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Abstract— Deep Generative Models such as Generative Ad-
versarial Networks (GAN) and Variational Autoencoders (VAE)
have found multiple applications in Robotics, with recent
works suggesting the potential use of these methods as a
generic solution for the estimation of sampling distributions
for motion planning in parameterized sets of environments.
In this work we provide a first empirical study of challenges,
benefits and drawbacks of utilizing vanilla GANs and VAEs
for the approximation of probability distributions arising from
sampling-based motion planner path solutions. We present
an evaluation on a sequence of simulated 2D configuration
spaces of increasing complexity and a 4D planar robot arm
scenario and find that vanilla GANs and VAEs both outperform
classical statistical estimation by an n-dimensional histogram
in our chosen scenarios. We furthermore highlight differences
in convergence and noisiness between the trained models and
propose and study a benchmark sequence of planar C-space
environments parameterized by opened or closed doors. In
this setting, we find that the chosen geometrical embedding
of the parameters of the family of considered C-spaces is a key
performance contributor that relies heavily on human intuition
about C-space structure at present. We discuss some of the
challenges of parameter selection and convergence for applying
this approach with an out-of-the box GAN and VAE model.

I. INTRODUCTION

The successful estimation of probability distributions in
robot configuration space C is of fundamental importance
for many applications within the framework of probabilistic
robotics [1] and sampling-based robot motion planning.
Sampling-based motion planners (SBMPs) [2], in particular
benefit from heuristic sampling distributions that emphasize
sampling within certain regions of the configuration spaces
in order to speed up planning. However, hand-crafting such
heuristics is challenging as the C-space complexity is in-
creased. Furthermore, the goal is typically to understand not
just a single distribution on configuration space C for a fixed
start and goal configuration, but a family F of C-spaces Cλ
and associated probability density functions pλ for each λ in
some indexing set S.

F = {(Cλ, pλ) : λ ∈ S, pλ : Cλ → R≥0,

∫
Cλ
pλ(x)dx = 1} (1)

For example, one may want to estimate the distribution of
RRT solution trajectory nodes parameterized by start and
end configurations for a particular fixed configuration space,

*This work was partially supported by the Wallenberg AI, Autonomous
Systems and Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation

Robert Gieselmann and Florian T. Pokorny are with RPL, EECS,
KTH Royal Institute of Technology, Stockholm, Sweden robgie,
fpokorny@kth.se

Fig. 1: A 4 DoF planar robot arm with sampling distributions parameterized by arbitrary
end-effector start (x, y) configuration and fixed goal state in between the rectangles
to the right resulting in a family F of disctributions in 4 dimensional C-space. We
illustrate one such distribution for a given starting configuration the bottom left. Colors
indicate regions of high density for samples estimated by a Generative Adversarial
Network and projected into the workspace.

or one may be interested in understanding sampling distri-
butions for continuously parameterized obstacle positions or
discrete door openings states. Fig. 1 shows such a planning
scenario for a 4 DoF planar manipulator and densities for
each joint angle estimated by a GAN.

In this work, we provide a first empirical study of the
problem of density estimation with a vanilla GAN and VAE
network structure on a selection of parameterized config-
uration spaces F = {(Cλ, pλ) : λ ∈ S}, where F has
dimension 2, 6, 8, 10 or 12, S is discrete or continuous, and
each indexed Cλ either has dimension 2 (planar configuration
space) or 4 (4 DoF robot arm case) respectively. The key
findings of our study are:

i) GAN and VAE performance heavily depended on hy-
perparameters, with VAE being particularly sensitive to
KL-rate settings on our problem domains.

ii) For our settings, GANs produced sharper density esti-
mates, which resulted in fewer C-space collisions when
the learned distribution was used for RRT sampling.

ii) The chosen featurization of S is a key factor determin-
ing the performance of GANs and VAEs. We propose
a permutation-based baseline test to understand the
impact of the choice of such embeddings.

iv) We conclude that, while out-of-the-box Deep Generative
Models are a promising new tool for density estimation
in C-space, key advances are needed to improve the
stability and convergence of these methods for robust
applications in motion planning.



II. BACKGROUND AND RELATED WORK

Deep Generative models learn a representation of the
underlying data distribution from a training set T and can
be used to generate synthetic samples after training. In this
work, we focus on applications of the two most prominent
Deep Generative Models: Variational Autoencoders (VAE)
[3] and Generative Adversarial Networks (GAN) [4], that
arose in applications in computer vision. We employ the con-
ditional extensions, the Conditional Variational Autoencoders
[5] and Conditional Adversarial Generative Networks [6], in
order to take possible parameterizations of the environment
into account.

