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Grasp Moduli Spaces and Spherical Harmonics

Florian T. Pokorny Yasemin Bekiroglu Danica Kragic

Abstract— In this work, we present a novel representation
which enables a robot to reason about, transfer and optimize
grasps on various objects by representing objects and grasps
on them jointly in a common space. In our approach, objects
are parametrized using smooth differentiable functions which
are obtained from point cloud data via a spectral analysis. We
show how, starting with point cloud data of various objects,
one can utilize this space consisting of grasps and smooth
surfaces in order to continuously deform various surface/grasp
configurations with the goal of synthesizing force closed grasps
on novel objects. We illustrate the resulting shape space for a
collection of real world objects using multidimensional scaling
and show that our formulation naturally enables us to use
gradient ascent approaches to optimize and simultaneously
deform a grasp from a known object towards a novel object.

I. INTRODUCTION

The problem of determining a suitable representation
which enables a robot to reason about the manipulation
of objects in its environment is fundamental to robotics.
While most current grasp synthesis approaches are based on
non-smooth object representations such as triangle meshes,
this work considers smooth representations of objects that
can be continuously varied. Furthermore, while previously
objects such as boxes, cylinders, spheres and quadric sur-
faces have been considered as primitives for the purpose of
grasping and manipulation (see [1] and references therein),
we shall argue that shape primitives defined in terms of a
spectral analysis of the underlying objects provides a useful
alternative. Our work extends the approach of [2], where
an infinite dimensional space – the Grasp Moduli Space
– for contact configurations on surfaces parametrized by a
cylindrical coordinate chart was introduced. It was shown
that shape deformation based approaches in this space can
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be used to synthesize and transfer stable grasps if a smooth
surface representation of the object is known. In this work,
we utilize a spectral object representation, which has also
recently been used in neuroanatomy [3], and show how
such a representation can form a basis for a deformation
based grasp synthesis framework. Our present work extends
the approach of [2] since it allows us to use point cloud
data directly. Furthermore, grasps on any genus zero (i.e.
without holes) surface can in principle be modeled with
the techniques we consider here, vastly extending the set of
objects usable within this approach. The main contributions
of this paper can be summarized as follows:

a) We discuss the infinite-dimensional shape spacesMsph

and Mrad for representing shapes for the purpose of
robotic grasping, and we investigate convexity proper-
ties of Mrad in particular.

b) For a set of example surfaces, we show how a point
cloud representation P leads to a smooth surface Sf ∈
Msph using a spectral analysis of P .

c) We define the Grasp Moduli Spaces Gsph and Grad for
m contacts on parametrized shapes inMsph andMrad

respectively. We show how distances of spectral coeffi-
cients can be used to reason about nearby grasp/object
configurations.

d) We evaluate the success of a simple gradient ascent
approach in Grad in order to locally optimize grasp
quality on a fixed surface.

e) We show how to efficiently transfer grasps in Grad
between objects using a gradient based optimization and
evaluate our approach in simulation.

The paper is structured as follows: In Sec. II, we discuss
our motivation for this work and review common shape
representations in robotic manipulation and the basics of
spherical harmonics. In Sec. III, we discuss the theoretical
aspects of our work, and in Sec. IV we present experimental
results. We conclude in Sec. V and discuss future work.



II. BACKGROUND AND MOTIVATION

A. Grasp Synthesis

For a robot to grasp and manipulate objects, it is necessary
to first determine an appropriate mathematical abstraction of
this process. Grasp synthesis classically relies on a notion of
grasp quality [4] and force-closure in particular (see [5] for
a review). In order to determine if a grasp is force closed,
one then typically assumes that all contacts between the
robot hand and the object are point contacts, and that the
geometry of the object is explicitly described – in practice
usually by a triangle mesh. We hence think of a grasp g on
a surface S with centre of mass z, with m contact points
ci and associated inward-pointing normal vectors ni as a
configuration

g = (c1, . . . , cm, n1, . . . , nm, z) ∈ R3m × (S2)m × R3

and will use the L1 grasp quality measure Q defined in [4]
to determine if such a configuration is force closed given
a surface friction coefficient µ > 0. Q is defined to be the
radius of the largest ball around the origin and entirely inside
the grasp wrench space if such a sphere exists and zero
otherwise. Q takes positive values if wrenches in arbitrary
direction can be withstood by the grasp g and the grasp
is considered more stable the larger Q is. State of the art
approaches such as [6] then typically incorporate a grasp
quality ranking with sampling and a decomposition of the
object in order to return a list of viable grasp hypotheses.

