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Abstract

This extended abstract1 explores the question of how to estimate a probability dis-
tribution from a finite number of samples when information about the topology
of the support region of an underlying density is known. This workshop contri-
bution is a continuation of our recent work [1] combining persistent homology
and kernel-based density estimation for the first time and in which we explored an
approach capable of incorporating topological constraints in bandwidth selection.
We report on some recent experiments with high-dimensional motion capture data
which show that our method is applicable even in high dimensions and develop
our ideas for potential future applications of this framework.

1 Introduction

Figure 1: A topologically interesting
point-cloud S ⊂ R2.

In recent years, novel topological techniques such as persis-
tent homology have been developed to extract homological
information from point-cloud data. This opens up a whole
new range of possibilities for exploiting topological methods
in a data-driven paradigm. Exciting theoretical results, pro-
viding guarantees on the reconstruction of homological infor-
mation from point-cloud data for large sample sizes have been
obtained [2] and a growing community of researchers has re-
cently found interesting applications of the persistence algo-

rithm, such as the analysis of computer vision and medical data in [3]. However, much of the
motivation for this research has been coming from a theoretical point of view or has been focussed
only on trying to extract topological information from point-cloud data without attempting to build
a probabilistic model for the data. In the work presented here, we ask the question of how else per-
sistent homology might be used as a tool for machine learning and suggest motion capture data as a
potential domain of application. We present some preliminary experiments showing that our topo-
logical density estimation framework [1], which combines classical kernel-based density estimation
[4] with persistent homology, can be applied even to high-dimensional motion capture data. Instead
of trying to recover topological information from a finite number of samples, we are interested in the
case where we are given prior topological information about the support region of some otherwise
unknown probability distribution and where we would then like to utilize this information together
with the persistence algorithm to select an optimal bandwidth parameter.

∗This work was supported by the EU projects FLEXBOT (FP7-ERC-279933) and TOMSY (IST-FP7-
270436) and the Swedish Foundation for Strategic Research
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2 Background

Many probabilistic methods are based on Gaussian densities. Examples include Gaussian Mixture
Models (GMM) [5], Gaussian Processes (GP) [6] and Gaussian Mixture Regression (GMR). While
these methods are highly popular in application fields such as robotics, speech recognition and com-
puter vision [5, 7, 8], a crucial and often overlooked property of such models is that they all generate
densities on Rd for which supp f = Rd; i.e. such models will assign a non-zero probability to ev-
ery subset of Rd with non-zero volume. This can cause problems in several real-world applications.
Consider for example a probabilistic model of human pose positions in joint space. The two hu-
man hands, for example, are often in close contact during manipulation and grasping, yet we should
assign zero probability to configurations corresponding to collisions with the environment or to self-
intersections of the various body parts. Such constraints are impossible to enforce directly using
Gaussian densities. A better approach is to base such a model on densities with bounded support
which can be achieved using kernel-based density estimation [9, 10, 11]. There, one tries to recon-
struct a probability density f : Rd → R of which only an i.i.d. sample S = {X1, · · · , Xn} is known
using an estimator f̂ε,n defined by f̂ε,n(x) = 1

nεd

∑n
i=1K

(
x−Xi

ε

)
, and where the kernel function

K : Rd → R is a suitably chosen probability density which is concentrated near the origin. We will
in particular focus on spherical kernels that are symmetric functions of the norm ‖x‖ of their input
variable x ∈ Rd and which satisfy suppK = B1(0), where Bε(p) = {x ∈ Rd : ‖x − p‖ 6 ε}.
Then supp f̂ε,n = Yε(S), where Yε(S) =

⋃n
i=1 Bε(Xi). By choosing ε small enough, we can hence

‘design’ a support region that is as concentrated as we want around the data points and which does
not suffer from the Gaussians’ trivial support region which we alluded to earlier. In kernel-based
density estimation ε is called the bandwidth [4]. Theorem 2.1 provides reassurance that, for large
sample sizes, f̂ε,n → f pointwise if the bandwidth is chosen correctly:
Theorem 2.1 (Theorem 3.1 and 3.2 [11]). Suppose that K is a Borel measurable func-
tion on Rd such that supx∈Rd |K(x)| < ∞,