A Generative Adversarial Network [4] consists of two
networks, the generator and the discriminator. Given a vector
of random noise - usually sampled form a Gaussian or
uniform distribution - the generator’s task it to produce
synthetic data samples. The discriminator decides whether
or not those samples originate from the training distribution.
Both generator and discriminator are represented by a neural
network and during training, the generator attempts to fool
the discriminator by generating fake samples which are
indistinguishable from real samples. At the same time, the
discriminator is trained to distinguish generated and real data.
From a game-theoretic point of view the objective is defined
as a minimax game while the optimum corresponds to the
state where real and fake data becomes indistinguishable.
The objective function is given by Eq. (2), where D(z)
corresponds to the discriminator and G(x) to the generator
network.

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]+

Ez∼pz(z)[1−D(G(z))].
(2)

A Variational Autoencoder [3], on the other hand, is
composed of two neural networks which are called encoder
and decoder. The encoder network maps a data sample to a
lower-dimensional latent vector while the decoder attempts
to reconstruct the original data sample given a latent repre-
sentation. Starting from variational inference to approximate
the distribution of latent variables given the data, the VAE
models latent posterior and prior with Gaussians. Its objec-
tive function, shown in Eq. (3), has a sound probabilistic
interpretation as it directly maximizes the evidence lower
bound (ELBO).

L(θ, φ;x) = KL[qφ(z|x)||pθ(z)]−
Ez∼qφ(z|x)[log pθ(x|z)].

(3)

The posterior qφ(z|x) corresponds to the encoder network,
whereas the likelihood pθ(x|z) is represented by the decoder
network. In the standard setting, the logarithmic likelihood
log pθ(x|z) is maximized by minimizing the mean-squared
error (L2) between the reconstruction and the ground truth
observation. One can think of the Kullback-Leibler diver-
gence in Eq. (3) as a regularizing term which enforces the
distribution of each latent dimension to be Gaussian. This has
the advantage that the generation of data points is reduced
to sampling from a Gaussian and feeding the obtained latent
code z through the decoder network.

In this work the use a further modification of the Varia-
tional Autoencoder called β-VAE [7]. It introduces a weight-
ing factor β which balances the regularization of the latent
space. It is often used to disentangle latent variables which
helps to understand the semantics of different latent dimen-
sions. Notice that it introduces a trade-off between allowing
complex latent representations and quality of generated data
points. Throughout the following, we refer to this β-VAE
simply as “VAE”, as a shorthand.

Applications of these generative methods in Robotics are
as of now still limited compared to the now classical Deep
Convolutional Neural Networks that are widely evaluated
and applied [8], [9]. Early applications of GANs in Com-
puter Vision in particular have gained much attention by
demonstration of impressive results in generating synthetic
photorealistic images [4]. In this work, we consider the use
of these techniques to model distributions in robot configu-
ration spaces. At this point it is not fully clear whether the
promising results in high-dimensional settings of the space
of images can transfer to equally important breakthroughs
in robotics applications involving data in robot configuration
spaces, where hard obstacle and joint constraints need to be
respected.

A few recent publications have started to focus on the
problem of estimating various sampling distributions in con-
figuration space using deep generative models in order to
improve the efficiency of sampling-based motion planners.
The authors of [10] attempt to learn the distribution of narrow
passages using a Conditional VAE. Narrow passages usually
represent a challenge as the chance of sampling within
those regions is relatively low due to their small volume.
Again, the neural network is applied to decrease the amount
of exploration for a sampling-based planner. [11], uses a
Conditional VAE to learn a sampling distribution for robot
path planning. Given the current configuration, obstacles and
goal, the model predicts the distribution of states along the
shortest path. [12] present an algorithm which integrates a
feed-forward neural network into a sampling-based motion
planner. Given the current configuration, the goal and the
environment parameters, the model predicts the location of
the next sample along the optimal path towards the goal. By
using dropout during the test phase, entire trajectory rollouts
can be generated which are used to initialize the states of the
search tree. The authors show that the methods significantly
reduced the planning computation time for a six-dimensional
articulated robot. In contrast to the previous approaches, [13]
employ a generative adversarial network to learn an action
sampler to map a state to a distribution of states given the
problem description. The authors motivate the use of GAN
compared to other methods by the fact that it does not require
to explicitly define a distance measure between synthetically
generated and ground truth samples.

