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“Learning Task Constraints for Robot Grasping”

Motivation and Problems

Motivation
We want robots to assist humans in human-centered
environments:

1) Interprete human intentions:
what does a human want to do?

2) Learn from humans: how to
grasp this bottle to hand-over
(task)?

I However, there are
challenges in both
PERCEPTION and
MOTOR systems . . . credits: LAAS-CNRS
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Unreliable Perception
What is this?

It is a cup with:
size: 3-d dimensions
shape: convexity, . . .
weight: 500g
. . .

Ground Truth
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Motivation and Problems

Unreliable Perception
What is this?

It is a cup with:
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It looks like a
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. . .
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It looks like a
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Tactile
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“Learning Task Constraints for Robot Grasping”

Motivation and Problems

Unreliable Perception
What is this?

It is a cup with:
size: 3-d dimensions
shape: convexity, . . .
weight: 500g
. . .

Ground Truth

It looks like a
tree, hand . . .

Vision

It feels like a
carved stone . . .

Tactile

It is hollow, like a
tube, cup . . .

Vision+Tactile

This object is good for containing liquid such as tea,
therefore can be used for pouring (task affordance).
Sensory Data of Object −→ Common Concept!
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Motivation and Problems

Unreliable Perception Cont’ed
However, a cup affords many tasks: pouring, hand-over, . . . .
What is a human’s intention (or task) when using a cup?
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Motivation and Problems

Unreliable Perception Cont’ed
However, a cup affords many tasks: pouring, hand-over, . . . .
What is a human’s intention (or task) when using a cup?

only object features:
not sure

object+action:
moving or hand-over

object+action:
pouring or drinking
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“Learning Task Constraints for Robot Grasping”

Motivation and Problems

Unreliable Perception Cont’ed
However, a cup affords many tasks: pouring, hand-over, . . . .
What is a human’s intention (or task) when using a cup?

only object features:
not sure

object+action:
moving or hand-over

object+action:
pouring or drinking

How to grasp an object puts further constraints on what task(s)
the object-grasp combination affords!
Sensory Data of Object + Action −→ Common Concept!
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Motivation and Problems

Limited Motor Ability – Correspondence Problem
But even if the robot can interprete human intention,
how can it perform the same task: hand-over an apple?
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But even if the robot can interprete human intention,
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Learn from human by
copying human grasp?
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“Learning Task Constraints for Robot Grasping”

Motivation and Problems

Limited Motor Ability – Correspondence Problem
But even if the robot can interprete human intention,
how can it perform the same task: hand-over an apple?

Learn from human by
copying human grasp?

hand is too big:
no free-space for regrasp
Correspondence Problem

leave enough
free-space:

task constraint!

Constraint variables, that directly characterize task require-
ments and can be independent of embodiments, may help to
solve the correspondence problem in imitation learning.
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Generative Models – Learning Task Constraint

Goal Directed Imitation
Inspired from Developmental psychology:
Babies can infer human intention, and
perform the task through their own means.
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Generative Models – Learning Task Constraint

Goal Directed Imitation
Inspired from Developmental psychology:
Babies can infer human intention, and
perform the task through their own means.

Task Constraint Models

Joint Distribution in
Human Task Space

pH ( T , O, A, C )

Joint Distribution in
Robot Task Space

pR ( T , O, A, C )

Observe:
{O, A, C}H

Recognize:
T̂ = handover

pH(T |O, A, C)

Decide:
Object & Action

pR(T̂ |O, A)
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Generative Models – Learning Task Constraint

Goal Directed Imitation
Inspired from Developmental psychology:
Babies can infer human intention, and
perform the task through their own means.

Task Constraint Models

Joint Distribution in
Human Task Space

pH ( T , O, A, C )

Joint Distribution in
Robot Task Space

pR ( T , O, A, C )

Observe:
{O, A, C}H

Recognize:
T̂ = handover

pH(T |O, A, C)

Decide:
Object & Action

pR(T̂ |O, A)

Bayesian Network (BN)

T

O1 O2 . . .

C1 C2 . . .

A1 A2 . . .

Our Approach
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Generative Models – Learning Task Constraint

Related Work and Contributions of This Work
Dealing with sensorimotor uncertainty through inference-based
planning and control:

I Coherent control, trajectory optimization and action plan
architecture (Toussaint et al. (2010))

I Dynamic stability in full-body movement using Dynamic BNs
(Grimes and Rao (2009))

Linking grasps to tasks is rarely addressed, with exceptions:
I Task-oriented quality measure in force domain (Li and Sastry (1988))

I Discrete Bayesian network modeling the affordances in simple
manipulation tasks (Montesano et al. (2008))

This work focuses on How to produce not only stable, but also
task-oriented grasps by . . .