B. Shape Representations for Grasping

Triangle meshes provide a commonly used object repre-
sentation for robotic grasping. To determine contact con-
figurations on a mesh, a common approach used e.g. by
the popular simulation environment GraspIT [7] is based on
sampling hand poses that establish contact with the object
and to then rank the result by a grasp quality measure such
as the previously mentioned Q function. The work of [8] also
uses a sampling based approach to determine stable contact
configurations. A reduced object representation based on the
medial axes of a surface has been investigated in [9] for the
purpose of grasp synthesis. An alternative approach is based
on a hierarchical decomposition of objects into primitives
such as spheres, boxes or quadrics. The work of [1] focusses
on a box based decomposition in particular.

A problem with these representations is that it is not clear
how a robot can utilize learned grasps in novel situations,
e.g. when an object which is slightly different from previ-
ously investigated cases is encountered. Unlike problems in
Computer Vision, where it is possible to obtain millions of
training examples for a given learning problem, a robot will
typically not grasp a given object more than a few dozen
times and even simulated grasps are difficult to obtain in
sufficient numbers so that the high-dimensional state-space
consisting of robot hand configurations is densely sampled
for each object instance.

A guiding motivation for our work is hence the desire
to determine a representation allowing us to transfer grasps

between similar objects and to enable a statistical analysis of
‘similar’ grasps on ‘similar’ surfaces on a unified space of
shapes and grasps. The work of [10] has taken a step in this
direction, using point cloud matching and a combinatorial
search to transfer grasps between objects. The approach of
[11] instead decomposes an object into parts that can be
studied separately. There, graspable parts are then matched
between objects for the purpose of grasp transfer.

Note that, in both approaches, the surface geometry is
represented using discrete surface descriptors. Our approach
is instead based on a smooth object parametrization and
extends the work of [2], where the space of surfaces with
cylindrical coordinates, Mcyl, was considered. The space
Mcyl is convex, allowing us to deform between any two
surfaces S1, S2 using a curve γ : [0, 1]→Mcyl,

γ(t) = (1− t)S1 + tS2.

A further benefit of the convexity is the fact that any finite set
of surfaces X = {S1, . . . , Sn} induces a finite dimensional
shape subset Conv(X) consisting of convex combinations of
elements of X . In [2], this shape space is combined with a
space of configurations of contact points to define a Grasp
Moduli Space Gcyl parametrizing both a shape and a set
of contact points on the shape. A metric on Gcyl can then
be defined and one can continuously move between any two
points in Gcyl. A particular advantage of this approach is that
there exist subsets of shapes on which grasp synthesis can be
carried out very efficiently, such as the surfaces of revolution
Mrev ⊂ Mcyl considered in [2]. Using a deformation in
Gcyl, these grasps can then be generalised to nearby surfaces
which are not themselves rotationally symmetric.

Noise can also naturally be described in Gcyl since we are
able to describe ‘shape-noise’ and ‘contact point configura-
tion noise’. Three important cases are 1) when the shape
is precisely perceived, but the hand cannot be controlled
sufficiently precisely, 2) when a slightly deformed shape
is encountered but the grasp was planned on the original
internal model of the shape, and 3) when both the shape
and the final hand position are not precisely the same as an
internal representation had predicted.

We will utilize spherical harmonics to obtain a smooth
surface representation which have surfaced for manipulation
in the work of [12], where the resulting smooth parametriza-
tion was used to control a rolling interaction between a
simple gripper and an object. Based on the resulting surface
parametrizations, we discuss a shape space which generalises
Mcyl since, in principle, any closed surface of genus zero
can be modelled given dense samples of points from the
object’s surface.
C. Spherical Harmonics