In the above mentioned works, the focus is on the estab-
lishment of novel applications of generative models to the
domain of motion planning and results are not benchmarked
against statistical density estimation methods. We instead
study the convergence of these methods with respect to a



simple baseline histogram density estimator and consider
both standard (rather than domain specific and specialized)
Conditional GAN and VAE architecture for evaluation.

One of the open questions with respect to GANs and
VAEs which we study in this paper is to what extent
these methods can take advantage of geometry encoding
and problem specific properties to beat an off-the-shelve
histogram based approach for density estimation in robot
configuration spaces.

III. METHODOLOGY

For each of the following experiments, we consider a
specific family F of configuration spaces Cλ and probability
density pλ : Cλ → R, for λ in some indexing set S. In
the experiments, pλ(x) arises as the probability that x ∈ Cλ
occurs as a node in a found RRT [14] (or RRT-Connect [15])
solution trajectory for a specific motion planning problem on
Cλ by the following process: We first generated a training
dataset T by uniformly sampling λ ∈ S kS times then adding
all nodes of kR independent successful RRT solution runs
for that parameter to the training dataset.

As ground truth estimate for the underlying density
generating these points in configuration space, we utilize
histograms of fixed bin resolution. We then trained both
Conditional GANs and Conditional VAEs with conditioning
on λ ∈ S. When a particular λ parameter is given, this then
enables us to create new samples from the learned estimate
p̂λ for pλ. We implemented all models in PyTorch [16] and
trained them on a single GPU. For the experiments in section
IV-A we used 5 fully connected layers with 256 neurons
per layer for generator and discriminator network each for
the considered GANs, while the VAEs used also 5 fully
connected layers with 256 neurons per layer for each the
encoder and decoder. Later, for the experiments in sections
IV-B, IV-C and IV-D, we increased the number of layers
to 7 for each the generator and discriminator, respectively
encoder and decoder networks. For all experiments we used
latent dimensions of 16. We utilized leaky ReLU activation
functions for each and trained the networks using Adam
[17] for GANs and Adagrad [18] algorithm for VAEs. We
evaluated multiple different and repeated hyperparameter
settings for each model based on prior experience and focus
the presentation of results on the best-performing models.

To measure the accuracy of the approximated distribu-
tions we compute the Wasserstein metric, which provides
a natural earth mover-type notion of similarity between
densities. We utilized the implementation found in [19]
to compute distances between density histograms. Other
evaluation criteria used in this work are the mean squared-
error distance, Bhattacharyya distance and relative number
of collisions with obstacles. Lastly, we suggest comparing
the trained models in the context of an application. This was
done by adding a sampling distribution utilizing the trained
GAN/VAE directly within the RRT-Connect implementation
of the Open Motion Planning Library (OMPL) [20] and
evaluating the characteristics of the resulting paths.
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Fig. 2: Convergence of the Wasserstein, Bhattacharyya and mean-squared error distance
with respect to the full data set over increasing number of samples. Bottom right:
histogram of ground truth density. Dark gray boxes indicate obstacles.
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Fig. 3: Left column: estimated densities using VAE and GAN. Right column: error
between ground truth and estimated density histograms

IV. EXPERIMENTS

A. Static Planar Environment and Histogram Parameters

Here we study a simple planar C-space independent of a λ
parameter and consisting of a box with corners (−10,−10)
and (10, 10) and a wall along x = 0 with the indicated
7 narrow passages as shown in the right bottom of Fig.
2. A probability density p of samples was generated by
randomly opening one of the narrow passages, determining
kR = 20 independent RRT* solution and adding the found
RRT* nodes to the sample set. In this manner we generated a
training set with 469279 samples from 5000 RRT* runs. As
baseline, we work with perhaps the most classical density
estimation technique [21] available: a simple normalized



TABLE I: Results of Experiment in Static Environment

Criterion Variational Autoencoder Generative Adversarial Net
Wasserstein Distance 8.21e−2± 2.65e−3 8.57e−2± 6.53e−3
Mean-Squared Error 2.92e−7± 6.23e−9 2.53e−7± 6.38e−9

Bhattacharyya Distance 1.46e−2± 1.43e−4 1.06e−2± 1.83e−4
Collision Ratio 1.40e−2± 2.04e−4 2.67e−3± 1.20e−4

n-dimensional histogram with fixed resolution, which, for
each n dimensional bin B, approximates the probability of a
sample falling into B by the ratio of samples in B divided by
the total number of samples. Recall that, for i.i.d. sampled
data the central limit theorem guarantees convergence of the
mean probability over each bin to the histogram estimate
with convergence rate O( 1√

n
) with n samples. While this is

in some sense the best one can hope for for arbitrary sample
densities, explicit discretization into bins of small volume is
in practice infeasible for dimensions higher than 3, or when
working with a large family of 2D configuration spaces.