I evaluating task affordances given object physical attributes, and
embodiment-specific action features, and

I conceptualizing large range of continuous sensory data,
helping the robot to understand the world!
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Generative Models – Learning Task Constraint

Bayesian Network-Based Task Constraint Model

task → T

size cvex → O

fvol qeps → C

upos egpc dir → A

BN: a probabilistic graphical model that
encodes the joint distribution of a set of
random variables, X = {X1, . . . , Xm}
Joint distribution P(X ) is factorized as:
P(X ) = P( X | θ, S ) =

∏m
v=1 P(Xv |pav , θv , S)
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Generative Models – Learning Task Constraint

Bayesian Network-Based Task Constraint Model

task → T

size cvex → O

fvol qeps → C

upos egpc dir → A

BN: a probabilistic graphical model that
encodes the joint distribution of a set of
random variables, X = {X1, . . . , Xm}
Joint distribution P(X ) is factorized as:
P(X ) = P( X | θ, S ) =

∏m
v=1 P(Xv |pav , θv , S)

Training a BN is to learn, from X = (x1, . . . , xN),
the Parameter θ and / or the Structure S

Learn S is built by human experts

The variables include discrete task T , and continuous object,
action and constraint features (O, A, C), i.e. X = {T , O, A, C}
Inference:
blabla Classify task: p(T |O, A, C),
blabla Infer A distribution: p(upos|task , size, cvex)
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“Learning Task Constraints for Robot Grasping”

Experimental Evaluation

Experiments

1) “From where should this object be grasped for a given task? ”

2) “Can you imitate this demonstrated task?”
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“Learning Task Constraints for Robot Grasping”

Experimental Evaluation

Training Data: X = [O; A; C; T]

task → T

size cvex → O

fvol qeps → C

upos egpc dir → A

Human BN

task → T

size cvex → O

fvol qeps → C

upos egpc dir → A

Robot BN

[O]
[O; A; C]H

[O; A; C]R

[O; A; C; T]H

[O; A; C; T]R

Objects
(BADGr, PSB)

Stable Grasps
(BADGr, GraspIt2!)

Tasks Labeled
(BADGr, GraspIt2!)

Mixed BNs
(BNT, Matlab R©)

3 tasks: hand-over, pouring, tool-use

Song et al. (2010), to appear in IROS
Huebner and Kragic (2008)
Miller and Allen (2004)
Murphy (1997)
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“Learning Task Constraints for Robot Grasping”

Experimental Evaluation

1) “From where (upos) should this object be grasped for a task? ”
Goal: To identify how the three tasks influence the position of the grasps on 3 objects:
Goal:spspP(upos | task , size, cvex)

Results: Distribution of unified position conditioned on tasks and object features:

T = t1, hand-over T = t2, pouring T = t3, tool-use

Hammer:

Bottle:

Mug:

bad good

	 unwrap the sphere→

Details: BNs are trained for Schunk hand
Training data ∼ 3500 cases: from 22 objects, leaving out the 3 objects (see table)
Testing data ∼ 500 cases: from the three testing objects
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“Learning Task Constraints for Robot Grasping”

Experimental Evaluation

2) “Can you imitate this demonstrated task?”
Goal: To demonstrate the use of the task constraint BNs in an imitation setup.
Results: Three steps for goal-directed imitation:

oH aH

o1 o2 o3 o4 o5 o6

a1 a2 a3 a4

t1 t2 t3

o:1 2 3 4 5 6 o:1 2 3 4 5 6

a: 1 2 3 4 a: 1 2 3 4

PH( t | oH , aH , cH)

t∗

PR( t2 | o)

o∗

PR( t2 | o) · 0.2
+ S(o, oH |t2) · 0.8

o∗

PR( t2 | o∗, a)

a∗

PR( t2 | o∗, a) · 0.2
+ S(a, aH |t2) · 0.8

a∗

Step 1 Human demonstration: recognize task t∗

t1 = hand-over
t2 = pouring
t3 = tool-use

Step 2 Select object o∗: matching t∗, or also similar to oH

Step 3 Select action a∗: matching t∗, or also similar to aH

Scenes Reward Functions

Details: BNs are trained for Human and Schunk hands
Training data ∼ 3400 cases: from 19 objects, leaving out the 6 testing objects (see table)
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“Learning Task Constraints for Robot Grasping”

Conclusion and Future Work

Conclusion

I We introduced a semi-automated method for acquiring manually
annotated, task-related grasps.

I Mixed Bayesian networks were used to encode the probabilistic
relationships between task-, object- and action-related features.

I The obtained task constraint BN represents an
embodiment-specific concept of affordance, which maps
symbolic representations of task to the continuous constraints.

I This network could be applied in multiple ways, such as:
task classification, goal-oriented object selection and grasp
planning.
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Conclusion and Future Work

Future Work

BNs are limited in modeling high-dimensional, multi-channeled
sensory streams: {O, A, C}. When number of nodes is high,
the training and inference become intractable.

Explore latent-space representation of tasks using sensory
features in {O, A, C}:

I Discover task-(ir)relevant features→ what are their properties?

I Identify the relationships between features→ learn BN structures.
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