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Abstract—Topological approaches to studying equivalence
classes of trajectories in a configuration space have recently
received attention in robotics since they allow a robot to reason
about trajectories at a high level of abstraction. While recent
work has approached the problem of topological motion planning
under the assumption that the configuration space and obsta-
cles within it are explicitly described in a noise-free manner,
we focus on trajectory classification and present a sampling-
based approach which can handle noise, which is applicable
to general configuration spaces and which relies only on the
availability of collision free samples. Unlike previous sampling-
based approaches in robotics which use graphs to capture
information about the path-connectedness of a configuration
space, we construct a multiscale approximation of neighbor-
hoods of the collision free configurations based on filtrations of
simplicial complexes. Our approach thereby extracts additional
homological information which is essential for a topological
trajectory classification. By computing a basis for the first
persistent homology groups, we obtain a multiscale classification
algorithm for trajectories in configuration spaces of arbitrary
dimension. We furthermore show how an augmented filtration
of simplicial complexes based on a cost function can be defined
to incorporate additional constraints. We present an evaluation
of our approach in 2, 3, 4 and 6 dimensional configuration spaces
in simulation and using a Baxter robot.

I. INTRODUCTION

The problem of determining a continuous path γ : [0, 1]→
Cf between two points in the collision free subset Cf of some
configuration space C ⊆ Rd is an important classical motion
planning problem. Since, in realistic robotics applications,
an explicit description of Cf is often not available, popular
algorithms such as Rapidly-exploring Random Trees (RRT)
and Probabilistic Roadmaps (PRM) [25, 24, 20] are based
on the idea of utilizing a set of random samples X ⊂ Cf
to construct a graph Γ with vertices in Cf and where edges
correspond to local paths which can be determined by a local
path planner. The graph Γ can then be used to efficiently
carry out motion planning. If Cf is a tame space, Γ, for
sufficiently large X , provides an approximation of Cf which
allows us to answer basic questions about the path-connectivity
of Cf . However, Γ does typically not capture higher order
homological information.

In this paper, we propose a novel approach based on
filtrations F = {Fr : r > 0} of simplicial complexes defined
in terms of random samples X ⊂ Cf . From such filtrations,
we then extract higher-order topological information for the
purpose of understanding and classifying equivalence classes

of trajectories in Cf . Given a sufficiently good approximation
of Cf by Fr, our approach yields a finite set of equivalence
classes with the property that no trajectory belonging to
one equivalence class can be continuously deformed to any
trajectory in any of the other equivalence classes. Our filtration
F is based on Delaunay-Čech complexes which depend on a
scale parameter r and which have very recently been proven
[3] to provide a homotopy-equivalent reconstruction of the
space Xr =

⋃
x∈X Br(x) [3], where Br(x) = {y ∈ Rd : ‖x−

y‖ 6 r}. Our work utilizes persistent homology [15, 11, 16]
which generalizes classical homology groups to a multiscale
setting – meaning that we are able to compute topological
information about the analogue Fr of Γ for all scales r > 0
simultaneously without having to choose a particular scale
upfront. Additionally, the 1-skeleton F1

r ⊆ Fr is a graph
which can be used for path-planning. When a cost function
c : Cf → R is defined, we furthermore study the space of
paths in Mr,λ = Xr ∩ c−1(−∞, λ] and show how resulting
path classes can be obtained. We evaluate our approach in 2,
3, 4, and 6 dimensions in simulation and using a Baxter robot.

II. MOTIVATION AND RELATED WORK

For a robot to reason efficiently about trajectories within
its own free configuration space Cf , or about the motions of
other human or robot agents in its environment, a suitable
partitioning of continuously varying families of trajectories
into a discrete set of equivalence classes is desirable.

Clustering trajectories is difficult in general since trajecto-
ries can have varying length and are not immediately rep-
resentable as vectors in a vector space of fixed dimension as
required by commonly used algorithms. Several approaches to
the classification of trajectories, as reviewed in [33], are based
on various approaches to measuring the dissimilarity between
trajectories, such as the Hausdorff distance, edit distances and
dynamic time warping. For the purpose of activity analysis, the
work of [29] reviews trajectory clustering approaches based on
various clustering algorithms and distance measures.

In robotics, the knowledge of classes of trajectories is bene-
ficial for example in the learning by demonstration framework
[8] where movement primitives of a robot’s behavior are
constructed from initial trajectory demonstrations provided by
a human teacher. Equivalence classes of robot trajectories can
furthermore be useful in order to reason about alternative
trajectories when a subset of trajectories becomes invalid due



Fig. 1: We display a rectangular configuration space C of side-length 500
and with two obstacles (in black). Several trajectories are depicted in red and
blue. The gray area displays an approximation of Cf by a Delaunay-Čech
complex DCr(X) from 10000 samples X ⊂ Cf and with filtration value
r = 11.07 (left and middle figure) and r = 73.76 (right figure). All of our
figures are best viewed in color.

to changing environment conditions. The recent work [22] has
demonstrated the usefulness of trajectory classes of local paths
to improve the efficiency of a motion planning algorithm in
particular. Purely topological approaches to the analysis of
trajectories in Cf focus on notions of equivalence which do not
depend on a metric. There, two paths α, β : [0, 1]→ Cf with
α(0) = β(0), α(1) = β(1) are called homotopy equivalent
if α can continuously be deformed to β in Cf while keeping
the end-points fixed. We use Fig. 1 as a running example for
illustration. Note that all figures in this paper are best viewed
in color. For now, consider Cf as being approximated by the
gray region, while the black regions correspond to obstacles.
Several trajectories with identical start and end-points are
depicted in red and blue. The blue trajectory in the leftmost
figure is homotopy equivalent to the red trajectory, while the
trajectories in the middle figure are not homotopy equivalent.
Note that, while trajectories can have identical distance in R2

under e.g. the Hausdorff distance, they may or may not be
homotopy equivalent. When the lower obstacle is removed in
the right figure, the red and blue paths from the middle figure
become homotopy equivalent, for example.

