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Abstract—We study the problem of robot interaction with
mechanisms that afford one degree of freedom motion, e.g.
doors and drawers. We propose a methodology for simultaneous
compliant interaction and estimation of constraints imposed
by the joint. Our method requires no prior knowledge of the
mechanisms’ kinematics, including the type of joint — prismatic
or revolute. The method consists of a velocity controller which
relies on force/torque measurements and estimation of the motion
direction, the distance and the orientation of the rotational axis. It
is suitable for velocity controlled manipulators with force/torque
sensor capabilities at the end-effector. Forces and torques are
regulated within given constraints, while the velocity controller
ensures that the end-effector of the robot moves with a task-
related desired velocity. We give proof that the estimates converge
to the true values under valid assumptions on the grasp, and error
bounds for setups with inaccuracies in control, measurements, or
modelling. The method is evaluated in different scenarios opening
a representative set of door and drawer mechanisms found in
household environments.

I. INTRODUCTION

Robots operating in domestic environments need the ability
to interact with doors, drawers, and cupboards, all of which
exhibit various kinematic constraints due to the joints attaching
them to the environment. The variation in size, orientation
and type of joints makes it intractable to provide a robot with
predefined kinematic models of all the mechanisms it may
encounter. Prior knowledge of mechanisms could conceptually
be combined with observations from cameras, laser-range
finders or other distal sensors to infer a prior model of a
mechanism. However, in domestic and other human-centric
environments, occlusions, poor lighting, and the presence of
previously un-encountered mechanism types make it very dif-
ficult to produce reliable systems based on these approaches.
One could also imagine a situation where the constraints
change dynamically during the manipulation, for example if
the constraints are imposed on the mechanism by another agent
— e.g. a human doing collaborative work with robot — whose
intended actions cannot be inferred from prior observation
alone [1]. Therefore, the performance, robustness, and gen-
erality of constrained manipulation tasks can be significantly
improved if the need to have prior knowledge of the constraints
is removed. In the general case, the uncertainties in the
manipulation of such constrained kinematic mechanisms, e.g.
doors and drawers, can be divided into two main categories:
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Dynamic uncertainties which are related to the dynamic
model of the door or the drawer: door’s inertia, dynamics
of the hinge mechanism etc.

Kinematic or Geometric uncertainties which are related to
the kinematic model of the door or the drawer: type of the
joint that models the kinematic mechanism, which may
be prismatic or revolute, size of the door, location and
orientation of the hinge, etc.

This categorization has been applied to several problems
in robot control, like motion control [2] and force/motion
control [3]. From a control perspective, the door opening
problem can be regarded as a force/motion control problem
in which the robot workspace can be divided into motion and
force controlled subspaces according to the concept of hybrid
force/motion control [4], [5]. In robot interaction tasks, the
identification of geometric or kinematic uncertainties is crucial
for defining a kinetostatically consistent Task Frame [6] to
correspond to a real compliant motion. Several different meth-
ods have been proposed for directly calculating or estimating
kinematic parameters, that can be twist-based or wrench-
based, by exploiting the concept of reciprocity under ideal
conditions [7]. For manipulation of kinematically constrained
objects like doors and drawers, twist-based estimation has been
used (Section II) since it is more robust when forces e.g.
friction or rotational spring forces arise along the motion direc-
tions. A common characteristic shared by the majority of the
works proposed in the literature is that the combined dynamics
of estimation, tracking, and force control are not considered.
This can been considered as a source of disturbance to the
identification (which may result in inaccurate and unsafe task
execution), as have been pointed out in e.g. [8].

In this work, we consider a general robotic setup with
a manipulator equipped with a wrist force/torque sensor,
and we propose an adaptive controller which can be easily
implemented for dealing with the kinematic uncertainties of
doors and drawers. The proposed control scheme which is
inspired by the adaptive surface slope learning [9] does not
require accurate identification of the constraints at each step
of the door/drawer opening procedure as opposed to the
majority of the solutions to this problem (Section II). It uses
adaptive estimates of the motion and constraint parameters that
converge to the actual dynamically changing radial direction
during the procedure.

The paper is organised as follows: In Section II we make
an overview of the related work to the door opening problem.
Section III provides description of the kinematic model of the
system and the problem formulation. The proposed solution
and the corresponding stability analysis are given in Section IV
followed by the simulation examples in Section V and the
experimental results in Section VI. In Section VII the final



TABLE I : Comparison of related works and this paper.

Publications [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] proposed
[23] approach

Force control X X X X X X X X X X X X
Online, real-time X X X X X X X X X X X
Moderate H/W Spec. X X X X X X X 1 X X 2 3 4 X
Revolute Doors X X X X X X X X X X X X X X
Sliding Doors X X X X X X X X X
Estimate of Constraints X X X X X X X X
Estimate of Geometry X X X X X
Unknown Model X X X X X X X X
Unknown Parameters X X X X X X X X X
Proven Param. Identification X
1 Multifingered hand with tactile sensors 2 Compliant joints (torque feedback at the joint level) – DLR lightweight robot II
3 Joint compliance by using clutches to engage/disengage motors 4 Use of the humanoid robot HRP-2

outcome of this work is briefly discussed.

II. RELATED WORK AND OUR CONTRIBUTIONS

Pioneering work on the door opening problem is presented
in [10] and [11]. Experiments on door opening with an au-
tonomous mobile manipulator assuming a known door model
were performed in [10], using the combined motion of the
manipulator and the mobile platform. In [11] a method esti-
mating the constraints describing the door motion kinematics
is proposed, based on the observation that ideally the motive
force should be applied along the direction of the end-effector
velocity. To overcome the problems of chattering due to
measurement noise and ill-definedness of the normalization
for slow end-effector motion, spatial filtering is proposed, but
this may cause lag and affect the system stability. The use
of velocity measurements to estimate the direction of motion
has inspired the recent work of [12] using a moving average
filter in the velocity domain. An estimator is used to provide
a velocity reference for an admittance controller. Ill-defined
normalizations and estimation lags are not treated. Estimating
constraints with velocity measurements is also done in [13],
applying velocity and impedance control along the tangent and
the radial axis of the door opening trajectory respectively.

Several position-based estimation techniques have also been
proposed to estimate geometric characteristics of the mecha-
nism rather than the motion direction. Since estimation does
not guarantee identification in each control step, those methods
have been coupled with controllers providing the system with
the proper compliance to absorb inaccuracies of the planned
trajectories. In [14], the recorded motion of the end-effector
is used in a least-squares approximation to estimate the center
and the radius of the motion arc, and a compliant controller
is used to cancel the effects of the high forces exerted due to
inaccurate trajectory planning. A similar approach is presented
in [24]. An optimization algorithm using the position of the
end-effector was used in [15], [23]. The algorithm produces
estimates of the radius and the center of the door and,
subsequently of the control directions. The velocity reference
is composed of a feedforward estimated tangential velocity
and radial force feedback while an equilibrium point control
law enables a viscoelastic behavior of the system around an
equilibrium position. In [16], [25], an inverse Jacobian velocity
control law with feedback of the force error following the

Task Space Formalism [6] is considered. In order to obtain
the natural decomposition of the task, which is essential within
this framework, the authors propose to combine several sensor
modalities so that robust estimation is established. In [25], the
estimation is based on the end-effector trajectory, to align the
task frame with the tangent of the hand trajectory.