As ground truth estimate, we compute a histogram approx-
imation to p from the training data with an even splitting
of the configuration space domain into 35 × 35 cells. Fig.2
displays how quickly the histogram estimate for this chosen
discretization into bins approaches to the histogram estimate
for the full training dataset with 400.000 samples, providing
us with a sense of the relationship between number of
samples and expected error. For example, with 100.000
samples we can expect an accuracy of approximately 0.028
with respect to the Wasserstein distance between the density
histograms. Similarly, a convergence test with respect to
Mean Squared Error and Bhattacharyya distance indicated a
precision of approximately 6.4e−9 and 6.4e−4 for 100.000
samples with respect to these metrics.

Next, we trained both a GAN and VAE with a total of
10 fully connected layers of 256 neurons each as described
in the Methodology section to confirm convergence in this
very simple setting. Both models approximated the ground
truth distribution well as shown in Table I. In terms of
remaining Wasserstein error, we could not observe significant
performance differences between GAN and VAE. The two
plots in Fig. 3 show the difference between ground truth his-
togram and estimated distributions. We found the predicted
distribution of the VAE to be slightly more blurry generating
samples in regions between the passages. This also provides
an explanation for the higher number of collision with
workspace obstacles using this method.

In image synthesis, VAEs are known to produce blurry
images [22]. According to [23] this originates from the
VAE approximation of the maximum likelihood. As a con-
sequence of using the L2 reconstruction in the objective,
the distribution of samples that map to the same latent code
is approximated with a fixed variance Gaussian. Due to
overlapping latent representations, i.e. the encoder mapping
different x to the same latent code z, the optimal decoder
produces an averaging of points in the observations space
which manifests itself in fuzzy reconstructions. This overlap
inevitably happens as a consequence of Gaussian encoders
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Fig. 4: Wasserstein error of the GAN for serveral training runs using the same
hyperparameters. Note that the model converges rapidly until 500k iterations and
stabilizes thereafter.
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Fig. 5: Wasserstein error for VAE trained with different values for parameter β. The
model achieved the best performance for a low value of β = 1e−4.

qφ(z|x) [24].
The training of the GAN was generally more unstable and

highly sensitive regarding the chosen learning rates and batch
size. We found that small learning rates of 1e−5 for the
generator and discriminator networks and large batch sizes
greater than 256 often increased the stability. Compared to
the VAE, the performance after being trained with the same
parameters varied enormously. The plot in Fig. 4 illustrates
this by showing the Wasserstein error during training for
several runs. Unlike the GAN, we found the performance
changes between repeated VAE training runs to be negligible.
Further, the VAE produced stable learning updates and
usually converged quickly. We observed that choosing the
proper β-value, i.e. regularization of Kullback-Leibler loss,
is crucial for achieving decent results using the VAE (see
Fig. 5). A value of 1e−4 provided the best accuracy for
this experiment. Generally, smaller values resulted in better
training while choosing it too small, in our case lower than
1e−5, significantly slowed down the training.

B. Parameterized Door Environments - Natural Embedding

In this set of experiments, we consider a family of con-
figuration spaces Ckλ , in an environment with k = 4, 6, 8, 10
vertical obstacle walls that each contain 8 doors. For each
λ exactly one door per layer is opened and the resulting
density pλ is generated by nodes of solution trajectories
through exactly these doors. Note that there are 8k possible
door opening parameters, creating an environment with a
combinatorial complexity challenge. The initial and goal



Fig. 6: Examples of two environments with k = 6 and k = 8 respectively. Ground
truth densities for the λ settings of particular door openings are shown in dark gray.
Blue rectangles indicate closed passages, yellow rectangles show open passages.

