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Abstract— We study embodiment-specific robot grasping
tasks, represented in a probabilistic framework. The framework
consists of a Bayesian network (BN) integrated with a novel
multi-variate discretization model. The BN models the proba-
bilistic relationships among tasks, objects, grasping actions and
constraints. The discretization model provides compact data
representation that allows efficient learning of the conditional
structures in the BN. To evaluate the framework, we use
a database generated in a simulated environment including
examples of a human and a robot hand interacting with
objects. The results show that the different kinematic structures
of the hands affect both the BN structure and the condi-
tional distributions over the modeled variables. Both models
achieve accurate task classification, and successfully encode
the semantic task requirements in the continuous observation
spaces. In an imitation experiment, we demonstrate that the
representation framework can transfer task knowledge between
different embodiments, therefore is a suitable model for grasp
planning and imitation in a goal-directed manner.

I. INTRODUCTION AND CONTRIBUTIONS

An important challenge in imitation learning [1] is the
correspondence problem [2] due to the differences in embod-
iments between the teacher and the learner. Namely, direct
copy of the demonstrated action may fail to achieve the goal
of the demonstrated task, or even may not be feasible because
the robot has different mechanical constraints. Several works
have addressed the correspondence problem by constraining
the imitation at a task space that is shared by the teacher and
the learner. This common space can be either pre-specified
by the user [3], or automatically identified using machine
learning techniques [4]. In relation to robot arm movements,
such a common space is usually the trajectory of the hand
position and orientation in the Cartesian space, which is then
reproduced by the robot solving the inverse kinematics [3].

However, identifying a common task space is difficult in
the domain where the robot has to interact with the world:
to grasp and manipulate objects. We may ask: What is the
common task space for pouring water into a cup? Here,
the robot has to consider not only the hand pose, finger
configuration, but also the pose of the object, and its physical
properties that determine if the object affords this task. Also,
to firmly grasp an object for further manipulation, important
control parameters such as the grasping force have to be
considered. For the specific example of pouring, a good grasp
would be the one that results in a stable manipulation of the
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objects during pouring, taking into account that the grasp
should not be at a position so that the opening part is blocked.

To parameterize such semantic task constraints in a de-
terministic manner is hard. First, the task requirements can
vary a lot with the task itself. For example, the constraint of
a hand-over task is to leave enough free-space on the object
so that it allows re-grasp. It is clearly described by a set of
object and action variables that are different from those that
define the pouring task. In addition, this task description may
also be hand-specific. For example, human can apply power
grasps to hand-over an apple, but a robot may fail with the
same grasp type simply because it has a larger hand.

Our previous work [5] addressed already some of these
challenges. We used a probabilistic graphical model –
Bayesian Network (BN) – to encode such semantic task
requirements for robot grasping. The network modeled the
conditional distributions among a set of object and grasp
related features that are hand-specific, together with the task
requirements that have been introduced by human labeling.
The initial results were very promising: the model allowed
the robot not only to reason about high-level task repre-
sentations, but also to make detailed decisions about which
object to use and which grasp to apply in order to fulfill the
requirements of the assigned task. However, the BN used
in [5] models both discrete and continuous variables, which
presents some limitations particularly in structure learning
of the network. We therefore developed a novel multivariate
discretization model presented in [6]. The model uses a
non-linear dimensionality reduction technique to learn a
low-dimensional latent representation of the observations. A
mixture model is then learned to discretize the data allowing
for a compact, generative representation of the data. The
model is fully probabilistic and capable to facilitate structure
learning from discretized data, while retaining the continuous
representation.

The contribution of this paper is to create a fully prob-
abilistic framework for embodiment-specific representation
of robot grasping tasks. We do this by integrating the
BN approach from [5] with the multi-variate discreitization
model from [6]. The proposed approach is evaluated using
human and robot object grasping examples in a simulated
framework. We show that the two hands result in rather
different network structures indicating potentially different
conditional dependencies among the same set of task vari-
ables. Also, the conditional distributions in the individual
variables turn to be hand specific. However, both models
achieve good task classification, and represent the semantic
task requirements in the continuous observation spaces.



In an imitation experiment, we demonstrate that the
proposed framework successfully transfers task knowledge
between different hands and provides the means for grasp
planning and imitation in a goal-directed manner. Compared
with [5], [6], the current work extends the learning domain to
a slightly more challenging dataset with more tasks, objects
and embodiments.