On the other hand, probabilistic methods that are off-line
and do not consider interaction force issues have been used
for more advanced estimation tasks. In [18], a probabilistic
framework for learning the kinematic model of articulated
objects (object’s parts connectivity, degrees of freedom, kine-
matic constraints) is proposed. The learning procedure requires
a set of motion observations of the doors. The estimates are
generated in an off-line manner and can feed force/position
Cartesian controllers [26]. Probabilistic methods — particle
filters and extended Kalman filters — for mobile manipulation
have also been applied to simultaneously estimate the position
of the robot and the angle of the door using, however, an a
priori defined detailed model of the door [19].

Other work on door opening exploits advanced hardware
capabilities. In [27], a combination of tactile-sensor and force-
torque sensor is used to control the position and the orientation
of the end-effector with respect to the handle. In [21], a
specific hardware configuration with clutches that disengage
selected robot motors from the corresponding actuating joints
and hence enable passive rotation of these joints is used.
Since no force sensing is present, a magnetic end-effector was
used which cannot always provide the appropriate force for
keeping the grasp of the handle fixed. The DLR lightweight
robot controlled via Cartesian impedance control based on
joint torque measurements is used for door opening in [20].
In [28], the authors present experiments using a force/torque
sensor on a custom lightweight robot to define the desired
trajectory for a door opening task. In [22], a method for door
opening that uses an impulsive force exerted by the robot to a
swinging door is proposed. A specific dynamic model for the
door dynamics is used to calculate the initial angular velocity
which is required for a specific change of the door angle, and
implemented on the humanoid robot HRP-2. In [17], a multi-
fingered hand with tactile sensors grasping the handle is used,
and the geometry of the door is estimated by observing the
positions of the fingertips while slightly and slowly pulling and
pushing the door in position control. In a subsequent step, the



desired trajectory is derived from the estimation procedure,
and is used in a position controller.

Table I summarizes the literature on door opening and
provides a comparison to our work. In the table, the term
force control designates work that explicitly controls or lim-
its the interaction forces, online, real-time implies that the
method can be used to open a door directly, at human-like
velocities, without any prior learning step, moderate hardware
requirements means that the method can be used on a simple
manipulator with velocity control and a force/torque sensor,
and revolute doors and sliding doors describe what types of
door kinematics that can be handled by the method. Estimate
of constraints indicates methods that produce an estimate of
the current kinematic constraints of a mechanism, while esti-
mate of geometry indicates methods that produce an explicit
estimate of the geometry of the door mechanics themselves.
Unknown model indicates methods that will work properly
even if the model (type of mechanism, i.e. revolute or prismatic
joint) is not known a priori, and unknown parameters indicates
methods that will work if the parameters of the mechanism
(i.e. hinge position or motion axis of prismatic joint) are not
known a priori. Finally, proven parameter identification states
whether proofs are provided for the convergence of estimates.

In previous work, we presented a control algorithm for esti-
mating the center of rotation for a revolute door, exploiting the
torque or velocity inputs. We proved that we can identify the
constraint direction as well as achieve velocity/force tracking
for smooth door opening [29], [30]. The method assumes a
revolute joint and free rotation of the hand, but the center of
rotation is considered uncertain, thus limiting the approach to
planar problems. The proposed update law uses a projection
operator to guarantee well-defined updated estimates; the use
of a projection set constrains the range of uncertainties that
can be dealt with. In [31], we proposed a control scheme
treating both sliding doors/drawers and revolute-joint doors
with arbitrary hinge orientations, by assuming grasps to be
fixed and will not rotate around the handle. Furthermore,
the design of the update law does not require a projection
operator since it produces inherently well-defined estimates
that converge to the actual values.

In the work presented here, we propose a unified controller
for both revolute and prismatic mechanisms, with formulations
for both fixed and non-fixed grasps, and present experimental
results on a real robot that demonstrate its performance on
a range of different doors and drawers. The contribution of
our work compared to the existing literature is a method that
simultaneausly treats all of the following:
— Our method can be applied to open both rotational and
sliding doors, without requiring ill-defined normalization.
— Our method is not based on unusual hardware capabilities
and can be implemented in any velocity controlled manipulator
with the capability to measure or estimate the forces and
torques at the end effector.
— Our method is theoretically proven to achieve identification
of the motion direction simultaneously with force/velocity
convergence, by explicitly considering adaptive estimates in
the controller design.

III. SYSTEM AND PROBLEM DESCRIPTION

Generally, doors and drawers can be opened by grasping the
handle and moving it along its intended trajectory of motion:
along a circular path for hinged mechanisms, or along a linear
path for sliding doors and drawers. We now formally define
the problem of door/drawer opening under uncertainty, where
the position of hinges, or direction of possible sliding motion
is not known a priori.

A. Notation and Preliminaries

We introduce the following notation:
• Bold small letters denote vectors and bold capital letters

denote matrices. Hat ·̂ and tilde ·̃ denote estimates and
errors between control variables and their corresponding
desired values/vectors respectively. Notation ·> denotes
the transpose of a vector/matrix.

• The generalized position of a frame {i} with respect to a
frame {j} is described by a position vector jpi ∈ Rm and
a rotation matrix jRi ∈ SO(m) where m = 2 or 3 for the
planar and spatial case respectively. In case {j} ≡ {B}
where {B} is the robot world inertial frame (typically
located at the base of the robot) the left superscript is
omitted. Each column of jRi is denoted by jxi ≡ R>j xi,
jyi ≡ R>j yi,

jzi ≡ R>j zi where xi, yi, zi denote
the columns of the rotation matrix Ri that describes the
orientation of the frame {i} with respect to the robot
world inertial frame.

• The projection matrix on the orthogonal complement
space of a unit three dimensional vector a is denoted
by P(a) with P(a) = P>(a) and is defined as follows:

P(a) = I3 − aa>

• I(b) is an element-wise integral of a vector function of
time b(t) ∈ Rn over the time variable t, i.e:

I(b) =

∫ t

0

b(τ)dτ

B. Kinematic model of robot door/drawer opening

We consider a setting in which the end-effector has grasped
the handle of a mechanism with a revolute or prismatic joint.
Let {e} and {h} be the end-effector and the handle frame
respectively. The two frames are attached on the same kinemat-
ically known position e.g. a known point of the end-effector
denoted by pe and represented by different rotation matrices.
The orientation of the end-effector frame is strictly connected
to the robot kinematics while the orientation of the handle
frame is related to the kinematic constraints of the task. In case
of a rotating door (revolute joint) the kinematic constraints are
defined by considering a frame {o} attached at the unknown
center of the circular trajectory of the end-effector while
opening the rotating door. The axis zo corresponds to the axis
of the rotation while xo, yo can be arbitrarily chosen (Fig. 1i).

We make the following assumptions:

Assumption 1. There is no relative translational motion of
the end-effector with respect to the handle, i.e. hṗe = 0.



Assumption 2. There is no relative translational and rota-
tional motion of the end-effector with respect to the handle,
i.e. hṗe = 0 and hṘe = 0.

Assumption 2 is more restrictive since it implies a fixed grasp
of the handle, while Assumption 1 is more general and can
accommodate grasps that can be modeled as passive revolute
joints. Obviously, Assumption 2 also implies Assumption 1,
but in this work the two assumptions will be treated separately,
as they correspond to two different grasp types.

In the following we state a convention in order to define
the frame {h} in both cases of revolute joints (hinged doors)
and prismatic joints (sliding doors, drawers):
a) Revolute joints:
• Axis zh is equivalent to zo, i.e. zo ≡ zh
• Axis yh is the unit vector along the line connecting the

origins of {h} and {o} with direction towards the hinge.
• Axis xh can be regarded as the allowed motion axis; it

can be formed as follows: xh = yh × zh
b) Prismatic joints: Vector xh denotes the allowed motion
axis. Axes zh and yh can be arbitrarily chosen in order to span
the two-dimensional surface to which xh is perpendicular.
Examples of Fig. 1 illustrate the definition of the {h} axes.
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(iv) Mechanism in
drawers.

