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“ Learning Task Constraints for Robot Grasping using Graphical Models”

Motivation

Motivation

What is a GOOD GRASP?
Our answer:

A good grasp should not only be stable, but also afford the
desired post-grasp action – TASK.
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“ Learning Task Constraints for Robot Grasping using Graphical Models”

Motivation

Motivation

credits: LAAS-CNRS

Robots assist humans in human-centered environments,
interpreting human intention, and learning from humans.

However, there are challenges in both PERCEPTION and
MOTOR systems . . .
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“ Learning Task Constraints for Robot Grasping using Graphical Models”

Motivation

Unreliable Perception
What is this?

It is a cup with:
size: 3-d dimensions
shape: convexity, . . .
weight: 500g
. . .

Ground Truth

It looks like a
tree, hand . . .

Vision

It feels like a
carved stone . . .

Tactile

It is hollow, like a
tube, cup . . .

Vision+Tactile

This object is good for containing liquid such as tea,
therefore can be used for pouring (task affordance).
Sensory Data of Object −→ Common Concept!
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Motivation

Unreliable Perception Cont’ed
However, a cup affords many tasks: pouring, hand-over, . . . .
What is a human’s intention (or task) when using a cup?

only object features:
not sure

object+action:
moving or hand-over

object+action:
pouring or drinking

How to grasp an object puts further constraints on what task(s)
the object-grasp combination affords!
Sensory Data of Object + Action −→ Common Concept!
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“ Learning Task Constraints for Robot Grasping using Graphical Models”

Motivation

Limited Motor Ability

But even if the robot can interprete human intention,
how can it perform the same task: hand-over an apple?

Learn from human by
copying human grasp?

hand is too big:
no free-space for regrasp
Correspondence Problem

leave enough
free-space:

task constraint!

Constraint variables, that directly characterize task
requirements and can be independent of embodiments, may
help to solve the correspondence problem in imitation learning.
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Motivation

Goal-Directed Imitation

Inspired from developmental psychology:
Babies can infer human intention, and
perform the task through their own means!
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“ Learning Task Constraints for Robot Grasping using Graphical Models”

Motivation

Goal-Directed Imitation

Inspired from developmental psychology:
Babies can infer human intention, and
perform the task through their own means!

Task Constraint Models

Joint Distribution in
Human Task Space

pH ( T ,O,A,C )

Joint Distribution in
Robot Task Space

pR ( T ,O,A,C )

Observe:
{O,A,C}H

Recognize:
T̂ = handover

pH(T |O,A,C)

Decide:
Object & Action

pR(T̂ |O,A)
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Motivation

Goal-Directed Imitation

Inspired from developmental psychology:
Babies can infer human intention, and
perform the task through their own means!

Task Constraint Models

Joint Distribution in
Human Task Space

pH ( T ,O,A,C )

Joint Distribution in
Robot Task Space

pR ( T ,O,A,C )

Observe:
{O,A,C}H

Recognize:
T̂ = handover

pH(T |O,A,C)

Decide:
Object & Action

pR(T̂ |O,A)

Our Approach:

Bayesian Network (BN)

T

O1 O2 . . .

C1 C2 . . .

A1 A2 . . .

Montesano et al. (2008)
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Model – Bayesian Network

Bayesian Network (BN)

task → T

size cvex → O

fvol qeps → C

upos egpc dir → A

I Factorization of joint distribution through directed graphs.
I Inference by Junction-Tree Algorithm (Cowell et al., 1999).
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Data Acquisition

Training Data

** Generated by BADGr – a Toolbox for Box-based Approximation,
Decomposition and GRasping | Workshop on Grasp Planning
and Task Learning by Imitation (Huebner, 2010) .

I Simulation environment: GraspIt2! (Miller and Allen, 2004).

I 25 objects with 6 object classes: bottles, glasses, mugs, knives,
hammers, and screwdrivers (Shilane et al., 2004).

I 2 hand models: Human hand and Schunk Dexterous Hand
(SDH).

I 3 tasks: hand-over, pouring, and tool-use.
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“ Learning Task Constraints for Robot Grasping using Graphical Models”

Data Acquisition

Knifes: m718-02 m720-02 m724-02

Hammers: m1109-07 m1110-07 m1111-07 m1112-07

Screwdrivers: m1113-08 m1114-08 m1115-08

Bottles: m483-09 m484-09 m490-09 m493-09

Glasses: m494-10 m496-10 m498-10

Mugs: m504-11 m507-11 m508-11 m509-11
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Data Acquisition

Training Data X = [O;A;C;T]

I Object approximation – box decomposition
I Grasp hypotheses – approaching box facades
I Feature extraction – [O;A;C]

I Manual task labeling – [T] by human | All in BADGr (Huebner, 2010)
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Experiments

Three Experiments:

1) “Which task is this object-grasp configuration good for?”