II. MODELS

A Bayesian Network is a directed graphical model which
exploits conditional dependencies in the data in order to learn
an efficient factorization of the joint distribution in the data,

p(X1, . . . , XN ) =

N∏
i=1

p(Xi|πi), (1)

where Xi represents variables and πi its parents in the
network. The model is defined by a set of parameters
defining each conditional model and by the structure of the
vertices representing the conditional dependencies. Learning
both structure and parameters from both continuous and
discrete data poses a significant challenge. Most algorithms
for structure learning only work with discrete variables
therefore a pre-discretization step is necessary [7].

In [6] we developed a method capable of learning an
intermediate discrete representation of a high-dimensional,
continous observation space. In specific we apply techniques
from generative dimensionality reduction – the Gaussian
Process Latent Variable Model (GP-LVM) [8]. Its sparse
variational formulation [9] provides both efficient learning
of the latent space and the initial clusters for the subsequent
discretization. Due to space limit, we refer the readers to [8],
[9], [6] for detailed formulations of sparse GP-LVMs.

In this paper we improve the discretization model by
incorporating an additional prior that encourages the location
of the states to be sparse. In other words, we want a
representation where each of the cluster centers are well
separated in the latent space. To do so, we propose a prior
over the discretization centers U = {u1, u2, . . . , uM}, which
are the inducing points of the sparse GP-LVM. This prior
penalizes the L1 norm of the off-diagonal elements in the
inner-product matrix computed between the inducing points,

p(U|θU , βU ) = N (
√
D(U, θU )|0, β−1

U ), (2)

D(U, θU ) =

M∑
ij

λijku(ui, uj , θU ), λij =

{
0 i = j
1 i 6= j

.

If ku(ui, uj) is a smooth monotonically decreasing function
with respect to ||ui − uj || the distribution will encourage a
representation with well separated clusters. The parameters
βU and θU control the strength of the prior and the smooth-
ness of ku respectively. Here we use a radial basis function
where θU controls the width of the function that also relates
to the strength of the prior. Including the above prior into
the method presented in [6] we are able to further improve
previous results.

Once we have acquired a discrete version of the observa-
tions, we use a greedy search algorithm to find the structure,

Fig. 1. Randomly sampled Eigengrasp preshapes of the human hand, and
the preshape of Armar hand.

or the directed acyclic graph (DAG), in a neigborhood of
graphs that maximizes the network score (Bayesian infor-
mation criterion [10]). The search is local and in the space
of DAGs, so the effectiveness of the algorithm relies on the
initial DAG. As suggested by [11], we use another simpler
algorithm, the maximum weight spanning tree [12], to find
an oriented tree structure as the initial DAG. We assume the
task class variable is the ‘cause’ of the systems thus the root
node of the network.

Inference

A trained BN defines an efficient factorization of the
joint distribution of the observations. By converting the
acyclic graph into a tree, the junction tree algorithm [13]
allows efficient inference on the marginal distribution of any
variable(s) conditioned on observations of others. The output
of the inference is a multinomial distribution for variable Xi

over each of its discrete states uik while the observation of
the rest of the network Vi is at the state vj ,

µijk = p(Xi = uik|Vi = vj). (3)

We will now describe how we can recover a continuous
estimate of variable Xi in its original observation space Y
from this distribution.

Each point of xi on the latent space X defines a dis-
tribution over the observed data space Y through the GP
that models the generative mapping. Therefore in order to
acquire a continuous estimate in Y we need to determine
a distribution over the latent space X associated with the
multi-nominal distribution µijk. In order to achieve this we
first learn a parametric mixture model with the location of
the inducing points as the mixture centers. In specific we use
full-covariance Gaussian basis functions to define a mixture
model with M components (discrete states),

p(xi) ∝
M∏
k=1

λkN (xi|uik,Σik), (4)

and learn its parameters of the mixture model using the stan-
dard EM approach. The multinomial distribution output µijk

from the network defines a distribution over the inducing
points uik. We use this distribution to specify the coefficient
for the learned mixture components to create the following
conditional mixture model,

p(xi|vj) ∝
M∏
k=1

µijkN (xi|uik,Σik). (5)

We can then sample from the above distribution in order to
find locations over the latent space which corresponds to our
continuous estimate.