In order to extract smooth surfaces from point cloud data,
we shall make use of a spectral analysis on the sphere
which provides an analogue of classical Fourier analysis.
Consider the space L2(S2) of integrable functions on the
sphere S2 ⊂ R3. We choose a coordinate chart p(θ, ϕ) =
(sin θ cosϕ, sin θ sinϕ, cos θ) on the sphere, with (θ, ϕ) ∈
[0, π] × [0, 2π). For integers l,m, the real valued spherical
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Fig. 1: Illustration of some eigen-functions of ∆ on S2.

harmonic function of degree l and order m, |m| 6 l, is
defined by

Yl,m(θ, ϕ) =


cl,mP

|m|
l (cos θ) sin(|m|ϕ) −l 6 m 6 −1

cl,m√
2
P 0
l (cos θ) m = 0

cl,mP
m
l (cos θ) cos(mϕ) 1 6 m 6 l,

where cl,m =
√

2l+1
2π

(l−|m|)!
(l+|m|)! and Pml denotes the associ-

ated Legendre polynomial of order m and degree l. The
functions Yl,m arise as eigen-functions of the Laplacian
∆ = 1

sin θ
∂
∂θ (sin θ ∂∂θ ) + 1

sin2 θ
∂2

∂2ϕ on S2 [3]. For fixed l,
there are 2l + 1 eigenfunctions {Yl,m : m ∈ {−l, . . . , l}}
satisfying

∆Yl,m = λlYl,m,

where λl = l(l + 1) denotes the corresponding eigen-
value. These eigen-functions, for all l,m, form an infinite
orthonormal basis for L2(S2) with respect to the standard
inner product 〈f, g〉 =

∫
S2 fg dVol, for f, g ∈ L2(S2) and

where dVol = sin θdθdϕ. Fig. 1 displays a few of these
eigen-functions. Any f ∈ L2(S2) can hence be expanded as

f(θ, ϕ) =

∞∑
l=0

l∑
m=−l

al,mYl,m(θ, ϕ),

for some al,m ∈ R. Suppose now that we have samples
pi = p(θi, ϕi) ∈ S2 on the sphere and associated noisy
function values fi ∈ R, for 1 6 i 6 n, of some underlying
function f : S2 → R. We can approximately reconstruct f
using a function h ∈ L2(S2) such that h lies in the direct
sum HL of the eigen-spaces of ∆ up to degree L. The vector
space HL has dimension (L+ 1)2 and any such h is of the
form

h(θ, ϕ) =

L∑
l=0

l∑
m=−l

βl,mYl,m(θ, ϕ),

for some βl,m ∈ R. A least-squares fit, minimizing the error
term

n∑
i=1

|h(θi, ϕi)− fi|2

is given as follows (see [13] for details): let f = (f1, . . . , fn),
βl = (βl,−l, . . . , βl,l),

Yl =

 Yl,−l(θ1, ϕ1) . . . Yl,l(θ1, ϕ1)
...

. . .
...

Yl,−l(θn, ϕn) . . . Yl,l(θn, ϕn)

 .

Furthermore, define Y = [Y0, . . . ,YL] and β =
(βt0, . . . ,β

t
L)t. Then, as explained in more detail in [13],

a choice of coefficients given by β = (YtY)−1Ytf yields
a solution h ∈ HL minimizing the error term. This approach
is part of the theory of spline based regression which can be
extended by a regularization term [14]. The above procedure
hence yields a regression methodology for functions defined
on spheres. As can be seen in examples in [3], the first
L = 70 eigen-spaces are usually sufficient to capture even
minute details of f . The work of [15] uses the above
approach to find a spherical parametrization for surface
meshes. As a first step, the mesh-vertex x, y, z coordinates
are parametrized as functions on S2 using the methods
outlined in [16]. The resulting functions x, y, z : S2 → R
are then approximated using an expansion in terms of Yl,m
as above. Given a sufficiently densely sampled general point
cloud of a closed surface with genus zero (i.e. without
holes), one can also determine an embedding mapping the
point cloud onto a sphere. One approach for this is based
on energy minimization [17], while a recent method uses
an approximated Laplace-Beltrami operator for this purpose
[18], see [19] for an overview. Once the x, y, z coordinates of
the sampled points (xi, yi, zi) are mapped to corresponding
θi, ϕi values, the above regression method can be applied
and yields a smooth parametrization (x, y, z) : S2 → R3

of the point cloud. In neuroanatomy, [13] recently used
a spherical harmonics expansion of highly curved brain
surfaces to characterize cortical thickness. There, a subject’s
brain surface is first mapped onto a sphere and regression is
then performed on this transformed data based on the least
squares approach outlined above.