Topological concepts such as retractions and cell decom-
positions have played a key role in classical approaches to
motion planning [23]. There, Cf is typically assumed to have
a known algebraic or semi-algebraic structure. The visibility
graph in 2D and retraction-based methods rely on constructing
a graph using which motion planning is performed. The
general roadmap method of [10] uses ideas closely related
to Morse theory and projections to lower-dimensional spaces
to obtain a complete motion planner for semi-algebraic sets.
Similarly, the seminal work of [31] proceeds by constructing
an exact cell decomposition by means of a cylindrical alge-
braic decomposition of Cf . This is related to our approach
since our simplicial complexes form a particular type of
approximate cell decomposition. In [31], homology groups
of Cf are computed by an exact cell decomposition Z and
the general path planning problem is solved using Z . These
classical works have to the best of our knowledge however
not considered the use of the first homology group of Cf for
trajectory classification, and the focus has been on motion
planning and not classification. An important difference to
our work is the fact that we only assume the knowledge of
potentially noisy point-samples from Cf using which we build
a simplicial complex filtration rather than assuming a known

description of Cf as a (semi-)algebraic set. Furthermore, our
approach allows us to study the homotopy equivalence of paths
within the neighborhood Xr of a set of samples X ⊂ Cf more
generally, e.g. when Xr does not yield a reconstruction of the
full space Cf . In a more recent related work, [32] construct
an approximate cell decomposition using a recursively refined
decomposition of Cf into hypercubes to ensure a sufficiently
fine reconstruction of Cf . However, only the path-connectivity
of this decomposition is then used for motion planning and
homological properties are not further investigated.

Our work is also related to sampling-based algorithms
constructing a graph Γ from X to answer questions about
the path-connectivity of Cf . RRTs and PRMs [25, 24, 20], in
particular, are examples of these which have attracted unabated
interest since their invention [26, 27, 19]. The graph Γ can be
thought of as an approximation of Cf from X . The filtrations
of simplicial complexes used in our work extend the concept
of a graph to a multiscale approach which can recover more
detailed information about Cf . Such filtrations depending on a
scale parameter r have been used in topological data analysis
(TDA) [15, 11, 16] to study the persistent homology groups
which we use here and which capture information about the
topology of data at all scales simultaneously.

One of the advantages of the knowledge of homotopy
classes is that a motion planning algorithm can utilize efficient
replanning within each such class [9]. Since local variational or
gradient based methods can continuously deform trajectories
towards local optimality, it is advantageous to maintain a set of
homotopy inequivalent trajectories each of which can then be
optimized using these methods. Topological information about
path classes hence allows us to incorporate non-trivial global
information with these local methods.

Recent approaches which attempt to obtain equivalence
classes of paths include the works [18, 17] on path deformation
roadmaps where a graph-based representation to plan in the
space of paths up to a class of continuous deformations is
proposed. Recently, researchers have in particular investigated
homotopy classes of trajectories in explicitly described spaces.
Using the classical residue theorem of complex analysis [5]
studied an application of homology classes to motion planning
in 2D in the case where the obstacles in C can be contracted
into representative and explicitly defined points. In [6], this
was extended using electromagnetism theory and Ampère’s
law to the case of 3D. There, obstacles were assumed to
be contracted into skeletons and then modeled as current-
carrying wires. Similarly to our work, the authors argue
that homological information is useful and computationally
favorable to more general homotopy invariants in robotics.
In [7], a generalization to arbitrary dimension is proposed and
an integration of differential 1-forms over cycles is shown to be
sufficient to determine topological classes using the classical
language of de Rham cohomology theory. In [21], motion
planning in 2D with homology constraints is formulated as a
mixed-integer quadratic program by endowing path segments
with binary labels that identify their relation to the domain
obstacles. A problem the above recent approaches suffer from



is that they require an explicit description of the obstacles
in the configuration space, e.g. in 2D as unions shapes each
of which is contractible to a geometrically specified point
p ∈ C − Cf . In many cases, such information is however
not easily available for real robotic systems or too expensive
to compute. We instead propose a data-driven, sampling-
based approach to building a representation of Cf from which
topological information about trajectories can be extracted.

III. THEORETICAL BACKGROUND

Filtrations and persistent homology provide a key tool to
determine multiscale topological properties. We review some
concepts from topological data analysis [15, 16].

A. Delaunay-Čech Complexes

A (abstract) k-simplex σ is a set of k+ 1 elements, and we
call k the dimension of σ. A (abstract) simplicial complex K
is a finite non-empty set of simplices such that if σ ∈ K and
∅ 6= τ ⊆ σ ∈ K, then τ ∈ K. An element σ ∈ K is called a
simplex of K and τ ⊆ σ is called a face of σ.

Consider a set of uniformly sampled points X =
{x1, . . . , xn} ⊂ Y from a subset Y ⊆ Rd. The r-
neighborhood Xr =

⋃n
i=1 Br(xi), where Br(xi) = {x ∈ Rd :

‖x − xi‖ 6 r} for r > 0, forms an interesting topological
space. To compute the homology of Xr, we can represent Xr

by any simplicial complex Kr which is homotopy equivalent to
Xr. The Čech complex Cr(X) = {σ ⊆ X : ∩x∈σBr(x) 6= ∅}
is an abstract such complex which however has no direct
representation as a subset of Rd. Given X , we can instead
consider the complex D(X) = {σ ⊆ X : ∩x∈σVx 6= ∅} (the
Delaunay triangulation of X) where Vx denotes the Voronoi
cell containing x. We consider D(X) for points in X which
are in general position, which occurs with probability one and
which can also be enforced by a small perturbation of X .