∫
Rd |K(x)|dx < ∞,

∫
Rd K(x)dx = 1 and

lim‖x‖→∞‖x‖dK(x) = 0. Suppose that {εn}∞n=1 is a sequence of positive numbers such that
limn→∞ εn = 0. Then limn→∞ E[f̂εn,n(x)] = f(x) at every point of continuity of f . If further-
more limn→∞ nεdn = ∞, then limn→∞ E[(f̂εn,n(x) − f(x))2] = 0 at every point of continuity of
f .
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Figure 2: Graph of a density function f (shaded, grey), a selection of 50 samples (displayed below the x-axis)
and a traditional Gaussian kernel-based estimate (σ2 = 1

4
, black line) with a bandwidth that is too large (ε = 5,

on the left) and too small (ε = 0.4, on the right) respectively.

The question of optimal bandwidth selection is an ongoing area of research [12] and optimality
is traditionally studied in an asymptotic L1 or L2-error context [4, 13]. Given knowledge of the
underlying density f and a spherically symmetric kernelK, the asymptotic mean integrated squared
error is given by:

AMISE(εn) =
1

nεdn

∫
K(x)2 dx+

ε4n
4
µ2(K)2

∫
{tr(Hess f(x))}2 dx,

where µ2(K) =
∫
x2iK(x)dx is independent of j ∈ {1, . . . , d} by the spherical symme-

try. AMISE(εn) provides an asymptotic estimate for the natural mean integrated squared error
MISE(ε) = E

[∫
(f̂ε,n(x)− f(x))2dx

]
if limn→∞ εn = 0 and limn→∞ nεdn =∞ [4]. A popular

branch of bandwidth selection methods attempts to determine bandwidths which minimize AMISE
[12] instead of working with the more complicated MISE directly.

Considering the point cloud S displayed in Figure 1, a human observer – and especially anyone
familiar with persistent homology – will immediately notice that S intuitively has three connected
components, one of which has a ‘hole’. We can reformulate the existence of the ‘hole’ in Figure
1 in a mathematically precise way using the machinery of persistent homology by inspecting the
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corresponding barcode. We will assume here that the specialized audience of this workshop is
familiar with the basic concepts from persistent homology ([3] provides an excellent introduction
to the field). Observe that, in persistent homology, we attempt to reconstruct information about the
Betti numbers of an underlying space X from the samples S by studying the space Yε(S) as ε > 0
varies – just like we vary ε in the case of bandwidth selection with spherical kernels. In practice,
the homology groups of Yε(S) are then approximated by computing the homology groups of the
Vietoris-Rips complex V2ε(S).

We consider three kernels with suppK = B1(0) ⊂ Rd [1]. All these kernels are zero outside
B1(0) and defined by Ku = Vol(B1(0))−1 (uniform), Kc(x) =

d(d+1)Γ( d
2

)

2π
d
2

(1− ‖x‖) (conic) and

Kt(x) = (2πσ2)−
d
2

(
1−

Γ
(
d
2
, 1
2σ2

)
Γ( d2 )

)−1

e
− ‖x‖2

2σ2 (truncated Gaussian) respectively for x ∈ B1(0) (see

Figure 3 a-c).

(a) Ku (b) Kc (c) Kt (d) f̂ , Ku (e) f̂ , Kc (f) f̂ , Ku

Figure 3: (a-c): 1
ε2
K(x

ε
), for ε = 4 and K = Ku,Kc,Kt respectively. (d-e): Density approximation for

K = Ku,Kc,Kt in dimension 2 and with ε = 4 and for a few data points in the plane. For Kt, σ2 = 1
4

.

In [1], we introduced the idea of topological constraints to bandwidth selection. i.e., given a density
f such that some constraints on the Betti numbers of supp f and an i.i.d. sample S are known, we
compute the barcode for S and search for barcode intervals such that these constraints are satisfied.
We then chose the first such interval I = [εmin, εmax] (which also coincided with the largest such
interval in our application) and defined εtop(n) = εmin(n) + εmax(n)−εmin(n)

2 n−
1

4+d and were able
to show in examples that the empirical MISE for this bandwidth choice converges quickly to zero
as n → ∞ for Ku,Kt,Kc. We believe that this novel type of topological bandwidth selection, i.e.
choosing a bandwidth εn such that topological constraints are satisfied and such that the expected
squared error is minimized for a given sample size n is a very interesting topic, which we believe
should be explored further both from an experimental and a theoretical perspective.