Fig. 7: Examples for ground truth (top row) and estimated distributions using GAN
(second row) and VAE (third row) for test data for k = 4, 6, 8, 10 (left to right).
Both models generated accurate estimates up to k = 8 while VAE estimates were
thoroughly blurry.

configurations are defined to be at (−9.9, 0), respectively
at (9.9, 0). The training samples were generated by eval-
uating RRT* 10 times for a particular choice of λ. For
each environment k we generated a training data set using
10000 randomly sampled λ. This yields to 100000 sampled
trajectories in total per environment. Figure 6 shows an
illustrative example of the workspace for k = 6, respectively
k = 8, and ground truth densities.

As is often the case in Robotics, training data is computa-
tionally expensive to obtain even in this simulated setting
and thus covers only a fraction of the space of possible
observations. While the training set for k = 4 contains all
84 combinations of possible λ, we have to deal with an
exponentially increasing number of unseen configurations in
the case of k = 6, 8, 10. For instance, if k = 8 the model
experiences merely 0.06% of possible door openings during
training. One part of this section investigates to what extent
the learned models are able to interpolate unseen samples.
We employed a natural embedding where each vertical layer
is represented by a one-hot vector indicating which of the
passages in that layer is open. For each k we train a VAE
and GAN model using hyperparameters based on preliminary
evaluations and insights from the section 1. The test sets are
each composed of 1000 randomly selected λ that were not
observed during training (except for k = 4).

Fig. 7 presents examples of estimated conditional distri-
butions for k = 4, 6, 8, 10. In addition, Fig. 8 shows results
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Fig. 8: Average Wasserstein, Bhattacharyya, mean-squared error distance and collision
ratios on test sets for GAN and VAE with respect to different parameters k. Overall,
VAE achieved slightly lower error values than GAN while the blurriness of its estimates
yields to a significant increase of collisions in more complex environments.
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Fig. 9: Average Wasserstein, Bhattacharyya, mean-squared error distance for envi-
ronments k using subsets of different size sampled from the ground truth data.
Bottom right: Wasserstein distance of using a weighted K-Nearest Neighbor estimator
with respect to hyperparameter α. The KNN estimator achieved the lowest average
remaining Wasserstein distance of 1.35 for the choice of α = 0.8.

of the numerical evaluation and displays the remaining
distances with respect to the ground truth density histogram.
Our generative models produced visually plausible density
estimates up to k = 8. Except for k = 4, VAE outperformed
GAN in terms of Wasserstein, Bhattacharyya and mean-
squared error distance. Again, we observe the tendency
VAE to produce fuzzy samples. This issue appears to get
stronger under more complex environment conditions and
results in an increasing number of collisions. The GAN
estimates are sharper, however it highly overestimates density
in some regions along the paths (see Fig. 7). We attribute this
finding to mode collapse, a commonly observed instability
in GAN training where generated samples lack diversity.
For k = 10 we observed a strong performance drop for



both models in terms of Wasserstein distance with respect
to the ground truth histograms. For the GAN we observed
that entire regions of the distribution were missing. Possible
explanations are insufficient amount of training examples and
the aforementioned training instability.

In addition to training our generative models, we further
evaluated the performance of a simple histogram estimator of
size 32×32. It can be thought of as a lookup generated from
a limited amount of ground truth data points. We created
such histograms for each configuration λ using either 50,
100, 200 or 400 samples. The corresponding numeric results
are shown in Fig. 9. Histograms with 400 samples clearly
outperformed the trained generative models. However, one
has to consider what 400 samples mean in terms of required
memory. Given k = 8 and that sample points are represented
as float values, the amount of memory needed to store 400
samples for all 88 distinct λ exceeds 53 gigabytes. Note that
storing the weight and bias parameters of the neural networks
takes up less than 1.4 megabyte for the generator (GAN),
respectively decoder network (VAE). During GAN/VAE
training the equivalent number of samples that were observed
per possible door combination for k = 6 is roughly 100.
The corresponding histogram estimator demonstrated worse
performance than the GAN and VAE for this number of
samples (see Fig. 8 and 9).