2) “From where should this object be grasped for a given task? ”

3) “Can you imitate this demonstrated task?”
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Experiments

1) Which task is this object-grasp configuration good for?

hand-over

pouring

tool-use

T |O T |O,A T |O,A,C

0.51 0.15 0.34

0.22 0.78 0.00

0.15 0.10 0.75

0.56 0.35 0.09

0.13 0.87 0.00

0.12 0.00 0.88

0.70 0.21 0.09

0.11 0.89 0.00

0.11 0.00 0.89

Task classification given different amount of observations:

I Object features contain a lot of task-relevant information for
pouring and tool-use tasks.

I Action features improve classification for pouring and tool-use.
I Constraint features significantly improve classification rate of

hand-over.
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Experiments

2) From where should this object be grasped for a task?
T = t1, hand-over T = t2, pouring T = t3, tool-use

Hammer:

Bottle:

Mug:

bad good

	 unwrap the sphere→

Grasp position conditioned on tasks and objects:

I Generative mapping on continuous action features.
I Allowing plan and control at low-level sensorimotor systems.
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Experiments

3) Can you imitate this demonstrated task?

oH aH

o1 o2 o3 o4 o5 o6

a1 a2 a3 a4

t1 t2 t3

o:1 2 3 4 5 6 o:1 2 3 4 5 6

a: 1 2 3 4 a: 1 2 3 4

PH( t | oH ,aH ,cH)

t∗

PR( t2 | o)

o∗

PR( t2 | o) · 0.2
+ S(o, oH |t2) · 0.8

o∗

PR( t2 | o∗,a)

a∗

PR( t2 | o∗,a) · 0.2
+ S(a, aH |t2) · 0.8

a∗

Step 1 Human demonstration: recognize task t∗

t1 = hand-over
t2 = pouring
t3 = tool-use

Step 2 Select object o∗: matching t∗, or also similar to oH

Step 3 Select action a∗: matching t∗, or also similar to aH

Scenes Reward Functions

Goal-directed imitation:
I Achieving same task based on robot’s own motor capabilities.
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Conclusions

Conclusions

I We introduced a semi-automated method for acquiring manually
annotated, task-related grasps.

I Mixed Bayesian networks were used to encode the probabilistic
relationships between task-, object- and action-related features.

I The obtained task constraint BN represents an
embodiment-specific concept of affordance, which maps
symbolic representations of task to the continuous constraints.

I This network could be applied in multiple ways, such as:
task classification, goal-oriented object selection and grasp
planning.
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Conclusions

Future Work

I Multivariate discretization for learning BN structures from
high-dimensional continuous data, – ICRA 2011 submission.

I Including dynamic features (e.g. trajectories of hand+object)
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ICRA 2011 submission
IROS 2010: 8 nodes

Structure Built by Experts
ICRA 2011: 17 nodes

Structure Learned from Data

task

size cvex

fvol qeps

upos egpc dir

task

obcl

size

shcv

cvex

pshcv

gbvl

g1bx

fvol pecce qvol

qeps

pos

dir

upos

fcon
egpc

Structure learning from discretized data
I Improved task classification.
I Allow generative mapping on many more continuous variables.
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ICRA 2011 submission
a) Step1: GP-LVM→ 2D Latent Space b) Step2: GMM→ Discretization

Sparse GP-LVM based discretization for 20-D fcon
I Two-dimensional latent space learned using sparse GP-LVM

with 20 inducing points (red stars).
I Discretization on the latent space using GMM.
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ICRA 2011 submission

hand-over

pouring

tool-use

T |O T |O,A T |O,A,C

0.51 0.15 0.34

0.22 0.78 0.00

0.15 0.10 0.75

0.56 0.35 0.09

0.13 0.87 0.00

0.12 0.00 0.88

0.70 0.21 0.09

0.11 0.89 0.00

0.11 0.00 0.89

hand-over

pouring

tool-use

0.70 0.12 0.17

0.12 0.88 0.00

0.16 0.00 0.84

0.74 0.09 0.17

0.05 0.95 0.00

0.03 0.00 0.97

0.86 0.04 0.10

0.15 0.85 0.00

0.04 0.01 0.95

IROS 2010

ICRA 2011

Improved task classification rate
I Especially for hand-over task.
I More feature variables with learned BN structure are beneficial.
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