Fig. 1 : Examples of rotating/sliding doors and drawers with revo-
lute and prismatic joints.

For doors with a revolute joint, we can define the radial
vector –which is parallel to yh– as the relative position of the
frames {o} and {e} (or {h}):

r , po − pe, (1)

and use it in the following equation to describe the first-order
differential kinematics:

v = r × ωh (2)

where v expresses the velocity of the end-effector ṗe or the
handle velocity ṗh given eṗh = 0.

Note that r = 1
κyh where κ denotes the curvature of

the cyclic trajectory for the door opening (the inverse of the
distance between the end-effector frame and the center of
rotation). Thus, the inner product of (2) with xh yields:

ω = κv (3)

where v , x>h v denotes the end-effector/handle translational
velocity magnitude and ω , z>hωh the rotational velocity of
the handle. Although we consider a revolute joint at the hinge
of the door, the constraint equation (3) can model cases of
sliding doors or drawers represented by prismatic joints. Large
values of radius correspond to practically zero curvature i.e.
straight line trajectories for opening the mechanism and zero
rotational velocity for the handle. Given the mechanism is rigid
and Assumption 1 or 2, the remaining constraints regarding the
translational velocity are:

P(xh)v = 0 (4)

Constraint equation (4) implies that the end-effector/handle
velocity can be parameterised as follows:

v = vxh (5)

Additionally Assumption 2 imposes extra constraints on the
end-effector rotational velocities:

ωe = ωh with P(zh)ωh = 0 (6)

C. Robot kinematic model

We consider the case of a n-DoF velocity-controlled ma-
nipulator satisfying the following assumption:

Assumption 3. The kinematic structure and the number of
DoF are sufficient for generating a 6 DoF movement of the
end-effector and hence implementing the velocity for the task
defined for a set of constraint’s estimates including the actual
constraint.

An anthropomorphic arm with spherical wrist with n = 6
DoFs can satisfy Assumption 3.

For a velocity-controlled manipulator a reference gener-
alized velocity uref , [v>ref ω>ref]

> ∈ R6 (vref ∈ R3

and ωref ∈ R3 denote the translational and rotational part
respectively) expressed at the inertial frame can be considered
as a kinematic controller which is mapped to the joint space
in order to be applied at the joint velocity level as follows:

q̇ = J+(q)uref (7)

with q, q̇ ∈ Rn being the joint positions and velocities
respectively and J(q)+ = J(q)>

[
J(q)J(q)>

]−1
being the

inverse or the pseudo-inverse of the manipulator Jacobian
J(q) ∈ R6×n relating the joint velocities q̇ to the end-
effector velocities [ṗ>e ω

>
e ]>. If we consider the typical Euler-

Lagrange robot dynamic model, the velocity error at the joint
level drives the torque (current) controller uτ (t).

Assumption 4. The actuator has sufficient torque output, ex-
ternal force compensation, and current control loop frequency



to keep the error between commanded and actual velocity
negligible. Also, the inertial dynamics of the door mechanism
are sufficiently weak, such that the portion of measured forces
arising from accelerating the door mechanism are negligible.

Cases where Assumption 4 is not valid are treated in the
robustness analysis of Section IV-D.

D. Control Objective
The task of controlling the robot to manipulate a door or a

drawer, can naturally be described in the handle frame. The
desired variables should be defined in the robot inertial (or
end-effector) frame to be executable by the robot. Let f ∈ R3

denote the interaction force exerted at the end-effector, τ ∈ R3

the torque around the origin of the end-effector frame and
fd, τ d the corresponding desired vectors. Let vd(t) be the
desired velocity along the motion axis of frame {h}. Then the
desired velocity vd(t) is defined along xh, i.e. vd = vd(t)xh,
and the force control objective can be achieved by projecting
the desired force on the orthogonal complement space of xh
(constrained directions) i.e. P(xh)fd; a small valued or zero
vector fd corresponds to small forces along the constraint
directions. The control objective can be formulated as:

Problem 1. Design a translational velocity control vref such
that P(xh)f → P(xh)fd and v → vd(t)xh, without knowing
accurately the motion axis xh and the corresponding con-
straint directions P(xh).

When Assumption 2 is valid, the desired rotational velocity
can be defined using vd(t) along the axis κ , κzh, i.e.
ωd(t) = vd(t)κ. In this case the total interaction torque
denoted by τ ∈ R3 is controllable and thus an additional
control objective can be formulated as follows:

Problem 2. Design a rotational velocity control ωref to act
in parallel to vref such that τ → τ d and ω → κvd(t)zh
without knowing the axis of rotation zh and the variable κ. The
rotation control objective is mainly set to achieve identification
of zh and κ.

We consider that the opening task is accomplished when
the observed end-effector trajectory — which coincides with
the handle trajectory — has progressed far enough to enable
the robot to perform a subsequent task, like picking up an
object in a drawer or passing through a door. Hence, some
perception system observing the progress of the opening of
the mechanism is additionally required to provide the robot
with the command to halt the opening procedure.

IV. CONTROL DESIGN

In this section, we propose a solution to Problems 1 and 2
stated in Section III-D above. When only Assumption 1 holds,
the solution to Problem 1 is given by Theorem 1, and when
Assumption 2 holds, the solution to Problem 1 and 2 is given
by Theorem 1 and 2. Robustness analysis is performed to
derive bounds for the estimation error in case of disturbances.
Proofs of the propositions and theorems of this section are
given in the Appendix. First, we propose a translational
velocity reference that can employ two different update laws
corresponding to Assumptions 1 and 2 respectively.

A. Translational velocity reference with force feedback

Let x̂h(t) denote the online estimate of the motion direction
xh. Dropping the argument t from x̂h(t) and vd(t) for notation
convenience, we let vref be given by:

vref = vdx̂h −P(x̂h)vf (8)

where vf is a PI force feedback input defined as follows:

vf = αf f̃ + βfI
[
P(x̂h)f̃

]
(9)

with f̃ = f − fd and αf , βf being positive control constants.
Note that the first term of the reference velocity is the desired
velocity along the estimated motion direction and it is not
in general consistent with the allowable motion direction.
However the second term – which is a force controller – com-
pensates for the inconsistency owing to kinematic uncertainties
and renders a reference velocity vref , x>h vref along the actual
motion direction by generating forces along the constrained
directions (that can be considered as Lagrange multipliers
[32]).

Let θ(t) denote the angle formed between the actual vector
xh which is a rotating vector and its online estimate x̂h which
is time-varying. Given that the estimate x̂h is a unit vector,
cos θ(t) can be defined as follows:

cos θ(t) , x>h x̂h = ex>h
ex̂h (10)

The definition is independent of the frame in which xh and
x̂h are expressed. In general, an online estimate of the vector
x̂h provided by an adaptive estimator is not unit but in the
following we are going to design an update law that produces
estimates of unit magnitude. The derivative of θ(t) depends
on both estimation rate and door motion velocity:

d

dt
cos θ(t) = x>h

(
˙̂xh − vκ × x̂h

)
(11)

When the grasp imposes constraint on the rotation of the
end-effector with respect to the handle (Assumption 2), the
derivative of θ(t) is independent of the door motion velocity.
The derivative of cos θ(t) can be calculated as follows:

d

dt
cos θ(t) = ex>h

e ˙̂xh for eẋh = 0 (12)

In the following, we drop out the argument of t from θ(t) for
notation convenience.