The previous histogram estimator has direct access to all
ground truth densities. In order to establish a fair comparison
with classical tools, we benchmarked a K-nearest neighbor
(KNN) estimator which makes predictions solely based on
a database of experienced densities. Given a query test
configuration, the KNN method estimates the density by
computing a weighted average of the K-nearest neighbor
histograms in the training set. We defined the distance by
means of the squared Euclidean distance between the vector
embeddings of different λ and employed an exponential
kernel to weight neighbors. This method interpolates the
training samples and does not require any training apart
from tuning a weighting parameter α. Given an unseen
configuration v and the experienced K nearest neighbors wi,
the density histogram Hestimated(v) is estimated by

Hestimate(v) =

∑K
i=1 e

−α‖v−wi‖2H(wi)∑K
i=1 e

−α‖v−wi‖2
(4)

We carried out this comparison for an environment with
8 vertical layers and tested a broad range of values for
parameter α. The bottom right plot in Fig. 9 presents
the resulting average distances for the K-nearest neighbor
estimator considering K = 20 nearest neighbors. A value of
α = 0.8 led to the lowest average remaining Wasserstein
error of approximately 1.35, significantly higher than for
the discussed deep generative models. Note that α = 0
corresponds to the unweighted average of all 20 nearest
neighbors while a greater α increased the impact of the 1-
nearest neighbors. The histograms in Fig. 10 illustrate this
dependency and also show a qualitative comparison to the
estimates of GAN/VAE.

Ground Truth
GAN

Wasserstein Distance 0.502
VAE

Wasserstein Distance 0.324

[K=20,α=0]
Wasserstein Distance 1.229

[K=20,α=1]
Wasserstein Distance 0.875

[K=20,α=2]
Wasserstein Distance 1.059

Fig. 10: Top row: Density histograms for ground truth and GAN/VAE estimates.
Bottom row: weighted KNN estimates (K = 20) and different α. Overall, the trained
deep generative models provided better estimates measured in terms of remaining
Wasserstein distance than a KNN-based histogram estimator.

Ground Truth Marginal Distribution

GAN VAE

Fig. 11: Example of density histograms for ground truth, GAN and VAE for randomized
embedding (k = 8). Also density of ground truth marginal distribution. The generative
models did not provide plausible estimates for this setting. Seemingly, the learned
estimates resemble some average over the set of all possible door parameterizations.

C. Parameterized Door Environments - Randomized Embed-
ding

We now test the model performance influence of the
geometric encoding of the door opening parameter λ by
means of the previous 1-hot embedding that utilized the same
ordering of 1-hot vector dimensions as the vertical order of
the doors. For this purpose, we repeated the experiments
from the previous section using a randomized embedding
of λ to parameterize the configuration spaces. We generated
the embedding by randomly shuffling the previously used
parameterizations, i.e. we randomly assign a one-hot vector
to each conditional distribution in such a way that no two



different environments share the same encoding. We trained
both GAN and VAE with the same hyperparameters as before
for an environment with k = 8.

The three histograms in Fig. 11 qualitatively show the es-
timated densities after training. It can be seen that both GAN
and VAE were not able to identify the correct environment
configuration. It seems that the capability of recognizing
configurations is therefore highly dependent on the choice of
λ embedding. Accordingly, the average Wasserstein distances
were 3.0± 0.75 for GAN, respectively 2.98± 0.74 for VAE
as compared 1.05± 0.35 and 0.71± 0.35 when utilizing the
non-randomized embedding. We do not find any differences
between train and test performances while both models
predicted some fuzzy mixture over all possible density condi-
tionals. This is somewhat surprising, since the models did not
attempt to memorize observed samples given these infeasible
circumstances. Fig. 11 further depicts an approximation of
the density histogram of the marginal distribution of data
points, i.e. the ground truth distribution integrated over
all parameterizations λ (assuming the same probability for
all λ). The VAE estimates a similar distribution averaging
over all possible λ which seems to be a consequence of
its reconstruction objective. The GAN estimate is to some
extent similar while, again, we identified an exaggerated
strengthening of some modes of the distributions, while some
other modes were missed by the GAN estimate, possibly due
to the mode collapse phenomenon previously observed for
GANs in Computer Vision settings.

D. Parameterized Robot Arm Environment

Robot configuration space distributions are often parame-
terized by a number of continuous variables, e.g. the starting
coordinates of the robot or joint angles. In this section,
we consider a 4 DOF planar robot arm with sampling
distributions parameterized by an arbitrary start configuration
of joint angles (θ0, θ1, θ2, θ3). The goal configuration is
set to be at (0, 0, 0, 0). The manipulator starts at an initial
configuration (θinit, 0, 0, 0) where θinit, the base joint angle,
ranges from −π to π. The environment contains 4 rectangular
shaped obstacles as shown in Fig 12 while 2 of them form
a narrow passage in the workspace around the goal.

