to right (top to down), the 3 tasks are: hand-over, pouring, tool-use.

experiment: i) Object features contain a lot information that
is task-relavant. By just observing O using GP-LVM model,
we see quite good classification rate. But A and C features
by themselves are close to random. When more information
is observed, the classification rate improves. Particularly, for
GP-LVM and PCA models, O and A compliments each
other and improve the classification rate significantly for
the pouring and tool-use tasks. When C is also added
in the observation space (O,A,C), the classification for
the hand-over task is improved in both models. However,
we notice that the accuracy on classifying pouring task
decreases from 95% to 85%. This may be explained by the
imbalanced training data in many of the C variables. For
example, when there is lack of data points for some states
of the C variables when the task is pouring, the conditional
probabilities learned in the BNs will be under-determined.
In such situations, clamping (observing) these C variables at
these states will certainly hurt the inference on the posterior
distribution on task. ii) When comparing the three models,

NoReduce, which discretizes the variables in original high-
dimensional space, has close-to-random classification rate.
The two models with dimensionality reduction (GP-LVM,
PCA) greatly outperform the NoReduce model. GP-LVM
is clearly the best in most of the observation conditions.
iii) When only A features are observed, we see quite high
classification rate only for tool-use (PCA: 88%, GP-LVM:
94%), while the other two tasks are random. This can
be explained by that since the tools are mostly very slim
compared to other objects, thus the fingers are very close to
each other when grasping them. As a result some A features
such as fcon contain much information to separate tool-use
from other tasks.

C. Experiment III: Prediction of Grasp Final Configuration
Since the Bayesian network is a generative model, in

addition to evaluate its performance in discrimitive power
(i.e. task classification) in the first experiment, we would also
like to see how well the model can sucessfully reconstruct
any variable given an assigned task. Particularly, we want
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Fig. 5. Experiment III: Top panel shows the likelihood maps of fcon in
latent space given tasks and glass’s object features P (fcon|T,O); Bottom
panel shows prediction of fcon in original space, visualized in GraspIt!.

to show the strength of the proposed discretization scheme
GP-LVM on reconstructing the high-dimensional variables.
Due to the space limit of the paper, we choose the grasp
final configuration fcon as our target variable. But note that
the similer effects have been observed on other variables.
In this experiment, the goal is to demonstrate that using the
discretization scheme GP-LVM, as compared to PCA and
NoReduce, we can i) better model the constraining effect of
the manipulation tasks on fcon, and ii) predict more intuitive
fcon in the original hand configuration space.

To do so, we first obtain the likelihood maps of fcon in the
2D latent space for the GP-LVM and PCA models (see top
panel of Fig. 5). The light color of the map indicates that the
point has high likelihood for the task. The maps are generated
by evenly sampling the posterior distribution P (·|T,O) under
the BN model for each task using the same object (glass).
This object comes from the test data in order to investigate
performance on generalization outside the training data.

The main observations here include: i) for both GP-LVM
and PCA models, the tool-use task has much darker maps,
indicating that the glass is clearly not tool-usable; ii) when
comparing the maps between the two models, we see there
are clear differences between hand-over and pouring tasks
for GP-LVM, whereas for PCA the likelihood patterns are
almost same. This implies that the GP-LVM model has
captured the potential constraining effects of the tasks on
the final configuration of the hand. On the contrary, the PCA
model is almost ‘blind’ on the potential task constraints.

As the 2D latent space representation can not give us any
intuition about how good is the fcon predicted by the model,

hand-over pouring tool-use

gl
as

s
kn

if
e

ha
m

m
er

Fig. 6. Experiment IV: Likelihood of Grasp Position Given Tasks and
Object Features P (pos|T,O), resulted from the GP-LVM model.

we would like to project the prediction into the original 20D
space and visualize it in the simulator. This way, we can also
visualize the results from the NoReduce model. The bottom
panel in Fig. 5 shows the results with the same object, for the
hand-over and pouring tasks. From the left to right columns,
the images represent the ground truth fcon, predicted fcon
from GP-LVM, PCA and NoReduce models respectively. We
can see that the reconstruction of the GP-LVM model is
closer to true fcon, and importantly the hand configurations
are more natural compared to other models. Both the PCA
and NoReduce models have unintuitive, even ‘impossible’
hand configurations that are far away from the true data.