III. DATA GENERATION

Tab. I shows the features used in this work. The features
describing each grasp are divided into three sub-sets: object
features (O) from the object representation, action features
(A) from the planned grasps, and constraint features (C)
resulting from the complementation of both, i.e. the hand-
object configuration. Each grasp was visualized in GraspIt!
to a human tutor who associated it with a task label (T ).

Two hand models are used in the experiments: the human
20 degrees-of-freedom (DoF) hand, and the Armar 11 DoF
hand [14]. The database includes in total 48 objects covering
6 object classes (8 models per class). Each object class
includes 4 different object shapes each of which is scaled to 2
sizes – small and average. Four tasks are labeled: hand-over,
pouring, tool-use and dish-washing. Compared to previous
work we include the new task, dish-washing. In summary,
the current approach extends [5], [6] with a more challenging
dataset and a new robot hand showing the scalability of the
framework.

Note that the human hand has an Eigengrasp pre-
configuration egpc as one of the action variables, whereas the
Armar hand does not. Human hand is high-dimensional, but
not all of the DoFs are indepently controlled. Therefore we
use the idea of [15] to define random preshape configurations
of the hand in the 2D eigen grasp space (i.e. egpc). The
two dimensions of egpc roughly represent the levels of
finger spreading and finger flexion respectively. A detailed
implementation on egpc can be found in [5]. For the Armar
hand the spreading component is missing, and the four
fingers opposing the thumb can only flex and extend. We
therefore do not implement random samples in preshape
configuration for Armar hand, and the hand always starts
at a preshape while all the DoFs are at zero, i.e. the fingers
are fully extended (see Fig. 1).

Fig. 2 shows the schematic of the data generation process.
To extract those features for each hand, we first generate
grasp hypotheses using the grasp-planner BADGr [16], and
evaluate them as scenes of object-grasp configurations in a
grasp simulator, GraspIt! [17]. BADGr includes extraction
and labeling modules to provide the set of variables presented
in Tab. I. The interested reader is referred to [5], [16] for
more details on the feature extraction. We emphasize that
the grasp representation does not have to be non-redundant,
e.g. cvex and ecce are allowed variables to both represent
object shapes. Such an “over-representation” of the featured
variables allows us to use BNs to identify the importance of,
and dependencies between these variables in the scenarios
of robot grasping tasks.

IV. RESULTS

A. Experiment I: Structure Learning
The first experiment is to evaluate the network structure.

Fig. 3 shows the results of learned DAGs for Armar (left)
and human (right) hands. We note that learning the structure
from data reveals complicated relationships among these
variables, which will otherwise be very difficult to encode by
human experts. An initial inspection of the DAGs associated

TABLE I
USED FEATURES WITH THEIR DIMENSIONALITY D (FOR CONTINUOUS)

AND NUMBER OF STATES N AFTER DISCRETIZATION.

Name D N Description
T task - 4 Task Identifier
O1 obcl - 6 Object Class
O2 size 3 8 Object Dimensions
O3 cvex 1 4 Convexity Value [0, 1]
O4 ecce 1 4 Eccentricity [0, 1]
A1 dir 4 15 Approach Direction (Quaternion)
A2 pos 3 12 Grasp Position
A3 upos 3 8 Unified Spherical Grasp Position
A4 fcon 11/20 6 Final Hand Configuration (Armar/Human)
A5 egpc 2 8 Eigengrasp Pre-Configuration (only Human)
C1 coc 3 4 Center of Contacts
C2 fvol 1 4 Free Volume

{Object}
{Hand} Plan

(BADGr) {Grasp} Generate
(GraspIt2) {Scene}

Label
(BADGr) Tutor

{Task}Extract
(BADGr){T,O,A,C}

Task-related
Grasp Database

Fig. 2. Schematic diagram for generating task-related grasp database.

with the different hands confirm our intuitive notion of the
dependency relations between the variables. For example, the
three action features – dir, upos and pos – are connected
with each other because the unified spherical grasp position
upos is directly derived from the grasp position pos and
the hand orientation dir with respect to the object. And the
object class obcl determines the three object features ecce,
size and cvex.

We also noticed significant differences in the conditional
structures between the two hand models. For instance, Armar
hand has pos directly conditioned on ecce, whereas human
hand does not. The reason might be that the Armar hand
has limited kinematics configuration, therefore, when the
object is quite eccentric, most stable grasps will have to be
generated in the position around the side of an eccentric
object, for example, on the handle of a hammer.