We are now interested in estimating the distributions
of samples generated from solutions of a sampling-based
planner for the presented robot and workspace. We trained
Conditional GANs and VAEs to estimate densities condi-
tioned on the initial joint angle of the robot. Again, we
applied the same network sizes and architectures as in the
previous sections IV-B and IV-C. Instead of RRT* we used
RRT-Connect for this experiment which concurrently grows
two trees from the start to the goal and vice-versa, in order
to speed up planning through the narrow passage. Given the
current setup and the inherent stochasticity of the planner,
the generated paths can deviate largely in terms of shape
and length even for similar initial configurations, illustrating
an important property of such distributions in the robotics
context as illustrated in the top in Fig. 12. We created a
training set by running the planner 3 times for each of 26000

Fig. 12: Top row: Illustration of workspace and planer robot arm. The light gray boxes
indicate obstacles. The initial and goal configurations are colored in black, respectively
red. Remaining colors indicate distributions of joint nodes (θ0:cyan, θ1:orange,
θ2:yellow, θ3:blue) given a particular start configuration. Bottom: Estimated densities
for GAN (left) and VAE (right). Corresponding ground truth data is presented in the
top left plot.

randomly sampled θinit. In a similar fashion, we generate a
test set using 1000 distinct θinit.

We found that the GAN produced significantly ‘sharper’
densities (transformed in workspace coordinates) than VAE
which is exemplified by the bottom plots in Fig. 12. The
assessment of estimates with respect to the ground truth
densities is less suitable for this experiment due to the
strong stochasticity and the low number of samples per
configuration.

Instead, we directly measured the utility of the estima-
tors and used them as sampling heuristics to guide the
space exploration during planning with RRT-Connect for
the presented environment. We analyzed the quality of the
resulting paths by looking at criteria such as the number of
states until a valid solution was found (same as number of
collision checks), the number of collisions, the path length
and the number of points of which the solutions consist of.
The curves in Fig. 13 show the average values for those
criteria with respect to the test set. The x-axis represents
the influence of the bias β of the sampling heuristic. The
motion planner samples from our learned distribution with
bias probability β, with probability 0.05 the goal state
and a uniform random samples otherwise. We compared
both GAN and VAE with respect to two baselines. Firstly,
a uniformed sampler which resembles the standard RRT-
Connect implementation. Secondly, a lookup table containing
the ground truth from 3 RRT-Connect runs. We observed a
strong influence of the bias values which tunes the influence
of the heuristic. As shown, GAN outperforms VAE with
respect to the average required number of states. Most of
the time, VAE required more time to find a valid solution
which is related to the higher number of collisions. Since
it used a larger number of states to assemble the path,
it yielded to shorter paths and higher number of nodes
per path. The GAN focused sampling in the most frequent
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Fig. 13: Average values for number of states, number of collisions, path length and
size of solution path over heuristic bias β evaluated on the test set.

regions while the VAE models spreads samples more evenly
over the space. Due to the diversity of possible paths the
resulting densities are highly multimodal and it appears that
the aforementioned shortcoming of VAEs, originating from
Gaussian encoders and it’s objective, may pose an obstacle
towards the application of VAEs in such environments.

Interestingly, we observed that a certain amount of random
sampling helped to speed up the planning. This can be seen
by looking at the respective curves of the GAN and ground
truth sampler, which both show a performance decline for
bias value greater 0.4.

V. CONCLUSIONS AND FUTURE WORK

We presented a comparative study discussing the chal-
lenges, benefits and limits of using state-of-the art deep
generative models, represented by a standard GAN and VAE
architecture, for density estimation in robot configuration
spaces. The main challenges we observed were tuning of
hyperparameters, instabilities during training, missing modes
for GANs and blurry VAE estimates. Our experiments
showed that the typically manual and potentially overlooked
choice of parameterized configuration space embedding can
have a larger effect on performance than the choice of model.
We believe the development of optimal such embeddings for
particular robotics applications is an interesting direction for
future work. Similarly, while classical techniques may not
scale to high-dimensional configuration spaces, we recom-
mend for future work on developing novel generative models
in robotics to benchmark also against more classical density
estimation techniques such as simple histograms or kernel
density and nearest neighbor estimators in order to contribute
to the community’s understanding of relative performance
characteristics of deep generative models for robotics.
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