III. THEORETICAL FRAMEWORK

We now describe how to extract a suitable object repre-
sentation from point cloud data. We then formalize and study
the shape space which we will use in this paper.

A. Spaces of Shapes and Spherical Coordinates

In this work, we are interested in smooth closed embedded
surfaces in R3 of genus zero. We make the following
definition:

Definition 3.1: Given f : S2 → R3, we denote the image
by Sf = {f(p) : p ∈ S2} ⊂ R3. We define

Msph = {f ∈ C∞(S2,R3) : f is an smooth embedding. }

We furthermore denote byMrad those f ∈Msph for which
there exists a radial function r : S2 → R>0 such that

f(p(θ, ϕ)) = r(θ, ϕ)(sin θ cosϕ, sin θ sinϕ, cos θ),

for all (θ, ϕ) ∈ [0, π]× [0, 2π).
The setMsph describes parametrizations of closed embed-

ded smooth surfaces of genus zero, while Mrad ⊂ Msph

contains parametrizations of simpler such surfaces which
can be described by a single radial coordinate function
r : S2 → R>0. The surfaces defined by such radial functions
yield an interesting subset Mrad ⊂ Msph which we shall
explore in this work in particular. Recall that the image Sf



of a smooth embedding does not have self-intersections and
yields a smooth closed surface suitable for representing a
variety of real world objects. We can mirror the observations
made about the space of surfaces with cylindrical coordinates
in [2] also in the case of Mrad:

Lemma 3.2: For any f1, f2 ∈ Mrad and α1, α2 > 0, we
have α1f1 + α2f2 ∈Mrad. In particular, Mrad is convex.

Proof: Let f1, f2 ∈ Mrad with corresponding radial
functions r1, r2 : S2 → R>0. Then, for α1, α2 > 0, f =
α1f1+α2f2 has radial function α1r1+α2r2 which is smooth
and positive. By a simple explicit computation of f and Jf
in smooth coordinate charts covering S2, one can verify that
f is injective and that Jf has full rank everywhere. Hence
f is an injective immersion. Since S2 is compact, it follows
that f is in fact a smooth embedding. Hence f ∈Mrad. The
statement about convexity follows at once.
Note that the above does not state that the shapes in Mrad

themselves have to be convex, but that the shape spaceMrad

is. The above simple observation implies in particular that,
given any finite set of smooth functions X = {f1, . . . , fn} ⊂
Mrad, Conv(X) ⊂ Mrad and any element of Conv(X)
yields a valid smooth embedded surface. Conv(X) hence
yields a natural finite dimensional subspace of surfaces
induced by a finite set of example surfaces. Similarly, we
can consider Cone(X) = {αf : α > 0, f ∈ Conv(X)}.

We can deform between any two surfaces f1, f2 ∈Mrad

using f(t, p) = (1− t)f1(p) + tf2(p), t ∈ [0, 1], p ∈ S2 and,
more generally, interpolate between any finite set of example
surfaces. For the larger setMsph, one can still consider such
convex combinations, but care has to be taken to verify that
the resulting surfaces are still elements of Msph to make
sure no degeneracies or self-intersections occur.

Distances between Shape Parametrizations: Note that,
for f1, f2 ∈ Msph, we can define a distance func-
tion d(f1, f2) = (

∫
S2 |f1 − f2|

2
dVol)

1
2 , where dVol =

sin θdθdϕ. If f1, f2 ∈ Mrad with corresponding radial
functions r1, r1, then in fact

d(f1, f2)2 =

∫
S2
|f1 − f2|2 dVol =

∫
S2
|r1 − r2|2 dVol .

The above formula allows us to quantify the similarity be-
tween the corresponding parametrized surfaces Sf1 , Sf2 and
we shall use the notation d(f1, f2), d(r1, r2) interchangeably.