The Delaunay-Čech complex DCr(X), for r > 0, is
the subcomplex of D(X) defined by DCr(X) = {σ ∈
D(X) : ∩x∈σBr(x) 6= ∅}. The recent work [3] establishes that
DCr(X) is homotopy equivalent to Xr, so that topological
information about Xr can be extracted from DCr(X) directly.
We define f : D(X) → R by f(σ) = min{r : ∩x∈σBr(x) 6=
∅}, so that DCr(X) = f−1((−∞, r]) and DCr(X) changes
only at finitely many r1 < . . . < rm which can be computed at
all scales by determining f(σ) for each simplex σ ∈ D(X).
Every k-simplex σ = {v0, . . . , vk} ∈ DCr(X) corresponds
to the geometric simplex given by the convex hull Conv(σ),
so that 0-simplices are points, 1-simplices are edges, and 2-
simplices are triangles. Fig. 1 and 2 illustrate examples of
DCr(X) in R2. Note that, instead of DCr(X), we could also
have considered the Alpha complexes Ar(X) of [14] since
Ar(X) is also homotopy equivalent to Xr and furthermore
Ar(X) ⊆ DCr(X), A∞(X) = DC∞(X) = D(X). An
advantage of DCr(X) over Ar(X) in our application is
that we can compute the filtration values for the 2-skeleton
of DCr(X) consisting only of simplices of DCr(X) up
to dimension 2 directly without having to first compute the
filtration values for the higher skeleta.
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Fig. 2: A reconstruction of Cf from 1000 samples (red points) on a
square of side-length 500. DC25(X) is displayed in the top-left yielding
a good approximation to Cf . The first persistence diagram for DCr(X) is
shown in the top-right. The two marked red points p1 = (10.58, 74.0),
p2 = (12.97, 90.38) with large persistence correspond to the birth and death
filtration of the two holes in Cf . The bottom row displays DC10.58(X),
DC12.97(X) and DC74.0(X) which correspond to the birth of the smaller
and larger hole (the first time they are enclosed by edges), and finally to the
death filtration value of the smaller hole (the hole is covered at r = 74.0).

B. Filtrations and Homology

We now review the details of simplicial homology over
Z2 = {0, 1} for a geometric simplicial complex K in Rd.
The example to keep in mind is the case K = DCr(X)
for a fixed r > 0. We then extend the discussion to a
collection of simplicial subcomplexes of a simplicial complex
K defined by Kr = f−1((−∞, r]), where f : K → R satisfies
f(τ) 6 f(σ) whenever τ ⊆ σ ∈ K. Then Kr ⊆ Kr′ whenever
r 6 r′ yielding a filtration of simplicial complexes. From the
preceding discussion, we observe that Kr = DCr(X), with
K∞ = D(X), yields a filtration as r varies.

A p-chain c is a formal sum c =
∑k
i=1 λiσi of p-simplices

{σi}ki=1 ⊂ K with λi ∈ Z2 and Cp(K) denotes the vector
space of all p-chains. In particular, 1-chains are finite sets of
edges and 2-chains are finite sets of triangles. For every p-
simplex σ let ∂σ be the p − 1-chain formed by the formal
sum of all p− 1 dimensional faces of σ corresponding to its
boundary. ∂ extends to a linear map ∂ : Cp(K) → Cp−1(K).
A chain c ∈ Cp(K) such that c = ∂ω for some ω ∈ Cp+1(K)
is called a p-boundary, and we call c a p-cycle if ∂c = 0.
The set of p-boundaries and p-cycles is denoted by Bp(K)
and Zp(K) respectively and Bp(K) ⊆ Zp(K) since ∂∂ = 0.
The quotient vector space Hp(K) = Zp(K)/Bp(K) is called
the pth homology group of K and bp(K) = dim(Hp(K)) is
called the pth Betti-number. b0(K) is equal to the number
of connected components of K. We denote the equivalence
class of a p-cycle c in Hp(K) by [c]. To understand what a
1-cycle is, observe that the boundary of a 1-simplex (i.e. an
edge) consists of the two vertices (i.e. 0-simplices) connected
by the 1-simplex. Similarly, the boundary of a 1-chain (i.e. a
collection of edges) in K consists of the sum of boundaries of
the 1-simplices in the chain counted modulo Z2. In particular,



any closed edge-path γ in K is a 1-cycle which is trivial in
H1(K) if it does arise as the boundary of a 2-chain (i.e. a
collection of triangles) and two 1-cycles γ, γ′ are equivalent
if their difference (equivalently their sum modulo Z2) is the
boundary of a 2-chain. In Fig. 1, the union c of the red and blue
paths are 1-cycles in DCr(X). In the leftmost and rightmost
figure [c] = 0, while [c] 6= 0 in the middle figure for the
indicated filtration values r. A basis for H1(DCr(X)) for the
leftmost figure can be provided by two equivalence classes
of cycles [c], [c′], for example where c loops around the larger
hole once and c′ loops around the smaller hole once. However,
the choice of representative cycles c, c′ is not unique. In these
examples, b1(K) = dim(H1(K)) hence measures the number
of enclosed voids in K = DCr(X). Since H1(DCr(X))
changes with the filtration value r, we now recall how to study
the changes in homology using persistent homology [15].