Also for human hand, center of contact coc has two parents
task and obcl, these links are both missing in the Armar
hand. This is again explainable when consider the embod-
iment difference of the hands. The human hand has much
more DoFs, and more flexible control in its pre-configuration
(the random samples in the 2D Eigengrasp space egpc). This
allows much more variation in its finger contacts with the
object compared with those from Armar hand. As a result,
coc which quantified this richer variation allows the learning
algorithm to discover its potential relations with the object
categories and the task requirements. Similar arguments also
apply to the differences in connections around fvol, and
fcon.

B. Experiment II: Task Classification
In this section we evaluate the learned network by their

task classification performance. The performace is evaluated
based on the testing data that also covers all the object



task

obcl

size

ecce

cvex

coc

fvol

dir

upos

pos

fcon

task

obcl

size

ecce

cvex

coc

fvol

dir

upos

pos

fconegpc

Fig. 3. Experiment I: The resulting DAGs by applying structural learning on (left) Armar hand, (right) human hand data. The differences in DAGs are
highlighted by thick arrows. Square nodes represent discrete variables and circled nodes continuous.
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Fig. 4. Experiment II: Confusion matrices for task classification given different observations spaces: permutations of O,A,C features. For each 4 × 4
matrix, from left to right (top to down), the 3 tasks are: hand-over, pouring, tool-use, dish-washing.

classes. The data size is one quarter of the training cases.
As shown in Fig. 4, this task classification is based on

the inference of task variable given observation of different
set of other variables that form a complete permutation of
the 3 feature sub-sets: O, A and C. For object features O,
we assume that the object is unknown, therefore object class
information obcl is not observed. This is to simulate the real-
world scenarios where recognizing object categories from its
raw features is still a hard problem for robot sensor systems.

Comparing the task classification given different obser-
vation spaces (different columns), we see that for both
hands, the object and action features (O,A) result in quite
good task classification on the last 3 tasks: pouring, tool-
use and dish-washing; particularly for the Armar hand, the
accuracy are 78%, 93% and 83% respectively. When the two
constraint features fvol and coc are also observed (O,A,C),
we observe overall improvements for human hand, but not so
much for Armar. This can be explained by the differences in
DAGs where Armar hand has less conditional dependencies
discovered with the two constraint variables.

When only object features are observed, both hands have
good classification on dish-washing task with slight con-
fusion with tool-use. This is because in the labeled grasp
data, the objects that are good for dish-washing are all the
mugs and glasses, and one particular knife model (the kitchen
knife). But the pouring task is never confused with tool-use
because no tool objects affords pouring, and the observed
object features could clearly differenciate the tools from the

container objects. However, the grasps that are good for
pouring is often confused with dish-washing becasue many
pourable objects are also applicable to be dish-washed.

The hand-over task is often confused with others even
when most features are observed (column O,A,C). This
is expected as grasps that are good for hand-over are in
many cases also likely to work well for the other three.
This indicates that our classification of task might need a
hierarchical structure rather than the flat class association
we use here.

When comparing the confusion matrices between two
hand models, we see that in any observation conditions,
the performance over task classification has very different
profiles in different hands. This means a variable that is
strong in task description for one hand might be weak for
another, again supporting the idea of embodiment-specific
representation for grasping tasks.

C. Experiment III: Inference on Unified Grasp Position
In Experiment II we showed that the two hand BNs have

different but good performances in task classification. The
goal of Experiment III is to examine i) if both models
could successfully encode task constraint in the continuous
space of object observation, and ii) if this constraint is hand-
dependent. Notice that the constraint of a given task is
often encoded by a combination of multiple features, e.g.
one should not grasp this object from this position pos,
in this orientation dir, and with this joint configuration
fcon. However due to space limit and for the purpose of
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Fig. 5. Experiment III: Likelihood maps of the unified grasp position
given tasks and object features P (upos|T,O). The top panel is for Armar
hand and bottom panel for human hand.

easier evaluation by the readers, we choose the unified grasp
position upos which combines the absolution grasp position
pos and approach vector of the hand as an intuitive variable
to visualize the task constraint.

For each hand, we sample 625 points on the unified sphere
(where upos is located) around the object. As shown in Fig.
5, for each sampled point, the likelihood is obtained given
the 4 tasks, and the object features for 2 unknown objects: a
mug and a hammer, i.e. P (upos|T,O). The top panel shows
the results for the Armar hand, and the bottom for the human
hand.