The reason lies on the foundamental differences in the
discretization schemes. The GP-LVM model provides a
generative discretization scheme, while PCA and NoReduce
models do not. As a result, GP-LVM-based BNs can model
P (fcon|T,O), where fcon represents the original 20D
continuous data, whereas the other models can not. In other
words, the proposed GP-LVM-based discretization scheme
allows us to construct a full generative framework that
includes BN, GP-LVM and GMM. This framework is very
powerful to model the constraints for robot grasping and
manipulation tasks.

D. Experiment IV: Inference on Grasp Position
From the first three experiments, we have shown that the

GP-LVM-based discretization scheme outperforms others in
both task classification and data reconstruction. The goal
of the last experiment is to confirm that GP-LVM model
can successfully encode some task constraint on different
objects and tasks. Notice that the constraint of a given task
is often encoded by a combination of multiple features, e.g.
one should not grasp this object from this position pos,
in this orientation dir, and with this joint configuration
fcon. However due to space limit and for the purpose
of easier evaluation by the readers, we choose a single



intuitive variable, the grasp position pos, to visualize the
task constraint.

Similar to obtaining the likelihood map of fcon in ex-
periment III, we sample 625 grasping positions evenly on
an ellipsoid around the object. The size of the ellipsoid is
determined by the training data so that the ellipsoid envelops
the outer surface of all the grasping positions. As shown in
Fig. 6, for each sampled position, the likelihood is obtained
given the 3 tasks, and the object features for 3 unknown
objects: a glass, a knife and a hammer, i.e. P (pos|T,O).

Fig. 6 shows that the model sucessfully rules out the glass
for tool-use, and the knife and hammer for pouring. For
pouring, the glass can not be grasped from the top as it will
block the opening of the glass; similarly, when using the
knife or hammer as a tool, the grasp should avoid the sharp
blade or the head of the hammer as functional parts. All the
3 objects afford the hand-over task, and the likelihood maps
of pos for hand-over also capture the intuitive constraints
for these objects. Similar results are also observed in PCA
model but not in NoReduce model. The reason is revealed by
previous task classification results as shown in Fig. 4: while
PCA model has good classification rate given the observation
on O,A features, the NoReduce model is almost random.

VII. CONCLUSION

In conclusion, the sparse GP-LVM-based discretization
method excels over other methods in learning and infer-
ence with Bayesian networks. The compact, efficient data
representation allows fast structure learning for BNs that
model a large number of variables. And the resulted BN per-
forms significantly better in both task classification and data
reconstruction. In addition, since GP-LVM is a generative
technique for dimensionality reduction, the model encodes
the likelihood of each point in the latent-space, which, when
combined with the prediction from BNs, can reproduce much
more accurate and intuitive high-dimensional variables such
as hand grasp configurations. This presents a major advan-
tage of our proposed discretization method in the field of
robotic applications, where many sensory and motor signals
are high-dimensional with complex distributions.

In this paper, we only used human hand model to present
the discretization techniques for learning Bayesian networks.
However, the framework can be generalized to any hands,
from which the training data should be generated. The goal
of the hand-specific Bayesian network is to allow the task
information to be transferred between different hands or
embodiments, therefore the goal-directed grasp imitation can
be performed [5].

There are some limitations in the current approach that
need further research. Firstly, the number of discrete states
are manually chosen to satisfy a trade-off between refined
data representation and complexity of BNs. In the future, we
would also like to learn this hyper parameter automatically
from data. Secondly, the inducing points create a sparse
model of the full GP, however, there is nothing in the model
that encourages the inducing points to be sparse themselves,
i.e. less inducing points. Sparseness among the inducing

points would reduce the amount of shared explanation, which
we believe can lead to better clustering.

We would also like to test our discretization based task
constraint model in the real robot platforms where sen-
sorimotor uncertainty is more prominant. We believe this
will further exemplify the benifits of using a probabilistic
model capable of dealing with uncertainty in real-world
applications.
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