a) Persistent Homology: For a filtration of simplicial
complexes, where f : K → R, K is a finite simplicial
complex, and Kr = f−1((−∞, r]), we denote the finitely
many filtration values at which Kr changes by r1 < . . . < rm.
The inclusion αji : Kri → Krj , for i 6 j, induces a linear
map hji : Hp(Kri) → Hp(Krj ). We say that a homology
class α ∈ Hp(Kri) is born at ri if α /∈ im(hii−1). A class α ∈
Hp(Kri) born at ri is said to die at rj if hj−1i (α) /∈ im(hj−1i−1 ),
but hji (α) ∈ im(hji−1). The difference rj − ri is called the
persistence of α: it measures how long a homological feature
survives in the filtration. Classes born at ri which do not die
are associated to (ri,∞) and are called essential, the remain-
ing classes are called inessential. Similarly, if a cycle repre-
sents an essential (inessential) class, we call the cycle essential
(inessential). For i 6 j, the p-th persistent homology group is
defined as Hi,j

p = Zp(Kri)/(Bp(Krj )∩Zp(Kri)). Non-trivial
elements of Hi,j

p correspond to equivalence classes of p-cycles
born at or before ri and which persist, i.e. do not die in the
filtration for r ∈ [ri, rj). For i = j, this recovers the usual
notion of homology Hi,i

p = Hp(Kri) = Zp(Kri)/Bp(Kri).
A graphical representation is obtained by the p-th persistence
diagram which associates (ri, rj) to classes born at ri and
dying at rj and (ri,∞) to essential classes born at ri (with
multiplicity). The number of points in (−∞, ri] × (rj ,∞]
equals dim(Hi,j

p ) and the vertical distance of a point to the
diagonal indicates how long the feature persists (see [15]).

In Fig. 2, we display the diagram for p = 1 and DCr(X).
Observe that the two obstacles correspond to the two red points
in the diagram which are far from the diagonal. The remaining
points correspond to holes which are due to noise and which
do not persist for a large filtration interval. Note also that,
for p = 0, the persistence diagram measures the merging of
connected components of DCr(X) as r is increased [15].

b) Computation via matrix reduction: To compute the
persistence diagrams of a filtration Kr1 ⊂ Kr2 ⊂ . . . ⊂ Krm ,
it is convenient to refine the filtration as follows: we pick an
ordering σ1, . . . , σn of the simplices of Krm such that, for
all i ∈ {1, . . . , n}, Ki = ∪il=1σl is a simplicial complex and
there exist indices 0 6 i1 < i2 < . . . < im = n such that

Kij = Krj . Such a simplexwise filtration can be obtained by
inserting simplices in Kri before simplices in Krj if i < j and
by inserting the faces τ ⊂ σ of any simplex σ before inserting
σ itself [15].

Let K =
⋃n
i=1 σi be such a simplexwise filtration. The

boundary operator ∂ : ⊕dp=0Cp(K)→ ⊕dp=0Cp(K) is a linear
map which we express in the ordered basis σ1, . . . , σn yielding
an n×n matrix D with Z2 entries. For a matrix M , we denote
by Mj the jth column and by Mij the (i, j)-entry. Note that
D is upper triangular and Dij = 1 if σi is a codimension
1 face of σj . We let low(Mj) = max{i : Mij 6= 0} if
Mj 6= 0 and low(Mj) is undefined otherwise. A left-to-
right column addition Mj ← Mj + Mi, i < j is called
reducing if it decreases low(Mj) and M is called reduced if
no reducing left-to-right column addition can be performed
on any of its columns. The standard persistence algorithm
[16] applies left-to-right column additions to D until D is
reduced, yielding a reduced matrix R. We can keep track of
these additions by initializing the algorithm with R = D,
V = In, so that R = DV . For each left-to-right column
addition Rj ← Rj + Ri for i < j, we perform the column
addition Vj ← Vj + Vi. This algorithm terminates when R
is reduced and we have R = DV , where V is the matrix
relating R to its unreduced version D. One defines [12]
P = {(i, j) : Rj 6= 0 and i = low(Rj)}, E = {i : Ri =
0 and low(Rj) 6= i for all j ∈ {1, . . . , n}}. Returning to
Kr = f−1((−∞, r]), each (i, j) ∈ P with dim(σi) = p corre-
sponds to (f(σi), f(σj)) in the p-th persistence diagram and is
generated by the p-cycle Rj which dies with the introduction
of the simplex σj . Similarly, each i ∈ E with dim(σi) = p
corresponds to (f(σi),∞) and the p-cycle Vi which is still
alive in the final filtration Kn = Krm . Note that the cycles Vi,
Rj are not canonical, but the persistence diagrams determine
the ranks of all persistent homology groups.

c) H1(Y ) and homotopy classes of trajectories: The
final piece of background work we require is the connection
between the first homology group and homotopy classes of
paths in a topological space Y . The obvious case to keep
in mind is Y = Cf ⊂ Rd. Recall that the first fundamental
group π1(Y, x0) [16] is a well-known group whose elements
consist of equivalence classes of closed continuous curves
through x0 ∈ Y and lying entirely in Y . Two closed paths
α, β : [0, 1] → Y through x0 lie in the same equivalence
class if there exists a homotopy (i.e. a continuous deformation)
between them which is constant at the base-point x0. When
Y is path-connected, π1(Y, x0) is independent of the chosen
base-point x0 and hence often denoted simply by π1(Y ). Fur-
thermore, if the spaces Y, Y ′ are homotopy equivalent spaces,
π1(Y ) and π1(Y ′) are isomorphic as groups. Two paths γ1, γ2
in Y with the same start point x and end point y can be
deformed into each other via a homotopy if the closed curve
γ following γ1 from x to y and then γ2 from y to x is trivial
in π1(Y ). Hence, π1(Y ) is a natural group to consider for the
purpose of trajectory classification. Unfortunately, to the best
of our knowledge, no sufficiently efficient method for general
configuration spaces exists to compute the group structure of