B. Spherical Harmonics and Point Clouds

Let us here describe our methodology for obtaining a
surface parametrization f ∈Msph or f ∈Mrad for a given
input point cloud P = {p1, . . . , pn} ⊂ R3 sampled from
some genus zero surface S ⊂ R3. Such point clouds arise for
example from laser range scanners or from a structured light
sensor such as the kinect sensor. As mentioned previously,
there are several methods available to assign spherical coor-
dinates for each point in P [17], [18], [19] and these methods
apply even for complicated non-convex objects. Once corre-
sponding (θi, ϕi) coordinates are found, each of the functions
x, y, z : S2 → R can then be recovered using the presented
methods. In the case where P was sampled from a surface

Sf with f ∈Mrad, corresponding θi, ϕi coordinates can be
determined by computing the standard spherical coordinates
of each p ∈ P directly. Furthermore, instead of finding a
regression solution for the x, y, z coordinates separately, one
can then directly compute the standard radial coordinate ri
for each pi ∈ P and determine a radial function r : S2 → R
approximating the data (ri, θi, ϕi) using eigen-spaces up to
degree L > 0. Since the objects considered for grasping in
this paper can be modelled as elements of Mrad, we will
employ this simplified approach here and defer a full study of
more general objects to later work. The function r : S2 → R
is then given by

r(θ, ϕ) =

L∑
l=0

l∑
m=−l

βl,mYl,m(θ, ϕ),

and we denote by β(r) = (β0,0, β1,−1, . . . , βL,L) the vector
of coefficients characterizing r. Let r1, r2 be two such
functions with coefficients β(r1),β(r2). Observe that, since
〈Yl,m, Yl′,m′〉 = δl,l′δm,m′ , where δ denotes the Kronecker
delta function, we can quickly compute the distance d
between the resulting surfaces using the vector norm:

d(r1, r2)2 =

∫
S2
|r1 − r2|2 dVol = ‖β(r1)− β(r2)‖2.

Fig. 2 displays a point cloud P and a resulting reconstructed
smooth surface parametrization f ∈Mrad which is obtained
by using all eigen-spaces of ∆ up to degree L. As L is
increased, more and more detail about the surface is captured.
Note that – unlike common mesh representations for objects
– the reconstructed surface parametrization f is smooth and
derivatives of arbitrary order can be computed.

(a) P (b) L = 10 (c) L = 30 (d) L = 50

Fig. 2: Point cloud P with 25000 points and reconstructed
surfaces, where all eigen-spaces up to degree L are used.

C. Grasp Moduli Spaces and Spherical Coordinates

A long term goal of our work is the construction of a
shape and grasp configuration space which allows us to
continuously move between shape/grasp configurations and
where we can employ a) natural optimization methods for
smooth objective functions and b) probabilistic methods
which incorporate shape and grasp uncertainties. We now
take a step in this direction by formalizing a space of grasps
on Msph and a natural grasp/shape distance function.

Definition 3.3: The Point-Contact Grasp Moduli Space
for m point-contacts on Msph is given by Gsph =Msph ×
(S2)m. The corresponding space for Mrad is given by
Grad =Mrad × (S2)m.



A point (f, (p1, . . . , pm)) ∈ Gsph now parametrizes both
a surface S = Sf and a grasp g(f, (p1, . . . , pm)) =
(c1, . . . , cm, n1, . . . , nm, z), where ci = f(pi) denotes the
ith contact point, ni the surface normal of Sf at ci and z
the corresponding centre of mass of Sf . As in [2], we can
define a metric on grasp contact configurations as follows:
consider g, g′ ∈ R3m × (S2)m × R3,

g = (c1, . . . , cm, n1, . . . , nm, z)

g′ = (c′1, . . . , c
′
m, n

′
1, . . . , n

′
m, z

′)

and define

d(g, g′) = max
i

(dR3(ci, c
′
i), dR3(ni, n

′
i), dR3(z, z′)).

We can in turn combine this with our metric
on Msph to define a metric on Gsph by
d((f, (p1, . . . , pm))), (f ′, (p′1, . . . , p

′
m)) = wd(f, f ′) +

(1 − w)d(g, g′), for some fixed w ∈ [0, 1]. Here,
g = g(f, (p1, . . . , pm)) and g′ = g(f ′, (p′1, . . . , p

′
m)). Using

this metric, we can quantify how far a given grasp/surface
configuration is from a different such configuration. The w
parameter can be chosen to weigh the relative importance of
these distances. Note also that we can continuously deform
(f, (p1, . . . , pm)) ∈ Grad to (f ′, (p′1, . . . , p

′
m)) ∈ Grad,

by a curve γ = (u, v) : [0, 1] → Grad, where e.g.
u(t) = (1 − t)f + tf ′ and v deforms each pi ∈ S2
along a spherical geodesic towards p′i. The same approach
can be attempted in Gsph, but one has to take care that
Su(t) ∈Msph for all t ∈ [0, 1].