3 Experiments

To gain an intuition for our approach, let us consider first a new 2D synthetic example of our topo-
logical density estimation framework. We consider the density f displayed Figure 4 a). Observe that
Ω = supp f has three connected components (b0(Ω,Z2)) = 3) and that two of these components
have a 2-dimensional hole each (b1(Ω,Z2) = 2). Taking this observation as our prior topological
knowledge about f during reconstruction, we are now able to compute a density estimator as dis-
played in 4 b) from only 300 samples and using εtop. We can also clearly see in that figure and in 4
c) that the reconstructed density has the correct topological features. In this example, εmin u 1.36,
εmax u 2.23 and εtop u 1.53. The reconstruction L1 and L2 errors for εtop were approximately
0.55 and 0.04 respectively. A very interesting topic that remains to be explored more fully and
which we look forward to discussing during this workshop is the question of how else one could
choose εtop ∈ [εmin, εmax] in order to minimize L1 or L2 errors. In [1], we determined an εtop
which ensures point-wise asymptotic convergence under some assumptions on εmin, εmax. In many
application domains, one might however prefer to choose εtop as small as possible in order not to
’generalize’ the data too much. As outlined in the introduction, the probabilistic modelling of motion
is an interesting area of application for our density estimation approach which we would like to begin
to explore in this work. For this purpose, we generated a point-cloud S = {X1, . . . , X2276} ⊂ R60,
where each vector Xi is a concatenation of 20 vectors in R3. Each of these 20 vectors describes
the (x, y, z) positions of one of twenty key/joint positions of a person at a fixed point in time (see
the stick-person in Figure 5 for a visualization of one such Xi). We start with a short 35 frame
motion-capture sequence of a person walking along a straight line taken from [14]. We then repeat
these frames and translate and rotate each frame to obtain semi-synthetic data of a person walking

3



(a) (b) (c)

Figure 4: a) a 2D density. b) a uniform kernel estimate based on 300 samples and with εtop = 1.53. c) the
support region of the kernel estimate in b) with the correct number of ‘holes’ and components.

along the patterns in the plane displayed in Figure 5. Three of these paths are periodic closed-curve
walking patterns, two are straight line walking segments and the last is a single isolated static pos-
ture. As given topological data, we assume the knowledge that b0(Ω,Z2) = 6 (i.e. there are 6
underlying motion patterns) and that b1(Ω,Z2) = 3 (i.e. there are 3 ‘cyclic’ motions). This example
is typical in that we do not have knowledge of any underlying probability density and can hence not
evaluate the error incurred by our estimator. We do know however that a probabilistic model should
not ’mix up’ the various motion patterns by creating a density with too few connected components
in its support region. We use JavaPlex [15] to determine the smallest bandwidth εmin such that
b0(V2εmin(S),Z2) = 6 and b1(V2εmin(S),Z2) = 3. In our experiment εmin u 12. In this exper-
iment, we choose εtop = εmin as a conservative estimate for the bandwidth. This yields a density
f̂ with support equal to Y12(S) from which we can generate samples by selecting a data point with
uniform probability and then sampling from the rescaled kernelK at that data point. Here, we chose
K = Kc. Note that we can now continuously move from one data point to the next inside Y12(S) in
each of the 6 connected components (e.g. to potentially obtain an interpolation of the whole walking
sequence from the samples). We observe also that, unlike the projection of the paths in Figure 5, the
paths in the full 60 dimensional space do not intersect.

Figure 5 shows a data point from S in 5 a) and 3 random samples from a conical kernel scaled by the
bandwidth εtop = 12 and centred at that data point 5 b-d). We note that, even though our dataset is
very sparse in 60 dimensions, our framework enables us to generalize from the data while satisfying
the given topological constraints.
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Figure 5: Stick-person from the data (a) and three samples from a conical kernel with bandwidth 12
centred at that data-point (b-d). (e) displays the movement patterns in the xy-plane along which we
generated our data points.

4 Conclusion and Future Work

In this work, we have begun to explore applications of our novel topological density estimation
framework [1] to a new synthetic data set in 2D and to motion capture. From our evaluation of
the estimation errors in [1] and the encouraging results with real motion data, we believe that these
novel uses of persistent homology in kernel-based density estimation can be a valuable tool in real
world applications. We are intending to investigate various aspects of our approach in the coming
months. Incorporating a time-dependence in the motion-capture data is an obvious starting point for
example.
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