π1(Y ) which can be complicated and non-commutative. To
extract topological information about homotopy classes, we
can turn to the first singular homology group H1(Y ) with
binary Z2 = {0, 1} coefficients, yielding a vector space which
can be explicitly computed via simplicial homology when
Y is homotopy equivalent to a simplicial complex K. The
closed curve γ can be represented explicitly as a 1-cycle
in a sufficiently fine subdivision of K when a deformation
retraction from Y to K is computable, and γ then corresponds
to a vector [γ] in H1(Y ) ∼= H1(K). Finally, [γ] 6= 0
implies that γ1 and γ2 are not homotopy equivalent, allowing
us to discern homotopy classes of continuous paths. Note
however that homology is a weaker concept than homotopy, so
[γ] = 0 ∈ H1(Y ) does not imply that γ1 and γ2 are homotopy
equivalent. To gain somewhat more granularity, one can further
replace Z2 coefficients for example with Zp coefficients for a
large prime p. In this work we choose Z2 coefficients due to
their computational advantages for large simplicial complexes.

IV. METHODOLOGY

We consider a configuration space C ⊂ Rd and the set Cf ⊆
C of collision-free configurations. We do not assume that we
have an explicit description of Cf or C available, and we would
like to study homotopy classes of a set of trajectories T =
{γ1, . . . , γk} ⊂ Cf with a fixed starting point x ∈ Cf and end
point y ∈ Cf . In order to classify the trajectories, we shall
exploit the connection between homotopy classes and the first
homology group which we just discussed. We now consider
two multiscale settings:

1) X is a sufficiently dense sample: We assume that
X = {x1, . . . , xn} ⊂ Cf yields a sufficiently dense sam-
ple, for example sampled via rejection sampling from the
uniform distribution on C, or via a randomized exploration
of the configuration space. We can then ask about a likely
approximation of Cf from X . Our working hypothesis is that
the family of spaces {Xr =

⋃
x∈X Br(x) : r > 0} contain

good such estimates. If X was sampled uniformly and Cf
is a smooth compact submanifold M ⊂ Rd, this intuition
is in fact well-founded due to the reconstruction theorem of
[30] which guarantees that, for a sufficiently dense sample set,
Xr deformation retracts to the manifold M for appropriately
chosen r. Using the previously introduced Delaunay-Čech
complex and the fact that DCr(X) is homotopy equivalent to
Xr [3], we will then compute homological information about
Xr from DCr(X).

2) X ⊂ T : We assume only the availability of the
trajectories T . We then discretize each trajectory γi as a
piecewise linear curve and use the vertex positions of all the
piecewise linear segments in T as our sample set X . We
study the homotopy classes of these trajectories within the
topological spaces Xr which constitute an approximation of
the r-neighborhoods around T . This then allows us to classify
trajectories within Xr. In this framework, holes can arise either
due to obstacles in the configuration space (as in the dense
case), or due to the distribution of the trajectories in Cf . We

consider applications of this case in our experiments with a
Baxter robot.

For a sample set X , let R be the minimal r > 0 such that
γi ⊂ Xr for all i ∈ {1, . . . , k}. Our approach in both cases
above will now be to study the homotopy classes of these
paths in the topological spaces Xr ' DCr(X), for r > R.

A. Trajectory Discretization

In order to compute properties of a trajectory γ : [0, 1] →
Cf , we first need to represent γ by a homotopy equivalent
path of edges (i.e. 1-simplices) in DCR(X). A fast heuristic
procedure for this is to consider vi = γ(i/N), for some large
N ∈ N, to map vi to a closest 0-simplex v′i ∈ DCR(X) and to
then replace the path segment between vi, vi+1 by a shortest
edge-path between v′i and v′i+1. Alternatively, one can attempt
to construct an explicit deformation retraction from XR to
DCR(X) mapping γ first to a path contained in DCR(X)
and then approximating γ by a homotopy equivalent sequence
of 1-simplices on a sufficiently fine subdivision of DCR(X).
The Alpha complexes Ar(X) of [14] are subcomplexes of
DCr(X) for all r > 0 which are also homotopy equivalent
to Xr and onto which an explicit such deformation retraction
from Xr has been described in [14], for example. While the
study of efficient and theoretically sound homotopy equivalent
trajectory discretizations should be explored further, we will
instead focus on the classification problem here, assuming that
each trajectory has been discretized as a path of edges in
DCR(X).

B. Homological Trajectory Classification

Consider a set of edge-paths {α0, . . . , αm} in DCR(X)
starting and ending at 0-simplices s, t ∈ DCR(X) respec-
tively. We consider the 1-cycle cα0

(αu)
def
= α0 + αu ∈

Z1(DCR(X)). Now [cα0
(αu)] 6= [cα0

(αw)] ∈ Hi,j
1 (DC(X))

implies [αu + αw] 6= 0, so that αu, αw are not homo-
topy equivalent in DCr(X), R 6 ri 6 r < rj , where
r1 < . . . < rm denote the critical filtration values at
which DCr(X) changes. We hence have trajectory classes
{[cα0

(α0)], . . . , [cα0
(αm)]} ∈ Hi,j

1 and the class membership
can be computed once we have determined a basis for Hi,j

1 .
Note that α0 corresponds to the zero vector 0 = [cα0

(α0)] and
there can be up to 2k trajectory classes for fixed s, t and i, j
when dim(Hi,j

1 ) = k. We can now compute a basis for Hi,j
1 :

Lemma. Let K1 ⊂ . . . ⊂ Kn be a simplexwise filtration of
simplicial complexes, let R = DV denote the reduced bound-
ary matrix after applying the left-to-right reduction algorithm,
and let Ep ⊆ E, Pp ⊆ P denote those elements corresponding
to p-cycles only. For 1 6 i 6 n, a basis of Zp(Ki) is given
by Si = {Rt : (s, t) ∈ Pp, s 6 i} ∪ {Vs : s ∈ Ep, s 6 i}, and,
for 1 6 i 6 j 6 n, the image of the set

T i,j = {Rt : (s, t) ∈ Pp, s 6 i, t > j} ∪ {Vs : s ∈ Ep, s 6 i}

in Hi,j
p = Zp(Ki)/(Bp(Kj)∩Zp(Ki)) forms a basis of Hi,j

p .
Finally #Ep = dim(Hp(Kn)).