IV. EXPERIMENTS

We now describe experiments which utilize the pre-
viously discussed framework in various ways in order
to generate force closed grasp hypotheses and to ex-
plore the resulting moduli space. Details about our ap-
proach and our implementation of spherical harmonics
based regression can be found on the first author’s website
http://www.csc.kth.se/~fpokorny.

A. Object Data and Shape Space

We work with the collection of real world objects depicted
in Fig. 3. For each object, we generate a point cloud Pj
of 25000 uniformly sampled points on the object’s surface
which forms the basis of our approach. For this purpose, we
used the laser scan data of [20] for all surfaces but S2, S7,
S11, S12 in Fig. 4, for which we generated uniform samples
from our own mesh models.

This data is then centred at the mean of the point cloud
which we assume to be the centre of mass of the object, and
the spherical coordinates for each data-point are computed.
We utilize the spherical regression technique described in
Sec. III-B and all eigen-spaces up to degree L = 50 to
obtain a respective smooth radial function r : S2 → R>0

for each point cloud which then results in a surface Sf ,
f(θ, ϕ) = r(θ, ϕ)(sin θ cosϕ, sin θ sinϕ, cos θ). Fig. 4 dis-
plays the resulting surfaces S1 up to S12. A more detailed
view of the point cloud for S8 can also be seen in Fig. 2.

Fig. 3: A picture of the objects used in our experiments.
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Fig. 4: The first 3 rows display smooth parametrized surfaces
determined from point clouds (25000 points each) of our objects
from Fig. 3. The last row displays the MDS projection of β vectors
parametrizing these objects in Mrad (green dots), a sequence of
spheres (black dots) and example deformations (solid lines).

Each surface corresponds to a β coefficient vector in
R2601. In the bottom part of Fig. 4, we visualize the distribu-
tion of the β vectors for our 12 surfaces, indicated by green
dots. To enrich the set of available shapes, we also created
25000 uniformly distributed random points and respective
smooth reconstructions from 30 spheres with radii between
3cm and 6cm and we added examples of shape deformations
from shape S5 to S1, S2, S10, S11, where a deformation
between Si and Sj is obtained by a convex combination of
the respective vectors βi,βj : β(t) = (1 − t)βi + tβj . On
the resulting set of β vectors, we then performed manifold
multidimensional scaling (MDS) to obtain Fig. 4. Note that,



(a) S5 (b) S8 (c) S10

(d) S5 (e) S8 (f) S10

Fig. 5: Random samples of points in Grad, where Gaussian noise
is added to β0, . . . ,β9 in the top row and to β499, . . . ,β599 in the
bottom row.

as S5 is deformed, it passes the neighbourhood of the shapes
S7 and S8. The deformations correspond to straight lines in
R2601. The sequence of spheres is furthermore also clearly
visible as a sequence of nearby points passing S11 and S12.

B. Compatibility with probabilistic approaches

Note that the shape-space component of Gsph as ap-
proximated by the first L eigen-spaces of ∆ is simply
corresponding to a (L + 1)2 dimensional vector space con-
taining β coefficients. It is hence clear that the full vector-
space based machinery of machine learning and statistical
analysis is available on this space. Additionally, appropriate
distributions on spheres exist, endowing the coordinate part
of Gsph with natural probability distributions. One can hence
consider building e.g. mixture models on our moduli space.
In future work, we intend to explore this direction. One could
for example consider modelling task constraints in grasping
probabilistically using such distributions. In order to illustrate
sampling in Gsph, we created the deformed object/grasp
configurations in Fig. 5 by sampling three random (θ, ϕ)
grasp contact coordinates and by adding Gaussian noise to
the first 10 dimensions of β in the top row and to dimensions
499 to 599 in the bottom row. As we can observe, in
a situation mirroring the familiar case of Fourier analysis
on the circle, modifications of the first few β coefficients
correspond to large scale object properties, while the higher
dimensions correspond to higher ‘frequencies’.