The velocity error ṽ , v − vref can be decomposed along
x̂h and the corresponding orthogonal complement space as
follows:

ṽ = P(x̂h)(v + vf ) + (v cos θ − vd) x̂h (13)

In case of velocity controlled manipulators described by (7)
we get ṽ = 0. Since the right-hand side of (13) consists of
two orthogonal terms, ṽ = 0 implies the following closed-
loop system equations:

P(x̂h)vf = −vP(x̂h)xh (14)
v = 1

cos θvd (15)



Taking the norm of each side of (14) and substituting (15)
gives:

‖P(x̂h)vf‖ = |vd tan θ| (16)

From (14)-(16) it is clear how the estimation error in the axis
of motion affects the force errors and the velocity of the end-
effector. Note that the higher the uncertainty in the motion
axis θ is the higher the velocity v and the estimated constraint
forces P(x̂h)f can be. In the extreme case of |θ(t)| = π/2
which is equivalent to trying to move the mechanism along
a direction which is completely mechanically constrained ex-
tremely high forces arise. Hence, the update law must at least
guarantee |θ(t)| 6= π/2, ∀t. Equations (14)-(16) describing the
closed loop system link the physical controlled variables like
velocities and forces with the uncertainty measure θ(t) and
thus they are instrumental in the design of the update laws for
estimating the unknown parameters described in the following
subsections.

1) Update Law for the Motion Direction given Assumption
1: We propose the following update law for x̂h

1:

˙̂xh = −γvrefP(x̂h)vf − vrefx̂h × κ̂ (17)

where γ is positive control gain for tuning the adaptation rate,
κ̂ is the online estimate of the scaled rotational axis κ that is
produced by the following appropriately designed update law:

˙̂κ = Γκx̂h × vref, (18)

with Γκ ∈ R3×3 being a positive definite gain matrix,
and vref , x>h vref can be calculated independently of the
knowledge of the motion direction for x̂>h xh > 0 as follows:

vref = sgn
(
x̂>h vref

)
‖vref‖ (19)

The use of the update laws (17), (18) is instrumental for
the stability analysis and the convergence of the estimated
parameters. In the Appendix it is shown that the use of Eq.
(17), (18) enables the proof of the following Propositions:

Proposition 1. Update law (17) ensures that the norm of x̂h(t)
is invariant, i.e. given ‖x̂h(0)‖ = 1, ‖x̂h(t)‖ = 1, ∀t.
Proposition 2. Update laws (17), (18) driven by the reference
velocity vref given by (8) with a time-varying desired velocity
yield to the following nonautonomous (time-dependent) non-
linear system with states θ and κ̃ = κ̂ − κ which are well
defined in the domain D = {θ ∈ R, κ̃ ∈ R3 : |θ| < π

2 }:

θ̇ = −γv2d(t)
tan θ

cos θ
− vd(t)

cos θ
κ̃>n (20)

˙̃κ = vd(t) tan θΓκn (21)

with n being a unit vector perpendicular to the surface defined
by xh and x̂h, that implies that the estimation error angle θ
stays in D and converges to zero for vd satisfying the persistent
excitation (PE) condition (see [33]), i.e.:∫ t+T0

t

v2d(σ)dσ ≥ α0T0 (22)

∀t ≥ 0 and for some α0, T0 > 0.

1Details on the design of the update laws can be found in the Appendix.

2) Update Law for the Motion Direction given Assumption
2: Since the relative orientation of the handle frame and the
end-effector is constant we can propose a simpler update law
by using as a regressor the end-effector frame rotation matrix.
We propose the following update law for x̂h

1:

x̂h = Re
ex̂h (23)

e ˙̂xh = −γvdR>e P(x̂h)vf (24)

where γ is a positive control gain for tuning the adaptation
rate. Proposition 3, 4 describe how the update law (23), (24)
produces well-defined estimates that converge to the actual
values. In the Appendix it is shown that the use of Eq. (24)
enables the proof of the following Propositions:

Proposition 3. Update law (24) ensures that the norm
of ex̂h(t) is invariant, i.e. starting with ‖ex̂h(0)‖ = 1,
‖ex̂h(t)‖ = 1, ∀t.
Proposition 4. Update laws (23), (24) driven by the reference
velocity vref given by (8) with a time-varying desired velocity
yield to the following nonautonomous (time-dependent) non-
linear system with state θ which is well defined in the domain
D′ = {θ ∈ R : |θ| < π

2 }:

θ̇ = −γv2d(t) tan θ (25)

which implies that the estimation error angle θ stays in D and
converges to zero for vd satisfying the PE condition given by
(22).

3) Summary and force convergence results: Propositions 2
and 4 imply that given the update laws and the controller the
estimates are well defined 2 and converge to their actual values.
Propositions can be considered as intermediate steps for prov-
ing the stability of the overall system including aditionally the
internal state introduced by the force integral in the following
Theorem for Assumptions 1 and 2 (see Appendix for proof).

Theorem 1. Consider a velocity controlled manipulator (7),
grasping the handle of a sliding/rotating door or a drawer.
If the robot is driven by a velocity control input vref (8) that
uses a PI force feedback input vf (9) and:

1) the update law (17), (18) given that Assumption 1 is valid,
or

2) the update law (23), (24) given that Assumption 2 is valid,
then Problem 1 will be solved, i.e., smooth opening of the mov-
ing mechanism and identification of the estimated parameters
will be achieved. Analytically, the following convergence re-
sults are guaranteed: x̂h → xh, v → xhvd, and P(xh)f̃ → 0,
given that vd satisfies the PE condition given by (22).

B. Rotational velocity reference with torque feedback

In case of Assumption 1, the rotational velocity of the end-
effector can be set in order to optimize some performance
index such as the manipulability index of the arm while
torque cannot be controlled. On the other hand, Assumption 2
implies that the rotational velocity of the end-effector is strictly

2The estimates are unit vectors if the initial estimate is unit and |θ(t)| 6=
π/2, ∀t, is true since |θ(t)| < π/2 if |θ(0)| < π/2.



connected to the rotational velocity of the mechanism and
subsequently to the translational velocity of the end-effector
through the constraint (3). Hence the reference rotational
velocity should be appropriately designed using the desired
translational velocity vd and exploiting torque feedback in
order to fulfill the constraints (3), (6):

ωref = vdκ̂− ωτ (26)

where κ̂ is the online estimate of κ and it is appropriately
designed as follows:

˙̂κ = −vdΓκωτ (27)

with Γκ being a positive definite matrix of update gains, and
ωτ is a PI torque feedback input defined as follows:

ωτ = ατ τ̃ + βτI (τ̃ ) (28)

where τ̃ = τ − τ d.
The design of the update law (27) is instrumental for the

proof of the following theorem (see Appendix):

Theorem 2. Consider a velocity controlled manipulator (7)
grasping the handle of a sliding/rotating door or a drawer
according to Assumption 2. If the robot is driven by a velocity
control input that consists of both vref (8) and ωref (26) that
uses a PI torque feedback input ωτ (28) as well as the update
law (27) to estimate the vector κ, then Problem 2 will be
solved, i.e., the following convergence results – additionally
to those of Theorem 1 – are guaranteed: τ̃ → 0, I(τ̃ ) → 0,
κ̂ → κ, ωe → vdκ, for vd satisfying the PE condition given
by (22).