Proof: This follows from the reduction algorithm [16].



In order to classify {α0, . . . , αm}, we first select a simplex-
wise refinement {Ki}ni=1 of the filtration given by DCr(X),
r > 0. Next, we compute the Z2 coordinates of cα0(αu) for
0 6 u 6 m in the basis Sn once. To classify trajectories at a
scale given by the filtration value ri = f(σ), we simply look
up the binary coordinates of cα0

(αu) restricted to the basis
elements T i,i ⊆ Sn. Similarly, we can check if two trajectories
αu, αw are homotopy inequivalent for all ri 6 r < rj by
looking up whether the coordinates of cα0(αu) and cα0(αw)
differ in the basis T i,j ⊆ Sn.

Note now that DCr(X) = D(X) for sufficiently large
r, where D(X) denotes the full Delaunay triangulation, and
H1(D(X)) = {0} since D(X) is contractible. Hence E1 is
empty implying that we do not need to keep track of the matrix
V to determine a basis of Hi,j

1 . This is important since, in our
experiments, these matrices have millions of columns and R
is typically very sparse and of low rank, while V has full rank.
Since low is injective on the set Sn, we order elements of Sn

(for p = 1) by their low value and we store low−1 = l as a
map such that l(k) is that element s ∈ Sn with low(s) = k.
For any cycle c ∈ Z1(Ki), we can then trivially solve for the
coefficients in the basis Sn by iterating c ← c + l(low(c)).
Each iteration reduces low(c) until we arrive at the zero vector.
In the ordered basis Sn, c then has non-zero coefficients
F (c) ∈ Z#Sn

2 exactly at those basis elements s ∈ Sn for
which low(s) = low(c) during the execution of the above
loop. Again, n can be very large (millions), but the vector
F (c) is in our experiments very sparse so that the algorithm
does not exhibit its worst cast O(n2) computation time. We
call F (cα0

(αu)) ∈ Z#Sn

2 the persistent cycle coordinates of
αu with respect to α0.

If we want to determine a trajectory class at scales corre-
sponding to filtration values ri < rj , we select the coordinates
F i,j(cα0(αu)) of F (cα0(αu)) corresponding to the basis T i,j .
Two trajectories αu, αw are then not homotopy equivalent if
F i,j(cα0

(αu)) 6= F i,j(cα0
(αw). Each non-zero coordinate of

F (cα0
(αu)) corresponds to a column Rt of R which has a

death filtration value f(σt). At filtration value r, only those
non-zero coordinates that have been born and have not died
yet contribute to the classification of cycles. We hence obtain
an agglomerative clustering of trajectories lying in a common
DCR(X) as we increase the filtration value r > R. Finally, at
rm, DCrm(X) = DC∞(X) = Conv(X) and all trajectories
then lie in the same class.

Illustration: Consider Fig. 1. The red trajectory corre-
sponds to α0 and the two blue trajectories in the left and mid-
dle figure represent α1, α2 respectively, and all trajectories lie
in DCri(X), ri = 11.07. We have [cα0(α0)] = [cα0(α1)] =
0 ∈ Ha,b

1 for all i 6 a 6 b, but [cα0(α2)] 6= 0 ∈ Ha,b
1 , for

i 6 a 6 b 6 j, where rj = 73.76 is the critical filtration value
at which the hole surrounded by α0, α2 gets filled in.

C. Filtrations with Cost Functions

Suppose now that we have sampled Cf sufficiently densely
and that DCR(X), for some fixed R, provides a good approx-
imation of Cf . Consider a cost-function c : Cf → R. Our aim

Fig. 3: We display example worlds and examples of paths which were
determined to lie in a single class (in blue) at filtration value r2. DCr2 (X)
was constructed from 100000 samples and the classes are computed using the
indicated red trajectories corresponding to α0.

now is not only to classify trajectories in the space Cf , but to
take into account a threshold for the cost function. Given c, we
define the cost ĉ of a k-simplex σ = {v0, . . . , vk} ∈ DCR(X)
to be ĉ(σ) = max(c(v0), . . . , c(vk)). Then ĉ satisfies ĉ(τ) 6
ĉ(σ) whenever τ ⊆ σ. In order to apply our algorithm without
having to keep track of the potentially non-sparse matrix V ,
we furthermore let ĉ(σ) = max(c(v0), . . . , c(vk))+C for any
k-simplex σ ∈ D(X) − DCR(X) and for C larger than the
cost of any v ∈ X . Then LR,λ = ĉ−1((−∞, λ]) yields a
filtration as λ varies and LR,λ ⊆ DCR(X) for λ < C and
LR,∞ = D(X), ensuring H1(LR,∞) = 0. We think of LR,λ as
an approximation to MR,λ = XR ∩ c−1((−∞, λ]) for λ < C.