C. Initial grasp synthesis

We work with a Schunk dexterous hand (SDH, 7 DOF)
displayed in Fig. 6 for which we use a simplified collision
model displayed in the top left part of that figure. To detect
collisions with our reconstructed smooth surfaces, we used a

Fig. 6: Top row: SDH hand collision model and two pre-shapes.
Remaining rows: stable grasps generated in simulation and their
execution in reality (background whitened).

regular mesh on (θ, ϕ) ∈ [0, π]× [0, 2π) with 10000 vertices
and mapped it onto the surface using f(θ, ϕ). These meshes
are also used in Fig.4 for visualization. We sampled SDH
hand positions oriented towards the origin and on the upper
hemisphere of varying radii in an approach similar to the one
used by GraspIT [7]. The hand was put either in a parallel
pre-shape with open fingers or in a pre-shape where the
fingers are equally spread out (see the two figures to the right
in the first row of Fig. 6). We then closed the fingers until
the finger-tips were less than 1mm away from the object.
Configurations where the fingers did not reach the surface
vicinity, or where other hand-parts were less than 5mm away
from the object or closer than 5mm to each other were
discarded. The closest points p1, p2, p3 on the object and
from the finger-tips were calculated and corresponding unit
normals n1, n2, n3 of the surface Sf were computed based
on our smooth representation by normalizing df

dθ ×
df
dϕ . From

an initial set of 1400 random hand-positions per surface, we
obtained a set of more than 200 stable grasps per object
which we ranked by grasp quality. Let us denote by Gi the
50 best such grasps and by Ĝi the best 10 grasps on surface
Si. To verify that grasps which were stable in simulation also
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Fig. 7: Initial vs. final grasp quality with gradient ascent

corresponded to stable grasps in reality, we performed a short
evaluation where two simulated stable grasps on each surface
were executed on a real Schunk (SDH) hand attached to a
Kuka arm. 21 of the resulting grasps were stable, while 1
failure occurred on each of the objects S1, S3, S6 – most
likely due to errors in the positioning of the hand. The
supplementary video contains more details on this evaluation
and examples from these experiments are also displayed in
Fig. 6 alongside the corresponding simulated grasps.

D. Point-contact based grasp synthesis and transfer on Grad

The synthesis and optimization of stable point-contact
configurations are important sub-problems in grasp synthesis
since stable configurations can serve as goals for a planning
algorithm positioning the robot hand.

We now study the problem of grasp optimization given a
stable starting grasp. For this purpose, we consider a grasp
g on a surface Sf with three contact points. Each such grasp
is determined by f and (θ, ϕ) ∈ [0, π]3× [0, 2π)3 ⊂ R6. The
grasp quality Q can hence be thought of as a function of
θ, ϕ which we attempt to maximize. We propose a straight-
forward gradient ascent approach as follows: we approximate
(∇Q(x))i ≈ 1

δ (Q(x+ δei)−Q(x)), where ei ∈ R6 denotes
the i-th basis vector, i ∈ {1, . . . , 6}, with δ = 10−5 as in
[2]. Starting from an initial grasp x0 ∈ [0, π]3 × [0, 2π)3,
we update xn+1 = xn + 0.01 clamp(∇Q(xn)), where
clamp(x) = x if ‖x‖ 6 1 and x

‖x‖ otherwise. We applied
1000 steps of this approach to each grasp in Gi for each
surface Si. The resulting initial and final grasp qualities
are summarized in Fig. 7 with grasps on different surfaces
indicated by differing symbols and colours. Note that grasp
quality is typically improved significantly, but that, in some
cases, our simple fixed step-length gradient ascend does not
converge and can in fact result in final grasps which have

Fig. 8: Initial grasp (long black, grey and red normals) and changes
during the gradient ascent (smaller lines) are displayed. The final
contact configurations are depicted as long blue lines. The grasp
quality improved in all but the bottom right example.

worse quality than the initial grasp. This behaviour could
be partially avoided by using an adaptive step size gradient
ascent approach instead. Fig. 8 displays successful gradient
ascent results with an improvement in Q from 0.51, 0.54,
0.62 and 0.62 to 0.72 (top left), 0.64 (top right), 0.70 (bottom
left) and 0.67 (bottom right) respectively. Note how a large
adjustment to the grasp configuration is made in the top
left plot while in the bottom right example only a small
change occurs during our gradient ascent. We can think of
this gradient ascent as forming a sequence of points in Grad,
where the shape part is held fixed. Let us remark furthermore
what we could use our approach with any grasp grasp quality
function for which we can approximate gradients, including
quality functions taking into account additional constraints.