C. Torque-controlled robot manipulators

In the aforementioned results we have considered an ideal
velocity-controlled robot manipulator which is connected with
the environment through rigid constraints. These assumptions
allow the forces to be modeled as Lagrange multipliers related
to the the range of uncertainty as shown in (16), similarly
to the Lagrange multipliers used for modeling forces in the
case of a torque-controlled manipulator that interacts with a
rigid environment [34]. In the case of a velocity-controlled
manipulator the underlying assumption is that the commanded
velocity is achieved adequately fast (Assumption 4), while
in the case of a torque-controlled manipulator, the actuator
dynamics can be considered negligible.

The adaptive velocity controllers proposed in this paper
can be readily modified and applied to the outer loop of a
dynamic controller suitable for a torque-controlled manipu-
lator as shown in our previous work [29] where the inner
loop is formulated by the superposition of an appropriately
designed generalized reference force, a velocity error feedback
term and a term compensating for the robot dynamic model.
The reference velocity (outer loop) used in the velocity error
feedback term is similar to the one proposed in this work but
did not use the proportional force errors terms of (8), in order
to avoid differentiation of noisy force/torque measurements
while calculating the reference acceleration required in the
implementation on a torque controlled robot. In general the

design of dynamic (torque) controllers of robots may require
a term that compensates for the dynamic model of the robot. In
case of dynamic uncertainties, adaptive controllers that employ
update laws for dynamic parameters’ estimation have been
proposed [35]. The PE condition is complicated and the joint
trajectories have to be properly chosen in order to identify
the dynamic parameters online. However dynamic parameter
identification is not crucial for guaranteeing the tracking
error performance. In contrast to dynamic uncertainties, here
we consider uncertainties of the parameters involved in the
kinematic constraints. The identification of these parameters
– that is prerequisite for achieving the control objectives –
depends on the trajectory of the end-effector rather than on
the individual joints’ trajectories.

In the following section, instead of extending the analysis to
the case of a torque-controlled robot manipulator, we present
a robustness analysis for the performance of the system under
disturbances δ(t) arising at the velocity level that may also
represent errors arising in the inner control loop.

D. Robustness Analysis

In this section, we present a robustness analysis for the
performance of the system under disturbances δ(t) arising at
the velocity level, i.e. v = vref +δ(t). These disturbances can
incorporate delays at the velocity tracking control loop that
would be vanishing for the case of a desired constant velocity,
as well as disturbances arising due to modeling errors e.g.
compliance and deformations at the grasp or at the joint of
the mechanism.

The closed loop system equations (14), (15) are now af-
fected by the disturbances as follows:

P(x̂h)vf = P(x̂h) [−vxh + δ(t)] (29)

v = 1
cos θ

[
vd + x̂>h δ(t)

]
(30)

In the following propositions we examine the robustness of
the update law (23), (24) in case of disturbances. The proofs
of the propositions can be found in the Appendix.

Proposition 5. The update laws (23), (24) driven by the
reference velocity vref given by (8) with a time-varying desired
velocity in case of disturbances (i.e. eq. (29), (30) hold) yield
to the following nonautonomous (time-dependent) nonlinear
system with state θ which is well defined in the domain
D′ = {θ ∈ R : |θ| < π

2 }:

θ̇ = −γv2d(t) tan θ − γvd(t)
sgn(θ)

cos θ
n′>δ(t) (31)

where n′ is a constrained direction (i.e. n′>xh = 0) lying on
the common plane of x̂h and xh.

Proposition 6. The system (31) is uniformly ultimately
bounded with respect to the following region:

Ω = {θ ∈ D′ : |θ| < arcsinλ(t)} (32)

where λ(t) =
|n′>δ(t)|
|vd| for vd 6= 0.

Variable λ(t) denotes the range of the region of angles θ
in which the estimation error converges and is well-defined



for |n′>δ(t)| < |vd|. Notice that λ(t) can be alternatively
written as λ(t) = cosϕ(t)`(t) where `(t) is defined as the
ratio of the magnitude of the velocity error disturbance and the
commanded desired velocity i.e. ` , ‖δ(t)‖|vd| and ϕ(t) denotes
the angle formed between n′ and δ(t). In the extreme case
of a velocity disturbance being aligned with the constrained
direction3, a well-defined λ(t) requires that the ratio `(t) is
smaller than one. If |ϕ(t)| is smaller than 90 deg, the ratio `(t)
is allowed to take values bigger than one. If the disturbance is
aligned with the motion direction (i.e. λ(t) = 0) convergence
of the estimation error to zero is guaranteed irrespective of the
magnitude of the disturbance. Notice also that in the case of
a vanishing disturbance (λ(t)→ 0), region Ω shrinks to zero,
thus guaranteeing identification of the uncertain motion axis.
In the case of persistent disturbances the identification error
is comparable to the error arising from estimation based on
inaccurate velocity measurements.

If Assumption 1 holds we can achieve a similar result by
modifying the update law using a σ-modification [33]. Errors
in rotational velocity can be treated in a similar fashion.

E. Discussion

The proposed control scheme produces estimates of the
unconstrained motion direction and axis of rotation (in the
case of a rotational door) using the update laws (17), (18)
(Assumption 1) or (24), (27) (Assumption 2) respectively. In
case of Assumption 1, the motion direction estimate converges
to the actual direction but there is no proof that the scaled
rotation vector converges to the actual one; note however
that the rotation vector estimate is not used in the velocity
reference (8) and thus its convergence does not affect stability
and performance. In this case torques are not controlled and
the redundant degrees of freedom can be used to enhance
manipulability. In case of Assumption 2, both estimated vec-
tors converge to the actual values and the estimates are used
within velocity references (8) and (26). The velocity references
enforce the robot to move with a desired velocity while
controlling both forces and/or torques along the constrained
directions to small values guaranteeing compliant behavior.

By defining the handle frame according to the task con-
straints and involving the curvature instead of the radius and
the center of rotation, the proposed method is applicable
to both revolute and prismatic mechanisms. Coupling the
estimation with the controller following the adaptive control
framework (see e.g. [33]) makes the method inherently on-line,
enabling proofs of the convergence of estimated parameters to
true values and convergence of force/torque errors.

Note that no projection operators have been used in the
update laws design reducing the amount of the required prior
knowledge. The main condition for guaranteed performance
is that the initial estimate is not perpendicular to the true
value i.e. θ(0) ∈

(
−π2 , π2

)
. A typical example where this

condition is not satisfied could be when opening a drawer

3Note that large velocity errors in the constraint directions would be highly
unlikely, as the the constraint directions are defined as the directions in which
the mechanism has significantly higher stiffness, and high velocities in these
directions are effectively blocked.

with an initial estimate corresponding to a sliding door (c.f.
Fig. 2, cases (iv) and (v)). This issue can be overcome by using
a moderate deviation in the initial estimate (see Section V).
The proposed method alone can not handle the case where the
initial estimate is in the opposite direction of the true value,
as this would generate a closing motion. This can be handled
by an external monitoring system that stops the motion and
retries with a different initial estimate if measured forces are
too high, similar to a human who first pushes a door, and when
it does not open, tries to pull it instead.