V. EXPERIMENTS

Our experiments were performed on an Intel Core i7 laptop
with 8GB of RAM. We present only the computation times of
core algorithms and disregard the time required to initially load
data into memory. We used the matrix and binary tree column
vector data structure of the PHAT library [4] to efficiently
manipulate large boundary matrices. Instead of working with
the full simplicial complex DCr(X), we extracted the 2-
skeleton DC2

r (X) from the Delaunay triangulation D(X). The
2-skeleton is sufficient for our purposes since Hi,j

1 (DCr(X))
does not depend on higher dimensional simplices. We reduced
only the submatrix of the boundary matrix corresponding to
the first homology group. D(X) was computed with CGAL
[1] for all but our Baxter experiments where we used QHull [2]
which was faster in higher dimensions. A supplementary video
can be found at http://www.csc.kth.se/~fpokorny.

Trajectory classification in 2D: We generated the
set of 2D worlds W1, . . . ,W10 displayed in Fig 3 and
of size 512 × 512 by sampling Gaussian Random Fields
and defining those regions above a threshold to be obsta-
cles. From the resulting free space Cf , we sampled N ∈
{1000, 10000, 100000, 1000000} uniform samples. We com-
puted the Delaunay-Čech filtration for all examples and
recorded the computation times of the Delaunay triangulation,
for the construction of the filtration, as well as the time
required to reduce the boundary matrix D to its reduced form
R. The Delaunay triangulation took 1ms, 2ms, 76ms, 810ms,
the construction of the filtration took 11ms, 31ms, 278ms and
3.27s and the reduction of the boundary matrix took 14ms,
13ms, 76ms, 981ms on average as the sample size increased.



Fig. 4: We display the example world W1 with DCr2 (X) for 1000, 10000
and 100000 sample points per row. In each column, we plot paths α1, . . . , αs

(in blue) which belong to a fixed trajectory class at filtration value r2. The
fixed reference path α0 is plotted in red. As expected, we can clearly see
that two paths in different classes also lie in different homotopy classes. In
our experiments, paths within a class are furthermore homotopy equivalent
in DCr2 (X), but the quality of the approximation DCr2 (X) ' Cf is only
sufficient for 10000 or more sample points as can be seen in the right figure
in the first row. There, some 2-simplices (triangles) cover the thin obstacle
region to the right.
We investigated the filtration DCr(X) at various thresholds.
At a filtration value of r1 = 25

√
1000/N , we found that Cf

was conservatively covered, while at r2 = 35
√

1000/N , the
space was well covered with a minimum number of holes in
collision free areas. In order to investigate interesting path
classes, we generated a set of 1000 paths per world and
sample setting as follows: In 10 trials, we selected two sample
points v1, v2 at random and, for each such setting, we selected
another 100 random waypoints w1, . . . , w100 from the sampled
point-cloud. We determined shortest edge-path from v1 to wi
and then to v2 utilizing Dijkstra’s algorithm on the 1-skeleton
graph of DCr1(X). The computation times for the persistent
cycle coordinates for these paths were 1.8ms, 10ms, 115ms
and 1.75s for a batch of 100 query paths and for the respective
sample sizes on average. These encouraging timings suggest
that our framework could be used as a classification ‘black
box’ e.g. for continuous trajectory optimization engines.

Trajectory classification in 4D: We consider the planar
robot arm displayed in the top left of Fig. 5 attached to the
central black disk and with 4 joints θ1, . . . , θ4. We constrain
θ1 ∈ [−π2 ,

π
2 ], θ2, θ3, θ4 ∈ [−0.9π, 0.9π] and furthermore

disallow self-collisions and collisions with the environment
(the black rectangle and the floor), yielding Cf ⊂ R4. The
robot now has the task of moving from the start configuration
displayed in blue to the red goal joint configuration as shown
in the top left figure. We sampled 100000 poses uniformly
in Cf using OpenRave [13] and applied our framework.
DC2
∞(X) had about 6.2 million triangles and 1.8 million

0 0.5
0

0.301
0.382

0.5

Fig. 5: The top left figure shows the robot arm in start configuration (blue) on
the right and in goal configuration (red) on the left. The right figure displays
the first persistence diagram for our reconstruction with one red point far
above the diagonal. A projection of the samples onto θ1, θ2 is shown in the
middle and an illustration of the difference between the two trajectory classes
for r ∈ [0.301, 0.382] is shown in the bottom left figure. In the first trajectory
class (in red), the arm is extended to the left when passing under the narrow
passage while in the second class (in blue), the arm is extended to the right.

Fig. 6: We display a cost function and classes of trajectories (in blue)
depending on a cost threshold and a path α0 (in red). For the higher threshold
in the rightmost plot, the two classes in the two leftmost figures merge.

edges. The right part of Fig. 5 displays the resulting first
persistence diagram which clearly shows that a single homo-
logical feature has large persistence in Cf . The projection of
the joint configurations onto the first two angles, as shown in
the middle figure, confirms the existence of a single hole. We
computed 1000 edge-paths in DC0.25 between the start and
end-configuration using 1000 random waypoints as before. For
filtration values r ∈ [0.301, 0.382] only two trajectory classes
existed. The reduction of the boundary matrix took 0.46s,
while the persistent cycle coordinates for all 1000 paths were
calculated in 0.55s. The Delaunay triangulation in R4 took
251s, partially due to the increased dimension. Note however
that these results are not directly comparable to the 2D case
since methods for 2D Delaunay triangulations in CGAL [1]
are especially optimized. We inspected the trajectories in each
homology class and found that they were classified according
to whether the second link was positioned to the left or to the
right of the base link of the arm when θ1 = 0 as the arm
passed the narrow passage (see the bottom left part of Fig. 5).
Our framework hence allows the robot to discover the fact that
two fundamentally different solution trajectory classes exist.