E. Optimization-based grasp transfer in Grad

Next, we investigate the ability of our approach to be
used to transfer stable grasps from one object to another
one. We consider, for i, j ∈ {1, . . . , 12}, i 6= j the curve
γ : [0, 1] →Mrad obtained by scaling the parametrizations
fi, fj corresponding to the surfaces Si and Sj by γ(t) =
(1 − t)fi + tfj . This deformation in turn corresponds to
linear interpolation between the respective β-coefficients of
Si, Sj . The naı̈ve approach to transfer a grasp to a new
surface is obtained by simply fixing the θ, ϕ coordinates of
the contact points as the underlying surface deforms. We
study an alternative approach, as introduced in [2] for Gcyl,
and start with a grasp g ∈ Ĝi on Si, apply 100 steps of
our gradient ascent on Sfi = Sγ(0), then we move the grasp
to the surface Sγ(0.1) and transfer the grasp to the slightly
deformed surface by keeping the same θ, ϕ coordinates per
contact. We then apply again 100 steps of our gradient
ascent and move to Sγ(0.2) etc. until we reach a grasp on
Sγ(1) = Sfj which is again optimized with 100 steps of our
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Fig. 9: We display initial vs. final grasp quality when
transferring grasps from one surface to another.

gradient ascent. We applied this procedure for every one of
the grasps in Ĝi and every starting surface Si and target
surface Sj 6= Si, resulting in 110 grasps per starting surface
and 1320 grasp transfers in total. Note that we concentrate
on the problem of grasp transfer from a point-contact point
of view here. This approach can then be integrated at a later
stage with a motion planning approach to adapt the hand
as the point contact configuration is deformed. The results
of our deformation based transfer are summarized in Fig. 9.
As one might expect, the grasp quality on the final target
surface is not always positive since our simple optimization
method can get stuck in local maxima for this non-convex
optimization problem. However, the vast majority of the
final grasps is indeed stable and of good grasp quality
after the grasp is transferred. Among the 1320 transferred
grasps only 9 had a grasp quality of less than 0.01 which
we consider unstable. Of 110 transfers per starting surface
only 2, 1, 1, 4 and 1 such unstable grasps occurred for the
starting surface S2, S4, S5, S9 and S10 respectively, while
all 110 grasp transfers succeeded for each of the remaining
starting surfaces. The figure on the first page illustrates two
deformations in Grad during this optimization. The contact
normals are indicated by red, grey and green lines.

V. CONCLUSION AND OPEN PROBLEMS

In this work, we have further developed our long term aim
of formulating an object/grasp representation which allows
for a deformation based grasp synthesis in a combined space
of grasps and shapes. We have shown that commonly avail-
able point cloud data can be used with our approach and that
it is naturally compatible with gradient based optimization
methods for point contact synthesis. Additionally, our ap-
proach is compatible with probabilistic modelling techniques
since probability distributions can naturally be defined on our
Grasp Moduli Space Gsph. Fundamental challenges however

remain. It is clear that our smooth parametrization will
deteriorate with partial point cloud data. An investigation
of the connection of our approach to Gaussian Process
Regression [14] and a suitable probability distribution on
our shape space to accommodate missing data while avoiding
unrealistic shape reconstructions are potential future research
directions. Similarly, our method currently requires an initial
matching of the object’s rotation, e.g. using an iterative
closest point method. It would be interesting to further study
rotationally invariant methods with are compatible with our
deformation based framework. Finally, it is clear that our
gradient ascent approach is not guaranteed to converge to a
global optimum. We hence intend to also explore alternative
numerical approaches for optimizing grasp quality within our
deformation based Grasp Moduli Space framework.
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