In the case of a fixed grasp we can produce explicit
estimates of the physical location of the hinge of a revolute
door, as reliable estimates of both radial direction and radial
distance are available. If we make the assumption that a large
enough radial distance (we arbitrarily choose 10 m) implies
a prismatic mechanism, Algorithm 1, that can be used at
any time instant continuously or in a discrete manner, will
identify the hinge position. Given the center of rotation and

Algorithm 1 Reasoning of the type of joint/Calculation of the
rotation center

while Not Done do
if ‖κ̂‖ > 0.1 then

Rotational door
Calculate the estimated radius ρ̂ := ‖κ̂‖−1
Calculate the estimated radial direction:

ŷh := ρ̂κ̂ × x̂h
Calculate the center of rotation p̂o := pe + ρ̂ŷh.

else
Sliding door or drawer

end if
end while

the estimate of the curvature, we can estimate local variables
with respect to the initial position of the end-effector such as
the angular state of the door or the translation of the drawer
and use them in order to provide internally – and not with an
external perception system – a halt command.

V. SCENARIOS AND EVALUATION

To illustrate and demonstrate the generality of the approach,
we evaluate the performance for five different mechanisms in
simulation, and three mechanisms in experiments on a phys-
ical robot. The simulations consider five different scenarios
covering five common cases found in domestic environments,
see Fig. 2. All cases are treated with the same initial estimates
and controller gains. Cases (i) and (ii) are typical revolute
doors with vertical axis, with the hinge to the left or to the
right, respectively. Case (iii) models a revolute door with axis
of rotation parallel to the floor, such as is common for ovens.
The radius of these door are all set to 50 cm. Case (iv) models
a sliding door, and case (v) a typical drawer. The common
initial estimate used in all cases is that of a prismatic joint,
assuming κ̂(0) = 0. The initial estimate of the unconstrained
direction of motion is 30 deg offset from the normal direction
to the plane of the door or drawer. The initial estimates are
shown as red/gray arrows, and the true direction is shown
as black arrows in Fig. 2. The angular values given are



the initial errors of the estimates. The controller gains are
chosen as follows: αf = ατ = 0.05, βf = βτ = 0.005,
γ = γκ = 2000. The desired motion velocity is 5 cm/s, given
as vd = 5(1− e−10t) cm/s to avoid sharp initial transients.

20 

deg

(i) Revolute door, left
hinge, κ = 2

40 

deg

(ii) Revolute door, right
hinge, κ = 2.

32 deg

(iii) Revolute door, bottom
hinge, κ = 2.

60 

deg

(iv) Prismatic door, κ =
0.

30 

deg

(v) Prismatic drawer, κ =
0.

Fig. 2 : Five different simulation cases using the same initial esti-
mate: the angle indicates the initial error.
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Fig. 3 : Estimation responses for the estimator (17), (18) (Assump-
tion 1): (upper) estimation error response in the orientation
of motion axis; (lower) estimation error response for the
inverse distance between hinge and end-effector.

Fig. 3, 4(upper) show the response of the motion axis
estimation errors for update laws (17), (18) (Assumption 1
- passive revolute joint) and (24), (27) (Assumption 2 - fixed
grasp) respectively – convergence to the actual axis is achieved
even for larger initial errors. Note that for fixed grasps the
settling time is shorter and there is less overshoot as compared
to the performance for the revolute grasp, even though the
same gains were used. In Fig. 3(upper) the sharp corner in
the plot of the absolute value of the angle estimation error at
0.5 s corresponds to an overshoot. Fig. 3, 4(lower) depict the
estimation error for the most important element of κ. In the
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Fig. 4 : Estimation responses in case of the estimator (24), (27)
(Assumption 2) : (upper) estimation error response in the
orientation of motion axis; (lower) response of the estima-
tion error of the inverse distance between hinge and end-
effector.
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(ii) Assumption 2 : (upper) norm of the projected force error, (lower) norm of the
torque error

Fig. 5 : Force and torque responses

case of a fixed grasp (Fig. 4), this corresponds to the inverse
signed distance κ between the end-effector and the hinge and
the estimate κ̂ is not modified when κ̂(0) coincides with κ
and it converges to its actual value in all cases. In case of the
passive revolute joint (Fig. 3), the convergence to actual value
is also achieved, even though it is not proven theoretically,
but the convergence time is twice the corresponding time for
fixed grasps and a high overshoot is observed. Furthermore,
some of the elements of κ are initially modified even when
the original estimate coincides with the actual parameter, and



converge with the rest of the system.
If Assumption 2 holds, it has been theoretically proven that

combining estimates of the modulated rotation axis with the
motion axis we can calculate the center of rotation of the
rotational doors in real time using Algorithm 1; simulation
gives errors of approximately 1.4 cm after 1.5 s, which is
equivalent of opening the door 7.5 cm. Given the threshold of
‖κ̂‖ > 0.1, the revolute doors are identified as such after 0.2 s.
The estimation error responses (Fig. 3) show that Algorithm 1
can be used even when only Assumption 1 holds, but the
identification procedure is slower (error of 3.4 cm after 4 s).
Fig. 5ii shows the responses of the Euclidian norms of force
and torque errors (ef = ‖P(xh)f̃ ‖ and eτ = ‖τ̃ ‖ respectively)
in the case of fixed grasps. Errors converge to zero following
the convergence rate of modulated rotation axis and motion
axis. The same is true for the force errors in the case of a
passive revolute joint grasp, as shown in Fig. 5i.

VI. EXPERIMENTS

To evaluate the performance of the proposed method under
unmodelled system and sensor noise, the performance of the
door opening controllers were also tested on a real robot
setup. Our setup consists of a 7-DoF manipulator whose joints
are velocity controlled. New velocity setpoints are given at
130 Hz, and maintained by internal PID current controllers
running at 2 kHz. The manipulator includes a wrist mounted
ATI Mini45 6-axis force-torque sensor sampled at 650 Hz,
which we use for the force feedback and estimation part
of our controllers. Additionally, it is equipped with a two
finger parallel gripper which allows us to grasp the doors.
The robot is approximately human-sized, and has a mass of
approximately 150 kg. See [36] for a detailed description of
the system.

As in the simulations, we used the door opening controllers
to open and identify the kinematic parameters of doors of three
different types of kinematics: a revolute door, a sliding door
and a drawer, as shown in Fig. 6. Each of the experiments
were initialized with a 30 deg error in the axis of motion on
the motion plane. For the three kinds of doors we performed
experiments using fixed grasps on the doors (Assumption 2).
Two of the doors — the revolute door and the drawer — were
of the type typically used for kitchen cupboards, and were
light-weight and fitted with significantly less rigid handles.
For these, the performance of the controller evaluated both
when grasping the rigid fronts of the doors directly and when
grasping the less rigid handles. This allowed a test of the
robustness of the system to deviations from the assumptions of
rigid links in the kinematic chain. The third door was a sliding
door of much larger mass, with a very rigid heavy-duty handle.

In the experiments, we set vd to be constant for the whole
trial, and thus the velocity is limited by the parts of the task
where the manipulator is close to a singularity, or cannot move
fast for some other reason, such as being limited by mass
and/or friction of the heavy sliding door. Faster performance
can be achived by letting vd vary over the door opening tasks.

We also constructed alternative cylindrical handles for the
revolute door and the drawer which allowed unconstrained

rotation of the robot’s gripper around the axis of the handle
as shown in Fig. 6i. With these handles the generated grasps
can be considered as passive revolute joints, and thus we can
test our controllers following Assumption 1 of section III-B.
The ground truth of the axis of motion of the revolute door
was obtained by manually moving the end effector to a series
of points while grasping the handle, fitting a circle to the
resulting trajectory and calculating the tangent of the circle
at each point.
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Fig. 7 : Estimation errors for a revolute door with fixed grasp,
(upper): motion axis estimation error, (lower): inverse radius
of curvature estimation error. Red dashed line show the
estimation errors while grasping the door directly in a rigid
manner, while the blue solid line shows the performance
when grasping the less rigid handle.
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Fig. 8 : Force and torque responses for the revolute door experiment
with fixed grasp, upper figure: norm of the projected force
error, lower figure: norm of the torque error.