Filtrations with cost functions: We consider the free
configuration space Cf ⊂ R2 of size 250 by 500 with two
obstacles (in white) displayed in Fig. 6. We would now like
to distinguish not only between homotopy classes depending
on the obstacles in the configuration space, but also discern
how trajectories behave with respect to the two peaks of the
cost function. The simplicial complex L10,λ(X) is displayed
for 10000 samples X and height values are determined by the
cost function. At cost threshold λ = 90, the top of one of the
hills defined by the cost-function is removed from the complex
in the rightmost figure (indicated in blue), while at λ = 70 both
hills are truncated in the remaining figures. We sampled 100
random paths in this configuration space by fixing the initial



Fig. 7: Baxter robot experiments (E1: column 1-2, E2: column 3-4, E3: column 5-6). Trajectory classes are illustrated in the top row and details are provided
in the bottom row. We recorded 97, 18 and 40 trajectories resulting in point clouds with 9594, 3650, 4326 points in dimension 3, 6, and 6, and in filtrations
with 0.19, 2.72, 3.05 million edges and triangles for E1, E2, E3 respectively. The computation times for (Delaunay triangulation, 2-skeleton and filtration
computation, boundary matrix reduction) were (0.22, 0.26, 0.12), (41.84, 46.95, 44.17) and (44.92, 51.99, 52.44) seconds for E1, E2, E3 respectively, while
the classification of all trajectories in each experiment took no more than 0.05s. Bottom row: The first two images show the end-effector trajectories in E1.
While we obtain 3 classes for r = 0.08m (first image) the green class merges with the blue one at r ≈ 0.084m (second image, see Fig 8). The 3rd, 4th
and 5th, 6th image show the right and left hand trajectories for E2 and E3 respectively. The trajectory classes at r = 0.19m are indicated in red and blue.

and terminal vertex at the start and end-point of the drawn
red reference trajectory and by sampling random waypoints
as before. The figure displays example trajectory classes for
differing cost filtration values. Note how, at a cost threshold
of λ = 90 in the right plot, the two classes depicted in the
two leftmost parts of the figure merge.

Baxter robot, 3D and 6D: We now investigate a
kinesthetic demonstration scenario where the Baxter robot in
Fig. 7 is taught a set of trajectories which we then classify
topologically. In the 1st experiment (E1, Fig. 7, column 1-2),
the robot is shown two ways to reach from one point above
its head to a point in front of its torso. Only one arm is moved
in each demonstration while the other arm remains still. We
used the end-effector positions of the moving arm to represent
trajectories in R3. In the 2nd (column 3-4) and 3rd (column
5-6) experiment E2 and E3, we record the positions of both
end-effectors during dual arm manipulations resulting in a 6D
configuration space. In E2, the robot is taught to pick up a
cylindrical object with both hands from a table and to move
it to one of two positions, one higher and one lower than the
table. We also vary the distance between the hands during
grasping between demonstrations. The trajectories in E2 are
periodic. The motions start with the arms in a rest position on
the sides, the object is then grasped and moved, and the rest
position is visited again. In experiment E3, the robot moves
the same object from a horizontal to a vertical configuration,
but a metal bar is located between the robot and the object.
Two intuitive motion classes are based on whether the left
arm crosses in front of the obstacle, or behind it. Note that,
in experiment E1 and E2, no obvious obstacles lie directly in
Cf , but due to the type of demonstrations and the robot’s joint
limits, the space Xr ' DCr(X) ⊂ Cf exhibits interesting
voids which we can exploit for classification. We found
that trajectories were well-approximated using the described
heuristic mapping to nearby edge-paths in DCR(X) (Sec. IV)
for R = 0.08m (experiment E1) and R = 0.15m (experiment
E2 and E3) respectively. For smaller r, DCr(X) was either not
path-connected, or the edge path approximation deteriorated
significantly. We hence investigated classifying paths in Xr

for r > R. Fig. 8 displays how the number of topological
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Fig. 8: Number of path classes (vertical axis) vs. filtration value (horizontal
axis) for experiments E1, E2, E3 from left to right. All paths exist starting at
filtration value R = 0.08m for E1 and R = 0.15m for E2 and E3.

trajectory classes changes with varying r, and the second row
of Fig. 7 displays trajectory classes at various filtration values.
In all experiments, there exists a large filtration interval with
just two trajectory classes corresponding to the two intuitive
classes we just described for each experiment. The first image
in the second row of Fig. 7 also illustrates the three classes one
obtains in E1 for a choice of r = 0.08m. More details on the
computation times and the sizes of the simplicial complexes
is provided in Fig. 7.

VI. CONCLUSION AND FUTURE WORK

We have explored a novel sampling-based approach to
studying homotopy classes of trajectories in general configu-
ration spaces. We believe that our approach could be incorpo-
rated with many existing algorithms. For example, the integra-
tion of local trajectory optimization based algorithms with our
approach which extracts global information about trajectories
could be of interest. Another promising future application of
our method could be a class-dependent generation of dynamic
motion primitives. Several aspects of our approach remain to
be investigated more thoroughly, such as the optimal selection
of filtration parameters once the persistent cycle coordinates
have been computed. While our method scaled well to large
sample sets in 2 to 4 dimensions and was applicable also for
a smaller set of samples in 6D, Delaunay triangulations and
hence DCr(X) have an worst-case complexity of O(ndd/2e)
[28] in dimension d and sample size n. In future work, we
hope to investigate also alternative simplicial complexes, such
as Vietoris-Rips and (weak) witness complexes [11] which
approximate Xr and which could be used to mitigate the ‘curse
of dimensionality’ in higher dimensions.
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