We see that, for both hands, the model sucessfully rules out
the mug for tool-use, and the hammer for pouring and dish-
washing tasks. For pouring, the mug can not be grasped from
the top as it will block the opening; similarly, when using
the hammer as a tool, the grasp should avoid the head of the
hammer as it is the functional part. To wash the mug, the
preferred grasps indicated by the network are clearly from
side or bottom. This is because the mugs usually need to be
placed upside-down in the dishwasher, so grasping from top
is not so convenient for this task.

When comparing the likelihood maps between the two
hands, we have very interesting observations. In general
maps are different for the two different embodiments even
though they all model the task constraints in a similar way.
In a specific case of hand-over the hammer, Armar hand
has quite low likelihood on the side of the hammer that
is facing the head of the hammer. Thinking closely, we
understand that grasping from this position is particularly
difficult for the Armar hand because the fingers might contact
the sharp edges on the hammer head, resulting in unstable
configuration. Similar situation is also for grasping from
the top approaching the hammer head. On the contrary,

human hand has much more uniformed distribution around
the hammer.

This experiment again demonstrated the strength of the
proposed framework: by modeling the embodyment-specific
task space using a probabilistic network, we have learned
not only the affordances of the objects based on its basic 3D
features, but also the robot’s own motor capability.

D. Experiment IV: Goal-directed Imitation

Finally we would like to demonstrate the application of
the proposed framework in the scenarios of goal-directed
imitation. The experiment is implemented using the human
hand model as the demonstrator, and the Armar hand as the
imitator. The goal is to imitate the demonstrator performing
the pouring (demo 1) and dish-washing (demo 2) tasks
using a mug (see Tab. II), and the hand-over (demo 3)
and tool-use (demo 4) tasks using a hammer (see Tab. III).
The object images in step 1 and step 2.1 shown in both
tables are presented with same scale, so the size of the
objects can be compared. We use oH ,aH , cH to indicate the
human demonstrated object, action and constraint features
respectively, o,a, c to represent the instances of the features
of the Armar hand.

The process of the imitation consists of two major steps:
step 1 for task recognition, and step 2 for object or action
selection, the same way as we outlined in [5]. Briefly, in
step 1, the robot uses the human hand-specific network to
recognize the demonstrated task t̂H based on maximum-
log-likelihood estimation LH( t | oH ,aH , cH), where LH

denote log-likelihood using human network. In step 2, given
this recognized task t̂H as the goal, the robot choose the
object among the ones in the scene, and then select the
most compatible grasp on the chosen object to achieve the
task. Object and action selection has been formulated as the
Bayesian decision problems, where a reward function is a
weighted combination of their task affordance represented
by the likelihood function LR and the similarity to the
demonstration S. The weight λ is a high-level control input
to define the imitation requirements. Due to space limit,
we refer the reader to [5] for the detailed formulation of
the Bayesian decision problem and the confidence-based
similarity metric.

Tab. II and III present the results of the imitation experi-
ment. The bar plots on the right side of the tables show the
log-likelihood values for step 1, and the reword functions in
step 2.1 and 2.2. We see that in all four demonstrations, the
robot could correctly recognize the tasks, even though there
might be potential confusion with hand-over task (in demo 1
2 and 3). In demo 3, we find an interesting result where the
grasping on the hammer has returned the zero probability
for tool-use, and low but non-zero probability for pouring
and dish-washing. Aparently unintuitive, but the result is
consistent with what we have observed previously [5]: since
we assumed unknown object, the inference was only based
on observation of object size, cvex and ecce features, the
network has confused a hammer with other container objects
like bottles and glasses.



TABLE II
EXPERIMENT IV: GOAL-DIRECTED IMITATION ON ‘pouring, dish-washing’ TASKS.

Demo 1 Demo 2

o1 o2 o3 o4 o5 o6 o7

a1 a2 a3 a4 a5 a6

T1 T2 T3 T4 T1 T2 T3 T4

o: 1 2 3 4 5 6 7 o: 1 2 3 4 5 6 7

a: 1 2 3 4 5 6 a: 1 2 3 4 5 6

LH( t | oH ,aH , cH)

Demo 1 Demo 2

LR( o | t) · 0.5 + S(o, oH | t) · 0.5

t = T2 t = T4

LR( a | t,o6) · 0.5 + S(a, aH | t) · 0.5

t = T2 t = T4

Step 1 Human demonstration: recognize task t̂H

T1 = hand-over
T2 = pouring
T3 = tool-use
T4 = dish-washing

Step 2.1 Select object o∗: matching t̂H , and also similar to oH

Step 2.2 Select action a∗: matching t̂H , and also similar to aH

Scenes Objective Functions

TABLE III
EXPERIMENT IV: GOAL-DIRECTED IMITATION ON ‘hand-over, tool-use’ TASKS.