Fig. 7 shows the estimation error of the motion axis while
opening a revolute door with a fixed grasp and the estimation
error of the curvature κ̃, while Fig. 8 shows the corresponding



(i) Revolute door with passive handle. (ii) Sliding door. (iii) Drawer with passive handle.

Fig. 6 : Doors used for experimental evaluation of our controller

norm of the projected force error and the norm of the torque
error.

The results of the revolute door experiment while grasping
the door directly is shown with a red dashed line. Here we
see convergence to small estimation errors; less than 0.8 deg
for the motion axis estimate, and 0.033m−1 for the curvature.
In comparison, the performance when grasping the less rigid
handle of the door is shown in solid blue lines in the figures.
Even though the controller managed to successfully open the
door and regulate the forces and torques, it incurred a 7 deg
steady state error in the estimation of the motion axis and
a 0.16 m−1 error in the estimation of the inverse radius of
curvature κ. In Fig. 8, we can see that the less rigid handle
acts as a damper and lets the force controller converge faster.

These observations illustrate how the discrepancy between
assumed and actual rigidity of the grasp on the handle and
the rigidity of the handle itself with respect to the door
affect the performance of our control scheme, as discussed
in Section IV-D.
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Fig. 9 : Sliding door with fixed grasp: motion axis estimation error.

For the sliding door with a fixed grasp, the controller was
able to operate the mechanism and we obtained the motion
axis estimation error shown in Fig. 9 and force-torque response
shown in Fig. 10. This door, including the handle, was much
more rigid than the others, thus the estimation of the motion
axis shows convergence with a steady state error of less than
0.2 deg.

Fig. 11 and Fig. 12 show the performance of our controller
for a drawer using fixed grasps. We observe that, similar to the
revolute door case, the motion axis estimation error increases
significantly from a 1.2 deg steady state error to a 6 deg
error when applying a less rigid grasp, i.e. on the handle.
This result illustrates that even when slightly relaxing the rigid
grasp assumption, the robot can still control the doors, but the
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Fig. 10 : Force and torque responses for a sliding door with fixed
grasp, upper figure: norm of the projected force error,
lower figure: norm of the torque error.
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Fig. 11 : Motion axis estimation error for a drawer applying two
types of grasps. The red dashed line shows the perfor-
mance when grasping the drawer directly, and the solid
blue line shows the estimation error while grasping the
less rigid handle of the drawer.

estimate is affected in terms of transient response and steady
state errors.

Fig. 13 - 16 show the performance of our controller for a
revolute door and a drawer each with passive revolute handles.
Both mechanisms show a similar response in the estimation of
the motion axis, with steady state errors of 0.9 deg and 0.4 deg
respectively for the revolute door and the drawer. With this
type of passive handle the controller does not exert torques
on the handle and thus we obtain convergence of the motion
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Fig. 12 : Force and torque responses for a drawer with fixed grasp,
upper figure: norm of the projected force error, lower
figure: norm of the torque error.
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Fig. 13 : Motion axis estimation error for a revolute door with
passive revolute handle.

axis estimate with low steady state errors comparable to those
obtained when considering fixed grasps, as long as the rigidity
assumption is fulfilled in the latter case.

In summary, we observe that our adaptive control scheme
performs well as long as the doors are non-deformable and
depending on how strongly the rigid grasp assumption is
fulfilled in the case of fixed grasps on the doors. For typical
between-room doors, the rigidity assumption is fulfilled, while
the handles on some cupboard doors and drawers may have
too low rigidity for the sensors and actuators on the robot
used, causing small errors in the estimates.

VII. CONCLUSIONS

We propose a unified method for manipulating different
types of revolute and prismatic mechanisms. The method is
model-free and can be used to identify the type and geo-
metrical characteristics of one-joint mechanisms. By coupling
estimation and action the method is inherently online and
can be used in real-time applications. The method consists
of a generalized velocity controller using estimates of the
motion direction, the axis of rotation and update laws for the
estimated vectors. The design of the overall scheme guarantees
compliant behavior and convergence of the estimated vectors
to their actual values.

0 2 4 6 8 10 12
0

1

2

3

4

5

e
f
(N

)

time (s)

Fig. 14 : Revolute door experiment with passive revolute handle.
Force response: norm of the projected force error.
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Fig. 15 : Motion axis estimation error for a drawer with passive
revolute handle.

APPENDIX

Proof of Proposition 1: By projecting (17) along x̂h yields
d
dt

(
1
2‖x̂h‖2

)
= −γvref [P(x̂h)x̂h]

>
vf+vref(x̂h×x̂h)>κ̂ = 0,

since P(x̂h)x̂h = 0 and x̂h × x̂h = 0. �

Proof of Proposition 2: By projecting the update law (17)
along xh and subsequently substituting (11), (14), κ̂ = κ+ κ̃
and v = vref (7) we get:

− sin θθ̇ = γv2refx
>
hP(x̂h)xh − vrefx

>
h (x̂h × κ̃)

Taking into account (15), x>hP(x̂h)xh = sin2 θ and x>h (x̂h×
κ̃) = −κ̃>(x̂h × xh) yields

− sin θθ̇ = γv2d tan2 θ +
vd

cos θ
κ̃>(x̂h × xh) (33)

As both xh and x̂h are unit (see Proposition 1) we can write
the cross product (x̂h×xh) as sin θn(t) with n(t) being a unit
vector perpendicular to the plane defined by xh and x̂h. Hence
the non-trivial solution of (33) is given by the differential
equation (20). Given ˙̂κ = ˙̃κ, v = vref = xhv = xhvref and
(x̂h × xh) = sin θn(t) we can easily transform (18) to (21).

In order to examine the stability of the nonlinear nonau-
tonomous system we consider the following positive definite
function in the domain D

W (θ, κ̃) = U(θ) +
1

2
κ̃>Γ−1κ κ̃, U(θ) = 1− cos θ (34)

Differentiating W (θ, κ̃) with respect to time along the system
trajectories (20), (21) we get:

Ẇ = −γv2d tan2 θ (35)

Since W (θ, κ̃) is locally positive definite and Ẇ ≤ 0 which
implies W (θ, κ̃) ≤ W (θ(0), κ̃(0)) we get that κ̃ is bounded
and U(θ) ≤W (θ(0), κ̃(0)). The latter implies that:

cos θ ≥ cos θ(0)− 1

2
κ̃(0)>Γ−1κ κ̃(0) (36)
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Fig. 16 : Drawer experiment with passive revolute handle. Force
response: norm of the projected force error.

which practically means that starting with θ(0) ∈
(
−π2 , π2

)
,

θ(t) ∈
(
−π2 , π2

)
, ∀t if Γκ is chosen such that:

cos θ(0)− 1

2
κ̃(0)>Γ−1κ κ̃(0) > 0 (37)

Since θ(0) and κ̃(0) are unknown, appropriately large value
for Γκ can guarantee that the aforementioned condition is
satisfied. Consequently, (14) and (15) implies that P(x̂h)vf
and v are bounded. Furthermore, the boundedness of
P(x̂h)vf implies that the update law rate ˙̂xh is bounded
and subsequently θ̇ is bounded. Thus Ẅ is bounded and
according to Barbalat’s Lemma Ẇ → 0. If vd satisfies the
PE condition then Ẇ → 0 implies θ → 0. �

