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Multivariate Discretization for Bayesian Network Structure
Learning in Robot Grasping
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We want a MODEL OF GRASPING TASKS that allows:
I selecting objects that afford an assigned task,
I planning grasps that satisfy the task constraints.

We need to model the joint distribution:

p(Y), where Y = {Y1,Y2, . . . ,YN} ← {O,A,C,T} (1)



Bayesian Network (BN)
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p(Y) = p(Y|θ,S) =
N∏

i=1

p(Yi |pai ,θi ,S) , (2)

I Factorization of joint distribution through structure S.



Structure Learning
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IROS’10Song et al. (2010) specified by experts ICRA’11, learned from data

To learn structure of a Bayesian network (BN)

I Need to discretize the continuous, high-dimensional data
I Existing methods for multi-variate discretization cluster in

original high-dimensional space.



Discretization

Direct discretization suffers from “curse of
dimensionality”

I IDEA: exploit intrinsic, low-dimensional
representation for efficient discretization

I How to find the intrinsic representation?

1. Mapping between the observed and
the intrinsic spaces.

2. Generative mapping –> Gaussian
Process Latent Variable Models
(GP-LVM)

I Then a Gaussian mixture model (GMM)
can be used to discretize the data in this
low-dimensional latent space.
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GP-LVM
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Learning
I GP-LVM is a generative dimensionality reduction approach

which builds on Gaussian processes (GPs) (Lawrence, 2005).
I log p(Y|X, θ) = − 1

2 yT (K (X,X) + σ2I)−1︸ ︷︷ ︸
O(n3)

y− 1
2 log|K (X,X) + σ2I|+ const.



Sparse GP-LVM

GP-LVM→ 2D Latent Space GMM→ Discretization

I Introducing m inducing points Xu, where m ≪ n,
I Efficiently learning the low-dimensional representation
I Learning these “representative” inducing points Xu

I Discretize in terms of: Xu

Sparse GP-LVM provides a coherent way for both dimensionality
reduction and subsequent discretization!



Model Overview
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Training Data X = [O;A;C;T]

I Object approximation – box decomposition
I Grasp hypotheses – approaching box facades
I Feature extraction – [O;A;C]

I Manual task labeling – [T] by human | All in BADGr (Huebner, 2010)


Data_Generation.mp4
Media File (video/mp4)



Three Experiments:

1) Structure learning.

2) Task classification, T .

3) Prediction of grasp final configuration, fcon.



1) Structure learning
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I Structure learning successfully reveals the conditional
dependencies among a large pool of variables.

I Main differences in structures lie in the connections to fcon:
I GP-LVM reveals dependencies such as pecce→ fcon,

while others do not.



2) Task classification, P(T |∗)

↓→: Hand-over, Pouring, Tool-use

O O,A O,A,C

G
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M 0.70 0.12 0.17
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0.16 0.00 0.84

0.74 0.09 0.17

0.05 0.95 0.00

0.03 0.00 0.97

0.86 0.04 0.10

0.15 0.85 0.00

0.04 0.01 0.95

I Classification performances improve as more features are
observed.

I GP-LVM discretization scheme results in the best classification
performances in most observation conditions.
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3) Prediction of grasp final configuration, P(fcon|T ,O)
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Most Probable Prediction of fcon in 20D Space
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I GP-LVM scheme results in clearly different likelihood maps
between the two tasks, whereas PCA does not.

I This indicates the GP-LVM scheme has captured the potential
constraining effects of the tasks on fcon.

I GP-LVM scheme enables the most natural, intuitive data
reconstruction in the original observation space fcon.



Conclusions

I Sparse GP-LVM-based discretization method provides a
compact, efficient representation of high-dimensional data.

I This method allows fast and effective structure learning for
Bayesian networks.

I The resulting composite modeling system is fully generative, and
allows better task classification and data reconstruction in
original observation spaces.



Future Work

I Embodiment-Specific Representation of Robot Grasping using
Graphical Models and Latent-Space Discretization – IROS 2011
submission.

I Integration with real vision systems: combining object
categorization with task constrained grasping – IROS 2011
submission.

I Integration with real robot platforms: task-constrained grasp
online adaptation based on stability measure using haptic
sensory feedback (Bekiroglu et al., 2011), which will be
presented in Session ThA111.

I Introducing prior on inducing points in sparse GP-LVM, which
will be presented in Workshop on Friday: ’Manipulation Under
Uncertainty’.
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