Demo 3 Demo 4

o1 o2 o3 o4 o5 o6 o7

a1 a2 a3 a4 a5 a6

T1 T2 T3 T4 T1 T2 T3 T4

o: 1 2 3 4 5 6 7 o: 1 2 3 4 5 6 7

a: 1 2 3 4 5 6 a: 1 2 3 4 5 6

LH( t | oH ,aH , cH)

Demo 1 Demo 2

LR( o | t) · 0.5 + S(o, oH | t) · 0.5

t = T1 t = T3

LR( a | t,o3) · 0.5 + S(a, aH | t) · 0.5

t = T1 t = T3

Step 1 Human demonstration: recognize task t̂H

T1 = hand-over
T2 = pouring
T3 = tool-use
T4 = dish-washing

Step 2.1 Select object o∗: matching t̂H , and also similar to oH

Step 2.2 Select action a∗: matching t̂H , and also similar to aH

Scenes Objective Functions



In step 2.1, the robot is able, in all four demonstrations, to
choose among seven objects the one that matches the goal
of the task t̂H and at the same time is also similar to the
object used by the human hand. In Tab. II we see the network
preferred the smaller mug o6 that is similar size to the mug
in the demonstration in both pouring and dish-washing tasks.
In dish-washing task, the knife o1 has almost as high reward
value as the glass o5. This is because one kitchen knife in
the knife category affords dish-washing.

Finally in step 2.2, the robot successfully selected the
grasp hypotheses that satisfy the requirements on task af-
fordance and grasp similarity. In pouring task, grasp a6 has
lowest ranking, which is obvious as three fingers block the
cup opening. Grasp a5 is a very natural configuration for the
pouring. But it is ranked as the second best grasp because
compared to a3, a5 is less similar to the demonstrated
grasp. Similar behaviors have been observed in other 3
demonstrations.

V. CONCLUSION

We have proposed a unified probabilistic framework
to represent the embodiment-specific grasping tasks. The
framework consists of a discrete Bayesian network and the
sparse GP-LVM-based multi-variate discretization method.
The Bayesian network models the task constraint through
conditional distributions among a set of task, object, action
and constraint variables. The discretization model provides
compact, efficient data representations that allow fast learn-
ing and inference for the Bayesian network. With the simu-
lated data from a human and a robot hand, we have shown
that the grasping tasks are hand-specific, and the differ-
ences are reflected both in the conditional (in)dependencies
between the representation variables (network structure),
and in the probabilistic distributions of individual variables.
However, both models perform well in task classification and
representation of the underlying constraints.

We also showed that the hand-specific task representation
can provide a unified framework for many aspects in sce-
narios of goal-directed grasp imitation. Not only can the
robot recognize the intention of the human demonstration,
but it can also reason in the low-level feature space of the
object and grasp actions conditioned on the high-level task
requirements. As a result, the robot can make automatic
decisions that satisfy multiple user requests, for example,
task affordance and grasp similarity.

Though in this paper, the proposed framework was only
experimented with one grasp planner [16], we want to
emphasize that it is not limited to any specific grasp plan-
ning systems. Several grasp planners can provide different
representations of grasps and objects, and together with a
human-provided task information, we could obtain similar
task constraint models for each hand. In the cases the two
grasp planners can provide similar grasp-related variables,
we expect that the model trained on one planner could be
used to infer task information on the other. This is to be
tested in one of the next steps in the future research.

In addition, there are also some limitations in discretiza-
tion model that need further research. Currently, the number
of discrete states are manually chosen to satisfy a trade-off
between refined data representation and complexity of BNs.
In the future, we would also like to learn this hyper parameter
automatically from data.

Finally, we plan to test this framework in grasp planning
and execution in real robot platforms where sensorimotor
uncertainty is more prominant. We believe this will further
exemplify the benifits of using a probabilistic model capable
of dealing with uncertainty in real-world applications.
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