Proof of Proposition 3: Projecting (24) along ex̂h yields
d
dt

(
1
2‖ex̂h(t)‖2

)
= −γvd [P(x̂h)Re

ex̂h]
>

vf = 0 (since
P(x̂h)x̂h = 0). Note that x̂h has also invariant magnitude
since it is derived by expressing ex̂h at the robot inertia
frame by using the rotation matrix Re. �

Proof of Proposition 4:
By projecting the update law (24) along xh and subse-

quently substituting (12), (14), (15) we get:

− sin θθ̇ = γ
v2d

cos θ
x>hP(x̂h)xh (38)

Taking into account x>hP(x̂h)xh = sin2 θ we can readily see
that the non-trivial solution of (38) is given by the differential
equation (25). Differentiating the following positive definite
Lyapunov function in the domain D′:

U(θ) = − log(cos θ) (39)

we get:

U̇ = −γv2d tan2 θ (40)

Note that (40) implies U(θ) ≤ U(θ(0)), which implies
that starting with θ(0) ∈

(
−π2 , π2

)
, U(θ) remains bounded

∀t. Since function U(θ) is a logarithmic barrier function, its
boundedness implies that θ(t) ∈

(
−π2 , π2

)
, ∀t. Consequently

(14), (15) and (24) implies that P(x̂h)vf , v and the update
law rate ˙̂xh are bounded. Eq. (40) implies also the exponential
convergence of the angle error to zero (details can be found
in [31]) given that vd satisfies the PE condition. �

Proof of Theorem 1: We extend the positive function
W (θ, κ̃) (proof of Proposition 2, Eq. (34)) or the function

U(θ) (proof of Proposition 4, Eq. (39)) by adding a
quadratic term of I

[
P(x̂h)f̃

]
and we consider the following

Lyapunov-like function:

V = αfβfI2
[
P(x̂h)f̃

]
+

1

γ
W (θ, κ̃) (41)

By differentiating (41), completing the squares

α2
f

∥∥∥P(x̂h)f̃
∥∥∥2, β2

f

∥∥∥I [P(x̂h)f̃
]∥∥∥2, substituting (16) and

(35) (or (40) in case of U given by (39) is used in (41)) we
get:

V̇ = −α2
f

∥∥∥P(x̂h)f̃
∥∥∥2 − β2

f

∥∥∥I [P(x̂h)f̃
]∥∥∥2

Hence, V (t) ≤ V (0), ∀ t which additionally to the
boundedness results of Proposition 2 or Proposition 4
implies that I[P(x̂h)f̃ ] is bounded. The boundedness of
P(x̂h)vf and I[P(x̂h)f̃ ], implies that P(x̂h)f̃ is bounded.
Differentiating (14), (15) and using the boundedness of
I[P(x̂h)f̃ ], P(x̂h)vf and ˙̂xh, it can be easily shown that
d
dt [P(x̂h)vf ] is bounded. Hence, the second derivative of
V is bounded allowing the use of Barbalat’s Lemma in
order to prove that V̇ → 0 and consequently I

[
P(x̂h)f̃

]
,

P(x̂h)f̃ → 0. Note that the aforementioned convergence
results are referred to the estimated motion space defined by
x̂h. Taking into account Proposition 2 or 4 that implies the
convergence of θ to zero or x̂h → xh for vd satisfying the
PE condition, we get I

[
P(xh)f̃

]
, P(xh)f̃ → 0 �

Proof of Theorem 2: First, we will reform ωref by
adding/subtracting the term κ(v − vd), using (15) and
substituting κ̂ = κ + κ̃ as follows:

ωref = κv + κ̃vd − ωτ + vd
(
cos θ−1
cos θ

)
κ (42)

For design purposes we consider the following positive definite
function:

V = ατβτ‖I (τ̃ ) ‖2 +
1

2
κ̃>Γ−1κ κ̃ +

ξ

γ
U(θ) (43)

with U(θ) being defined in (39) and ξ being a positive
constant. By differentiating (43) with respect to time and
substituting ˙̃κ = ˙̂κ, ω = ωref given by (42), (40) and the
rotational constraints (3), (6) we get:

V̇ =− α2
τ‖τ̃ ‖2 − β2

τ‖I(τ̃ )‖2 + vd
(
cos θ−1
cos θ

)
ω>τ κ (44)

− ξv2d tan2 θ + κ̃>
(
Γ−1κ ˙̃κ + vdωτ

)
In order to cancel the last term of the right side part of (44)
we set ˙̃κ = −vdΓκωτ which corresponds to the update law
(27). By using (27) and the inequality:

ω>τ κ

(
cos θ − 1

cos θ

)
vd ≤

‖ωτ‖2
4

+ ‖κ‖2v2d
(
cos θ−1
cos θ

)2
(45)

we can upper-bound V̇ (44) as follows:

V̇ ≤− α2
τ‖τ̃ ‖2 − β2

τ‖I(τ̃ )‖2 +
‖ωτ‖2

4
(46)

− ξv2d tan2 θ + ‖κ‖2v2d
(
cos θ−1
cos θ

)2



Expanding ‖ωτ‖2 – using (28)– and setting ξ > ‖κ‖2, we
get:

V̇ ≤− α2
τ

2 ‖τ̃ ‖2 −
β2
τ

2 ‖I(τ̃ )‖2 − 2‖κ‖2v2d
(
1−cos θ
cos θ

)
(47)

Since cos θ ≤ 1 and θ(t) ∈
(
−π2 , π2

)
provided that θ(0) ∈(

−π2 , π2
)

(Proposition 4), the derivative of function V can be
upper-bounded as follows:

V̇ ≤ −α
2
τ

2 ‖τ̃ ‖2 −
β2
τ

2 ‖I(τ̃ )‖2

Hence, V (t) ≤ V (0), ∀ t which implies that I(τ̃ ) and κ̃
are bounded. Hence, by taking into account the constraints
(3), (6) for the closed loop system ω = ωref (42), it is
clear that τ̃ is bounded and hence ˙̂κ is bounded. Using the
aforementioned boundedness results as well as those implied
by Proposition 4 and Theorem 1, it can be easily proved
by differentiating V̇ that V̈ is bounded. Hence, applying
Barbalat’s Lemma we get that τ̃ → 0, I(τ̃ ) → 0. Using
the aforementioned convergence results as well as θ → 0, it
can be shown that κ̂ → κ provided that vd satisfies the PE
condition and hence ωe → vdκ. �

Proof of Proposition 5: By projecting the update law (24)
along xh and subsequently substituting (12), (29), (30) and
x>hP(x̂h)xh = sin2 θ we get:

− sin θθ̇ = γ
v2d

cos θ
sin2 θ + γvd

(
x̂h

cos θ
− xh

)>
δ(t)

Note that vector x̂h
cos θ − xh is perpendicular to xh since(

x̂h
cos θ − xh

)>
xh = 0 while its magnitude is equal to | tan θ|.

By defining a unit vector n′(t) parallel to x̂h
cos θ − xh we can

easily get:

− sin θθ̇ = γ
v2d

cos θ
x>hP(x̂h)xh + γvd| tan θ|δ(t) (48)

The nontrivial solution of (48) is given by (31). �

Proof of Proposition 6: Differentiating (39) with respect to
time and substituting (31), we get that U̇(θ) is upper-bounded
as follows:

U̇(θ) ≤ −γv2d
| tan θ|
cos θ

(| sin θ| − λ(t)) (49)

From (49) and Theorem 4.18 of [37] regarding uniform
ultimate boundedness we can find that the region in which
the estimation error converges is given by (32). �
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